
Semantic Web 0 (2022) 1–0 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

MTab4D: Semantic Annotation of Tabular
Data with DBpedia
Phuc Nguyen a,*, Natthawut Kertkeidkachorn b, Ryutaro Ichise a, Hideaki Takeda a

a National Institute of Informatics, Japan, Tokyo
E-mails: phucnt@nii.ac.jp, ichise@nii.ac.jp, takeda@nii.ac.jp
b Japan Advanced Institute of Science and Technology, Japan Ishikawa
E-mail: natt@jaist.ac.jp

Editor: Jens Lehmann, University of Bonn, Germany
Solicited reviews: Vasilis Efthymiou, FORTH-ICS, Greece; Ivan Ermilov, University of Leipzig, Germany; 5 Anonymous Reviewers

Abstract. Semantic annotation of tabular data is the process of matching table elements with knowledge graphs. As a result,
the table contents could be interpreted or inferred using knowledge graph concepts, enabling them to be useful in downstream
applications such as data analytics and management. Nevertheless, semantic annotation tasks are challenging due to insufficient
tabular data descriptions, heterogeneous schema, and vocabulary issues. This paper presents an automatic semantic annotation
system for tabular data, called MTab4D, to generate annotations with DBpedia in three annotation tasks: 1) matching table cells
to entities, 2) matching columns to entity types, and 3) matching pairs of columns to properties. In particular, we propose an
annotation pipeline that combines multiple matching signals from different table elements to address schema heterogeneity, data
ambiguity, and noisiness. Additionally, this paper provides insightful analysis and extra resources on benchmarking semantic
annotation with knowledge graphs. Experimental results on the original and adapted datasets of the Semantic Web Challenge on
Tabular Data to Knowledge Graph Matching (SemTab 2019) show that our system achieves an impressive performance for the
three annotation tasks. MTab4D’s repository is publicly available at https://github.com/phucty/mtab4dbpedia.

Keywords: Table Annotation, Knowledge Graph, DBpedia, Semantic Table Interpretation

1. Introduction

Many tabular data resources have been made avail-
able on the Web and data portals, thanks to the Open
Data initiative in recent years. The resources contain
valuable information that helps establish transparency,
improve human life quality, and inspire business op-
portunities. Although tabular data offers enormous po-
tential, it is difficult to be used in applications due to
insufficient descriptions, heterogeneous schema, and
vocabulary issues.

One possible solution for the usability problems is
to generate semantic annotation of tables, particularly
matching table elements with knowledge graphs (KGs)

*Corresponding author. E-mail: phucnt@nii.ac.jp.

such as DBpedia. As a result, the meaning of tabu-
lar data could be interpreted or inferred by knowledge
graph concepts; therefore, it is easy to be used in other
downstream applications such as data analytics and
management.

This paper presents MTab4D, a semantic annotation
system for tabular data, designed to address the three
annotations tasks of the Semantic Web challenge on tab-
ular data annotation with knowledge graphs (SemTab
2019)1. SemTab 2019 is a systematic benchmark for
promoting a comparison of state-of-the-art annotation
systems[1]. Figure 1 illustrates the three semantic anno-
tation tasks. Cell-Entity annotation (CEA) is the task of

1SemTab 2019: http://www.cs.ox.ac.uk/isg/challenges/sem-tab/,
last accessed 03/2022.

1570-0844/22/$35.00 © 2022 – IOS Press and the authors. All rights reserved

mailto:phucnt@nii.ac.jp
mailto:ichise@nii.ac.jp
mailto:takeda@nii.ac.jp
mailto:natt@jaist.ac.jp
https://github.com/phucty/mtab4dbpedia
mailto:phucnt@nii.ac.jp
http://www.cs.ox.ac.uk/isg/challenges/sem-tab/

2 P. Nguyen et al. / MTab4D

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Entity (dbr:)
(a) CEA

Class (dbo:)
(b) CTA

Property
(c) CPA

Fig. 1. Tabular Data Annotations with DBpedia. dbr: is an entity
prefix, and dbo: is a type prefix.

A. Prior NeZ¬Zealand 1969
A. DreZs UeWersen 1935

col0 col1 col2

dbr:ArWhXr_DreZs
dbo:PopXlaWedPlace,
dbo:Place

dbo:deaWhYear

Fig. 2. An example of semantic annotation of tabular data

assigning an entity to a table cell (Figure 1a). Column-
Type annotation task (CTA) assigns entity types (e.g.,
DBpedia class hierarchy) to a table column (Figure
1b). Column Pair-Property annotation (CPA) is the task
of assigning a property or a predicate to the relation
between two table columns (Figure 1c).

Figure 2 depicts an example of semantic annotations
for tabular data. dbr:Arthur_Drews is an entity anno-
tation for cell “A. Drews”. The type annotations for
column “col1” are dbo:PopulatedPlace and dbo:Place.
The property of dbo:deathYear is the annotation for the
relation between column “col0” and column “col2”.

This paper proposes an annotation pipeline that com-
bines multiple matching signals from table elements
to address schema heterogeneity and ambiguity. Our
system is inspired by the graphical probability model-
based approach [2] and the signal (or confidence) prop-
agation as in the T2K system [3]; however, our system
improves the annotation tasks’ performance with the
following contributions:

– Table Pre-processing: We introduce a method for
pre-processing tables to deal with data noisiness
consisting of cell normalization, datatype predic-
tion for cells and columns, header prediction, sub-
ject column prediction, and matching target pre-
diction.

– Entity Search: Most previous systems used on-
line entity search services to generate candidate en-
tities (e.g., DBpedia lookup); however, it is hard to

reproduce the same search results if the search in-
dex change due to the evolution of the knowledge
graph. We introduce novel entity search modules
as in Section 3.3 (keyword search, fuzzy search,
and aggregation search) based on the DBpedia Oc-
tober 2016 dump that enables the entity search
results to be reproduced for future studies.

– Numerical Column Matching: Data matching
for numerical columns is challenging because the
corresponding value in KG is rarely equal to a
query value. Therefore, we adopt EmbNum+ [4]
as the semantic labeling for numerical columns to
find relevant properties and use DBpedia ontology
to infer entity types which are the domains of the
relevant properties.

– Column-based Matching: We introduce column-
based matching between the table subject col-
umn and other remaining table columns (i.e., en-
tity columns, literal columns). The novel column-
based signals could enhance the overall matching
performance.

We also provide the contributions to the tabular data
annotation community as follows.

– Data Analysis and Extra Resources for Repro-
ducibility: This paper provides insightful analysis
and extra resources on benchmarking semantic an-
notation with knowledge graphs. Since the knowl-
edge graph changes over time, it is hard to com-
pare annotation systems that used a different ver-
sion of the target knowledge graph. To standard-
ize the evaluation of the tabular data annotation
tasks, we provide the extra resources, the adapted
SemTab 2019 dataset built on the October 2016
version of DBpedia (similar to the SemTab 2019
setting), as in [5]. The resources are also accessible
from the public APIs2, e.g., entity search, entity
information retrieval, numerical attribute retrieval,
and evaluation retrieval.

– Annotation API and Graphical Interface: We
provide tabular data annotation API, graphical in-
terface3, and instruction on replicating MTab4D
experiment results4. Our implementation supports
multilingual tables (covered the most popular lan-

2API documents: https://dbpedia.mtab.app/docs, last accessed
03/2022.

3MTab4D Graphical Interface: https://dbpedia.mtab.app, last
accessed 03/2022.

4MTab4D Repository: https://github.com/phucty/mtab4dbpedia,
last accessed 03/2022.

https://dbpedia.mtab.app/docs
https://dbpedia.mtab.app
https://github.com/phucty/mtab4dbpedia

P. Nguyen et al. / MTab4D 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

guages) and could process many table formats
such as Excel, CSV, TSV, or markdown tables.

MTab4D is an extended version of our work MTab
[6], [7] (the best performance for the three matching
tasks: the 1st rank in all (four) rounds and all (three)
tasks). This system advances the previous study in the
three directions:

– Refactoring Implementation: We refactor the
codes over most of the components of MTab [6],
[7] to optimize MTab4D efficiency. Moreover,
MTab4D could auto predict table header, subject
column, and matching targets (Section 3.2), and
provide annotations. MTab4D is publicly available
at4 under an open-source license.

– Reproducibility: MTab’s entity search modules
are built by aggregating many online entity search
services from DBpedia, Wikipedia, and Wikidata
[6], [7]. As a result, it is hard to reproduce the en-
tity search results since the search index changes
over time. We build new search modules based on
the DBpedia October 2016 dump to enable repro-
ducibility. Moreover, we also provide the adapted
SemTab 2019 data with the DBpedia October 2016
version [5]. These resources enable a consistent
environment setup for a fair comparison between
annotation systems in future studies.

– Public services: We also focus on building public
services so that we refactor the implementation,
optimize system efficiency, and support multilin-
gual tables, and could be able to process various
table formats such as Excel, CSV, TSV, or mark-
down tables. We also provide a graphical inter-
face that enables the user to do table annotation
by pasting the table of contents from table files or
websites. Wang et al. [8] state that only our sys-
tem could generate the annotations, while other
annotation systems require high time complexity.

The rest of this paper is organized as follows. In
Section 2, we define the annotation tasks and describe
MTab4D assumptions. Then, we present the overall
framework and the details of each framework’s module
in Section 3. Section 4 reports experimental settings,
results, and error analysis. We describe MTab4D public
APIs and graphical interfaces in Section 5. Section 6
discusses the related work on semantic annotation of
table data and summarizes the participant approaches.
Finally, we summarize the paper and discuss future
directions and the lessons learned in Section 7.

2. Definitions and Assumptions

In this section, we provide formal definitions for the
three annotation tasks in Section 2.1. The assumptions
on MTab4D are described in Section 2.2.

2.1. Problem Definitions

2.1.1. Knowledge Graph
The DBpedia knowledge graph G can be described as

an RDF graph consisting of a set of RDF triples (facts)
F = { f1, .., f|F|}. A triple f ∈ F, which is in the form
of (subject, predicate, object), comprises a subject (an
entity), a predicate (a property), and an object (an entity,
or a literal value). Literal values could be expressed
in plain literals as strings with or without language
tags, e.g., “Tokyo@en”, or typed literals as strings with
datatype values (integers, dates), e.g., “13”^^xsd:int.

We denote the set of entities as E = {e1, ..., e|E|},
the set of entity types (derived from the rdf:type pred-
icate of the triples) as T = {t1, ..., t|T |}, and the set of
properties as P = {p1, ..., p|P|}.

Entity types are related by an rdfs:subClassOf re-
lation. When t1 is a subclass of t2 (or multi hops)
(t1, t2 ∈ T), we write the relation between the two types
as t1 ⊆+ t2 (or t1 ⊆∗ t2 for multi hops).

Entity e ∈ E could be an instance of one or multiple
types (hierarchy). We denote Te as the subset of T that
are types of entity e, and te ∈ Te as a type of entity e.

A triple comprises an entity e, a property p, and an
object (an entity e′ 6= e or a literal value).

2.1.2. Tabular Data
Let S be a two-dimensional table consisting of an

ordered set of N rows and M columns. We denote a
table row as ri, where i ∈ [1...N]; a table column as c j,
in which j ∈ [1...M]. A table cell is denoted as S i, j in
the row ri and the column c j. A relation between two
columns c j and c j′ is denoted as R j, j′ , where j, j′ ∈
[1,M], j 6= j′.

2.1.3. Matching Targets
Let mS

CEA, mS
CTA, and mS

CPA be the matching targets
(indexes) of table cells, columns, and column pair rela-
tions.

2.1.4. Semantic Annotation Tasks
Given the DBpedia knowledge graph G, table S , and

matching targets mS
CEA, mS

CTA, mS
CPA, the tables to KG

matching problems could be formalized the three fol-
lowing tasks:

4 P. Nguyen et al. / MTab4D

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– Cell-Entity matching (CEA): matching each table
cell in the CEA matching targets (S i, j ∈ mS

CEA)
into an entity ei, j ∈ E.

S i, j
CEA−−→ E (1)

– Column-Type matching (CTA): matching each ta-
ble column in the CTA matching targets (c j ∈
mS

CTA) into a class hierarchy T j ∈ T .

c j
CTA−−→ T (2)

– Column Pair Relation-Property matching (CPA):
matching each relation between two columns in
the CPA matching targets (R j, j′ ∈ mS

CPA) into a
property pi, j′ ∈ P.

R j, j′
CPA−−→ P (3)

2.2. Assumptions

We build MTab4D system based on the following
assumptions:

Assumption 1. MTab4D is built based on a closed-
world assumption.

MTab4D annotates tabular data based on the knowl-
edge graph information. Therefore, we assume that the
knowledge graph (DBpedia) is complete and correct.
When table elements are not available in the knowledge
graph, the system mistakenly returns the most relevant
results (incorrect answers).

Assumption 2. The tabular input data is a horizontal
relational table type.

A horizontal relational table contains semantic
knowledge graph triples as (subject, predicate, object).
The table also has a subject column containing entity
names, and the relation between the subject column
and other table columns represents the predicate rela-
tion between the entities (subject) and attribute values
(object).

Assumption 3. All the cell values of the same column
have the same datatype, and the entities related to cell
values of the same column are of the same type.

3. MTab4D Approach

In this section, we describe the MTab4D framework
in Section 3.1. The details of each step are described
from Section 3.2 to Section 3.7.

3.1. Framework

We design MTab4D as the seven-step pipeline as
shown in Figure 3.

Step 1 pre-processes the input table consisting of
cell value normalization, cell and column datatype pre-
diction, header prediction, subject column prediction,
and matching targets prediction. Step 2 is to generate
candidate entities.

Then, Step 3 and Step 4 generate candidate types and
properties using the row-based aggregation from Step
2, respectively. Step 5 disambiguates candidate entities
with confidence aggregation from Step 2, Step 3, and
Step 4.

Step 6 and Step 7 are to disambiguate candidate types
and properties with results from Step 5, respectively.

The following are detailed explanations of each step
of the framework.

3.2. Step 1: Pre-processing

We perform the five following processes: cell nor-
malization, datatype prediction, header detection, and
subject column prediction, matching targets prediction.

3.2.1. Cell Normalization
We remove HTML tags and non-cell-values such as

-, NaN, none, null, blank, unknown, ?, #. Additionally,
we use the ftfy tool [9] to fix all noisy cells caused by
incorrect encoding during file loading.

3.2.2. Data Type Prediction
The system predicts a table cell’s datatype into ei-

ther non-cell (empty cell), literal, or named-entity (NE).
We use the pre-trained SpaCy models [10] (OntoNotes
5 dataset) to identify named and numeric entities. A
cell has a named-entity type when the SpaCy model
recognizes an entity-name tag such as PERSON (hu-
man names), NORP (nationalities), FAC (building),
ORG (companies), GPE (countries, cities), LOC (loca-
tions), PRODUCT (objects, vehicles), EVENT (wars,
sports events), WORK_OF_ART (books, songs), LAW
(law documents), LANGUAGE (named language). A
cell has a literal type when the recognized SpaCy tag
is a numeric tag such as DATE (date), TIME (time),
PERCENT (percentage), MONEY (amount of money),
QUANTITY (measurements), ORDINAL (ordinal),
and CARDINAL (other numerical values). If no tag is
assigned, we associate the cell type with named-entity
because the SpaCy model could miss the named-entity
types.

P. Nguyen et al. / MTab4D 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Step 2

Step 7Step 5 Step 6

Step 4Step 3

Step 1

Data Type Prediction

Candidate
Type

Generation

Candidate
Property

Generation

Input

Output CTA
Class Annotations

CEA
Entity Annotations

CPA
Property Annotations

Entity
Matching

Type
Matching

Property
Matching

Cell Normalization

Header Prediction

Subject Column Prediction

Candidate
Entity

Generation

Matching Targets Prediction

Fig. 3. MTab4D framework for tabular data annotations

Next, the system predicts a table column’s datatype
into either a non-match column (empty column) cnan, a
literal clit, or a named-entity column cent. The column
datatype is derived from the majority voting of all cell
datatypes in this column.

3.2.3. Header Prediction
Let rh be a table header. We use simple heuristics to

predict table headers as follows.

– Table headers could be located in some of the first
rows of a table.

– If the list of datatypes of the header candidate row
differs from most datatypes of the remaining rows,
the candidate is the table header. For example,
the list of datatypes of header candidate (row) is
[named-entity, named-entity, named-entity], while
the list of the majority datatype of remaining rows
is [named-entity, literal, literal].

– We also found that the length of header text is
empirically shorter or longer than the remaining
data rows. If the length of values of the header
candidate row is less than the 0.05 quantile or
larger than the 0.95 quantiles of the length of the
value of remaining rows, the candidates are the
table header.

3.2.4. Subject Column Prediction
Let ccore be the subject column of a table. We adopt

the heuristics proposed by Ritze et al. [3] and modify a
simple heuristic to predict the subject column of a table
as follows.

– A column is a subject column when its datatype is
a named-entity type.

– The average cell value length is from 3.5 to 200.
We also add a restriction that only considers non-
header cells since the length of table headers could
differ from the remaining cells.

– The subject column is determined based on
the uniqueness score as an increased score for
columns with many unique values and reduces the
score for columns with many missing values. The
subject column is the highest unique score column.
If we have many columns with the same score, the
left-most column is chosen.

3.2.5. Matching Targets Prediction
MTab4D uses the following heuristics to generate

matching targets for the three annotations tasks when
the input does not have matching targets.

– CEA task: matching targets are the table cells
whose datatypes are strings.

– CTA task: matching targets are columns so that
the column datatypes are strings.

– CPA task: matching targets are the relation be-
tween the core attribute and the remaining table
columns.

3.3. Step 2: Candidate Entity Generation

To generate candidate entities for the CEA matching
targets, we perform entity searching on the MTab4D

6 P. Nguyen et al. / MTab4D

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

search engine5. Unlike previous work using online en-
tity search services to generate candidate entities, the
MTab4D entity search engine is built from DBpedia’s
October 2016 dump version for reproducibility. We ex-
tracted 5,226,192 entities (ignore disambiguate entities)
and 35,331,799 entity labels (including entity labels,
aliases, other names, redirect entity labels, and disam-
biguation entity names) from DBpedia dump files in the
most popular languages (i.e., English, China, German,
France, Arabic, Russia, Italy, Japanese, Netherlands,
Poland, Portugal).

We build the three entity search modules (i.e., key-
word search, fuzzy search, and aggregation search) to
address table cell values’ ambiguity and noisiness.

Let q be a query which is a table cell S i, j; the entity
search module retrieves the query from the MTab4D
search engine to get a ranking list of relevant entities Eq

and entities’ ranking scores. We normalize the ranking
scores to [0,1] using the softmax function and associate
these normalized scores as entity confidence scores of
cell S i, j using an entity search module φ1(S i, j, ei, j).

For the three search modules, the default limit of
the ranking list is set as 100 in all our experiments
for efficiency reasons. The detail of search modules is
described as follows.

3.3.1. Keyword Search
We build the keyword search to address table cells

ambiguity and entity name variant. We use the Elastic-
search engine6 to index Wikidata entity labels as sep-
arated documents. The ranking scores are calculated
using the default BM25 ranking function of Elastic-
search and entity popularities. The entity popularities
are pre-calculated using the PageRank algorithm on
DBpedia. The ranking scores of the keyword search
module fkeyword are calculated as follows.

fkeyword(q, e) = α · softmax(fbm25(q, e))

+(1− α) · fpopularity(e)
(4)

where the BM25 ranking scores are denoted as
fbm25(q, e), and the entity popularities are denoted as
fpopularity(e). We use the BM25 hyper-parameters as
b = 0.75, k1 = 1.2. We set α = 0.8 as empirically
putting more weighting for the ranking functions of the
BM25 algorithm.

5MTab4D Entity search: https://dbpedia.mtab.app/search, last
accessed 03/2022.

6https://www.elastic.co/elasticsearch/, last accessed 03/2022.

3.3.2. Fuzzy Search
Another challenge of entity search is that table cells

might be noisy, contain many spelling errors, and are ex-
pressed as abbreviations. We introduce the fuzzy search
module using edit distance (Damerau–Levenshtein) and
entity popularities. The ranking score of fuzzy search
is calculated as follows.

ffuzzy(q, e) = α · 1

fedit(q, e) + 1

+(1− α) · fpopularity(e)
(5)

where fedit(q, e) is Damerau–Levenshtein distance be-
tween the table cell and entity label. We also use the
same keyword search parameter α to put more weight
into the edit distance empirically.

Since the edit distance calculation is expensive, we
perform candidate filtering and hashing to reduce the
number of operations on pairwise edit distance calcu-
lation. We remove candidate entities with their length
larger or smaller d characters than the query’s length
(To be simple, we set d to six in all of our experiments).
Because of the efficient reason, we only perform a
fuzzy search with a maximum of six edit distances. We
also perform candidate hashing with pre-calculating
entity label deletion as SymSpell: Symmetric Delete
algorithm [11].

3.3.3. Aggregation Search
This search module is designed to aggregate keyword

search and fuzzy search results with a weighted fusion
as the following equation.

fagg(q, e) = β · fkeyword + (1− β) · ffuzzy (6)

We set the β parameter as 0.5 to equal contribution to
the keyword search and the fuzzy search.

3.4. Step 3: Candidate Type Generation

This step is to generate candidate types for the
named-entity columns. The overall confidence scores
of candidate types are described in Section 3.4.5. The
details of entity search signals, named-entity recogni-
tion signals, table header signals, numerical column
signals are described in Section 3.4.1, Section 3.4.2,
Section 3.4.3, and Section 3.4.4.

3.4.1. Entity Search Signals
Let φ2(c j, t j) be a potential function of candidate

type t j of column c j derived from entity search signals

https://dbpedia.mtab.app/search
https://www.elastic.co/elasticsearch/

P. Nguyen et al. / MTab4D 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

as the following equation:

φ2(c j, t j) =
∑

S i, j∈c j

f2(S i, j, ti, j) (7)

where the type confidence f2(S i, j, ti, j) is the majority
vote for type ti, j ∈ Ti, j of candidate entity ei, j ∈ Ei, j

at cell S i, j. We use entity confidence φ1(S i, j, ei, j) as in
Section 3.3 as the voting score. Finally, we normalize
the confidence scores of candidate types derived from
entity search signals to a range [0, 1] by dividing each
element by the total sum.

3.4.2. Named-Entity Recognition Signals
We denote the potential function of candidate

types derived from name-entity recognition signals as
φ3(c j, t j). The potential function is calculated as the
following equation:

φ3(c j, t j) =
∑

S i, j∈c j

f3(S i, j, ti, j) (8)

where f3(S i, j, ti, j) is an indicator function of the map-
ping between name entities and DBpedia classes as in
Table 1. f3(· · ·) is calculated as the following equation:

f3(S i, j, ti, j) ={
1, if ∃ TypeMap(fNER(S i, j))

0, others

(9)

where TypeMap(· · ·) is the mapping function between
named entities and DBpedia classes. The name-entity
recognition function is denoted as fNER. We use the
SpaCy tool [10] to derive the name-entity label for each
cell S i, j in the column c j as in Section 3.2.2.

Finally, we normalize the confidence scores of can-
didate types to the range [0, 1]. The normalization is
done by dividing each element by the total sum.

3.4.3. Table Header Signals
Let φ4(c j, rh

j , t j) be the potential function of type can-
didates from similarity measures between header rh

j of
column c j and DBpedia classes. We use a lexical sim-
ilarity, specifically normalized Damerau–Levenshtein
distance, as the potential function.

φ4(c j, rh
j , t j) =

1

fedit(t j, rh
j) + 1

(10)

Table 1
Mappings between named entities (using SpaCy toolkit) and DBpedia
entity types.

NER Tags DBpedia Entity Types
PERSON dbo:Person
NORP dbo:Country, dbo:Religious,

dbo:PoliticalParty
FAC dbo:PopulatedPlace, dbo:Building,

dbo:RouteOfTransportation,
dbo:Airport

ORG dbo:Organization
LOC dbo:PopulatedPlace
GPE dbo:PopulatedPlace
PRODUCT dbo:Device, dbo:Food
EVENT dbo:Event
WORK_OF_ART dbo:Work
LAW dbo:LawFirm
LANGUAGE dbo:Language

where fedit(t j, rh
j) is the edit distance between column

header rh
j and a type t j (a DBpedia class).

We also normalize candidate type confidence scores
to [0, 1] by dividing each element by the total sum.

3.4.4. Numerical Column Signals
Let φ5(ccore

j , cnum
j′ , t j) be the potential function of can-

didate types of the subject column ccore
j derived from

numerical column cnum
j′ .

We first use EmbNum+ [4] for column cnum
j′ to find

relevant numerical properties P j′ in DBpedia7. The
confidence score of property p j′ ∈ P j′ is calculated as
the following equation.

fnum(cnum
j′ , p j′) = |P j′ | − rankp j′ (11)

where rankp j′ is the ranking index of p j′ in P j′ . The
scores are also normalized to [0,1] by diving each ele-
ment to the total sum.

Next, we use the candidate properties to infer the
classes (types) for the subject column. The inferred
classes are the candidate properties’ domain classes
(dbo:domain). For example, in Figure 4, the candi-
date properties of the two numerical columns are
“dbo:oclc” and “dbo:finalPublicationYear”. The in-
ferred candidate types of the subject column given the
two numerical columns are “dbo:WrittenWork” and
“dbo:PeriodcalLiterature” (the domain types of the can-
didate properties).

7We used the 200 most frequently numerical attributes (numeri-
cal properties, e.g., height, weight) of DBpedia as the database

8 P. Nguyen et al. / MTab4D

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

oclc finalPublicationYear

numerical column

EmbNum+

PeriodicalLiteratureWrittenWork

WrittenWork

DBpedia Ontology: Domains

DBpedia Ontology: Subclass of

subject column

Property Candidates

Type Candidates

Fig. 4. Property lookup with EmbNum+

Let Tcnum
j

be the set of inferred types from numerical
columns for the subject column ccore

j . The type confi-
dence scores are calculated as the following equation.

φ5(ccore
j , cnum

j′ , t j) = max(f ′num(c
num
j′ , t j)) (12)

where

f ′num(c
num
j′ , t j) = fnum(cnum

j′ , p j′) (13)

where t j is the domain of the property p j′ . We also nor-
malize the type confidence scores to [0,1] by dividing
each element by the total sum.

3.4.5. Signal Aggregation
The confidence scores of candidate types φ6(c j, t j)

are aggregated from entity search signals φ2(c j, t j) (Sec-
tion 3.4.1), named-entity recognition signals φ3(c j, t j)
(Section 3.4.2), table header signals φ4(c j, rh

j , t j)
(Section 3.4.3), and numerical column signals
φ5(ccore

j , cnum
j′ , t j) (Section 3.4.4). The aggregated type

confidence scores are calculated as the following equa-
tions:

φ6(c j, t j) =

w2 · φ2(c j, t j) + w3 · φ3(c j, t j)
+w4 · φ4(c j, rh

j , t j)
+w5 · φ5(ccore

j , cnum
j′ , t j),

c j is a NE and a subject column

w2 · φ2(c j, t j) + w3 · φ3(c j, t j)
+w4 · φ4(c j, rh

j , t j),
c j is a NE and not a subject column

(14)

To avoid adding too much noise to the final aggre-
gation, we omit the types that have confidence scores

c1
e1

e2

e3

c2
e4

e5

e6

p1

Subject
column

Entity
column

Fig. 5. Illustration of candidate property generation between the
subject column and an entity column.

less than γ8. MTab4D uses an equal contribution for
the weighting of w2, w3, w4, w5. After aggregation, we
normalize candidate types to [0,1] by dividing each can-
didate type φ6(c j, t j) by the total sum of the confidence
scores of all candidate types in the column c j.

3.5. Step 4: Candidate Property Generation

This step is to generate candidate properties p j, j′ ∈
P j, j′ of the relation R j, j′ between two columns c j and c j′ .
We assume that the input table is a horizontal relational
type so that this step focuses on the relations of 1) the
subject column to an entity column and 2) the subject
column to a literal column. We associate the subject
column with ccore

j , an entity column with cent
j′ , and a

literal column with clit
j′ .

3.5.1. Subject Column - Named-Entity Column
Let φ7(ccore

j , cent
j′ , p j, j′) be the potential function of

candidate properties of the relation R j, j′ between the
subject column ccore

j and a named-entity column cent
j′ .

Cell S i, j is the table cell in the subject column ccore
j

and row ri. Cell S i, j′ is the table cell in the same row ri

and the named-entity column cent
j′ .

We assume that there is a relation between candidate
entities of S i, j and S i, j′ that equivalence to a DBpedia
property; therefore, we query how many links (rela-
tions or properties) between candidate entities of S i, j

and S i, j′ . The confidence scores of candidate properties
are calculated as f7(ri,R j, j′ , p j, j′) = 1 if there is any
relation between the candidate entities of the two cells.
We aggregate the scores of all rows of the two columns
to get the confidence scores of candidate properties as
the following equation.

φ7(ccore
j , cent

j′ , p j, j′) =
∑

i∈[1,N]

f7(ri,R j, j′ , p j, j′) (15)

8The parameter γ = 0.5 is selected empirically

P. Nguyen et al. / MTab4D 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Then, we normalize the confidence scores of candidate
properties between the subject column and a named-
entity column to a range of [0,1] by dividing each ele-
ment by the total sum.

Figure 5 illustrates candidate property generation
between the subject and entity columns. The list of
e1, e2, e3 is candidate entities of the table cell c1, while
e4, e5, e6 are the candidate entities of cell c2. The can-
didate property p1 is derived from finding properties
between the two lists of candidate entities. The final
candidate properties are aggregated from all rows of
the two columns.

3.5.2. Subject Column - Literal Column
Let φ8(ccore

j , clit
j′ , p j, j′) be the potential function of

candidate properties of the relation between the subject
column ccore

j and a literal column clit
j′ . At row ri, cell S i, j

is in the subject column, and cell S i, j′ is in the literal
column.

We perform value-based matching to calculate the
similarities between entity attribute values of the S i, j

candidate entities and the cell value S i, j′ . Given a can-
didate entity ei, j of S i, j that has pairs of property(pei, j)-
value(vei, j), we compare the similarity between S i, j′

with all pair values vei, j based on their datatypes (textual
type or numerical type). We select the pairs of table cell
values and entity values with larger similarities than β.
The similarities are calculated as the following:

– Textual values: We use the normalized Dam-
erau–Levenshtein distance as the similarity be-
tween vei, j and S i, j′ as the following equation.

f text
8 (vei, j , S i, j′) =

1

fedit(vei, j , S i, j′) + 1
(16)

where fedit(ve, S i, j′) is the Damerau–Levenshtein
distance.

– Numerical values: we adapt the relative change as
the numerical similarity as the following equation.

f num
8 (vei, j , S i, j′) =

1− |S i, j′−vei, j |
max(|S i, j′ |,|vei, j |)

,

if max(|S i, j′ |, |vei, j |) 6= 0

1, if max(|S i, j′ |, |vei, j |) = 0

and |S i, j′ − vei, j | = 0

(17)

c1
e1

e2

e3

c2
p1

Subject
column

Literal
column

v1

v2

Value-based
Matching

p2

Fig. 6. Illustration of candidate property generation between the
subject column and a literal column

We aggregate the confidence scores of all rows of the
two columns based on properties and then normalize
these scores to [0,1].

Figure 6 illustrates candidate property generation
between the subject and literal columns. The list of
e1, e2, e3 is the candidate entities of the table cell c1, the
pairs of property-value [p1, v1], [p2, v2] are the triples
of the candidate entity e1. We calculate the similarities
between the entity attribute values v1, v2, and the lit-
eral cell c2 and aggregate the similarity based on the
properties of the entity values.

3.6. Step 5: Entity Matching

This step is to re-calculate the candidate entities
based on the prior signals from the previous steps.
Given a table cell S i, j, we consider the signals from:

– φ1(S i, j, ei, j): The candidate entity confidences
from entity search as described in Section 3.3.

– φ9(c j, ei, j): The confidence scores of candidate
entities of their type’s confidence scores are as
in Section 3.4. The entity confidences scores de-
rived from type confidence score of column c j as
φ9(c j, ei, j) = φ6(c j, t j).

– φ10(S i, j, ei, j): We calculate the similarity between
the candidate entity label and the table cell using
the normalized Damerau–Levenshtein distance.
Then, we associate the score as the confidence
score of candidate entities given the cell value S i, j

using the lexical similarity measurement.
– φ11(ri, ei, j): These signals are calculated from the

confidence scores of candidate entities in the sub-
ject column given cell values in a row ri. We do the
same procedure of value-based matching as Step
4 to compare all entity attribute values with row
values, but similarities are ordered by the entities.
Then, we compute the mean probability for all cell
values.

10 P. Nguyen et al. / MTab4D

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

The candidate entity confidence scores of the table
cell of S i, j is calculated as the following equation:

φ12(S i, j, ei, j) =

w1 · φ1(S i, j, ei, j) + w9 · φ9(c j, ei, j)

+w10 · φ10(S i, j, ei, j) + w11 · φ11(ri, ei, j),

if S i, j ∈ ccore
j

w1 · φ1(S i, j, ei, j) + w9 · φ9(c j, ei, j)

+w10 · φ10(S i, j, ei, j),

if S i, j 6∈ ccore
j

(18)

where w1,w9,w10,w11 are parameters. We also use an
equal contribution for the parameters. We select the
highest confidence score of candidate entities as the
annotation for a table cell.

3.7. Step 6, 7: Type and Property Matching

We aggregate the highest probabilities of candidate
entities in Step 5 for each cell S i, j, then infer types and
properties with the majority voting.

4. Evaluation

This section first reports the detail about benchmark
datasets in Section 4.1, evaluation metrics in Section
4.3, and experimental setting in Section 4.4. The overall
results are reported in Section 4.5.

4.1. Datasets

We use the two datasets as the original SemTab 2019
(four rounds) and the adapted SemTab 2019 with the
2016 October of DBpedia [5]. Table 2 reports the num-
ber of tables in each dataset; target cells (in CEA),
columns (in CTA), and column pairs (in CPA) of the
original and adapted versions of the SemTab 2019
dataset.

4.1.1. Original SemTab 2019 Dataset
The SemTab 2019 challenge has four rounds; each

round came with a different set of tables and matching
targets for each annotation task [1]. In detail, Round 1
data is a subset of the T2Dv2 dataset, a standard dataset
in tabular data annotation. Round 2 is the biggest and
most complex since it combines Wikipedia tables and

automatically generated tables from DBpedia. Round
3 and 4 datasets also are automatically generated from
DBpedia, but the easily matched cells are removed in
Round 4. To generate the tabular data, firstly, a list
of classes and properties are gathered, then for each
class, the generator selects groups of properties and
uses them to create “realistic” tables using SPARQL
queries. Finally, the “realistic” tables are added noise
into the surface textual of table cells or removed “easy”
matches cells.

4.1.2. Adapted SemTab 2019 Dataset
This section presents an adapted SemTab 2019 with

the 2016 October of DBpedia for reproducibility [5].
It is challenging to compare annotation systems while
not using the same experimental setting (DBpedia ver-
sion). Knowledge Graphs change over time so that the
schema or instances from a DBpedia version have many
differences from another version. As a result, an anno-
tation system could yield a different performance when
benchmarked on different DBpedia versions.

To enable reproducibility, we perform adaptations on
the original version of the SemTab 2019 dataset to Octo-
ber 2019 of DBpedia as in Section 4.1.3. Section 4.1.4
reports the open resources from the adapted dataset.

4.1.3. Ground Truth
We process the original SemTab 2019 dataset as fol-

lows:

– We make matching targets, and ground truth an-
swers consistent by removing the matching targets
that are not available in the ground truth and the
original matching targets.

– We remove invalid entities, types, and properties
that are not available in the October 2016 version
of DBpedia.

– We add missing redirects, equivalent entities,
types, and properties.

– We remove prefixes to avoid redirect
issues. For example, the expected pre-
fix of the entity “Lake Alan Henry” is
“http://dbpedia.org/resource/Lake_Alan_Henry”
while the CEA ground truth of the
original SemTab 2019 Round 1 has
“http://dbpedia.org/page/Lake_Alan_Henry”.
Removing the prefix also have a data storage-
efficient (The adapted SemTab 2019 saves 51.3%
more space than the original dataset).

4.1.4. Public Resources
We also prepare open resources to be reproduced for

future studies.

P. Nguyen et al. / MTab4D 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
Statistics of matching targets on the original and adapted SemTab 2019 datasets

Round #Table
CEA Targets CPA Targets CTA Targets

Original Adapted Original Adapted Original Adapted
1 70 8418 8406 116 116 120 120
2 11925 463796 457567 6762 6762 14780 14333
3 2162 406827 406820 7575 7575 5762 5673
4 818 107352 107351 2747 2747 1732 1717

– Schema: We prepare the CSV files as DBpedia
class hierarchy, properties, and equivalents.

– Data: We also published an entity JSON list dump
(all information about entities) of the October 2016
version of DBpedia. The information of each entity
could be accessed quickly using our opened API4

without processing entire all DBpedia entities.
– Entity Search: We provide a public API of entity

search based on entity label and aliases (multilin-
gual) of DBpedia 2016 October. The search re-
sults will be expected to be the same using our
API, while using other online entity searches (e.g.,
DBpedia entity search or Wikipedia search) could
yield different answers.

– Other resources: We also provide other public
APIs4 of tabular data annotations, numerical at-
tribute labeling, annotation evaluation for the orig-
inal and adapted SemTab 2019 datasets [5].

4.2. Analysis of the Original SemTab 2019 Dataset

CEA Task: Table 3 depicts the number of inconsis-
tencies between the SemTab 2019 ground truth data
and the October 2016 version of DBpedia.

Index Inconsistencies (IIndex) describes the num-
ber of invalid table cell indexes of CEA tar-
gets. Encoding Inconsistencies (IEncoding) describes
the number of encoding errors of DBpedia URIs.
Many samples are inconsistent with URI encoded
and decoded representation. For example, an en-
tity URI of dbr:Angélica_Rivera could be encoded
as “dbr:Ang%C3%A9lica_Rivera” and decoded as
“dbr:Angélica_Rivera”. The ground truth of CEA con-
tains a mixture between encoded URI and decoded URI.
The encoding URI (percent-encoding) is not encour-
aged9. Invalid Inconsistencies (IInvalid) is the number
of invalid entities not in the October 2016 version of
DBpedia, and Redirect Inconsistencies (IRedirect) is

9DBpedia URI encoding: https://wiki.dbpedia.org/uri-encoding,
last accessed 03/2022.

Table 3
Analysis of the CEA task of SemTab 2019 with the DBpedia October
2016.

Round IIndex IEncoding IInvalid IRedirect
1 0 418 22 203
2 250 21912 7662 6130
3 0 7427 763 4140
4 0 1487 22 682

the number of matching targets missing redirect enti-
ties.

The Round 2 dataset contains many inconsistencies,
including the four types of inconsistencies (7.8% incon-
sistencies) because this dataset combines a subset of
Wikipedia tables (with a different KG target: the Octo-
ber 2015 version of DBpedia) and automatically gener-
ated tables (from the October 2016 version of DBpedia).
Round 1 dataset is the second place of inconsistencies
(7%) since this is the subset of the T2D dataset (with
a KG target as the 2014 version of DBpedia). Round 3
dataset has 3% inconsistencies, and Round 4 dataset is
the cleanest in four rounds (2% inconsistencies).

CTA Task: Table 4 depicts the number of inconsis-
tencies of CTA with the October 2016 version of DB-
pedia. Index errors (IIndex) describes the number of
invalid table column indexes of CTA targets. Miss-
ing equivalent classes (IHierarchy) is the number of
hierarchy classes’ inconsistencies in the CTA ground
truth. There are 2% index errors in the Round 2 dataset.
Although the CTA ground truth is derived from the
October 2016 version of DBpedia, there are some in-
consistencies, such as dbo:Region class is not an an-
cestor of dbo:City in the October 2016 version of
DBpedia while it is an ancestor in the ground truth
data. The class hierarchy also misses equivalent classes
such as dbo:PenaltyShootOut class is the equivalent
with dbo:Event. It could be semantic incorrect about
(dbo:PenaltyShootOut owl:equivalentClass dbo:Event);
however, we adopt the fact to follow DBpedia correct-
ness and completeness assumption.

https://wiki.dbpedia.org/uri-encoding

12 P. Nguyen et al. / MTab4D

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
Analysis on CTA task of SemTab 2019 with the October 2016 version
of DBpedia

Round IIndex IHierarchy
1 0 0
2 323 697
3 0 353
4 0 14

Table 5
Analysis on CPA task of SemTab 2019 with the October 2016 version
of DBpedia

Round IEquivalent
1 5
2 1911
3 2030
4 828

Round 2 dataset has 2% index errors where the target
matching is not available in the input table. Round 1
has no errors, while Round 2, 3, 4 have 5%, 6%, and
1% IHierarchy error rates.

CPA Task: We found that the ground truth of the CPA
task misses many equivalent properties. For example,
the properties of dbo:team has its equivalent property as
dbo:club. Some of the equivalent properties in the Octo-
ber 2016 version of DBpedia are (dbo:team, dbo:club),
(dbo:composer, dbo:musicBy, dbo:jureLanguage), and
(dbo:area, dbo:landArea, dbo:waterArea).

Table 4 depicts statistics on missing equivalent prop-
erties (IIEquivalent) in the October 2016 version of DB-
pedia. Round 1 has 4% of ground truth missing equiva-
lent properties. Round 2, 3, 4 have approximately 28%
missing equivalent properties.

4.3. Evaluation Metrics

There are four different metrics used to evaluate tab-
ular data annotation:

F1-score is a harmonic mean of precision and recall.
It is used as the primary score to measure the perfor-
mance of entity annotations (CEA - all rounds), prop-
erty annotations (CPA - all rounds), and type annota-
tion (CTA - Round 1). The F1 metric is calculated as
follows.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(19)

where Precision, and Recall are calculated as fol-
lows.

Precision =
correct annotations

annotations
(20)

Recall =
correct annotations
annotation targets

(21)

Precision scores are used as the secondary score in
entity annotations (CEA - all rounds), property anno-
tations (CPA - all rounds), and type annotation (CTA -
Round 1).

Regarding the type annotation CTA task, two met-
rics are designed to measure the hierarchy of class an-
notations (Average Hierarchical - AH) and perfect class
annotations (Average Perfect - AP) [12]. The AH score
is used as the primary score, while the AP score is used
as the secondary score for rounds 2, 3, 4 of CTA task.

Let the list of target columns be mS
CTA, the number

of column annotations be a, and the number of perfect
annotations be aperfect, the number of OK annotations
denotes as aOK , and the number of the wrong annotation
denotes as awrong. The equations of the AH score and
AP score are described as follows.

AH =

∑
a∈mS

CTA

aperfect + 0.5 ∗ aOK − awrong

|T |
(22)

AP =

∑
a∈mS

CTA

aperfect∑
a∈T

aperfect + aOK + awrong
(23)

4.4. Experimental settings

MTab4D is built based on the October 2016 version
of DBpedia with three versions (a, b, f) depending on
the use of the entity search module. MTab4Db is the
system that uses the keyword search, MTab4Df is used
the fuzzy search, and MTab4Da is used the aggregation
search.

We compare MTab4D with other systems, using the
results reported in SemTab 2019 dataset (original ver-
sion). Unlike our participated system MTab, MTab4D
focuses on reproducibility, where we use the entity
search built from dump data of DBpedia.

P. Nguyen et al. / MTab4D 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

We also conduct experiments MTab4D on the
adapted version of SemTab 2019, where we remove the
inconsistencies between ground truth and the October
2016 version of DBpedia.

4.5. Experimental Results

In this section, we first report the results of MTab4D
with other SemTab 2019 participants on the original
data version in Section 4.5.1. The full results are re-
ported on the challenge websites10. Then, we present
the results of MTab4D on the adapted version of
SemTab 2019 in Section 4.5.2.

4.5.1. Original SemTab 2019 Dataset
Table 6 depicts the CEA results in the F1 score and

Precision of MTab4D compared to the other systems
on the original version of SemTab 2019. Because of the
high data inconsistencies in Rounds 1 and 2, MTab4D
could not provide comparable results with the original
system MTab. However, MTab4Db, with a keyword
search, got slightly higher performance than the MTab
system in Round 3 and Round 4. In Round 1 and Round
2, MTab4Df using fuzzy search achieves higher perfor-
mance than MTab4D using keyword search and aggre-
gation search. It could be explained that the datasets
have a higher noisy level of table cells, such as incor-
rect encoding parsing, entity labels variance, or abbre-
viation. In rounds 3 and 4, MTab4Db using keyword
search achieves higher performance since the table cells
are more likely similar to entity labels of DBpedia.

Table 7 depicts the CTA results in AH score and AP
score of MTab4D compared to the other systems on the
original version of SemTab 2019. Because of the CTA
inconsistencies of the ground truth, MTab4D results are
not comparable with our system MTab in SemTab 2019.
MTab4Df achieves slightly higher performance than
MTab4D using other entity search modules.

Table 8 depicts the CPA results in F1 score and pre-
cision of MTab4D compared to the other systems on
the original version of SemTab 2019. MTab4D results
are slightly lower than our system MTab in SemTab
2019 because of lacking equivalent properties of the
CPA ground truth. The results of using different search
modules are similar; as a result, we conclude that there
is no effect of using different entity search modules in
MTab4D.

10Results: http://www.cs.ox.ac.uk/isg/challenges/sem-tab/2019/
results.html, last accessed 03/2022.

4.5.2. Adapted SemTab 2019 Dataset
This section compares the MTab4D performance on

the original and adapted versions of the SemTab 2019
datasets.

Table 9 depicts the MTab4D results in the F1 score of
the CEA task on the original and adapted version of the
SemTab 2019 dataset. MTab4D, built on the October
2016 version of DBpedia, consistently achieves better
performance on the adapted version dataset than the
original one. Round 1 and 2 results in the adapted ver-
sion have more improvement than Round 3, 4 because
Round 1, 2 have more inconsistencies in the original
dataset.

Table 10 depicts the MTab4D results in the AH score
of the CTA task on the original and adapted version of
the SemTab 2019 dataset. The performance of MTab
consistently improves on the adapted version.

Table 11 depicts the MTab4D results in the F1 score
of the CPA task on the original and adapted version of
the SemTab 2019 dataset. The performance of MTab
significantly improves on the adapted version, adding
the equivalent properties into the ground truth data. Due
to the incompleteness of DBpedia, there are many in-
direct equivalent properties in DBpedia. For example,
dbo:deathCause and dbo:causeOfDeath have the same
equivalent property of wikidata:P509 (cause of death).
The problem of knowledge graph completion is not the
main focus of this work, but we can expect the improve-
ment of property annotations when the completeness of
DBpedia is improved.

4.6. Errors Analysis

This section analyzes the error cases of entity CEA,
CTA, and CPA tasks of MTab4D. Specifically, we per-
form the following analysis objectives:

– EA1: How many MTab4D errors are on the CEA
task? Which source caused these errors?

– EA2: How many MTab4D errors are on the CTA
task? Do CEA results affect the annotation result
of the CTA task?

– EA3: How many MTab4D errors are on the CPA
task? Do CEA results affect the annotation result
of the CPA task?

– EA4: How many MTab4D errors are on different
table sizes?

For each question, we analyze MTab4D results on
the adapted datasets (Section 4.5.2) using the MTab4Db
(MTab4D with the keyword search in Section 3.3.1)
since this setting achieved the best performance in this

http://www.cs.ox.ac.uk/isg/challenges/sem-tab/2019/results.html
http://www.cs.ox.ac.uk/isg/challenges/sem-tab/2019/results.html

14 P. Nguyen et al. / MTab4D

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 6
CEA results in F1 score and Precision for the four rounds of the original version of SemTab 2019

F1 score Precision
Round 1 2 3 4 1 2 3 4
MTab* 1.000 0.911 0.970 0.983 1.000 0.911 0.970 0.983
CSV2KG* 0.448 0.883 0.962 0.907 0.627 0.893 0.964 0.912
Tabularisi* 0.884 0.826 0.857 0.803 0.908 0.852 0.866 0.813
MantisTable* 1.000 0.614 0.633 0.973 1.000 0.673 0.679 0.983
LOD4ALL* 0.852 0.757 0.828 0.648 0.874 0.767 0.833 0.654
ADOG* 0.657 0.742 0.912 0.835 0.673 0.745 0.913 0.838
DAGOBAH* 0.897 0.713 0.725 0.578 0.941 0.816 0.745 0.599

MTab4Db 0.839 0.888 0.984 0.984 0.839 0.888 0.984 0.984
MTab4Df 0.867 0.892 0.983 0.983 0.873 0.899 0.983 0.983
MTab4Da 0.839 0.885 0.983 0.983 0.839 0.885 0.983 0.983

* Results are taken from SemTab 2019 [12]

Table 7
CTA results in F1 and Precision for Round 1 and AH score, and AP score of the original version of SemTab 2019

AH score AP score
Round 1(F1) 2 3 4 1(Precision) 2 3 4
MTab* 1.000 1.414 1.956 2.012 1.000 0.276 0.261 0.300
CSV2KG* 0.833 1.376 1.864 1.846 0.833 0.257 0.247 0.274
Tabularisi* 0.825 1.099 1.702 1.716 0.825 0.261 0.277 0.325
MantisTable* 0.929 1.049 1.648 1.682 0.933 0.247 0.269 0.322
LOD4ALL* 0.850 0.893 1.442 1.071 0.850 0.234 0.260 0.386
ADOG* 0.829 0.713 1.409 1.538 0.851 0.208 0.238 0.296
DAGOBAH* 0.644 0.641 0.745 0.684 0.580 0.247 0.161 0.206

MTab4Db - 0.952 1.837 1.922 - 0.217 0.247 0.289
MTab4Df - 0.996 1.839 1.927 - 0.225 0.249 0.289
MTab4Da - 0.970 1.838 1.922 - 0.218 0.247 0.289

* Results are taken from SemTab 2019 [12]

Table 8
CPA results in F1 score and Precision for the four rounds of the original version of SemTab 2019

F1 score Precision
Round 1 2 3 4 1 2 3 4

MTab* 0.987 0.881 0.844 0.832 0.975 0.929 0.845 0.832
CSV2KG* - 0.877 0.841 0.830 - 0.926 0.843 0.835

Tabularisi* 0.606 0.79 0.827 0.823 0.638 0.792 0.83 0.825

MantisTable* 0.965 0.46 0.518 0.787 0.991 0.544 0.595 0.841

LOD4ALL* - 0.555 0.545 0.439 - 0.941 0.853 0.904

ADOG* - 0.459 0.558 0.75 - 0.708 0.763 0.767

DAGOBAH* 0.415 0.533 0.519 0.398 0.347 0.919 0.826 0.874

MTab4Db - 0.839 0.844 0.830 - 0.842 0.849 0.838
MTab4Df - 0.839 0.844 0.830 - 0.842 0.849 0.838
MTab4Da - 0.839 0.844 0.830 - 0.843 0.849 0.838

* Results are taken from SemTab 2019 [12]

P. Nguyen et al. / MTab4D 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 9
CEA Results in F1 score of MTab4D for the original and adapted version of SemTab 2019 dataset.

Round 1 Round 2 Round 3 Round 4
Method Original Adapted Original Adapted Original Adapted Original Adapted

MTab4Db 0.839 0.857 (+2.15%) 0.888 0.918 (+3.38%) 0.984 0.992 (+0.81%) 0.984 0.987 (+0.30%)
MTab4Df 0.867 0.886 (+2.19%) 0.892 0.923 (+3.48%) 0.983 0.992 (+0.92%) 0.983 0.987 (+0.41%)
MTab4Da 0.839 0.860 (+2.50%) 0.885 0.916 (+3.50%) 0.983 0.992 (+0.92%) 0.983 0.986 (+0.31%)

Table 10
CTA Results in AH score of MTab4D for the original and adapted version of SemTab 2019 dataset

Round 1 Round 2 Round 3 Round 4
Method Original Adapted Original Adapted Original Adapted Original Adapted

MTab4Db 1.292 1.350 (+4.49%) 0.952 0.986 (+3.57%) 1.837 1.926 (+4.84%) 1.922 1.923 (+0.05%)
MTab4Df 1.337 1.396 (+4.41%) 0.996 1.031 (+3.51%) 1.839 1.928 (+4.84%) 1.927 1.926 (-0.05%)
MTab4Da 1.300 1.358 (+4.46%) 0.970 1.006 (+3.71%) 1.838 1.927 (+4.84%) 1.922 1.923 (+0.05%)

Table 11
CPA Results in F1 score of MTab4D for the original and adapted version of SemTab 2019 dataset

Round 1 Round 2 Round 3 Round 4
Method Original Adapted Original Adapted Original Adapted Original Adapted

MTab4Db - - 0.839 0.982 (+17.04%) 0.844 0.975 (+15.52%) 0.830 0.983 (+18.43%)
MTab4Df - - 0.839 0.982 (+17.04%) 0.844 0.975 (+15.52%) 0.830 0.983 (+18.43%)
MTab4Da - - 0.839 0.983 (+17.16%) 0.844 0.975 (+15.52%) 0.830 0.983 (+18.43%)

dataset. Error details on each table and errors of other
MTab4D versions (i.e., MTab4Df, and MTab4Da) are
available on the MTab4D repository11.

4.6.1. EA1: MTab4D Errors on the CEA Task
Statistics of entity annotation errors on the adapted

SemTab 2019 dataset depicts in Table 13. The error rate
of entity annotation is from 0.75% to 14.32%. MTab4D
results have higher error rates in noisy data as Round 1
(14.32%), and Round 2 (8.17%), and lower error rates
in the synthesis data Round 3 (0.75%), and Round 4
(1.27%).

Most entity annotation errors (from 89.21% to
95.88%) do not have correct answers in entity search
modules in Step 2. Due to the high ambiguity of table
cells, there are 4.12%-10.79% of other CEA errors even
if there is a correct answer in the step of candidate entity
generation.

Because MTab4D entity search modules return the
top 100 relevant entities as a default setting (efficiency
reasons), a correct answer might be ranked lower than
the top 100. To understand MTab4D performances in a

11MTab4D error log files: https://github.com/phucty/
mtab4dbpedia/blob/master/data/errors.tar.bz2, last accessed 03/2022

larger search limit, we re-run the experiments with the
search limit setting as 1,000. Table 12 depicts MTab4D
performances with the search limit as 1,000 and as
100 on the adapted SemTab 2019 dataset. Although
there is an increasing search limit in MTab4D, the dif-
ferences in final results are not significant. Building a
better search engine for tabular data is challenging for
future studies because table data contains ambiguous
text, abbreviations, misspellings.

4.6.2. EA2: MTab4D Errors on the CTA Task
Statistics of type annotation errors on the adapted

SemTab 2019 dataset are depicts in Table 14. In this
analysis, a type annotation is an error when there is no
overlapping between the annotated and ground truth
types (the concatenation of perfect and OK types). The
error rate of type annotation is from 1.57% to 16.75%.
MTab4D results have higher error rates in noisy data
as Round 1 (9.17%), and Round 2 (16.75%), and lower
error rates in the synthesis data Round 3 (1.75%), and
Round 4 (1.57%).

There is also a large portion of the CEA annotation
errors (80%-99.35%) for type errors. Since the MTab4D
type annotation module aggregates confidence signals

https://github.com/phucty/mtab4dbpedia/blob/master/data/errors.tar.bz2
https://github.com/phucty/mtab4dbpedia/blob/master/data/errors.tar.bz2

16 P. Nguyen et al. / MTab4D

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 12
Annotation results of MTab4D on the adapted SemTab 2019 dataset with the search limit as 1,000. We also show the percentage difference of the
results with search limit as 1000 and the results of the search limit of 100 (as in Table 9, 10, and 11).

Task Method Round 1 Round 2 Round 3 Round 4

CEA
MTab4Db 0.849 (-0.93%) 0.918 (+0.00%) 0.994 (+0.20%) 0.992 (+0.51%)
MTab4Df 0.883 (-0.34%) 0.925 (+0.22%) 0.994 (+0.20%) 0.991 (+0.41%)
MTab4Da 0.851 (-1.05%) 0.916 (+0.00%) 0.993 (+0.10%) 0.991 (+0.51%)

CTA
MTab4Db 1.358 (+0.59%) 0.975 (-1.12%) 1.927 (+0.05%) 1.923 (+0.00%)
MTab4Df 1.396 (+0.00%) 1.031 (+0.00%) 1.930 (+0.10%) 1.925 (-0.05%)
MTab4Da 1.358 (+0.00%) 0.986 (-1.99%) 1.928 (+0.05%) 1.923 (+0.00%)

CPA
MTab4Db - 0.982 (+0.00%) 0.975 (+0.00%) 0.983 (+0.00%)
MTab4Df - 0.982 (+0.00%) 0.975 (+0.00%) 0.984 (+0.10%)
MTab4Da - 0.983 (+0.00%) 0.975 (+0.00%) 0.983 (+0.00%)

Table 13
Statistics of entity annotation errors on the adapted SemTab 2019 dataset. We show the number of CEA matching targets as #Targets, the number
of errors of MTab4Db as #Errors, the percentage of CEA errors when there is no correct entity available in the candidate entity list of the search
modules (Section 3.3) as Search, and Others (other error cases).

Round 1 Round 2 Round 3 Round 4
#Targets 8,406 457,567 406,820 107,351
#Errors 1,204 (14.32%) 37,365 (8.17%) 3,069 (0.75%) 1,360 (1.27%)
Search 89.78% 93.92% 89.21% 95.88%
Others 10.22% 6.08% 10.79% 4.12%

from CEA annotation results, the errors in CEA tasks
also affect the performance of CTA tasks.

4.6.3. EA3: MTab4D Errors on the CPA Task
Statistics of property annotation errors on the adapted

SemTab 2019 dataset are depicts in Table 15. The error
rate of type annotation is from 2.66% to 2.97%. We also
have the same observation as the CTA tasks; the CPA
results are strongly affected by the CEA task perfor-
mance as a large portion of the CEA annotation errors
(80%-99.35%) for property annotation errors.

4.6.4. EA4: MTab4D Errors on Different Table Sizes
Statistics of MTab4D errors on different table sizes

are reported in Table 16. Overall, MTab4D performance
increase with the increase of table size. Regarding the
CEA task, MTa4D provides many errors (31.78% of
the annotations are incorrect) in the small tables (less
than ten cells), while the system performs very well
in large tables. In the CTA task, MTab4D results also
have many errors in small table sizes (30.66% of the
annotations are errors); however, the system works well
for large tables. There is no target matching for tables
with the number of cells less than ten and larger than
10,000 cells for the CPA task. MTab4D provides the
best results for tables with cells from 100 to 1,000 with
only 5.72% incorrect answers.

5. MTab4D APIs, and Graphical Interface

This section describes our implementations as de-
scribed in Section 3: MTab4D APIs and MTab4D graph-
ical interface.

5.1. MTab4D APIs

We provide the five following APIs.

– Entity Search: This API is used to search relevant
entities from the October 2016 version of DBpe-
dia. There are three search modules (Section 3.3):
keyword search, fuzzy search, and aggregation
search.

– Entity Information Retrieval: This API is used
to retrieve entity information from the October
2016 version of DBpedia. The responded ob-
ject includes DBpedia title, mapping to Wikidata,
Wikipedia, label, aliases, types, entity popularity
(PageRank score), entity triples, and literal triples.

– Table Annotation: This API sends a table to the
API and gets the annotation results, including
structural and semantic annotations. The user
could provide the annotation targets for CEA,
CTA, or CPA tasks as the input, or MTab4D also

P. Nguyen et al. / MTab4D 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 14
Statistics of type annotation errors on the adapted SemTab 2019 dataset. We show the number of CTA matching targets as #Targets, the number
of errors of MTab4Db as #Errors. CEA errors depicts the probability of having CEA errors in the table that have CTA errors.

Round 1 Round 2 Round 3 Round 4
#Targets 109 14,333 5,673 1,717
#Errors 10 (9.17%) 2,401 (16.75%) 99 (1.75%) 27 (1.57%)

CEA errors 80.00% 99.35% 88.16% 81.82%

Table 15
Statistics of property annotation errors on the adapted SemTab 2019 datasets. We show the number of CPA matching targets as #Targets, the
number of errors of MTab4Db as #Errors. CEA errors depicts the probability of having CEA errors in the table that have CPA errors.

Round 1 Round 2 Round 3 Round 4
#Targets - 6,762 7,575 2,747
#Errors - 151 (2.23%) 225 (2.97%) 73 (2.66%)

CEA errors - 98.75% 90.09% 88.89%

Table 16
Statistics of MTab4D errors on different table sizes

#Cells 10 100 1,000 10,000 100,000
CEA 31.78% 1.82% 0.10% 0.03% 0.00%
CTA 30.66% 9.79% 2.72% 1.77% 0.00%
CPA - 7.89% 5.72% 9.26% -

could automatically predict the targets based on
cell and column datatypes as in Section 3.2.5.

– Numerical Labeling: The user could do numerical
labeling from numerical columns and get a ranking
list of relevant properties as EmbNum+ [4].

– SemTab 2019 Evaluation: The user could submit
the annotation results of CEA, CTA, and CPA
tasks to calculate the evaluation metrics from the
original and adapted datasets of SemTab 2019.

5.2. MTab4D Graphical Interface

We provide two interfaces entity search and table
annotation.

5.2.1. Entity Search Interface
The user can enter a query in the entity search inter-

face then search with the three MTab4D entity search
modules (i.e., keyword search, fuzzy search, and ag-
gregation search). Figure 7 illustrates an example of
the fuzzy search with the keyword of “Senaticweb”. It
takes only 0.06 seconds to get the relevant “Semantic
Web” entity.

5.2.2. Table Annotation Interface
The user can copy and paste table content expressed

in any language from tabular data files (Excel, CSV,

TSV) or tables on the Web in the table annotation inter-
face. Then, the user could tap the “Annotate” button to
get the annotation results.

Figure 8 illustrates an example of table annotation
on the “v15_1” table in Round 4 of SemTab 2019.
MTab4D takes 0.78 seconds to annotate the input table,
as shown in the left figure. The figure on the right shows
the annotation results. The table header is in the first
row, and the core attribute is in the first column. Entity
annotations are in red and located below the table cell
value. The type annotation is in green and located in
the “Type” column. Finally, the relations between the
core attribute and other columns are in blue and located
in the property column.

6. Related Work

In this section, we review the other systems partici-
pating in SemTab 2019. Also, we discuss related works
on the tabular data annotation task.

6.1. SemTab 2019 Systems

This section describes the six other frequent partici-
pants for all rounds of SemTab 2019 challenges.

18 P. Nguyen et al. / MTab4D

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 7. MTab4D entity search interface

Fig. 8. MTab4D table annotation interface

Table 17
Comparison of candidate entity generation methods of SemTab 2019 participants

MTab4D CSV2KG TabularISI MantisTable LOD4ALL ADOG DAGOBAH

URI heuristic* x X x x X x x
DBpedia SPARQL X x x X x x X

DBpedia Lookup X X x x x x x
DBpedia Spotlight x X x x x x x
Wikidata SPARQL X x X x x x X

Wikipedia (CirrusSearch) x x x x x x X

Wikipedia (Multilingual) X x x x x x x
DBpedia Elastic Search x x X x x X x
Wikidata Elastic Search x x X x x x X

LOD4ALL Elastic Search x x x x X x x

P. Nguyen et al. / MTab4D 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

The participants generate candidate entities by look-
ing up table cell values or search values in the local
index with Elastic Search in DBpedia, Wikidata. Table
17 reports the lookup services used in the participant
systems because of lacking specification of informa-
tion retrieval techniques, hyper-parameters, database
index sources. Then, the candidate types and candidate
properties are estimated using the candidate entities.
Finally, the systems perform entity disambiguation to
return the CEA results. The CTA and CPA annotations
are generated with the CEA annotations using majority
voting.

CSV2KG (IDLAB) first searches on DBpedia lookup
and DBpedia Spotlight to generate candidate entities
[13]. The candidate types and property annotations are
estimated using majority voting approaches based on
candidate entities. Then, the entity annotations are es-
timated using the information of candidate properties.
Finally, type annotations are estimated using entity an-
notations.

Tabular ISI approach first generates candidate enti-
ties with Wikidata API and Elastic Search on entity
labels of Wikidata, DBpedia. Second, the authors use
the heuristics TF-IDF approach and machine learning
(neural network ranking) model to select the best can-
didate for the entity annotation task [14]. The type an-
notations are estimated with the results from entity an-
notations with hierarchy searching on common classes.
The property annotations are estimated by finding the
relation between candidate entities of the primary and
secondary columns or values matching the primary and
secondary columns’ values.

Mantis Table performs column analysis, including
predicting name entity columns, literal columns, and
subject column, then mapping between columns into
concepts in DBpedia [15]. The relationships between
the subject column and other columns are estimated
based on predicate context and predicate frequency of
column value and candidate predicates. Finally, entity
linking is performed using the results from previous
steps for cell value disambiguation. The property an-
notations are estimated by getting the maximum fre-
quency of candidate properties in the entity linking
phase. The authors calculate the hierarchical path score
of entity types from entity annotations to estimate type
annotations. Then type annotations are estimated on the
maximum of the path score.

DAGOBAH performs entity linking with a lookup on
Wikidata, DBpedia, and voting mechanisms [16]. The
authors used Wikidata entity embedding to estimate the
entity candidate types, assuming that the same column’s

entities should be closed in the embedding spaces as
they share semantic meanings.

LOD4ALL uses a combination of direct search
(SPARQL ASK on dbr:“query”), keyword search (Ab-
breviation of Human name), and Elastic Search to find
candidate entities [17]. The candidate entities will be
used to estimate type annotations with majority voting.
Then, the system determines the entity annotations with
the type constraints. Finally, the property annotations
are estimated by a column-based majority voting with
entity annotations of each table row.

ADOG focuses on entity annotation with Elastic
Search on an integrated ontology (DBpedia sub-graph)
using a NoSQL database named ArangoDB [18]. The
system estimates entity annotation using Levenshtein
distance, and the results of type and property annota-
tions are estimated from entity annotations.

In summary, some participants adopt the online
lookup services of DBpedia, Wikidata, Wikipedia. As
a result, it is hard to reproduce the experimental re-
sult while the source index changes over time. Some
participants built offline lookup services that lacked
specification on the information retrieval techniques,
hyper-parameter settings, or index sources. It is also
hard to reproduce their results. To address the prob-
lem, we built a database index from dump data of the
October 2016 version of DBpedia. We released many
public APIs about entity search modules that enable
reproducibility for future studies.

Moreover, tabular data contains many numerical at-
tributes that help us use semantic labeling results for
numerical attributes. In MTab4D, we aggregate signal
from the results of semantic labeling for numerical at-
tributes (columns) using EmbNum+ [4] (deep metric
for distribution similarity calculation). Additionally, we
also use novel signals from the relations of column
pairs to enhance overall matching performance.

6.2. Other Tabular Data Annotation Tasks

The tabular data annotation tasks could be catego-
rized as structure or semantic annotation.

The structural annotation contains table type predic-
tion [19], datatype prediction, table header annotation,
subject column prediction, and holistic matching across
tables [20]. In SemTab 2019, most tables are repre-
sented as a horizontal relational type; headers are lo-
cated at the first row of tables, and the subject column
is in the first table column.

There are many previous studies on table semantic
annotation, including schema-level matching, e.g., ta-

20 P. Nguyen et al. / MTab4D

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 18
Studies used DBpedia as the target knowledge graph

Study DBpedia Version
Quercini et al. [25] 2013
T2K [3] 2014
Efthymiou et al. [24] October 2015
MantisTable [26] 2017
MTab4D October 2016

bles to classes [3], columns to properties [3, 4, 21, 22]
or classes [23], and data-level matching, e.g., rows
[3, 24] or cells to entities [2, 23]. SemTab 2019 also has
schema annotation as the CTA task, data annotation as
the CEA task, and a novel CPA task as column relation
annotation.

6.3. DBpedia Version

Due to the different environment settings, such as the
DBpedia version, it is hard to compare the annotations
directly. Table 18 reports the DBpedia versions used
in table annotation tasks. Quercini et al. [25] used a
snippet of DBpedia in 2013. T2K [3] conducts exper-
iments on the T2D dataset built on the 2014 version
of DBpedia. Efthymiou et al. [24] introduce Wikipedia
tables and an adapted version of Limaye gold standard
[2] built on the October 2015 version of DBpedia. The
recent work (MantisTable [26]) builds the annotation
system based on the DBpedia 2017 version. In this
work, we follow the SemTab 2019 to build the system
based on the DBpedia October 2016 version.

7. Conclusion

This paper presents MTab4D, a table annotation sys-
tem that combines multiple matching signals from dif-
ferent table elements to address schema heterogeneity,
data ambiguity, and noisiness. This paper also provides
insightful analysis and extra resources on benchmark-
ing semantic annotation with knowledge graphs. Addi-
tionally, we also introduce MTab4D APIs and graphical
interfaces for reproducibility. Experimental results on
the original and adapted datasets of the Semantic Web
Challenge on Tabular Data to Knowledge Graph Match-
ing (SemTab 2019) show that our system achieves an
impressive performance for the three matching tasks.

7.1. Future Work

MTab4D could be improved in many dimensions,
such as effectiveness, efficiency, and generality. Regard-
ing efficiency, MTab4D could be modified in a parallel
processing fashion since the lookup steps and the prob-
ability estimations in Step 2, 3, and 4 are independent.
Regarding effectiveness, MTab4D performance could
be improved by relaxing our assumptions:

– The closed-world assumption (Assumption 1)
might not hold in practice. Improving the com-
pleteness and correctness of knowledge graphs
might improve MTab4D performance.

– MTab4D assumes the input table as a horizon-
tal relational type as in Assumption 2. To make
MTab4D work for other table types, e.g., verti-
cal relational, we need to perform further prepro-
cessing steps to identify table types and transform
table data to horizontal relational.

– Many tables could have a shared schema, e.g.,
tables on the Web could be divided into many
web pages; therefore, we can expect an improving
matching performance by stitching tables on the
same web page (or domain) [20], [27].

7.2. Lessons Learned

This section discusses the lessons learned from
SemTab 2019 challenge.

Benchmarking Value From our perspective, SemTab
2019 plays a vital role in benchmarking tabular data
annotation tasks. Due to the differences in benchmark
settings, tabular datasets, and target matching knowl-
edge bases in the literature, there is a need for a general
benchmark for tabular data annotation tasks to promote
a fair comparison of annotation systems. This chal-
lenge reflects the practical performance of matching
techniques and the importance of features for tabular
matching.

DBpedia as Target Knowledge Graph The choice of
DBpedia as the target matching reflects the low update
knowledge graph. In real-world practice, many knowl-
edge graphs change rapidly, such as Wikidata. We will
have different challenges in matching the fast-evolving
knowledge graphs.

Acknowledgements

The research was partially supported by the Cross-
ministerial Strategic Innovation Promotion Program

P. Nguyen et al. / MTab4D 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(SIP) Second Phase, “Big-data and AI-enabled Cy-
berspace Technologies” by the New Energy and Indus-
trial Technology Development Organization (NEDO).

We would like to thank the SemTab 2019 challenge
organizers for organizing the successful challenge. We
also thank IBM Research and SIRIUS for their spon-
sorship of the challenge.

References

[1] O. Hassanzadeh, V. Efthymiou, J. Chen, E. Jiménez-Ruiz and
K. Srinivas, SemTab2019: Semantic Web Challenge on Tabular
Data to Knowledge Graph Matching - 2019 Data Sets, Zenodo,
2019. doi:10.5281/zenodo.3518539.

[2] G. Limaye, S. Sarawagi and S. Chakrabarti, Annotating
and Searching Web Tables Using Entities, Types and Re-
lationships, Proc. VLDB Endow. 3(1) (2010), 1338–1347.
doi:10.14778/1920841.1921005. http://www.vldb.org/pvldb/
vldb2010/pvldb_vol3/R118.pdf.

[3] D. Ritze, O. Lehmberg and C. Bizer, Matching HTML Tables to
DBpedia, in: Proceedings of the 5th International Conference
on Web Intelligence, Mining and Semantics, WIMS 2015, 2015,
pp. 10:1–10:6. doi:10.1145/2797115.2797118.

[4] P. Nguyen, K. Nguyen, R. Ichise and H. Takeda, EmbNum+:
Effective, Efficient, and Robust Semantic Labeling for Numeri-
cal Values, New Generation Computing 37(4) (2019), 393–427.
doi:10.1007/s00354-019-00076-w.

[5] P. Nguyen, N. Kertkeidkachorn, R. Ichise and H. Takeda,
Semantic Annotation for Tabular Data with DBpedia:
Adapted SemTab 2019 with DBpedia 2016-10, Zenodo, 2021.
doi:10.5281/zenodo.4922769.

[6] P. Nguyen, N. Kertkeidkachorn, R. Ichise and H. Takeda,
MTab: Matching Tabular Data to Knowledge Graph using
Probability Models, in: SemTab@ISWC 2019, CEUR Work-
shop Proceedings, Vol. 2553, CEUR-WS.org, 2019, pp. 7–14.
http://ceur-ws.org/Vol-2553/paper2.pdf.

[7] P. Nguyen, N. Kertkeidkachorn, R. Ichise and H. Takeda, MTab:
Matching Tabular Data to Knowledge Graph using Probabil-
ity Models, CoRR abs/1910.00246 (2019). http://arxiv.org/abs/
1910.00246.

[8] D. Wang, P. Shiralkar, C. Lockard, B. Huang, X.L. Dong
and M. Jiang, TCN: Table Convolutional Network for Web
Table Interpretation, in: WWW ’21: The Web Conference
2021, J. Leskovec, M. Grobelnik, M. Najork, J. Tang
and L. Zia, eds, ACM / IW3C2, 2021, pp. 4020–4032.
doi:10.1145/3442381.3450090.

[9] R. Speer, ftfy, 2019, Version 5.5. https://github.com/
LuminosoInsight/python-ftfy.

[10] M. Honnibal and I. Montani, spaCy 2: Natural language un-
derstanding with Bloom embeddings, convolutional neural net-
works and incremental parsing, 2017. https://spacy.io/.

[11] W. Garbe, SymSpell: Symmetric Delete algorithm, GitHub,
2012. https://github.com/wolfgarbe/SymSpell.

[12] E. Jiménez-Ruiz, O. Hassanzadeh, V. Efthymiou, J. Chen and
K. Srinivas, SemTab 2019: Resources to Benchmark Tabular
Data to Knowledge Graph Matching Systems, in: The Seman-
tic Web - 17th International Conference, ESWC 2020, Lec-

ture Notes in Computer Science, Vol. 12123, Springer, 2020,
pp. 514–530. doi:10.1007/978-3-030-49461-2_30.

[13] G. Vandewiele, B. Steenwinckel, F.D. Turck and F. Ongenae,
CVS2KG: Transforming Tabular Data into Semantic Knowl-
edge, in: SemTab@ISWC 2019, CEUR Workshop Proceedings,
Vol. 2553, 2019, pp. 33–40. http://ceur-ws.org/Vol-2553/paper5.
pdf.

[14] A. Thawani, M. Hu, E. Hu, H. Zafar, N.T. Divvala, A. Singh,
E. Qasemi, P.A. Szekely and J. Pujara, Entity Linking to
Knowledge Graphs to Infer Column Types and Properties, in:
SemTab@ISWC 2019, CEUR Workshop Proceedings, Vol. 2553,
CEUR-WS.org, 2019, pp. 25–32. http://ceur-ws.org/Vol-2553/
paper4.pdf.

[15] M. Cremaschi, R. Avogadro and D. Chieregato, MantisTable: an
Automatic Approach for the Semantic Table Interpretation, in:
SemTab@ISWC 2019, CEUR Workshop Proceedings, Vol. 2553,
CEUR-WS.org, 2019, pp. 15–24. http://ceur-ws.org/Vol-2553/
paper3.pdf.

[16] Y. Chabot, T. Labbé, J. Liu and R. Troncy, DAGOBAH: An
End-to-End Context-Free Tabular Data Semantic Annotation
System, in: SemTab@ISWC 2019, CEUR Workshop Proceed-
ings, Vol. 2553, CEUR-WS.org, 2019, pp. 41–48. http://ceur-ws.
org/Vol-2553/paper6.pdf.

[17] H. Morikawa, Semantic Table Interpretation using LOD4ALL,
in: SemTab@ISWC 2019, CEUR Workshop Proceedings,
Vol. 2553, CEUR-WS.org, 2019, pp. 49–56. http://ceur-ws.org/
Vol-2553/paper7.pdf.

[18] D. Oliveira and M. d’Aquin, ADOG - Annotating Data with
Ontologies and Graphs, in: SemTab@ISWC 2019, CEUR Work-
shop Proceedings, Vol. 2553, CEUR-WS.org, 2019, pp. 1–6.
http://ceur-ws.org/Vol-2553/paper1.pdf.

[19] K. Nishida, K. Sadamitsu, R. Higashinaka and Y. Matsuo,
Understanding the Semantic Structures of Tables with a Hy-
brid Deep Neural Network Architecture, in: Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence,
2017, 2017, pp. 168–174. http://aaai.org/ocs/index.php/AAAI/
AAAI17/paper/view/14396.

[20] O. Lehmberg and C. Bizer, Stitching Web Tables for Improv-
ing Matching Quality, Proc. VLDB Endow. 10(11) (2017),
1502–1513. doi:10.14778/3137628.3137657. http://www.vldb.
org/pvldb/vol10/p1502-lehmberg.pdf.

[21] M. Pham, S. Alse, C.A. Knoblock and P.A. Szekely, Semantic
Labeling: A Domain-Independent Approach, in: The Semantic
Web - ISWC 2016 - 15th International Semantic Web Conference,
Lecture Notes in Computer Science, Vol. 9981, 2016, pp. 446–
462. doi:10.1007/978-3-319-46523-4_27.

[22] J. Chen, E. Jiménez-Ruiz, I. Horrocks and C.A. Sutton, Col-
Net: Embedding the Semantics of Web Tables for Column
Type Prediction, in: Proceedings of the Thirty-Third AAAI
Conference on Artificial Intelligence, 2019, 2019, pp. 29–36.
doi:10.1609/aaai.v33i01.330129.

[23] Z. Zhang, Effective and efficient Semantic Table Interpreta-
tion using TableMiner+, Semantic Web 8(6) (2017), 921–957.
doi:10.3233/SW-160242.

[24] V. Efthymiou, O. Hassanzadeh, M. Rodriguez-Muro and
V. Christophides, Matching Web Tables with Knowledge Base
Entities: From Entity Lookups to Entity Embeddings, in: The
Semantic Web - ISWC 2017 - 16th International Semantic Web
Conference, 2017, 2017, pp. 260–277. doi:10.1007/978-3-319-
68288-4_16.

http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R118.pdf
http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R118.pdf
http://ceur-ws.org/Vol-2553/paper2.pdf
http://arxiv.org/abs/1910.00246
http://arxiv.org/abs/1910.00246
https://github.com/LuminosoInsight/python-ftfy
https://github.com/LuminosoInsight/python-ftfy
https://spacy.io/
https://github.com/wolfgarbe/SymSpell
http://ceur-ws.org/Vol-2553/paper5.pdf
http://ceur-ws.org/Vol-2553/paper5.pdf
http://ceur-ws.org/Vol-2553/paper4.pdf
http://ceur-ws.org/Vol-2553/paper4.pdf
http://ceur-ws.org/Vol-2553/paper3.pdf
http://ceur-ws.org/Vol-2553/paper3.pdf
http://ceur-ws.org/Vol-2553/paper6.pdf
http://ceur-ws.org/Vol-2553/paper6.pdf
http://ceur-ws.org/Vol-2553/paper7.pdf
http://ceur-ws.org/Vol-2553/paper7.pdf
http://ceur-ws.org/Vol-2553/paper1.pdf
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14396
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14396
http://www.vldb.org/pvldb/vol10/p1502-lehmberg.pdf
http://www.vldb.org/pvldb/vol10/p1502-lehmberg.pdf

22 P. Nguyen et al. / MTab4D

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[25] G. Quercini and C. Reynaud, Entity discovery and annotation
in tables, in: Joint 2013 EDBT/ICDT Conferences, EDBT ’13
Proceedings, G. Guerrini and N.W. Paton, eds, ACM, 2013,
pp. 693–704. doi:10.1145/2452376.2452457.

[26] M. Cremaschi, F.D. Paoli, A. Rula and B. Spahiu, A fully au-
tomated approach to a complete Semantic Table Interpretation,

Future Generation Computer Systems 112 (2020), 478–500.

https://doi.org/10.1016/j.future.2020.05.019.

[27] D. Ritze, Web-Scale Web Table to Knowledge Base Matching,

PhD thesis, University of Mannheim, Germany, 2017. https:

//ub-madoc.bib.uni-mannheim.de/43123.

https://doi.org/10.1016/j.future.2020.05.019
https://ub-madoc.bib.uni-mannheim.de/43123
https://ub-madoc.bib.uni-mannheim.de/43123

	Introduction
	Definitions and Assumptions
	Problem Definitions
	Knowledge Graph
	Tabular Data
	Matching Targets
	Semantic Annotation Tasks

	Assumptions

	MTab4D Approach
	Framework
	Step 1: Pre-processing
	Cell Normalization
	Data Type Prediction
	Header Prediction
	Subject Column Prediction
	Matching Targets Prediction

	Step 2: Candidate Entity Generation
	Keyword Search
	Fuzzy Search
	Aggregation Search

	Step 3: Candidate Type Generation
	Entity Search Signals
	Named-Entity Recognition Signals
	Table Header Signals
	Numerical Column Signals
	Signal Aggregation

	Step 4: Candidate Property Generation
	Subject Column - Named-Entity Column
	Subject Column - Literal Column

	Step 5: Entity Matching
	Step 6, 7: Type and Property Matching

	Evaluation
	Datasets
	Original SemTab 2019 Dataset
	Adapted SemTab 2019 Dataset
	Ground Truth
	Public Resources

	Analysis of the Original SemTab 2019 Dataset
	Evaluation Metrics
	Experimental settings
	Experimental Results
	Original SemTab 2019 Dataset
	Adapted SemTab 2019 Dataset

	Errors Analysis
	EA1: MTab4D Errors on the CEA Task
	EA2: MTab4D Errors on the CTA Task
	EA3: MTab4D Errors on the CPA Task
	EA4: MTab4D Errors on Different Table Sizes

	MTab4D APIs, and Graphical Interface
	MTab4D APIs
	MTab4D Graphical Interface
	Entity Search Interface
	Table Annotation Interface

	Related Work
	SemTab 2019 Systems
	Other Tabular Data Annotation Tasks
	DBpedia Version

	Conclusion
	Future Work
	Lessons Learned

	Acknowledgements
	References

