Quality Metrics For RDF Graph Summarization

Tracking #: 1830-3043

Authors: 
Mussab Zneika
Dan Vodislav
Dimitris Kotzinos

Responsible editor: 
Guest Editors IE of Semantic Data 2017

Submission type: 
Full Paper
Abstract: 
RDF Graph Summarization pertains to the process of extracting concise but meaningful summaries from RDF Knowledge Bases (KBs) representing as close as possible the actual contents of the KB both in terms of structure and data. RDF Summarization allows for better exploration and visualization of the underlying RDF graphs, optimization of queries or query evaluation in multiple steps, better understanding of connections in Linked Datasets and many other applications. In the literature, there are efforts reported presenting algorithms for extracting summaries from RDF KBs. These efforts though provide different results while applied on the same KB, thus a way to compare the produced summaries and decide on their quality and bestfitness for specific tasks, in the form of a quality framework, is necessary. So in this work, we propose a comprehensive Quality Framework for RDF Graph Summarization that would allow a better, deeper and more complete understanding of the quality of the different summaries and facilitate their comparison. We work at two levels: the level of the ideal summary of the KB that could be provided by an expert user and the level of the instances contained by the KB. For the first level, we are computing how close the proposed summary is to the ideal solution (when this is available) by defining and computing its precision, recall and F-measure against the ideal solution. For the second level, we are computing if the existing instances are covered (i.e. can be retrieved) and in what degree by the proposed summary. Again we define and compute its precision, recall and F-measure against the data contained in the original KB. We also compute the connectivity of the proposed summary compared to the ideal one, since in many cases (like, e.g., when we want to query) this is an important factor and in general in RDF, datasets that are linked within are usually used. We use our quality framework to test the results of three of the best RDF Graph Summarization algorithms, when summarizing different (in terms of content) and diverse (in terms of total size and number of instances, classes and predicates) KBs and we present comparative results for them. We conclude this work by discussing these results and the suitability of the proposed quality framework in order to get useful insights for the quality of the presented results.
Full PDF Version: 
Tags: 
Reviewed

Decision/Status: 
Accept

Solicited Reviews:
Click to Expand/Collapse
Review #1
By Gong Cheng submitted on 27/Mar/2018
Suggestion:
Accept
Review Comment:

The authors have successfully addressed all my concerns. I would be happy to have this submission accepted.