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Abstract. The development and maintenance of Knowledge Organi-
zation Systems (KOS) such as classification schemas, taxonomies and
ontologies is a knowledge intensive task that requires a lot of manual ef-
fort. Librarians, historians and social scientists, among others, constantly
need to deal with the change of meaning of concepts (i.e. concept drift)
that comes with new data releases and novel data links. In this paper we
introduce a method to automatically detect which parts of a KOS are
likely to experience concept drift. We use supervised learning on features
extracted from past versions to predict the concepts that will experience
drift in a future version. We show that an existing domain-specific ap-
proach for predicting the extension of concepts can be successfully gener-
alized to predict concept drift in KOS in a domain-independent manner.
This result is confirmed by our experiments on a variety of datasets (en-
cyclopedic, cross-domain, and socio historical), enabling the creation of
a generic tool to assist knowledge experts in their curation tasks.
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1 Introduction

Motivation. Knowledge Organization Systems (KOS), such as SKOS taxonomies
and OWL ontologies, play a crucial role in the Semantic Web. They are at the
core of any Linked Data vocabulary and provide structured access to data, for-
malize the semantics of multiple domains, and extend interoperability across the
Web. Concepts are central entities in KOS and represent objects with common
characteristics. However, with time, objects are continuously subject to change.
As the world changes, our understanding of it evolves. Concepts in KOS are
inherently affected by concept drift, the change of their meaning over time [I8].
What is the problem? Curation is a manual, knowledge intensive and ar-
duous task. As domain concepts drift their meaning, curators and maintainers
release different dataset versions updating their KOS, mostly using their expert
knowledge. Concept drift positions them in a great dilemma: the continuous
evolution of knowledge has a severe impact on their update work. Automatic
detection of concept drift in their curation process would be a great aid. Unfor-
tunately, there is currently hardly any tool to help dealing with concept drift.
Use-cases. To enhance comparability studies in the history of work, social
scientists and historians have developed the Historical International Standard



Classification of Occupations (HISCO), a taxonomy of tens of thousands of occu-
pations from countries and languages around the world since the 16th century?.
Many historical datasets update their mappings to HISCO across their differ-
ent versions. The Gene Ontology (GO) standardizes the representation of gene
attributes across species and datasets. A new version is released every month.*
Wikipedia categories and the DBpedia ontology are updated to improve cross-
domain knowledge access. Librarians, social scientists, historians or biologists
have a dire need to assess this versioning processes by identifying, and predict-
ing, when a concept, class or code will change in the forthcoming release. This
will reduce time spent in manual data exploration or requirements gathering.

Contribution. This paper introduces a generic approach to predict concept
drift. Previous approaches have proven to be effective in predicting ontology
extension in the biomedical domain [15]. We take this work as a basis to develop
a domain independent concept drift detection framework based on supervised
learning on past versions of Linked Datasets. We build a generic tool to aid data
curators in maintaining datasets and increasing their proactivity towards change
over time. This is useful in two scenarios: refinement, i.e. helping curators to
revise a past version to check its coherence; and prediction, i.e. helping curators
to be aware of concept drifts to come, allowing them to give higher maintenance
priority to concepts that are more likely to change than others. We show viability
of our approach in social sciences, history, and encyclopedic and cross-domain
knowledge, adding to the already investigated biosciences [15].

Research Questions. In order to show validity of our approach we focus
our research on the following three concrete research questions:

— RQ1. Can past knowledge be used to predict concept drift? Can this be
done by extending an extension prediction method ([I5]) into a concept
drift prediction method?

— RQ2. What features encoding past knowledge have a greater influence on
future drifts? What classifier performs best to predict these drifts?

— RQ3. Can this new method predict concept drift in a domain-independent
manner? Can our algorithms predict drift on any Linked Data dataset?

Findings. In order to answer the research questions we run two refinement
experiments in the Dutch historical censuses and the DBpedia ontology datasets,
and a prediction experiment in the DBpedia ontology dataset. We obtain solid re-
finement /prediction performances, with f-measures of 0.84, 0.93 and 0.79 on test
data in these experiments. We foresee a useful and effective domain-independent
concept drift detection tool to aid data curators in their versioning processes.

The rest of the paper is structured as follows. In Sections [2] and [3] we survey
previous efforts to address change, and define our target problem and formal-
ism. Section [f] describes our approach, pipeline and feature set. In Section [ we
perform an experimental evaluation, describing the input data, process and re-
sults. In [6] we discuss these results and their relation with our research questions,
before we conclude in Section

3See http://historyofwork.iisg.nl/
4See http://www.geneontology.org/
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2 Related Work

Concept drift is a very active research topic in Machine Learning. It is difficult
to learn in real-world domains when “the concept of interest may depend on
some hidden context, not given explicitly in the form of predictive features. (...)
Changes in the hidden context can induce more or less radical changes in the
target concept, which is generally known as concept drift” [17]. Hence, drift
occurs in a concept when the statistical properties of a target variable (the
concept) change over time in unforeseen ways. Multiple concept drift detection
methods have been developed [5].

With the advent of the Semantic Web, changes in concepts have been inves-
tigated by formally studying the differences between ontologies in Description
Logics [6]. Fanizzi et al. [3] propose a method based on clustering similar in-
stances to detect drifts. Wang et al. [I8] define what concept drift is and how
to identify it in a Semantic Web setting. The related field of ontology evolution
deals with “the timely adaptation of an ontology and consistent propagation of
changes to dependent artifacts” [I]. As stated by Stojanovic [16], the first step
for any evolution process consists in identifying the need for change; change
capturing can then be studied as struture-driven, data-driven or usage-driven.
Accordingly, change is only a step in the evolution process, although the defini-
tion of the goal of ontology change (“deciding the modifications to perform upon
an ontology in response to a certain need for change as well as the implemen-
tation of these modifications and the management of their effects in depending
data, services, applications, agents or other elements” [4/T0[7]) suggests that the
overlap between the two fields is considerable. Pesquita and Couto [15] develop
the closest match to our work. They propose a method based on supervised
learning on past ontology versions to predict extension of biomedical ontologies,
using Stojanovic’s guidelines to design good predictors of change.

The need of tracing concept drift in application areas of the Semantic Web has
been stressed, particularly in the Digital Humanities [13] and Linked Statistical
Data, where concept comparability [2] and extensional drift [14] are key.

3 Problem Definition

3.1 Concept Drift

We use the framework of concept drift proposed by Wang et al. [I8] in order to
provide a definition and formalism.

Definition 1. The meaning of a concept C is a triple (label(C),int(C),ext(C)),
where label(C) is a string, int(C) a set of properties (the intension of C), and
ext(C) a subset of the universe (the extension of C).

For the specific goal of this paper, we define the intension of a concept int(C)
as the set of structural relationships of C' with other concepts, indicated by a
set of user-defined predicates (e.g. skos:broader, rdfs:subClass0f). We define



the extension of a concept ext(C) as the set-members of C. We define the label
of a concept label(C) as the set of labels given to C.

All the elements of the meaning of a concept can change. To address concept
identity over time, authors in [I8] assume that the intension of a concept C' is
the disjoint union of a rigid and a non-rigid set of properties (i.e. (int,.(C) U
inty,-(C))). Then, a concept is uniquely identified by some essential properties
that do not change. The notion of identity allows the comparison of two variants
of a concept at different points in time, even if a change on its meaning occurs.
For the specific goal of this paper, we assume that concepts with identical rigid
intensions will have the same URISs®.

Definition 2. Two concepts C1 and Cy are considered identical if and only if,
their rigid intensions are equivalent, i.e., int,(C1) = int,(Cs).

If two variants of a concept at two different times have the same meaning,
there is no concept drift. Intensional, extensional, and label similarity functions
SUMint, SiMegt, SiMigpe; Need to be defined to quantify meaning similarity. These
functions have range [0, 1], and a similarity value of 1 indicates equality. For
the specific goal of this paper, we define sim;,:(C’,C"”) as the function that
returns whether C’ and C” have the same direct structural features. We define
$imez:(C’, C") as the function that returns whether C’ and C” have exactly the
same cardinality or not. We define simyqpe;(C’, C”') as the function that returns
the minimum edit distance between the set of all labels assigned to C’ and the
set of all labels assigned to C”.

We implement this framework as our definition of concept drift, and we
instantiate it by concretizing the mentioned sets and functions for the specific
goal of this paper. Our approach aims at genericity and these choices, as well as
the overall drift definition, are cusotmizable by the user (see Section [d)).

Definition 3. A concept has extensionally drifted in two of its variants C’ and
C”, if and only if, simey(C',C") # 1. Intensional and label drift are defined
similarly.

3.2 Usage

We study concept drift in two different scenarios, depending on whether the
versioned Linked Dataset is closed or open. We define a closed dataset as the
dataset which versions were released in the past and their production finished
at a certain point; consequently, no new versions will come. We define an open
dataset as the dataset which updated versions are currently under production;
new versions are expected to come.

5We are aware that, in the general context of the Semantic Web, this assumption is
not true: different versions of concepts should get distinct URIs, while different URIs
may point to exactly the same concept due to the distributed nature of the Web. In
general, users need to define their own identity functions between concept versions, e.g.
using owl:sameAs or skos:exactMatch mappings.



Refinement. Given that no future versions will come, the prediction of con-
cept drift in closed datasets is meaningless. In this scenario, we propose refine-
ment. The purpose of refinement is to check the coherence of an intermediate
version (instead of a version to come) with respect to previous versions.

Prediction. In open datasets, the primary question is to predict concept drift
in a next version. To address this we propose the prediction usage. In prediction
we use all available past versions to train a classifier and predict which concepts
will drift in a next release. Obviously, refinement can also be applied to open
datasets to check their internal coherency.

4 Approach

The basic assumption of our proposed approach is that the knowledge encoded
in past versions of a Linked Dataset can be used to faithfully predict which parts
of it will suffer concept drift in a forthcoming version. This idea is inspired by the
work by Pesquita and Couto [I5] on predicting the extension of biomedical on-
tologies. Their approach derives from change capturing strategies that are based
on implicit requirements. Traditionally, these requirements are defined manually
on an expert knowledge basis. Their work tries to learn these requirements from
previous extension events by selecting features that, according to Stojanovic [16],
may have an influence in changing parts of an ontology:

— Structure-driven, derived from the structure of the ontology (e.g. if a class
has a single sublcass, both should be merged).

— Data-driven, derived from the instances that belong to the ontology (e.g.
if a class has many instances, the class should be splitted).

— Usage-driven, derived from the usage patterns of the ontology in the system
it feeds (e.g. remove a class that has not been accessed in a long time).

The state of the art [I5] has proven success in the use of these features (i) to
predict extension, that is, to estimate if a class will be extended (e.g. with new
children or properties) in the future; (ii) in (OBO/OWL) ontologies; and (iii) in
the biomedical domain (using the Gene Ontology). However, it remains unclear
if supervised learning can be generally applied (I) to predict drift, that is, to
estimate if a concept will experience change in its meaning; (II) in any Linked
Dataset (i.e. generic RDF graphs); and (III) in a domain-independent manner.

Consequently, we extend the three essential aspects (i), (ii), (iii) of [I5] in
order to clarify the more generic (I), (II), (III) issues. These extensions, as we
show in this Section, are not trivial. In the following we present a pipeline that
includes: (a) an abstraction of the input parameters required for the learning
process; (b) an abstraction of features that apply not only to OBO/OWL on-
tologies, but to any Linked Dataset; and (c) a pre-learning optimisation tech-
nique to merge features of identical versioned concepts into single training/test
individuals. As a result, our approach tackles RQ1 by providing generic and cus-
tomizable change definition functions (including those in [18] (see Section [3.1)));
generic and customizable features, including free choice of predicates/RDF types
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Fig. 1: Pipeline of our approach. Arrows show the data flow through the modules.

to use in their generation; customizable machine learning algorithms (feature se-
lection and classification); and systematic and fully automated executions —from
input Linked Dataset versions to output feature/classifier performances.

4.1 Pipeline

Figure[I]shows the pipeline of our proposed approach. The data flow starts in the
upper left corner: the system gets the input set { Feature generation parameters,
change definition, dataset versions, learning parameters}, and returns the output
set { Feature selection, classifier performance} in the bottom right corner.

The first module is the Feature Generator (FG). It generates k training
datasets and one test dataset, according to the following input set elements: (a)
(N) dataset versions, in any RDF serialization, where the concept drift prediction
is to be performed; (b) several user-set feature generation parameters that control
the feature generation process (the AFC parameter, setting the version to be
used to decide if a concept of the training dataset has drifted or not; and the
ATT parameter, setting the version to be used to decide if a concept of the
test dataset has drifted or not); and (c) a customizable definition of change that
determines the value of the target variable. The last element of the input set,
learning parameters, is passed further to be used in a later stage.

Once all set, k training datasets and the test dataset are built by the FG as
shown in Figure 2] The parameters N, AFC and ATT are used to determine
which versions will play the role of {V;}, V. and V.. {V;} is the set of training
versions, which are used to build the training dataset. V,. is the reference version,
against which all versions in {V;} are compared, using the definition of change
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Fig. 2: Building the training and testing datasets for N =7, AFC =1 and ATT = 2.

provided as input, to determine whether there is concept drift or not. V, is
the evaluation version and is used to build the test dataset, following a similar
procedure as with {V;} and V., this time comparing V, with V.. V, is set by
default to the most recent version. While extracting the features for each concept
in the IV versions, each exemplar is labeled depending on whether concept drift
happened between one version of the concept and the next. This set of labels
defines the target variable for the classification task. Our framework aims at
genericity, and users can easily define their own notion of change and drift. We
use the concept drift definitions described in Section to decide if a concept
drifts or not between two versions.

The FG produces k training datasets because versions can only be compared
pair by pair. Although appending these k datasets into a single one is a possi-
bility, it is important to preserve identity of the learning instances. Solving this
is the purpose of the Identity Aggregator (IA). The IA matches individual
concepts of the k training datasets and merges their features into a single indi-
vidual, modifying the dataset dimensionality accordingly. To do this, we match
the URIs of the individual concepts; if matching concepts cannot be found, we
fill features with NA values and modify the target variable value accordingly.

The single training and test datasets are then ingested by the Normalizer
(Norm). Norm adjusts value ranges, recodes feature names and types, and
discards outliers, producing normalized versions of both datsets.

Finally, the training and test datasets are used by the Machine Learning
Interface (MLI) as an input for the feature selection and classification tasks.
These are done in a generic and customizable way, building on top of the im-
plementation of state-of-the-art machine learning algorithms contained in the
WEKA API [8]. The last element of the pipeline’s input set, learning parame-
ters, is used here to achieve this and contains: (a) the specific feature selection
algorithm (from those included in WEKA) that ranks the features according to
their relevance to predict drift; (b) a threshold ¢; only features with a relevance
higher than ¢ will be selected; and (c) the list of classifiers to be trained. First, the
module runs the chosen feature selection algorithm to select the most relevant
features. Secondly, it trains systematically any subset of all WEKA classifiers
included in the WEKA API, as chosen (by default all classifiers are trained).
Lastly, it evaluates the trained models, and stores the results in disk.



4.2 Feature Set

We propose a set of features based on structural properties and membership
properties of concepts as attributes for learning.

Structural features measure the location and the surrounding context of a
concept in the dataset schema, such as children concepts, sibling concepts, height
of a concept (i.e. distance to the leaves), etc. Since classification schemas are
graphs in general and may contain cycles, these properties are defined with
a maxDepth threshold that indicates the maximum level at which the prop-
erty will be calculated (e.g. direct children, children at depth one, two, etc.). A
concept is considered to be a child of another if they are connected by a user-
specified property (e.g. skos:broader, skos:narrower or rdfs:subClass0f). We
use direct children (descendants at distance 1) [dirChildren|, children at depth
< maxDepth |dirChildrenD|, direct parents (concepts this concept descends
from) [parents], and siblings (concepts that share parents with this concept).

Membership features measure to what extent a concept in the classification is
used in the data. A data item in a Linked Dataset is considered to be using a con-
cept of the classification if there is a user-defined membership property linking
the data item with the concept (e.g. dc:subject or rdf:type). We use members
of this concept |[dirArticles] and total members considering all children at depth
< maxDepth |dirArticlesChildrenD]| as membership features. Finally, we define
a set of hybrid features that combine the previous features into a single value
(e.g. ratio of members per number of direct children) [ratioArticlesChildren, ra-
tioArticlesChildrenD]. These sets of features map conveniently to the different
types of change discovery described by Stojanovic [I6]: structural features imple-
ment structure-driven change discovery; and membership features can be seen
both as data-driven (since they describe instances belonging to the ontology)
and usage-driven (since users querying these are indirectly using their classes).

These features are computed for each concept in all versions as indicated by
the training and test dataset building parameters (see FG module, Section .
However, not all of them may be used for predicting concept drift. [I5] shows that
similar features based on Stojanovic’s criteria [I6] are good candidates. However,
since it is unclear whether or not these features explains well enough concept
drift in arbitrary domains, we only use those that prove to be good predictors
of concept drift in the feature selection phase (see MLI module, Section .

5 Evaluation

We apply our proposed approach to different versioned Linked Datasets®. We
describe the properties of such datasets, the experiment setup and the evaluation
criteria. We report on our results, providing evidence to RQ2: we evaluate (a)
the performance of the feature set as a generic predictor of concept drift (see
Section and (b) the performance of the classifiers at the predicting task.

5See implementation details and extended results at |http://goo.gl/rASX6S
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5.1 Input Data

In order to study the genericity of our approach and its applicability in a domain-
independent setting, we use a set of multi- and interdisciplinary Linked Data
datasets for which several versions have been published. Concretely, we use the
8 latest versions of the DBpedia ontology , and the last 8 versions of the Dutch
historical censuses dataset (CEDAR)”. Each version consists of (a) a schema in
SKOS, RDFS or OWL; (b) a set of data items making use of such schema; and
(c) a set of labels describing the nodes of the schema.

In the case of the DBpedia ontology, the classification is the DBpedia OWL
ontology itself [12], a community-curated formalization of all classes and prop-
erties describing DBpedia content. The data items are all resources of DBpedia
which have some class of the ontology as rdf:type. The set of labels are the
rdfs:label literals attached to the classes of each versioned ontology. In the
case of the Dutch historical censuses (CEDAR) dataset, the classification is a
SKOS hierarchy of HISCO occupations reported in each version. The data items
are all census observations of people having one of these HISCO occupations as
cedar:occupation (this is, the number of people employed in a certain occu-
pation in a given version). The set of labels are the skos:prefLabel (Dutch)
literals used in the census to describe these occupations in each specific version.
A summary of the selected datasets is shown in Table [T}

Dataset Version N. concepts N. relations N. members
DBpedia (3.3) May 20th, 2009 282 174 3.8M
ontology (3.4) September 24th, 2009 334 204 4.3M
(3.5) March 16th, 2010 255 255 5.2M
(3.5.1) March 16th, 2010 257 257 5.5M
(3.6) October 11th, 2010 272 272 6.2M
(3.7) July 22nd, 2011 319 610 9.3M
(3.8) June 1st, 2012 359 369 13.2M
(3.9) April 3rd, 2013 529 541 15.9M
CEDAR November 19th, 1849 408 405 76K
December 30th, 1859 310 307 16K
December 1st, 1869 238 236 7K
December 31st, 1889 546 543 723K
December 31st, 1899 566 563 837K
December 31st, 1909 685 682 334K
December 31st, 1920 271 268 103K
December 31st, 1930 584 581 78K

Table 1: Summary of the selected datasets. Version refers to the date in which a specific version
was published; N. concepts is a count of concepts/classes in that version; N. relations is a count
of relationships connecting these concepts/classes; and N. members is the number of individuals
making use of each classification.

The selection of these specific datasets is due to multiple reasons. First, they
cover different levels of semantic expressivity, from SKOS taxonomies to OWL
ontologies. Second, the temporal gap between each version varies from 10-12
months (in DBpedia) to 10 years (in CEDAR). Third, the selection contains

"See http://www.cedar-project.nl/
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both manually and automatically created datasets: the DBpedia ontologies have
a mixed automatic/manual maintenance [12], while the CEDAR data is a totally
manually maintained dataset. Fourth, DBpedia data is born-digital, open, and
still evolving (2001-), whilst the CEDAR dataset is historical legacy, non born-
digital, and temporally closed (1795-1971).

5.2 Experimental Setup

Due to their inherent nature, CEDAR is a closed dataset, while DBpedia cate-
gories and DBpedia ontology are open datasets (see Section . For this reason,
we divide our experimental setup in two parts: two refinement concept drift ex-
periments using the CEDAR data (closed) and the DBpedia ontology (open);
and one prediction concept drift experiment using the DBpedia ontology (open).

We set all parameters (see Section [4.1)) as demanded by this setup. Since the
datasets present temporal uniformity (see Table , we set AFC = ATT = 1.

Our evaluation process is two-fold. First, we quantify the quality of our fea-
tures as concept drift predictors; we then choose the best performing features.
We do this via feature selection (see Section. Second, we use this performant
subset to evaluate the average quality of classifiers on predicting concept drift;
we then choose the best performing classifiers.

To evaluate classifiers we follow a simple approach: we compare the predic-
tions made by the classifiers with the actual concept drift going on in a next
dataset version. To do this, we use the test dataset (see Section produced
after setting the parameter ATT. Since we compare predictions with unseen
labeled data, we know whether the predictions are correct or not.

We evaluate the refinement and prediction experiments differently. Since the
goal of refinement is to check coherence of the drift of concepts in an intermediate
version, we execute several learning tasks adding more past versions to {V;}
incrementally. We study how this impacts prediction of drift in V;. The prediction
experiments, on the other hand, consider all available versions, and we use the
trained classifiers to predict concept drift in the most current version.

For assessing model quality, we use standard performance measures in ma-
chine learning: precision, recall, f-measure, and area under the ROC curve .
Using these measures, we perform a two-fold evaluation. On one hand, we eval-
uate the quality of the models produced without making any predictions and
using 10-fold cross-validation with the training data. In 10-fold cross-validation,
the training set is divided in 10 equal folds: 9 are used to train the classifier, and
the remaining one to test predictions (this is averaged on 10 repetitions in order
to use all folds as test folds). On the other hand, we use the same indicators to
evaluate the performance of prediction of the trained classifiers using the unseen
test datasets V./V;. In order to get insight on the prediction performance, we
compare these measurements with a baseline implementing random prediction.

10



Feature Selection freq. Feature Selection freq.

siblings 10 dirChildren 21
dirArticlesChildrenD2 8 siblings 21
ratioArticles Children 8 dirChildrenD?2 20
dirArticles 8 dirChildrenD3 20
dirArticlesD1 8 dirChildrenD44 20
dirArticlesD2 6 dirArticlesChildrenD2 17
(a) Top selected features for CEDAR. (b) Top selected features for DBpedia.

Table 2: Top selected features in the CEDAR and DBpedia datasets.

5.3 Results

Selected features for CEDAR and DBpedia Table [2] shows the top se-
lected features by the Relief algorithm [9], included in the WEKA API (see
Section . The features are ordered according to the frequency in which they
are selected across the versions. Table [2a] shows that membership features (di-
rArticles, dirArticlesChildren) are systematically selected in the CEDAR, data
instead of structural properties (siblings, dirChildren). On the other hand, table
shows a clear preference for structural properties (dirChildren, dirChildrenD,
siblings) in the DBpedia data, although some membership features have also an
important relevance.

Refinement on CEDAR and DBpedia ontology We perform a refinement
(see Section [3.2]) experiment using the CEDAR dataset. We execute our ap-
proach six times, adding one Linked Dataset version to {V;} and shifting V;
forward once each time. We identify each experiment with the year of the ver-
sion to be refined V; € [1869, 1889, 1899, 1909, 1920, 1930]. Figurecompares the
classification results for all runs.

We perform a refinement experiment with the DBpedia ontology versions. We
execute our strategy six times over the eight versions, first taking the first three,
and adding one to {V;} and shifting V; once each time (see Section [3.2). Figure
[] shows the results, which can be compared with the results of the previous
experiment shown on CEDAR data in Figure [3]

Prediction on DBpedia ontology We perform a prediction (see Section
experiment on the DBpedia ontology. We execute our approach once, using all
available versions as training set {V;}, and leaving the last for testing (V;). Table
[B] shows the performance of classification.

6 Discussion and Lessons Learnt

Table[2]shows that selection of features of one kind or another is influenced by the
nature of the dataset under consideration. On the one hand, membership features
are ranked as the most important ones to predict concept drift in CEDAR (i.e.
knowledge on how instances are linked to the schema). On the other hand,
structural features are top ranked to predict drift in DBpedia (i.e. knowledge

11
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Fig. 4: Average classifier performance in the DBpedia ontology refinement experiment with 6 incre-
mental learning runs. Lines show performance measures varying along them.

about the basic structure of the ontology). Both kinds of features are selected
for both datasets at some point, though.

Figures[3|and [ show that classification outperforms the simple random base-
line. Although the Logistic, the MultilayerPerceptron and the tree-based algo-
rithms have good performance in specific situations, the NaiveBayes classifier
shows consistent results in all concept drift refinement and prediction experi-
ments. Similar behavior and results have been described in [15]. Interestingly,
we observe how the non-overfitting tendency of NaiveBayes is an advantage if
the classifier is trained with more past versions. MultilayerPerceptron, for in-
stance, predicts better with less data (f-measures from 0.82 to 0.30), but with
more versions NaiveBayes wins (0.72 to 0.84) (see Figure |3).

In the refinement experiments performance is affected by two factors: the
amount of past versions used to learn, and the characteristics of these versions
versus the version to predict. In general we observe more performant models at
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Precision .98 Precision .66
Recall .98 Recall .75
F-measure .98 F-measure .67
ROC area .81 ROC area .58
Base precision .48 Base precision .52
(a) DBpedia ontology 10-fold CV scores, (b) DBpedia ontology prediction scores,
training dataset. test dataset.

Table 3: Average classifier performance of prediction in the DBpedia ontology.

predicting V; when more versions are added to {V;}. However, CEDAR’s 1889
and 1930 versions DBpedia ontology’s 3.5.1 and 3.7 are clear exceptions (see
Figures |3b| and . This can be due to several reasons. First, the version V; to
be predicted may contain unexpected changes that have not been learned from
previous versions. CEDAR versions of 1889 and 1930, for instance, are known to
had suffered a major restructuring or revision almost from scratch [I1I], making
their drifts harder to predict. Second, corner cases of concept drift might not
be captured with the feature set. Third, these CEDAR versions contain scarce
member data (see Table , and lack of data about uncommon types of drift
seems to hold a relationship on why prediction is harder in these cases. Still, our
refinement approach proves to be useful on detecting these coherence data-issues.

Results also confirm that forthcoming concept drifts depend on past drifts,
and that incorporating past knowledge about drift helps on predicting it. How-
ever, abusing this has a side effect, since adding too many old versions to the
learning set {V;} seems to lower the prediction performance. This suggests that
the inclusion of a moving window over {V;} could be a sensible solution.

http://cedar.example.org/ns#hisco-06 is an example of a CEDAR /HISCO
concept predicted to drift which in fact did: the class of “medical, dental, vet-
erinary and related workers”. Most of its features present high stability across
the versions; except those related to its members, i.e. the sets of people reported
to belong to this concept. These vary from 841 sets of observations, to 68, 143,
662 and 110, while structural properties like number of children (4) or siblings
(9) remain relatively stable. http://dbpedia.org/ontology/CollegeCoach is an
interesting DBpedia concept also expected to drift. The number of Wikipedia
articles pointing to it increases linearly (2787, 3520, 4036, 4870...); it always re-
mains a leave with a unique parent, so its children subhierarchy does not change
either. Interestingly, its siblings remain stable (21, 21, 23, 23) until it gets a new
parent and its siblings suddenly explode (23, 344). Considering these observa-
tions, it is easy to see why membership and structural features are highly ranked
for CEDAR and DBpedia, respectivelly.

According to this, an important lesson to be learnt is that the degree of de-
pendency between the changed parts of a dataset and well-known change-aware
features can save enormous amounts of update work. We have shown that these
features are collectable, rankable and usable in a fully-automatic and customiz-
able pipeline to predict future drifts in Linked Data. If this degree of dependency
is high, knowledge engineering tasks can be automated (by the classifier) to avoid
coherency mistakes or taking too narrow decisions.
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7 Conclusions and Future Work

Concept drift poses enormous challenges to data curators and maintainers. For
those publishing their data as Linked Data, change of meaning of concepts im-
plies the continuous release of versions, which is a knowledge-based and labor-
intensive task. Our approach detects automatically which parts of a Linked
Dataset will likely undergo concept drift in a forthcoming version, using su-
pervised learning and leveraging drift knowledge contained in past versions.

Recalling back our research questions and results, the assumption that con-
cept drift can be predicted in refinement/prediction scenarios using past knowl-
edge is acceptable considering intensional, extensional and label drifts. We have
shown how to achieve this by generalizing the state of the art in a Machine
Learning for Linked Data pipeline (RQ1, see Section . We have studied the
variance in relevant features from our feature set, and how classifiers behave using
these features to predict concept drift (RQ2, see Section . With respect to its
domain-independent applicability (RQ3), we predict drift accurately using non-
domain related features in sociohistorical and cross-domain datasets, which add
to the list of biomedical ontologies [I5]. We get encouraging prediction results,
obtaining an f-measure of 0.84, 0.93 0.79 for our selected classifier when predict-
ing unseen data using sociohistorical, encyclopedic and cross-domain datasets.
We study the impact of the addition of more past knowledge, and the limitations
of the approach regarding from-scratch restructuring of datasets.

Prediction of concept drift may pose new opportunities for data publishers,
increasing the efficiency of their curation pipelines, reducing curation time and
allowing them to prioritize maintenance on drifting concepts. Additionally, it can
be used to quantify the stability of a dataset or, alternatively, the “unexpected”
changes across versions. This is key for the fundamental issue of preservation of
Linked Data, which aims at archiving of Linked Data and suggests that stable
data should be archived first. Our method can be used to measure such stability.

Multiple challenges are open for the future, and we plan to extend this work
in several aspects. First, how alternative definitions of concept drift affect the
prediction of further drifts poses an interesting question. Second, we plan to
apply our approach in other domains to continue investigating its genericity.
Third, we intend to use a higher number of versions in order to confirm the
trends we observed and to investigate optimal window sizes. Finally, we envisage
an extension of our approach in a big data environment, in order to cope with
larger datasets and detect change of meaning of concepts in real time.
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