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Abstract. The Web of Data has grown enormously over the last years. Currently, it comprises a large compendium of interlinked
and distributed datasets from multiple domains. Running complex queries on this compendium often requires accessing data from
different endpoints within one query. The abundance of datasets and the need for running complex query has thus motivated
a considerable body of work on SPARQL query federation systems, the dedicated means to access data distributed over the
Web of Data. However, the granularity of previous evaluations of such systems has not allowed deriving of insights concerning
their behaviour in different steps involved during federated query processing. In this work, we perform extensive experiments
to compare state-of-the-art SPARQL endpoint federation systems using the comprehensive performance evaluation framework
FedBench. In addition to considering the tradition query runtime as an evaluation criterion, we extend the scope of our performance
evaluation by considering criteria, which have not been paid much attention to in previous studies. In particular, we consider the
number of sources selected, the total number of SPARQL ASK requests used, the completeness of answers as well as the source
selection time. Yet, we show that they have a significant impact on the overall query runtime of existing systems. Moreover, we
extend FedBench to mirror a highly distributed data environment and assess the behaviour of existing systems by using the same
performance criteria. As the result we provide a detailed analysis of the experimental outcomes that reveal novel insights for
improving current and future SPARQL federation systems.
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1. Introduction

The transition from the Web of Documents to the
Web of Data has resulted in a large compendium of
interlinked datasets from diverse domains. Currently,
the Linking Open Data (LOD) Cloud1 contains over 60
billion triples available from more than 1000 different
datasets with large datasets [30] being added frequently.
Due to the decentralized and linked architecture of
LOD, answering complex queries often requires access-

*Corresponding author. E-mail: saleem@informatik.uni-leipzig.de
1http://stats.lod2.eu/

ing and combining information from multiple datasets.
Processing such federated queries [7,25,29,33] in a
virtually integrated fashion is becoming increasingly
popular. Given the importance of federated query pro-
cessing over the Web of Data, it is critical to provide
fine-grained evaluations to assess the quality of state-
of-the-art implementations of federated SPARQL query
engines by comparing them against common criteria
through an open benchmark. Such fine-grained evalua-
tion results are valuable when positioning new federa-
tion systems against existing. In addition, these results
help application developers when choosing appropriate
systems for a given application as they allow them to
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select federation systems through a comparison of their
performance against their criteria of interest. Moreover,
such fine-grained results provide useful insights for sys-
tem developers and empower them to improve current
federation systems as well as to develop better systems.

Current evaluations [1,7,21,26,27,33,38] of SPARQL
query federation systems compare some of the feder-
ation systems based on the central criterion of overall
query runtime. While optimizing the query runtime of
federation systems is the ultimate goal of the research
performed on this topic, the granularity of current eval-
uations fails to provide results that allow understanding
why the query runtimes of systems can differ drastically
and are thus insufficient to detect the components of
systems that need to be improved. For example, key
metrics such as a smart source selection in terms of the
total number of data sources selected, the total number
of SPARQL ASK requests used, and the source selection
time have a direct impact on the overall query perfor-
mance but are not addressed in the existing evaluations.
For example, the over-estimation of the total number of
relevant data sources will generate extra network traf-
fic, may result in increased query execution time. The
SPARQL ASK queries returns boolean value indicating
whether a query pattern matches or not. The greater
the number of SPARQL ASK requests used for source
selection, the higher the source selection time and
therefore overall query execution time. Furthermore, as
pointed out by [22], the current testbeds [6,23,31,32]
for evaluating, comparing, and eventually improving
SPARQL query federation systems still have some lim-
itations. Especially, the partitioning of data as well
as the SPARQL clauses used cannot be tailored suffi-
ciently, although they are known to have a direct impact
on the behaviour of SPARQL query federation systems.

The aim of this paper is to experimentally evaluate a
large number of SPARQL 1.0 query federation systems
within a more fine-granular setting in which we can
measure the time required to complete different steps of
the SPARQL query federation process. To achieve this
goal, we conducted a public survey2 and collected infor-
mation regarding 14 existing federated system imple-
mentations, their key features, and supported SPARQL
clauses. Eight of the systems which participated in this
survey are publicly available. However, two out of the
eight with public implementation do not make use of
the SPARQL endpoints and were thus not considered
further in this study.

2Survey: http://goo.gl/iXvKVT, Results: http://goo.
gl/CNW5UC

In the next step and like in previous evaluations, we
compared the remaining six systems [1,7,20,25,33,38]
with respect to the traditional performance criterion that
is the query execution time using the commonly used
benchmark FedBench. In addition, we also compared
these six systems with respect to their answer complete-
ness, source selection approach in terms of the total
number of sources they selected, the total number of
SPARQL ASK requests they used and source selection
time. For the sake of completeness, we also performed
a comparative analysis (based on the survey outcome)
of the key functionality of the 14 systems which partic-
ipated in our survey. The most important outcomes of
this survey are presented in Section 3.3

To provide a quantitative analysis of the effect of
data partitioning on the systems at hand, we extended
both FedBench [31] and SP2Bench [32] by distributing
the data upon which they rely. To this end, we used
the slice generation tool4 described in [29]. This tool
allows creating any number of subsets of a given dataset
(called slices) while controlling the number of slices,
the amount of overlap between the slices as well as
the size distribution of these slices. The resulting slices
were distributed across various data sources (SPARQL
endpoints) to simulate a highly federated environment.
In our experiments, we made use of both FedBench [31]
and SP2Bench [32] queries to ensure that we cover the
majority of the SPARQL query types and clauses.

Our main contributions are summarized as follows:

– We present the results of a public survey which
allows us to provide a crisp overview of categories
of SPARQL federation systems as well as pro-
vide their implementation details, features, and
supported SPARQL clauses.

– We present (to the best of our knowledge) the most
comprehensive experimental evaluation of open-
source SPARQL federations systems in terms of
their source selection and overall query runtime
using in two different evaluation setups.

– Along with the central evaluation criterion (i.e.,
the overall query runtime), we measure three fur-
ther criteria, i.e., the total number of sources se-
lected, the total number of SPARQL ASK re-
quests used, and the source selection time. By
these means, we obtain deeper insights into the
behaviour of SPARQL federation systems.

3All survey responses can be found at http://goo.gl/
CNW5UC.

4https://code.google.com/p/fed-eval/
wiki/SliceGenerator

http://goo.gl/iXvKVT
http://goo.gl/CNW5UC
http://goo.gl/CNW5UC
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– We extend both FedBench and SP2Bench to mir-
ror highly distributed data environments and test
SPARQL endpoint federation systems for their
parallel processing capabilities.

– We provide a detailed discussion of experimental
results and reveal novel insights for improving
existing and future federation systems.

– Our survey results points to research opportunities
in the area of federated semantic data processing.

The rest of this paper is structured as follows: In
Section 2, we provide an overview of state-of-the-art
SPARQL federated query processing approaches. Sec-
tion 3 provides a detailed description of the design of
and the responses to our public survey of the SPARQL
query federation. Section 4 provides an introduction
to SPARQL query federation and selected approaches
for experimental evaluation. Section 6 describes our
evaluation framework and experimental results, includ-
ing key performance metrics, a description of the used
benchmarks (FedBench, SP2Bench, SlicedBench), and
the data slice generator. Section 7 provides our further
discussion of the results. Finally, Section 8 concludes
our work and gives an overview of possible future ex-
tensions.

2. Related work

In this section, we provide a two-pronged overview
of existing works. First, we give an overview of exist-
ing federated SPARQL query system evaluations. Here,
we focus on the description of different surveys/evalua-
tions of SPARQL query federation systems and argue
for the need of a new fine-grained evaluation of feder-
ated SPARQL query engines. Thereafter, we give an
overview of benchmarks for SPARQL query process-
ing engines. In addition, we provide reasons for our
benchmark selection in this evaluation.

2.1. Federation systems evaluations

Several SPARQL query federation surveys have been
developed over the last years. Rakhmawati et al. [26]
present a survey of SPARQL endpoint federation sys-
tems in which the details of the query federation process
along with a comparison of the query evaluation strate-
gies used in these systems. Moreover, systems that sup-
port both SPARQL 1.0 and SPARQL 1.1 are explained.
However, this survey do not provide any experimental
evaluation of the discussed SPARQL query federation

systems. In addition, the system implementation details
resp. supported features are not discussed in much de-
tail. We address these drawbacks in Tables 1 resp. 2.
Hartig et al. [10] provide a general overview of Linked
Data federation. In particular, they introduce the spe-
cific challenges that need to be addressed and focus on
possible strategies for executing Linked Data queries.
However, this survey do not provide an experimental
evaluation of the discussed SPARQL query federation
systems. Umbrich et al. [36] provide a detailed study
of the recall and effectiveness of Link Traversal Query-
ing for the Web of Data. Schwarte et al. [34] present
an experimental study of large-scale RDF federations
on top of the Bio2RDF data sources using a particular
federation system, i.e., FedX [33]. They focus on de-
sign decisions, technical aspects, and experiences made
in setting up and optimizing the Bio2RDF federation.
Betz et al. [5] identify various drawbacks of federated
Linked Data query processing. The authors propose that
Linked Data as a service has the potential to solve some
of the identified problems. Görlitz et al. [9] present
limitations in Linked Data federated query processing
and implications of these limitations. Moreover, this
paper presents a query optimization approach based on
semi-joins and dynamic programming. Ladwig et al.
[18] identify various strategies while processing fed-
erated queries over Linked Data. Umbrich et al. [37]
provide an experimental evaluation of the different data
summaries used in live query processing over Linked
Data. Montoya et al. [22] provide a detail discussion
of the limitations of the existing testbeds used for the
evaluation of SPARQL query federation systems. Some
other experimental evaluations [1,7,21,22,27,33,38] of
SPARQL query federation systems compare some of
the federation systems based on their overall query run-
time. For example, Gorlitz et al. [7] compare their ap-
proach with three other approaches ([25,33], AliBaba5.
An extension of ANAPSID presented in [21] compares
ANAPSID with FedX using 10 FedBench-additional
complex queries. Schwarte et al. [33] compare FedX
performance with AliBaba and DARQ using a subset
of the FedBench queries. Wang et al. [38] evaluate the
performance of LHD with FedX and SPLENDID using
the Berlin SPARQL Benchmark (BSBM) [6].

5SesameAliBaba:http://www.openrdf.org/
alibaba.jsp) using a subset of the queries from FedBench.
Furthermore, they measure the effect of the information in VoiD
descriptions on the accuracy of their source selection. Acosta et
al. [1] compare their approach performance with Virtuoso SPARQL
endpoints, ARQ 2.8.8. BSD-style21, and RDF-3X 0.3.4.22

Sesame AliBaba: http://www.openrdf.org/alibaba.jsp
Sesame AliBaba: http://www.openrdf.org/alibaba.jsp


4 M. Saleem et al. / A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems

All experimental evaluations above compare only a
small number of SPARQL query federation systems
using a subset of the queries available in current bench-
marks with respect to a single performance criterion
(query execution time). Consequently, they fail to pro-
vide deeper insights into the behaviour of these systems
in different steps (e.g., source selection) required during
the query federation. In this work, we evaluate six open-
source federated SPARQL query engines experimen-
tally on two different evaluation frameworks. To the
best of our knowledge, this is currently the most com-
prehensive evaluation of open-source SPARQL query
federation systems. Furthermore, along with central
performance criterion of query runtime, we compare
these systems with respect to their source selection. Our
results show (section 6) that the different steps of the
source selection affect the overall query runtime con-
siderably. Thus, the insights gained through our evalua-
tion w.r.t. to these criteria provide valuable findings for
optimizing SPARQL query federation.

2.2. Benchmarks

Benchmarks for comparing SPARQL query process-
ing systems have a rich literature as well. These include
Berlin SPARQL Benchmark (BSBM), SP2Bench, Fed-
Bench, Lehigh University Benchmark (LUBM) and the
DBpedia Sparql Benchmark (DBPSB). Both BSBM
and SP2Bench are mainly designed for the evaluation
of triple stores that keep their data in a single large
repository. BSBM [6] was developed for comparing
the performance of native RDF stores with the perfor-
mance of SPARQL-to-SQL re-writers. SP2Bench [32]
mirrors vital characteristics (such as power law distri-
butions or Gaussian curves) of the data in the DBLP
bibliographic database. This benchmark comprises both
a data generator for creating arbitrarily large DBLP-
like documents and a set of carefully designed bench-
mark queries. FedBench [31] is designed explicitly to
evaluate SPARQL query federation tasks on real-world
datasets with queries resembling typical requests on
these datasets. Furthermore, this benchmark also in-
cludes a dataset and queries from SP2Bench. LUBM [8]
is designed to facilitate the evaluation of Semantic Web
repositories in a systematic way. It is based on a cus-
tomizable and repeatable synthetic data. DBPSB [23]
includes queries from the DBpedia query log and aims
to reflect the behaviour of triple stores when confronted
with real queries aiming to access native RDF data.

FedBench is the only (to the best of our knowledge)
benchmark that encompasses real-world datasets, com-

monly used queries and distributed data environment.
Furthermore, it is commonly used in the evaluation of
SPARQL query federation systems [7,21,29,33]. There-
fore, we choose this benchmark as a main evaluation
benchmark in this paper. We also decided on using
SP2Bench in parts of our experiments to ensure that
our queries cover most of SPARQL. Note that neither
FedBench nor SP2Bench provide SPARQL 1.1 feder-
ated queries. Devising such a benchmark remains future
work.

3. Federated engines public survey

In order to provide a comprehensive overview of ex-
isting SPARQL federation engines, we designed and
conducted a survey of SPARQL query federation en-
gines. In this section, we present the principles and
ideas behind the design of the survey as well as its
results and their analysis.

3.1. Survey Design

The aim of the survey was to compare the existing
SPARQL query federation engines, regardless of their
implementation or code availability. To reach this aim,
we interviewed domain experts and designed a survey
with three sections: system information, requirements,
and supported SPARQL clauses.6

The system information section of the survey includes
implementation details of the SPARQL federation en-
gine such as:

– URL of the paper, engine implementation: Pro-
vides the URL of the related scientific publication
or URL to the engine implementation binaries/-
code.

– Code availability: Indicates the disclosure of the
code to the public.

– Implementation and licensing: Defines the pro-
gramming language and distribution license of the
framework.

– Type of source selection: Defines the source se-
lection strategy used by the underlying federation
system.

– Type of join(s) used for data integration: Shows
the type of joins used to integrate sub-queries
results coming from different data sources.

6The survey can be found at http://goo.gl/iXvKVT.

http://goo.gl/iXvKVT
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– Use of cache: Shows the usage of cache for per-
formance improvement.

– Support for catalog/index update: Indicates the
support for automatic index/catalog update.

The questions from the requirements section assess
SPARQL query federation engines for the key fea-
tures/requirements that a developer would require from
such engines. These include:

– Result completeness: Assuming that the SPARQL
endpoints return complete results for any given
SPARQL1.0 sub-query that they have to process.
Does your implementation then guarantee that
your engine will return complete results for the
input query (100% recall) or is it possible that it
misses some of the solutions (for example due to
the source selection, join implementation, or using
an out-of-date index)?. Please note that a 100%
recall cannot be assured with an index that is out
of date.

– Policy-based query planning: Most federation
approaches target open data and do not provide re-
strictions (according to different user access rights)
on data access during query planning. As a result,
a federation engine may select a data source for
which the requester is not authorized, thus overes-
timating the data sources and increasing the over-
all query runtime. Does your system have the ca-
pability of taking into account the privacy infor-
mation (e.g., different graph-level access rights for
different users, etc.) during query planning?

– Support for partial results retrieval: In some
cases the query results can be too large and result
completeness (i.e., 100% recall) may not be de-
sired, rather partial but fast and/or quality query
results are acceptable. Does the federation engine
provide such functionality where a user can spec-
ify a desired recall (less than 100%) as a thresh-
old for fast result retrieval? It is worth noticing
that this is different from limiting the results using
SPARQL LIMIT clause as it restricts the number
of results to some fixed value while in partial re-
sult retrieval the number of retrieved results are
relative to the actual total number of results.

– Support for no-blocking operator/adaptive
query processing: SPARQL endpoints are some-
times blocked or down or exhibit high latency.
Does the federation engine support non-blocking
joins (where results are returned based on the or-
der in which the data arrives, not in the order in
which data being requested) and able to change

its behavior at runtime by learning behavior of the
data providers?

– Support for provenance information: Usually,
SPARQL query federation systems integrate re-
sults from multiple SPARQL endpoints without
any provenance information, such as how many
results were contributed by a given SPARQL end-
point or which of the results are contributed by
each of the endpoint. Does the federation engine
provide such provenance information?

– Query runtime estimation: In some cases a
query may have a longer runtime (e.g., in the order
of minutes). Does the federation engine provide
means to approximate and display (to the user) the
overall runtime of the query execution in advance?

– Duplicate detection: Due to the decentralized
architecture of Linked Data Cloud, a sub-query
might retrieve results that were already retrieved
by another sub-query. For some applications, the
former sub-query can be skipped from submission
(federation) as it will only produce overlapping
triples. Does the federation engine provide such a
duplicate-aware SPARQL query federation? Note
that this is the duplicate detection before sub-query
submission to the SPARQL endpoints and the aim
is to minimize the number of sub-queries submit-
ted by the federation engine.

– Top-K query processing: Is the federation engine
able to rank results based on the user’s preferences
(e.g., his/her profile, his/her location, etc.)?

The supported SPARQL clauses section assess exist-
ing SPARQL query federation engines w.r.t. the list of
supported SPARQL clauses. The list of the SPARQL
clauses is mostly based on the characteristics of the
BSBM benchmark queries [6]. The summary of the
used SPARQL clauses can be found in Table 3.

The survey was open and free for all to participate
in. To contact potential participants, we used Google
Scholar to retrieve papers that contained the keywords
"SPARQL" and "query federation". After a manual fil-
tering of the results, we contacted the main authors of
the papers and informed them of the existence of the
survey while asking them to participate. Moreover, we
sent messages to the W3C Linked Open Data mailing
list7 and Semantic Web mailing list8 with a request to
participate. The survey was opened for two weeks.

7public-lod@w3.org
8semantic-web@w3.org

public-lod@w3.org
semantic-web@w3.org
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Table 1
Overview of implementation details of federated SPARQL query
engines ( SEF = SPARQL Endpoints Federation, DHTF = DHT Fed-
eration, LDF = Linked Data Federation, C.A. = Code Availability,
A.G.P.L. Affero General Public License, L.G.P.L. = Lesser General
Public License, S.S.T. = Source Selection Type, I.U. = Index/catalog
Update, (A+I) = SPARQL ASK and Index/catalog, (C+L) = Catalog
and online discovery via Link-traversal ), VENL = Vectored Evalua-
tion in Nested Loop, AGJ = Adaptive Group Join, ADJ = Adaptive
Dependent Join, RMHJ = Rank-aware Modification of Hash Join,
NA = Not Applicable

Systems Category C.A Implementation Licencing S.S.T Join Type Cache I.U

FedX [33] SEF 3 Java GNU A.G.P.L index-free bind (VENL) 3 NA
LHD [38] SEF 3 Java MIT hybrid (A+I) hash/ bind 7 7

SPLENDID [7] SEF 3 Java L.G.P.L hybrid (A+I) hash/ bind 7 7

FedSearch [24] SEF 7 Java GNU A.G.P.L hybrid (A+I) bind (VENL), pull based rank join (RMHJ) 3 NA
GRANATUM [11,13] SEF 7 Java yet to decide index only nested loop 7 7

Avalanche [4] SEF 7 Python, C, C++ yet to decide index only distributed, merge 3 7

DAW [29] SEF 7 Java GNU G.P.L hybrid (A+I) based on underlying system 3 7

ANAPSID [1] SEF 3 Python GNU G.P.L hybrid (A+I) AGJ, ADJ 7 3

ADERIS [20] SEF 3 Java Apache Index only index-based nested loop 7 7

DARQ [25] SEF 3 Java GPL Index only nested loop, bound 7 7

LDQPS [18] LDF 7 Java Scala hybrid (C+L) symmetric hash 7 7

SIHJoin [19] LDF 7 Java Scala hybrid (C+L) symmetric hash 7 7

WoDQA [2] LDF 3 Java GPL hybrid (A+I) nested loop, bound 3 3

Atlas [16] DHTF 3 Java GNU L.G.P.L Index only SQLite 7 7

3.2. Discussion of the survey results

Based on our survey results9, existing SPARQL
query federation approaches can be divided into three
main categories (see Table 1)

1. Query federation over multiple SPARQL end-
points: In this type of approaches, RDF data is made
available via SPARQL endpoints. The federation engine
makes use of endpoint URLs to federate sub-queries
and collect results back for integration. The advantage
of this category of approaches is that queries are an-
swered based on original, up-to-date data with no syn-
chronization of the copied data required [10]. More-
over, the execution of queries can be carried out effi-
ciently because the approach relies on SPARQL end-
points. However, such approaches are unable to deal
with the data provided by the whole of LOD Cloud
because sometimes Linked Data is not exposed through
SPARQL endpoints.

2. Query federation over Linked Data: This type of
approaches relies on the Linked Data principles10 for
query execution. The set of data sources which can

9Available at http://goo.gl/CNW5UC
10http://www.w3.org/DesignIssues/LinkedData.

html

contribute results into the final query resultset is de-
termined by using URI lookups during the query exe-
cution itself. Query federation over Linked Data does
not require the data providers to publish their data as
SPARQL endpoints. Instead, the only requirement is
that the RDF data follows the Linked Data principles.
A downside of these approaches is that they are less
time-efficient than the previous approaches due to the
URI lookups they perform.

3. Query federation on top of Distributed Hash Ta-
bles: This type of federation approaches stores RDF
data on top of Distributed Hash Tables (DHTs) and use
DHT indexing to federate SPARQL queries over multi-
ple RDF nodes. This is a space-efficient solution and
can reduce the network cost as well. However, many of
the LOD datasets are not stored on top of DHTs.

Each of the above main category can be further di-
vided into three sub-categories (see Table 1):

(a) Catalog/index-assisted solutions: These appro-
aches utilize dataset summaries that have been collected
in a pre-processing stage. These approaches may lead
to more efficient query federation. However, the index
needs to be constantly updated to ensure complete re-
sults retrieval. The index size should also be kept to
a minimum to ensure that it does not significantly in-
crease the overall query processing costs.

http://goo.gl/CNW5UC
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
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(b) Catalog/index-free solutions: In these approaches,
the query federation is performed without using any
stored data summaries. The data source statistics can be
collected on-the-fly before the query federation starts.
This approach promises that the results retrieved by the
engine are complete and up-to-date. However, it may
increase the query execution time, depending on the
extra processing required for collecting and processing
on-the-fly statistics.

(c) Hybrid solutions: In these approaches, some of
the data source statistics are pre-stored while some are
collected on-the-fly, e.g., using SPARQL ASK queries.

Table 1 provides a classification along with the imple-
mentation details of the 14 systems which participated
in the survey. Overall, we received responses mainly for
systems which implemented the SPARQL endpoint fed-
eration and hybrid query processing paradigms in Java.
Only Atlas [16] implements DHT federation whereas
WoDQA [2], LDQPS [18], and SIHJoin [19] imple-
ment federation over linked data (LDF). Most of the
surveyed systems provides "General Public Licences"
with the exception of [18] and [19] which provides
"Scala" licence whereas the authors of [4] and [11] have
not yet decided which licence type will hold for their
tools. Five of the surveyed systems implement caching
mechanisms including [2], [24], [4], [29] and [33]. Only
[1] and [2] provide support for catalog/index update
whereas two systems do not require this mechanism by
virtue of being index/catalog-free approaches.

Table 2 summarizes the survey outcome w.r.t. differ-
ent features supported by systems. Only three systems
([24], [33] and QWIDVD) claim that they achieve result
completeness and only Avalanche [4] and DAW [29]
support partial results retrieval for their implemen-
tations. Note that FedX claims result completeness
when the cache that it relies on is up-to-date. Five (i.e.,
Avalanche, ANAPSID, ADERIS, LDQPS, SIHJoin)
of the considered systems support adaptive query pro-
cessing. Only DAW [29] supports duplicate detection
whereas DHT and Avalanche [4] claim to support par-
tial duplicate detection. Granatum [11,12,15] is the only
system that implements privacy and provenance. None
of the considered systems implement top-k query pro-
cessing or query runtime estimation.

Table 3 lists SPARQL clauses supported by the each
of 14 systems. GRANATUM and QWIDVD are only
two systems that support all of the query constructs
used in our survey. It is important to note that most of
these query constructs are based on query characteris-
tics defined in BSBM.

4. Details of selected systems

After having given a general overview of SPARQL
query federation systems, we present six SPARQL end-
points federation engines [1,7,20,25,33,38] with public
implementation that were used within our experiments.
We begin by presenting an overview of key concepts
that underpin federated query processing and are used
in the performance evaluation. We then use these key
concepts to present the aforementioned six systems
used in our evaluation in more detail.

4.1. Federated query processing

Given a SPARQL query q ∈ Q, where Q is a set
of queries, the first step of federated SPARQL query
processing is to perform triple pattern-wise source se-
lection or source selection for short. The goal of the
triple pattern-wise source selection is to identify the set
of data sources that contain relevant results against in-
dividual triple patterns of the query [29]. We call these
sources relevant (also called capable) for the given
triple pattern. The total number of triple pattern-wise
selected sources Ns is the sum of the number of sources
selected for individual query triple pattern. Later, in
our evaluation, we will see that Ns has a direct impact
on the query execution time. The source selection in-
formation is then used to decompose q into multiple
sub-queries. Each sub-query is optimized to generate
an execution plan. The sub-queries are forwarded to
the relevant data sources according to the optimization
plan. The results of each sub-query execution are finally
joined to generate the result set of q.

4.2. Overview of the selected approaches

DARQ [25] makes use of an index known as ser-
vice description to perform source selection. Each ser-
vice description provides a declarative description of
the data available in a data source, including the corre-
sponding SPARQL endpoint along with statistical in-
formation. The source selection is performed by using
distinct predicates (for each data source) recorded in the
index as capabilities. The source selection algorithm
used in DARQ for a query simply matches all triple
patterns against the capabilities of the data sources.
The matching compares the predicate in a triple pat-
tern with the predicate defined for a capability in the
index. This means that DARQ is only able to answer
queries with bound predicates. DARQ combines ser-
vice descriptions, query rewriting mechanisms and a
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Table 2
Survey outcome: System’s features (R.C. = Results Completeness, P.R.R. = Partial Results Retrieval, N.B.O. = No Blocking Operator, A.Q.P.
= Adaptive Query Processing, D.D. = Duplicate Detection, P.B.Q.P = Policy-based Query Planning, Q.R.E. = Query Runtime Estimation,
Top-K.Q.P = Top-K query processing)

Systems R.C. P.R.R. N.B.O / A.Q.P. D. D. P.B.Q.P Provenance Q.R.E Top-K.Q.P

FedX 3 7 7 7 7 7 7 7

LHD 7 7 7 7 7 7 7 7

SPLENDID 7 7 7 7 7 7 7 7

FedSearch 3 7 7 7 7 7 7 7

GRANATUM 7 7 7 7 partial partial 7 7

Avalanche 7 3 3 partial 7 7 7 7

DAW 7 3 based on underlying system 3 7 7 7 7

ANAPSID 7 7 3 7 7 7 7 7

ADERIS 7 7 3 7 7 7 7 7

DARQ 7 7 7 7 7 7 7 7

LDQPS 7 7 3 7 7 7 7 7

SIHJoin 7 7 3 7 7 7 7 7

WoDQA 3 7 7 7 7 7 7 7

Atlas 7 7 7 partial 7 7 7 7

Table 3
Survey outcome: System’s Support for SPARQL Query Constructs (QP=Query Predicates, QS=Query Subjects)

SPARQL Cluase FedX Atlas LHD SPLENDID FedSearch GRANATUM Avalanche DAW LDQPS SIHJoin ANAPSID ADERIS QWIDVD DARQ

SERVICE 3 7 7 7 3 3 3 3 7 7 3 7 3 7

FILTER 3 3 3 3 3 3 7 3 7 7 3 3 3 3

Unbound QP 3 3 3 3 3 3 3 3 3 3 3 3 3 7

Unbound QS 3 3 3 3 3 3 3 3 3 3 3 3 3 3

OPTIONAL 3 7 3 3 3 3 7 3 7 7 3 7 3 3

DISTINCT 3 3 3 3 3 3 3 3 7 7 3 7 3 3

ORDER BY 3 7 3 3 3 3 7 3 7 7 3 7 3 3

UNION 3 3 3 3 3 3 7 3 7 7 3 7 3 3

NEGATION 3 7 3 3 3 3 7 3 7 7 7 7 3 3

REGEX 3 7 3 7 3 3 7 3 7 7 3 3 3 3

LIMIT 3 7 3 3 3 3 3 3 7 7 3 7 3 3

CONSTRUCT 3 7 3 7 3 3 7 3 7 7 7 7 3 7

DESCRIBE 7 7 7 7 7 3 7 7 7 7 7 7 3 7

ASK 3 7 3 7 3 3 7 3 7 7 7 7 3 7

cost-based optimization approach to reduce the query
processing time and the bandwidth usage.

SPLENDID [7] makes use of VoiD descriptions as
index along with SPARQL ASK queries to perform the
source selection step. A SPARQL ASK query is used
when any of the subject or object of the triple pattern is
bound. This query is forwarded to all of the data sources
and those sources which pass the SPARQL ASK test
are selected. A dynamic programming strategy [35] is
used to optimize the join order of SPARQL basic graph
patterns.

FedX [33] is an index-free SPARQL query federa-
tion system. The source selection relies completely on
SPARQL ASK queries and a cache. The cache is used
to store recent SPARQL ASK operations for relevant
data source selection. As shown by our evaluation, the
use of this cache greatly reduces the source selection
and query execution time.

The publicly available implementation of LHD [38]
only makes use of the VoiD descriptions to perform
source selection. The source selection algorithm is sim-
ilar to DARQ. However, it also supports query triple
patterns with unbound predicates. In such cases, LHD
simply selects all of the available data sources as rele-
vant. This strategy often overestimates the number of
capable sources and can thus lead to high overall run-
times. LHD performs a pipeline hash join to integrate
sub-queries in parallel.

ANAPSID [1] is an adaptive query engine that adapts
its query execution schedulers to the data availability
and runtime conditions of SPARQL endpoints. This
framework provides physical SPARQL operators that
detect when a source becomes blocked or data traffic
is bursty. The operators produce results as quickly as
data arrives from the sources. ANAPSID makes use of
both a catalog and ASK queries along with heuristics
defined in [21] to perform the source selection step.
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This heuristic-based source selection can greatly reduce
the total number of triple pattern-wise selected sources.

Finally, ADERIS [20] is an index-only approach for
adaptive integration of data from multiple SPARQL
endpoints. The source selection algorithm is similar
to DARQ’s. However, this framework also selects all
of the available data sources for triple patterns with
unbound predicates. ADERIS does not support several
SPARQL 1.0 clauses such as UNION and OPTIONAL.
For the data integration, the framework implements the
pipelined index nested loop join operator.

In the next section, we describe known variables that
may impact the performance of the federated SPARQL
query engines.

5. Performance Variables

Table 4 shows known variables that may impact the
behaviour of federated SPARQL query engines. Ac-
cording to [21], these variables can be grouped into two
categories (i.e., independent and dependent variables)
that affect the overall performance of federated query
SPARQL engines. Dependent (also called observed)
variables are usually the performance metrics and are
normally influenced by independent variables. Depen-
dent variables include: (1) total number of SPARQL
ASK requests used during source selection #ASK, (2)
total number of triple pattern-wise sources selected (ref.
Figure 1) during source selection #TP Sources, (3)
source selection time, (4) overall query runtime, and (5)
answer set completeness.

Independent variables can be grouped into four di-
mensions: query, data, platform, and endpoint [21]. The
query dimension includes:

– the type of query (star, path, hybrid [29]),
– the number of basic graph patterns,
– the instantiations (bound/unbound) of tuples (sub-

ject, predicate, object) of the query triple pattern,
– the selectivity of the joins between triple patterns,
– the query result set size, and use of different

SPARQL clauses along with general predicates
such as rdf:type, owl:sameAs.

The data dimension comprises of:

– the dataset size, its type of partition (horizontal,
vertical, hybrid), and

– the data frequency distribution (e.g., number of
subject, predicates and objects) etc.

The platform dimension consists of:

– use of cache,
– number of processor, and
– amount of RAM available.

The following parameters belong to the endpoints di-
mension:

– the number of endpoints used in the federation and
their types (e.g., Fuseki, Sesame, Virtuoso etc.,
and single vs. clustered server),

– the relationship between the number of instances,
graphs and endpoints of the systems used during
the evaluation, and

– network latency (in case of live SPARQL end-
points) and different endpoint configuration pa-
rameters such as answer size limit, maximum re-
sultset size etc.

In our evaluation, we measured all of the five depen-
dent variables reported in Table 4. Most of the query (an
independent variable) parameters are covered by using
the complete query set of both FedX and SP2Bench.
However, as pointed in [21], the join selectivity can-
not be fully covered due to the limitations of both
FedX and SP2Bench. In data parameters, the data set
size cannot be fully explored in the selected SPARQL
query federation benchmarks. This is because both Fed-
Bench and SP2Bench do not contain very large datasets
(the largest dataset in these benchmarks contains solely
108M triples, see Table 6) such as Linked TCGA (20.4
billion triples11), UniProt (8.4 billion triples12) etc. We
used horizontal partitioning and mirrored a highly dis-
tributed environment to test the selected federation sys-
tems for their parallel processing capabilities. W.r.t.
platform parameters, the effect of using a cache is mea-
sured. As shown in the experiments section, the use
of a cache (especially in FedX) has the potential of
greatly improving the query runtime of federation sys-
tems. The amount of available RAM is more important
when dealing with queries with large intermediate re-
sults, which are not given in the benchmarks at hand.
The number of processors used is an important dimen-
sion to be considered in future SPARQL query federa-
tion engines. The endpoint parameters did not play a
major role in our study because we used a dedicated
local area network to avoid network delays. An evalu-
ation on live SPARQL endpoints with network delay
will be considered in future work. We used Virtuoso
(version 20120802) SPARQL endpoints with maximum

11Linked TCGA: http://tcga.deri.ie/
12UniProt: http://datahub.io/dataset/uniprotkb

http://tcga.deri.ie/
http://datahub.io/dataset/uniprotkb
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Table 4
Known variables that impact the behaviour of SPARQL federated. (#ASK = Total number of SPARQL ASK requests used during source selection,
#TP= total triple pattern-wise sources selected)

Independent Variables Dependent/Observed Variables
#ASK #TP Sources Source Selection Time Query Runtime Answer Completeness

Q
ue

ry

query plan shape 3 3 3 3 3

#basic triple patterns 3 3 3 3 3

#instantiations and their position 3 3 3 3 x
join selectivity x x x 3 x
#intermediate results x x x 3 x
answer size x x x 3 x
usage of query language expressivity 3 3 3 3 x
#general predicates 3 3 3 3 3

D
at

a

dataset size x x x 3 x
data frequency distribution x x x 3 x
type of partitioning 3 3 3 3 3

data endpoint distribution 3 3 3 3 3

Pl
at

fo
rm cache on/off 3 3 3 3 x

RAM available x x 3 3 x
#processors x x 3 3 x

E
nd

po
in

ts

#endpoints 3 3 3 3 3

endpoint type x x 3 3 x
relation graph/endpoint/instance x x x 3 3

network latency x x 3 3 3

initial delay x x 3 3 x
message size x x x 3 x
transfer distribution x x 3 3 3

answer size limit x x x 3 3

timeout x x x 3 3

rows set to 100,000 (i.e., we chose this value because it
is greater than the answer size of all of the queries in
the selected benchmarks) and a transaction timeout of
60 seconds (which allows for all all sub-queries in the
selected benchmarks to be executed). The overall query
execution timeout was set to 30 min on the system run-
ning the federation engine. The higher threshold is due
to SPARQL endpoints requiring less time to run the
sub-queries generated by the federation engine than the
federation engine to integrate the results.

While the dependent variables source selection time,
query runtime, and answer completeness are already
highlighted in [21], we also measured the total number
of data sources selected and total number of SPARQL
ASK requests used during the source selection. Sec-
tion 6 shows that both of these additional variables have
a significant impact on the performance of federated
SPARQL query engines. For example, an overestima-
tion of the capable sources can lead through an increase
of the overall runtime due to (1) increased network
traffic and (2) unnecessary intermediate results which

are excluded after performing all the joins between the
query triple patterns. On the other hand, the smaller
the number of SPARQL ASK requests used during the
source selection, the smaller the source selection time
and vice versa. Further details of the depended and
independent variables can be found at [21].

6. Evaluation

In this section we present the data and hardware used
in our evaluation. Moreover, we explain the key metrics
underlying our experiments as well as the correspond-
ing results.

6.1. Experimental setup

We used two settings to evaluate the selected feder-
ation systems. Within the first evaluation, we used the
query execution time as central evaluation parameter
and made use of the FedBench [31] federated SPARQL
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querying benchmark. In the second evaluation, we ex-
tended both FedBench and SP2Bench to simulate a
highly federated environment. Here, we focused espe-
cially on analyzing the effect of data partitioning on the
performance of federation systems. We call this exten-
sion SlicedBench as we created slices of each original
datasets and distributed them among data sources. All
of the selected performance metrics (explained in Sec-
tion 6.2) remained the same for both evaluation frame-
works. We used the most recent versions (at the time at
which the evaluation was carried out), i.e., FedX2.0 and
ANAPSID (December 2013 version). The remaining
systems has no versions. All experiments were carried
out on a system (machine running federation engines)
with a 2.60 GHz i5 processor, 4GB RAM and 500GB
hard disk. For systems with Java implementation, we
used Eclipse with default settings, i.e., Java Virtual
Machine (JVM) initial memory allocation pool (Xms)
size of 40MB and the maximum memory allocation
pool (Xmx) size of 512MB. The permanents generation
(MaxPermSize) which defines the memory allocated to
keep compiled class files was also set to default size
of 256MB. To minimise the network latency we used
a dedicated local network. We conducted our experi-
ments on local copies of Virtuoso (version 20120802)
SPARQL endpoints with number of buffers 1360000,
maximum dirty buffers 1000000, number of server
threads 20, result set maximum rows 100000, and maxi-
mum SPARQL endpoint query execution time of 60 sec-
onds. A separate physical virtuoso server was created
for each dataset. The specification of the machines host-
ing the virtuoso SPARQL endpoints used in both evalu-
ations is given in Table 5. We executed each query 10
times and present the average values in the results. The
source selection time (ref. Section 6.3.4) and query run-
time (ref. Section 6.3.5) was calculated using the func-
tion System.currentTimeMillis() (for Java
system implementations) and function time() (for
Python implementations). The results of the time()
was converted from seconds as float to milliseconds.
The accuracy of both functions is in the order of 1ms,
which does not influence the conclusions reached by
our evaluation. The query runtime was calculated once
all the results are retrieved and the time out was set
to 30 minutes. Furthermore, the query runtime results
were analyzed statistically using Wilcoxon signed rank
test. We chose this test because it is parameter-free and
does not assume a particular error distribution in the
data like a t-test does. For all the significance tests, we
set the p-value to 0.05.

Table 5
System’s specifications hosting SPARQL endpoints.

Endpoint CPU(GHz) RAM Hard Disk

SW Dog Food 2.2, i3 4GB 300 GB
GeoNames 2.9, i7 16 GB 256 GB SSD
KEGG 2.6, i5 4 GB 150 GB
Jamendo 2.53, i5 4 GB 300 GB
New York Times 2.3, i5 4 GB 500 GB
Drugbank 2.53, i5 4 GB 300 GB
ChEBI 2.9, i7 8 GB 450 GB
LinkedMDB 2.6, i5 8 GB 400 GB
SP2Bench 2.6, i5 8 GB 400 GB
DBpedia subset 3.5.1 2.9, i7 16 GB 500 GB

All of the data used in both evaluations along with
the portable virtuoso SPARQL endpoints can be down-
loaded from the project website13.

6.1.1. First setting: FedBench
FedBench is commonly used to evaluate performance

of the SPARQL query federation systems [7,21,29,33].
The benchmark is explicitly designed to represent
SPARQL query federation on a real-world datasets. The
datasets can be varied according to several dimensions
such as size, diversity and number of interlinks. The
benchmark queries resemble typical requests on these
datasets and their structure ranges from simple star [29]
and chain queries to complex graph patterns. The de-
tails about the FedBench datasets used in our evalua-
tion along with some statistical information are given
in Table 6.

The queries included in FedBench are divided
into three categories: Cross-domain (CD), Life Sci-
ences (LS), Linked Data (LD). In addition, it includes
SP2Bench queries. The distribution of the queries along
with the result set sizes are given in Table 7. Details on
the datasets and various advanced statistics are provided
at the FedBench project page14.

In this evaluation setting, we selected all queries
from CD, LS, and LD, thus performing (to the best of
our knowledge) the first evaluation of SPARQL query
federation systems on the complete benchmark data of
FedBench. It is important to note that SP2Bench was
designed with the main goal of evaluating query en-
gines that access data kept in a single repository. Thus,
the complete query is answered by a single data set.
However, a federated query is one which collects re-
sults from multiple data sets. Due to this reason we did

13https://code.google.com/p/fed-eval/
14http://code.google.com/p/fbench/

https://code.google.com/p/fed-eval/
http://code.google.com/p/fbench/
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Table 6
Datasets statistics used in our benchmarks. (*only used in
SlicedBench)

Collection Dataset version #triples #subjects #predicates #objects #types #links

DBpedia subset 3.5.1 43.6M 9.50M 1.06k 13.6M 248 61.5k
GeoNames 2010-10-06 108M 7.48M 26 35.8M 1 118k

Cross LinkedMDB 2010-01-19 6.15M 694k 222 2.05M 53 63.1k
Domain Jamendo 2010-11-25 1.05M 336k 26 441k 11 1.7k

New York Times 2010-01-13 335k 21.7k 36 192k 2 31.7k
SW Dog Food 2010-11-25 104k 12.0k 118 37.5k 103 1.6k

KEGG 2010-11-25 1.09M 34.3k 21 939k 4 30k
Life ChEBI 2010-11-25 7.33M 50.5k 28 772k 1 -
Sciences Drugbank 2010-11-25 767k 19.7k 119 276k 8 9.5k

DBpedia subset 3.5.1 43.6M 9.50M 1.06k 13.6M 248 61.5k 61.5k

SP2Bench* SP2Bench 10M v1.01 10M 1.7M 77 5.4M 12 -

not include the SP2Bench queries in our first evaluation.
We have included all these queries into our SlicedBench
because the data is distributed in 10 different data sets
and each SP2Bench query span over more than one data
set, thus full-filling the criteria of federated query.

6.1.2. Second setting: Sliced Bench
As pointed out in [22] the data partitioning can af-

fect the overall performance of SPARQL query feder-
ation engines. To quantify this effect, we created 10
slices of each of the 10 datasets given in Table 6 and
distributed this data across 10 local virtuoso SPARQL
endpoints (one slice per SPARQL endpoint). Thus, ev-
ery SPARQL endpoint contained one slice from each
of the 10 datasets. This creates a highly fragmented
data environment where a federated query possibly had
to collect data from all of the 10 SPARQL endpoints.
This characteristic of the benchmark stands in contrast
to FedBench where the data is not highly fragmented.
Moreover, each of the SPARQL endpoint contained a
comparable amount of triples (load balancing). To facil-
itate the distribution of the data, we used the Slice Gen-
erator tool employed in [29]. This tool allows setting a
discrepancy across the slices, where the discrepancy is
defined as the difference (in terms of number of triples)
between the largest and smallest slice:

discrepancy = max
1≤i≤M

|Si| − min
1≤j≤M

|Sj |, (1)

where Si stands for the ith slice. The dataset D is
partitioned randomly among the slices in a way that

Table 8
Dataset slices used in SlicedBench

Collection #Slices Discrepancy

DBpedia subset 3.5.1 10 280000
GeoNames 10 600000
LinkedMDB 10 100000
Jamendo 10 30000
New York Times 10 700
SW Dog Food 10 200
KEGG 10 35000
ChEBI 10 50000
Drugbank 10 25000
SP2Bench 10 150000

∑
i

|Si| = |D| and ∀i∀j i 6= j → ||Si| − |Sj || ≤

discrepancy.
This tool generate slices based on horizental partion-

ing of the data. Table 8 shows the discrepancy values
used for slice generation for each of the 10 datasets. Our
discrepancy value varies with the size of the dataset.
For the query runtime evaluation, we selected all of the
queries both from FedBench and SP2Bench given in
Table 7: the reason for this selection was to cover major-
ity of the SPARQL query clauses and types along with
variable results size (from 1 to 40 million). For each of
the CD, LS, and LD queries used in SlicedBench, the
number of results remained the same as given in Table 7.
Analogously to FedBench, each of the SlicedBench
data source is a virtuoso SPARQL endpoint.
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Table 7
Query characteristics, (#T = Total number of Triple patterns, #Res = Total number of query results, *only used in SlicedBench, OPerators: And
(“.”), Union, Filter, Optional; Structure: Star, Chain, Hybrid).

Linked Data (LD) Cross Domain (CD) Life Science (LS) SP2Bench*
Q #T #Res Op Struct #T #Res Op Struct Q #T #Res Op Struct Q #T #Res Op Struc

1 3 309 A C 1 3 90 AU S 1 2 1159 U - 1 3 1 A S
2 3 185 A C 2 3 1 A S 2 3 333 AU - 2 10 >50k AO S
3 4 162 A C 3 5 2 A H 3 5 9054 A H 3a 3 27789 AF S
4 5 50 A C 4 5 1 A C 4 7 3 A H 4 8 >40k AF C
5 3 10 A S 5 4 2 A C 5 6 393 A H 5b 5 >30k AF C
6 5 11 A H 6 4 11 A C 6 5 28 A H 6 9 >70k AFO H
7 2 1024 A S 7 4 1 A C 7 5 144 AFO H 7 12 >2k AFO H
8 5 22 A H 8 10 493 AFU H
9 3 1 A C 9 4 4 AU -
10 3 3 A C 10 1 656 -
11 5 239 A S 11 1 10 - -

 
 
 
 
 
 
 
SELECT  o1, o2 
WHERE 
{ 
?s  p1  ?o1.    //tp1 

?s  p2  ?o2.   //tp2 

} 

 
 
 
 
 
 
 

D1 =  {s1, s2, s4 } 
D2 =  {s1, s3,  s5, s9 } 
|D1|  =  3 
|D2| =   4 
Total TP. Sources  = |D1| + |D2|                               
             =  7 

Fig. 1. Total triple pattern-wise selected sources example. (TP. =
triple pattern-wise selected)

6.2. Evaluation criteria

We selected five metrics for our evaluation: (1) total
triple pattern-wise sources selected, (2) total number of
SPARQL ASK requests used during source selection,
(3) answer completeness (4) source selection time (i.e.
the time taken by the process in the first metric), and
(5) query execution time.

The total number of triple pattern-wise selected
sources for a query is calculated as follows: Let Di =
{s1, s2 . . . sm} be the set of sources capable of answer-
ing a triple pattern tpi and M is the total number of
available (physical) sources. Then, for a query q with
n triple patterns, {tp1, tp2, . . . tpn }, the total number
of triple pattern-wise sources is the sum of the magni-
tude (|Di|) of capable sources set for individual triple
patterns. An example of the triple pattern-wise source
selection is given in Figure 1 considering there are three
sources capable of answering the first triple pattern tp1
and four sources capable of answering tp2 summing up
to a total triple pattern-wise selected sources equal to
seven.

An overestimation of triple pattern-wise selected
sources increases the source selection time and thus the
the query execution time. Furthermore, such an over-
estimation increases the number of irrelevant results
which are excluded after joining the results of the dif-

ferent sources, therewith increasing both the network
traffic and query execution time. In the next section we
explain how such overestimations occur in the selected
approaches.

6.3. Experimental results

6.3.1. Triple pattern-wise selected sources
Table 9 shows the total number of triple pattern-

wise sources (TP sources for short) selected by each
approach both for the FedBench and SlicedBench
queries. ANAPSID is the most accurate system in terms
of TP sources followed by both FedX and SPLEN-
DID whereas similar results are achieved by the other
three systems, i.e., LHD, DARQ, and ADERIS. Both
FedX and SPLENDID select the optimal number of
TP sources for individual query triple patterns. This is
because both make use of ASK queries when any of the
subject or object is bound in a triple pattern. However,
they do not consider whether a source can actually con-
tribute results after performing a join between results
with other query triple patterns. Therefore, both can
overestimate the set of capable sources that can actually
contribute results. ANAPSID uses a catalog and ASK
queries along with heuristics [21] about triple pattern
joins to reduce the overestimation of sources. LHD (the
publicly available version), DARQ, and ADERIS are
index-only approaches and do not use SPARQL ASK
queries when any of the subject or object is bound. Con-
sequently, these three approaches tend to overestimate
the TP sources per individual triple pattern. It is im-
portant to note that DARQ does not support queries
where any of the predicates in a triple pattern is un-
bound (e.g., CD1, LS2) and ADERIS does not support
queries which feature FILTER or UNION clauses (e.g.,
CD1, LS1, LS2, LS7). In case of triple patterns with
unbound predicates (such as CD1, LS2) both LHD and
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Table 9
Comparison of triple pattern-wise total number of sources selected
for FedBench and SlicedBench. NS stands for “not supported”, RE
for “runtime error”, SPL for SPLENDID, ANA for ANAPSID and
ADE for ADERIS. Key results are in bold.

FedBench SlicedBench
Query FedX SPL LHD DARQ ANA ADE Query FedX SPL LHD DARQ ANA ADE

CD1 11 11 28 NS 3 NS CD1 17 17 30 NS 8 NS
CD2 3 3 10 10 3 10 CD2 12 12 24 24 12 24
CD3 12 12 20 20 5 20 CD3 31 31 38 38 31 38
CD4 19 19 20 20 5 20 CD4 32 32 34 34 32 34
CD5 11 11 11 11 4 11 CD5 19 19 19 19 9 19
CD6 9 9 10 10 10 10 CD6 31 31 40 40 31 40
CD7 13 13 13 13 6 13 CD7 40 40 40 40 40 40

Total 78 78 112 84 36 84 Total 182 182 225 195 163 195
LS1 1 1 1 1 1 NS LS1 3 3 3 3 3 NS
LS2 11 11 28 NS 12 NS LS2 16 16 30 NS 16 NS
LS3 12 12 20 20 5 20 LS3 19 19 26 26 19 26
LS4 7 7 15 15 7 15 LS4 25 25 27 27 14 27
LS5 10 10 18 18 7 18 LS5 30 30 37 37 20 37
LS6 9 9 17 17 5 17 LS6 19 19 27 27 17 27
LS7 6 6 6 6 7 NS LS7 13 13 13 13 13 NS

Total 56 56 105 77 44 70 Total 125 125 163 133 102 117
LD1 8 8 11 11 3 11 LD1 10 10 29 29 3 29
LD2 3 3 3 3 3 3 LD2 20 20 28 28 20 28
LD3 16 16 16 16 4 16 LD3 30 30 39 39 13 39
LD4 5 5 5 5 5 5 LD4 30 30 47 47 5 47
LD5 5 5 13 13 3 13 LD5 15 15 24 24 15 24
LD6 14 14 14 14 14 14 LD6 38 38 38 38 38 38
LD7 3 3 4 4 2 4 LD7 12 12 20 20 12 20
LD8 15 15 15 15 9 15 LD8 27 27 27 27 16 27
LD9 3 3 6 6 3 6 LD9 7 7 17 17 7 17
LD10 10 10 11 11 3 11 LD10 23 23 23 23 23 23
LD11 15 15 15 15 5 15 LD11 31 31 32 32 31 32

Total 108 108 119 122 54 119 Total 243 243 324 324 183 324
SP2B-1 10 10 28 28 NS 28
SP2B-2 90 90 92 92 RE NS
SP2B-3a 13 13 19 NS 13 19
SP2B-4 52 52 66 66 52 66
SP2B-5b 40 40 50 50 40 50
SP2B-6 68 68 72 72 18 NS
SP2B-7 100 100 104 NS 64 NS
SP2B-8 91 91 102 102 NS NS
SP2B-9 40 40 40 NS 40 NS
SP2B-10 7 7 10 NS 7 10
SP2B-11 10 10 10 10 10 NS

Total 521 521 593 420 244 173
Net Total 242 242 336 283 134 273 Net Total 1071 1071 1305 1072 692 809
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ADERIS simply select all of the available sources as
relevant. This overestimation can significantly increase
the overall query execution time.

The effect overestimation can be clearly seen by tak-
ing a fine-granular look at how the different systems
process FedBench query CD3 given in Listing 1. The
optimal number of TP sources for this query is 5. This
query has a total of five triple patterns. To process this
query, FedX sends a SPARQL ASK query to all of the
10 benchmark SPARQL endpoints for each of the triple
pattern summing up to a total of 50 (5*10) SPARQL
ASK operations. As a result of these operations, only
one source is selected for each of the first four triple pat-
tern while eight sources are selected for last one, sum-
ming up to a total of 12 TP sources. SPLENDID utilizes
its index and ASK queries for the first three and index-
only for last two triple pattern to select exactly the same
number of sources selected by FedX. LHD, ADERIS,
and DARQ only makes use of predicate lookups in their
catalogs to select nine sources for the first, one source
each for the second, third, fourth, and eighth for the last
triple pattern summing up to a total of 20 TP sources.
The later three approaches overestimate the number of
sources for first triple pattern by 8 sources. This is due
to the predicate rdf:type being likely to be used in
all of RDF datasets. However, triples with rdf:type
as predicate and the bound object dbp:President
are only contained in the DBpedia subset of FedBench.
Thus, the only relevant data source for the first triple
pattern is DBpedia subset. Interestingly, even FedX and
SPLENDID overestimate the number of data sources
that can contribute for the last triple pattern. There are
eight FedBench datasets which contain owl:sameAs
predicate. However, only one (i.e., New York Times)
can actually contribute results after a join of the last two
triple patterns is carried out. ANAPSID makes use of a
catalog and SPARQL-ASK-assisted Star Shaped Group
Multiple (SSGM) endpoint selection heuristic [21] to
select the optimal (i.e., five) TP sources for this query.
However, ANAPSID also overestimates the TP sources
in some cases. For query CD6 of FedBench, ANAPSID
selected a total of 10 TP sources while only 4 is the
optimal sources that actually contributes to the final
result set. This behaviour leads us to our first insight:
Optimal TP source selection is not sufficient to detect
the optimal set of sources that should be queried.

In the SlicedBench results, we can clearly see the TP
values are increased for each of the FedBench queries
which mean a query spans more data sources, thus sim-
ulating a highly fragmented environment suitable to
test the federation system for effective parallel query

SELECT ? p r e s i d e n t ? p a r t y ? page
WHERE {
? p r e s i d e n t r d f : t y p e dbp : P r e s i d e n t .
? p r e s i d e n t dbp : n a t i o n a l i t y dbp : US .
? p r e s i d e n t dbp : p a r t y ? p a r t y .
? x n y t : t o p i c P a g e ? page .
? x owl # sameAs ? p r e s i d e n t .
}

Listing 1: FedBench CD3. Prefixes are ignored for sim-
plicity

processing. The highest number of TP sources are re-
ported for the second SP2Bench query where up to a
total of 92 TP sources are selected. This query con-
tains 10 triple patterns and index-free approaches (e.g.,
FedX) need 100 (10*10) SPARQL ASK queries to per-
form the source selection operation. Using SPARQL
ASK queries with no caching for such a highly fed-
erated environment can be very expensive. From the
results shown in Table 9, it is noticeable that hybrid
(catalog + SPARQL ASK) source selection approaches
(ANAPSID, SPLENDID) perform an more accurate
source selection than index/catalog-only approaches
(i.e., DARQ, LHD, and ADERIS).

6.3.2. Number of SPARQL ASK requests
Table 10 shows the total number of SPARQL ASK

requests used to perform source selection for each of
the queries of FedBench and SlicedBench. Index-only
approaches (DARQ, ADERIS, LHD) only make use of
their index to perform source selection. Therefore, they
do not necessitate any ASK requests to process queries.
As mention before, FedX only makes use of ASK re-
quests (along with a cache) to perform source selection.
The results presented in Table 10 are for FedX(cold
or first run), where the FedX cache is empty. This is
basically the lower bound of the performance of FedX.
For FedX(100% cached), the complete source selection
is performed by using cache entries only. Hence, in that
case, the number of SPARQL ASK requests is zero for
each query. This is the upper bound of the performance
of FedX on the data at hand. The results clearly shows
that index-free (e.g., FedX) approaches can be very ex-
pensive in terms of SPARQL ASK requests used. This
can greatly affect the source selection time and over-
all query execution time if no cache is used. Both for
FedBench and SlicedBench, SPLENDID is the most
efficient hybrid approach in terms of SPARQL ASK
requests consumed during source selection.
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Table 10
Comparison of number of SPARQL ASK requests used for source selection both in FedBench and SlicedBench. NS stands for “not supported”,
RE for “runtime error”, SPL for SPLENDID, ANA for ANAPSID and ADE for ADERIS. Key results are in bold.

FedBench SlicedBench
Query FedX SPL LHD DARQ ANA ADE Query FedX SPL LHD DARQ ANA ADE

CD1 27 26 0 NS 20 NS CD1 30 30 0 NS 25 NS
CD2 27 9 0 0 1 0 CD2 30 20 0 0 29 0
CD3 45 2 0 0 2 0 CD3 50 20 0 0 46 0
CD4 45 2 0 0 3 0 CD4 50 10 0 0 34 0
CD5 36 1 0 0 1 0 CD5 40 10 0 0 14 0
CD6 36 2 0 0 11 0 CD6 40 10 0 0 40 0
CD7 36 2 0 0 5 0 CD7 40 10 0 0 40 0

Total 252 44 0 0 43 0 Total 280 110 0 0 228 0
LS1 18 0 0 0 0 NS LS1 20 0 0 0 3 NS
LS2 27 26 0 NS 30 NS LS2 30 30 0 NS 30 NS
LS3 45 1 0 0 13 0 LS3 50 10 0 0 30 0
LS4 63 2 0 0 1 0 LS4 70 20 0 0 15 0
LS5 54 1 0 0 4 0 LS5 60 10 0 0 27 0
LS6 45 2 0 0 13 0 LS6 50 20 0 0 26 0
LS7 45 1 0 0 2 NS LS7 50 10 0 0 12 NS

Total 297 33 0 0 63 0 Total 330 100 0 0 143 0
LD1 27 1 0 0 1 0 LD1 30 10 0 0 12 0
LD2 27 1 0 0 0 0 LD2 30 10 0 0 29 0
LD3 36 1 0 0 2 0 LD3 40 10 0 0 23 0
LD4 45 2 0 0 0 0 LD4 50 20 0 0 25 0
LD5 27 2 0 0 2 0 LD5 30 20 0 0 32 0
LD6 45 1 0 0 12 0 LD6 50 10 0 0 38 0
LD7 18 2 0 0 4 0 LD7 20 10 0 0 20 0
LD8 45 1 0 0 7 0 LD8 50 10 0 0 19 0
LD9 27 5 0 0 3 0 LD9 30 20 0 0 17 0
LD10 27 2 0 0 4 0 LD10 30 10 0 0 23 0
LD11 45 1 0 0 2 0 LD11 50 10 0 0 32 0

Total 369 19 0 0 37 0 Total 410 140 0 0 270 0
SP2B-1 30 20 0 0 NS 0
SP2B-2 100 10 0 0 RE NS
SP2B-3a 20 10 0 NS 10 0
SP2B-4 80 20 0 0 66 0
SP2B-5b 50 20 0 0 50 0
SP2B-6 90 20 0 0 37 NS
SP2B-7 130 30 0 NS 62 NS
SP2B-8 100 20 0 0 NS NS
SP2B-9 40 20 0 NS 20 NS
SP2B-10 10 10 0 NS 10 0
SP2B-11 10 0 0 0 10 NS

Total 660 180 0 0 265 0
Net Total 918 96 0 0 143 0 Net Total 1680 530 0 0 906 0
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Table 11
The queries for which some system’s did not retrieve complete results. The values inside bracket shows the actual results size. "-" means the
results completeness cannot be determined due to query execution timed out. Incomplete results are highlighted in bold

CD1(90) CD7(1) LS1(1159) LS2(333) LS3(9054) LS5(393) LD1(309) LD3(162) LD9(1) SP2B-3a(27789) SP2B-6(>70k)

SPLENDID 90 1 1159 333 9054 393 308 159 1 - -
LHD 77 1 0 322 0 0 309 162 1 - -
ANAPSID 90 0 1159 333 9054 393 309 162 1 0 0
ADERIS 77 1 1159 333 9054 393 309 162 1 - -
DARQ 90 1 1159 333 9054 393 309 162 0 - -
FedX 90 1 1159 333 9054 393 309 162 1 27789 -

For SlicedBench, all data sources are likely contains
the same set of distinct predicates (because each data
source contains at least one slice from each data dump).
Therefore, the index-free and hybrid source selection
approaches are bound to consume more SPARQL ASK
requests. It is important to note that ANAPSID com-
bines more than one triple pattern into a single SPARQL
ASK query. The time required to execute these more
complex SPARQL ASK operations are generally higher
than SPARQL ASK queries having a single triple pat-
tern as used in FedX and SPLENDID. Consequently,
even though ANAPSID require less SPARQL ASK re-
quests for many of the FedBench queries, its source se-
lection time is greater than all other selected approaches.
This behaviour will be further elaborated upon in the
subsequent section. Tables 9 and 10 clearly show that
using SPARQL ASK queries for source selection leads
to an efficient source selection in terms of TP sources
selected. However, in the next section we will see that
they increase both source selection and overall query
runtime. A smart source selection approach should se-
lect fewer number of TP sources while using minimal
number of SPARQL ASK requests.

6.3.3. Answer compeleteness
As pointed in [21], an important criterion in perfor-

mance evaluation of the federated SPARQL query en-
gines is the result set completeness. Two or more en-
gines are only comparable to each other if they provide
the same result set for a given query. A federated engine
may miss results due to various reasons including the
type of source selection used, the use of an outdated
cache or index, the type of network, the endpoint result
size limit or even the join implementation. In our case,
the sole possible reason for missing results across all
six engines is the join implementation as all of the se-
lected engines overestimate the set of capable sources
(i.e., they never generate false negatives w.r.t. the ca-
pable sources), the cache, index are always up-to-date,
the endpoint result size limit is greater than the query
results and we used a local dedicated network with
negligible network delay. Table 11 shows the queries

and federated engines for which we did not receive the
complete results. As an overall answer completeness
evaluation, only FedX is always able to retrieve com-
plete results. It is important to note that these results are
directly connected to the answer completeness results
presented in survey Table 2; which shows only FedX
is able to provide complete results among the selected
systems.

6.3.4. Source selection time
Figure 2 and Figure 3 show the source selection time

for each of the selected approaches and for both Fed-
Bench and SlicedBench. Compared to the TP results,
the index-only approaches require less time than the
hybrid approaches even though they overestimated the
TP sources in comparison with the hybrid approaches.
This is due to index-only approaches not having to send
any SPARQL ASK queries during the source selection
process. The index being usually pre-loaded into the
memory before the query execution means that the run-
time the predicate look-up in index-only approaches is
minimal. Consequently, we observe a trade-off between
the intelligent source selection and the time required
to perform this process. To reduce the costs associated
with ASK operations, FedX implements a cache to store
the results of the recent SPARQL ASK operations. Fig-
ure 2 shows that source selection time of FedX with
cached entries is significantly smaller than FedX’s first
run with no cached entries.

As expected the source selection time for FedBench
queries is smaller than that for SlicedBench, particu-
larly in hybrid approaches. This is because the number
of TP sources for SlicedBench queries are increased
due to data partitioning. Consequently, the number of
SPARQL ASK requests grows and increases the overall
source selection time. As mentioned before, an overesti-
mation of TP sources in highly federated environments
can greatly increase the source selection time. For ex-
ample, consider query LD4. SPLENDID selects the
optimal (i.e., five) number of sources for FedBench and
the source selection time is 218 ms. However, it over-
estimates the number of TP sources for SlicedBench
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by selecting 30 instead of 5 sources. As a result, the
source selection time is significantly increased to 1035
ms which directly affects the overall query runtime. The
effect of such overestimation is even worse in SP2B-2
and SP2B-4 queries for the SlicedBench.

Lessons learned from the evaluation of the first three
metrics is that using ASK queries for source selec-
tion leads to smart source selection in term of total TP
sources selected. On the other hand, they significantly
increase the overall query runtime where no caching is
used. FedX makes use of an intelligent combination of
parallel ASK query processing and caching to perform
the source selection process. This parallel execution
of SPARQL ASK queries is more time-efficient than
the ASK query processing approaches implemented
in both ANAPSID and SPLENDID. Nevertheless, the
source selection of FedX could be improved further
by using heuristics such as ANAPSID’s to reduce the
overestimation of TP sources.

6.3.5. Query execution time
Figure 4 and Figure 5 show the query execution time

for both experimental setups. The negligibly small stan-
dard deviation error bars (shown on top of each bar)
indicate that the data points tend to be very close to
the mean, thus suggest a high consistency of the query
runtimes in most frameworks. As an overall query exe-
cution time evaluation, FedX(cached) outperforms all
of the remaining approaches in majority of the queries.
FedX(cached) is followed by FedX(first run) which
is further followed by LHD, SPLENDID, ANAPSID,
ADERIS, and DARQ. Deciding between DARQ and
ADERIS is not trivial because the latter does not pro-
duce results for most of the queries. The exact number
of queries by which one system is better than other is
given in the next section (ref. Section 7.1). Furthermore,
the number of queries by which one system signifi-
cantly outperform other (using Wilcoxon signed rank
test) is also given in the next section.

Interestingly, while ANAPSID ranks first (among
the selected systems) in terms of triple pattern-wise
sources selected results, it ranks fourth in terms of query
execution performance. There are a couple of reason
for this: (1) ANAPSID does not make use of cache.
As a result, it spends more time (8ms for FedX and
1265 ms for ANAPSID on average over both setups)
performing source selection, which worsens its query
execution time and (2) Bushy tress (used in ANAPSID)
only perform better than left deep trees (used in FedX)
when the queries are more complex and triple patterns
joins are more selective [14,3]. However, the FedBench

queries (excluding SP2Bench) are not very selective
and are rather simple, e.g., triple patterns in a query
ranges from 2 to 7. In addition, the query result set sizes
are small (10 queries whose resultset size smaller than
16) and the average query execution is small (about 3
seconds on average for FedX over both setups). The
SP2Bench queries are more complex and the resultset
sizes are large. However, the selected systems were
not able to execute majority of the SP2Bench queries.
It would be interesting to compare these systems on
more complex and Big Data benchmark. The use of a
cache improves FedX’s performance by 10.5% in the
average query execution for FedBech and 4.14% in
SlicedBench.

The effect of the overestimation of the TP sources
on query execution can be observed on the majority
of the queries for different systems. For instance, for
FedBench’s LD4 query SPLENDID selects the optimal
number of TP sources (i.e., five) and the query execu-
tion time is 318 ms of which 218 ms are used for se-
lecting sources. For SlicedBench, SPLENDID overesti-
mates the TP sources by 25 (i.e., selects 30 instead of 5
sources), resulting in a query execution of 10693 ms, of
which 1035 ms are spent in the source selection process.
Consequently, the pure query execution time of this
query is only 100 ms for FedBench (318-218) and 9659
ms (10693-1035) for SlicedBench. This means that an
overestimation of TP sources does not only increase the
source selection time but also produces results which
are excluded after performing join operation between
query triple patterns. These retrieval of irrelevant re-
sults increases the network traffic and thwarts the query
execution plan. For example, both FedX and SPLEN-
DID considered 285412 irrelevant triples due to the
overestimation of 8 TP sources only for owl : sameAs
predicate in CD3 of FedBench. Another example of TP
source overestimation can seen in CD1, LS2. LHD’s
overestimation of TP sources on SlicedBench (e.g., 22
for CD1, 14 for LS2) leads to its query execution time
jumping from 3670.9 ms to 41586.3 ms for CD1 and
427 ms to 34418.3 ms for LS2.

In queries such as CD4, CD6, LS3, LD11 and SP2B-
11 we observe that the query execution time for DARQ
is more than 2 minutes. In some cases, it even reaches
the 30 minute timeout used in our experiments. The rea-
son for this behaviour is that the simple nested loop join
it implements overfloods SPARQL endpoints by submit-
ting too many endpoint requests. FedX overcomes this
problem by using a block nested loop join where the
number of endpoints requests are dependent upon the
block size. Furthermore, we can see that many systems
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(b) SlicedBench: CD queries
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(c) FedBench: LS queries
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(d) SlicedBench: LS queries
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Fig. 2. Comparison of source selection time for FedBench and SlicedBench.
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Fig. 3. Comparison of source selection time for SP2Bench queries in SlicedBench.

do not produce results for SP2Bench queries. A pos-
sible reason for this is the fact that SP2Bench queries
contain up to 10 triple patterns with different SPARQL
clauses such as DISTINCT, ORDER BY, and complex
FILTERS.

6.3.6. Overall performance evaluation
The comparison of the overall performance of each

approach is summarised in Figure 6, where we show
the average query execution time for the queries in CD,
LS, LD, and SP2Bench sub-groups. As an overall per-
formance evaluation based on FedBench, FedX(cached)
outperformed FedX(first run) on all of the 25 queries.
FedX(first run) in turn outperformed LHD on 17 out of
22 commonly supported queries (LHD retrieve zero re-
sults for three queries). LHD is better than SPLENDID
in 13 out of 22 comparable queries. SPLENDID outper-
formed ANAPSID in 15 out of 24 queries while ANAP-
SID outperforms DARQ in 16 out of 22 commonly
supported queries. For SlicedBench, FedX(cached) out-
performed FedX(first run) in 29 out of 36 comparable
queries. In turn FedX(first run) outperformed LHD in
17 out of 24 queries. LHD is better than SPLENDID
in 17 out of 24 comparable queries. SPLENDID out-
performed ANAPSID in 17 out of 26 which in turn out-
performed DARQ in 12 out of 20 commonly supported
queries. No results were retrieved for majority of the
queries in case of ADERIS, hence not included to this
section. All of the above improvements are significant
based on Wilcoxon signed ranked test with significance
level set to 0.05.

7. Discussion

The subsequent discussion of our findings can be
divided into two main categories.

7.1. Effect of the source selection time

To the best of our knowledge, the effect of the source
selection runtime has not been considered in SPARQL
query federation system evaluations [1,7,21,26,33] so
far. However, after analysing all of the results presented
above, we noticed that this metric greatly affects the
overall query execution time. To show this effect, we
compared the pure query execution time (excluding
source selection time). To calculate the pure query ex-
ecution time, we simply subtracted the source selec-
tion time from the overall query execution and plot the
execution time in Figure 7.

We can see that the overall query execution time (in-
cluding source selection given in Figure 4) of SPLEN-
DID is better than FedX(cached) in only one out of
the 25 FedBench queries. However, Figure 7 suggests
that SPLENDID is better in 8 out of the 25 queries in
terms of the pure query execution time. This means
that SPLENDID is slower than FedX (cached) in 33%
of the queries only due to the source selection process.
Furthermore, our results also suggest that the use of
SPARQL ASK queries for source selection is expensive
without caching. On average, SPLENDID’s source se-
lection time is 235 ms for FedBench and 591 ms in case
of SlicedBench. On the other hand, FedX (cached)’s
source selection time is 8ms for both FedBench and
SlicedBench. ANAPSID average source selection time
for FedBench is 507 ms and 2014 ms for SlicedBench
which is one of the reason of ANAPSID poor perfor-
mance as compare to FedX (cached).

7.2. Effect of the data partitioning

In our SlicedBench experiments, we extended Fed-
Bench to test the federation systems behaviour in highly
federated data environment. This extension can also
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(a) FedBench: CD queries
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(b) SlicedBench: CD queries
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(c) FedBench: LS queries
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(d) SlicedBench: LS queries
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(f) SlicedBench: LD queries

Fig. 4. Comparison of query execution time for FedBench and SlicedBench
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Fig. 5. Comparison of query execution time forSlicedBench: SP2Bench queries
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Fig. 6. Overall performance evaluation (ms)

be utilized to test the capability of parallel execution
of queries in SPARQL endpoint federation system. To
show the effect of data partioning, we calculated the
average for the query execution time of LD, CD, and
LS for both the benchmarks and compared the effect
on each of the selected approach. The performance of
FedX(cached) and DARQ is improved with partition-
ing while the performance of FedX(first run), SPLEN-
DID, ANAPSID, and LHD is reduced. As an over-
all evaluation result, FedX(first run)’s performance is
reduced by 214%, FedX(cached)’s is reduced 199%,
SPLENDID’s is reduced by 227%, LHD’s is reduced
by 293%, ANAPSID’s is reduced by 382%, and inter-
estingly DARQ’s is improved by 36%. This results sug-
gest that FedX is the best system in terms of parallel ex-
ecution of queries, followed by SPLENDID, LHD, and
ANAPSID. The performance improvement for DARQ

occurs due to the fact that the overflooding of endpoints
with too many nested loop requests to a particular end-
point is now reduced. This reduction is due to the dif-
ferent distribution of the relevant results among many
SPARQL endpoints. One of the reasons for the per-
formance reduction in LHD is its significant overesti-
mation of TP sources in SlicedBench. The reduction
of both SPLENDID’s and ANAPSID’s performance is
due to an increase in ASK operations in SlicedBench
and due to the increase in triple pattern-wise selected
sources which greatly affects the overall performance
of the systems when no cache used.

8. Conclusion

In this paper, we evaluated six SPARQL endpoint
federation systems based on extended performance met-
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(b) SlicedBench: CD queries
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(c) FedBench: LS queries
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(d) SlicedBench: LS queries
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(e) FedBench: LD queries
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(f) SlicedBench: LD queries

Fig. 7. Comparison of pure query execution time (without source selection time) for FedBench and SlicedBench
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Fig. 8. Effect of the data partitioning

rics and evaluation framework. We kept the main exper-
imental metric (i.e. query execution time) unchanged
and showed that the three other metrics (i.e., total triple
pattern-wise selected sources, total number of SPARQL
ASK request used during source selection, and source
selection time), which did not receive much attention
so far, can significantly affect the main metric. We also
measured the effect of the data partitioning on these sys-
tems to test the effective parallel processing in each of
the federation system. Overall, our results suggest that
a combination of caching and ASK queries with accu-
rate heuristics for source selection (as implemented in
ANAPSID) has the potential to lead to a significant im-
provement of the overall runtime of federated SPARQL
query processing systems.

In future work, we will aim to get access to and eval-
uate the systems from our survey which do not provide
a public implementation and those which are recently
published, e.g., HiBISCuS [28] which emphasize on
efficient source selection for SPARQL endpoint fed-
eration and SAFE [17] performs policy based source
selection. We will also measure the effect of a range
of various features (e.g., RAM size, SPARQL endpoint
capabilities restrictions, vertical and hybrid partition-
ing, and duplicate detection) on the overall runtime of
federated SPARQL engine. The resultset correctness is
an important metric as well to be considered in future.

A tool which automatically measures the precision, re-
call and F1 scores is on the road-map. Furthermore, we
will assess these systems on big data SPARQL query
federation benchmark.
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