Searching for explanations of black-box classifiers in the space of semantic queries

Tracking #: 3380-4594

This paper is currently under review
Jason Liartis
Edmund Dervakos
Orfeas Menis-Mastromichalakis
Alexandros Chortaras
Giorgos Stamou1

Responsible editor: 
Guest Editors Ontologies in XAI

Submission type: 
Full Paper
Deep learning models have achieved impressive performance in various tasks, but they are usually opaque with regards to their inner complex operation, obfuscating the reasons for which they make decisions. This opacity raises ethical and legal concerns regarding the real-life use of such models, especially in critical domains such as in medicine, and has led to the emergence of the eXplainable Artificial Intelligence (XAI) field of research, which aims to make the operation of opaque AI systems more comprehensible to humans. The problem of explaining a black-box classifier is often approached by feeding it data and observing its behaviour. In this work, we feed the classifier with data that are part of a knowledge graph, and describe the behaviour with rules that are expressed in the terminology of the knowledge graph, that is understandable by humans. We first theoretically investigate the problem to provide guarantees for the extracted rules and then we investigate the relation of "explanation rules for a specific class" with "semantic queries collecting from the knowledge graph the instances classified by the black-box classifier to this specific class". Thus we approach the problem of extracting explanation rules as a semantic query reverse engineering problem. We develop algorithms for solving this inverse problem as a heuristic search in the space of semantic queries and we evaluate the proposed algorithms on four simulated use-cases and discuss the results.
Full PDF Version: 
Under Review