
Adventure of Categories*
Modeling the life-cycle of categories during scientific investigation

Prashant Gupta1, 2, Mark Gahegan1, 2, Gillian Dobbie2

Centre for eResearch1, Dept. of Computer Science2, University of Auckland
Auckland, New Zealand

{p.gupta, m.gahegan, g.dobbie}@auckland.ac.nz

Abstract. Categories are the fundamental components of scientific knowledge
and are used in every phase of the scientific process. However, they are often in
a state of flux, with new observations, discoveries and changes in our conceptu-
al understanding leading to the birth and death of categories, drift in their iden-
tities, as well as merging or splitting. Contemporary research tools rarely sup-
port such changes in operationalized categories, neglecting the problem of cap-
turing and utilizing the knowledge lurking behind the process of change. This
paper presents a tool – AdvoCate – that represents the dynamic nature of cate-
gories and allows them to be modelled and to evolve, while maintaining a cate-
gory versioning system that captures all the different versions of a category
along with the process of its evolution; this helps to better understand and
communicate different versions of categories and the reasons and decisions be-
hind any changes. We demonstrate the usefulness of AdvoCate using examples
of category evolution from a land cover mapping exercise.

Keywords. Category evolution; versioning system; categorical model; process
of science; scientific workflow

1 Introduction

The flux of things is one ultimate generalization around which we must weave our
philosophical system [2]. (A. N. Whitehead, Process and Reality)

1.1 The Problem

In every domain of science, we use the approach of classifying and labeling things
and events – categorization – to make scientific knowledge more tractable and easier
to exchange in the community. Shrager and Langley [3] suggest that the formation
(and revision) of taxonomies is one of the prime activities of a computational scien-
tific discovery system, and several activities, such as theory and law formation and
experimentation rely heavily upon a sound and stable taxonomy. However, conceptu-
al models, such as a taxonomy or legend (a set of categories displayed on a map,

* The tool’s name, AdvoCate (Adventure of Categories), is an allusion to Whitehead’s ‘Ad-

venture of Ideas’ [1]

which can also be arranged hierarchically), are often in a state of flux, even when in
operational use, fuelled by better data sources, research discoveries, new observations
and changes in domain conceptualization. For example, in biology, there is an almost
constant reorganization of the tree of life with deeper genomic insights leading to the
reorganization of the taxonomy, along with the discovery of new species and tech-
nical advancement. Similarly, the categories in land cover databases often change in
response to new scientific understanding and social or scientific needs; which if not
accommodated would cause dissonance between the map products and the latest do-
main conceptualization.

This flux in the meaning of categories has serious implications for the scientific en-
terprise, if not well managed. However, current knowledge artifacts are (technically)
rigid and do not adapt to change, continuing to be static and not representing the more
fluid, dynamically changing nature of a domain conceptualization. Even in some cas-
es where tools are available to support revisions of taxonomies [4], they only capture
those intensional changes that can be described by triples (for example, the addition
or deletion of categories or their splitting and merging). Changes causing a drift in a
category’s meaning, such as change in the category’s formative training examples or
in the classifier used, are often neglected. Such a situation may cause several issues,
including the following:

• If a taxonomy does not keep up with the latest domain conceptualization, it will not
only miss relevant information, but also may result in incomplete or incorrect in-
formation, since the categories understood by the researchers may be out of sync
with those used in the related information retrieval systems.

• If a taxonomy is updated, but the process of change (evolution) is not captured, we
may not be able to understand how and why a change happened, and without that
knowledge, we may never understand the transition and evolution of scientific
knowledge, thus causing a conceptual gap.

• If the process of change along with the previous versions of categories is not cap-
tured, we may not be able to understand the intended meaning of categories at the
time when they are used – not as they are currently understood. This may cause a
problem in understanding or using scientific artifacts or applications that are based
on the previous versions of categories. This situation currently causes many prob-
lems related to data reuse and longitudinal studies in the geoscience domain [5, 6],
and rather ironically leads to much research on ontology harmonization. (We may
not need to harmonize categories post-hoc if we capture their evolution process.)

This paper presents a tool – AdvoCate – to support the continuous flux in catego-
ries, and records the evolution process along with a category versioning system. Be-
fore we proceed further, it would be useful to state the scope of this work. Firstly, this
work tries to capture and provide evidence to possible changes in categories while a
researcher works at his workstation, which in turn may provide candidate changes for
communities facing ontologies and databases. However, the changes made at an indi-
vidual level goes to local versions and communities have different protocols to revise
their knowledge resources. This work does not focus on how and if such changes are
updated or revised in a community or organization, where several stakeholders along

with organizational and social aspects interact as discussed in [7]. Secondly, in this
work, we have considered the hierarchical conceptual models, such as taxonomy and
legend, and modeled their evolution. However, we understand that categories exist in
other configurations and so are their modifications, which we haven’t considered.

1.2 Current Approaches

Knowledge evolution is a commonly known problem and has been investigated in
various scientific communities. In machine learning, concept drift refers to a similar
problem, where a categorical model1 that represents the target classes (or categories)
becomes inconsistent as the underlying data distributions or the hidden contexts (not
explicit in the predictive features) change [9]. Existing solutions in the literature, such
as ensemble learning and instance selection [9], support the revision of a categorical
model, so that it can correctly classify the new data. However, their focus is only on
the revision, rather than understanding and representing the change and evolution of
the model. Fanizzi et al. [10] employ a conceptual clustering technique on populated
ontologies to detect concept drift and new concept occurrence in a domain with the
focus on only the discovery of change. Wang et al. [11] introduce concept drift in the
context of the Semantic Web, which covers any kind of change in the meaning of a
concept, including change in its intension, extension, label and relationships with
other concepts. However, their work focuses on analyzing the change in concepts that
already took place and is explicitly represented in some conceptual model; rather than
supporting, capturing or utilizing the process of change.

The problem of change and evolution is widely recognized in the database and
Semantic Web research communities, which address this problem at the macro level,
rather than the micro level analysis of an individual concept. Database schema evolu-
tion has been a long-standing research challenge for the information systems commu-
nity for some time. There exist several commercial and research solutions to schema
evolution [12]. One of the most promising research solutions is the PRISM tool [13],
which supports schema evolution with a focus on data preservation and supporting
legacy queries and updates. It provides a set of change operators to describe schema
modifications and also supports schema versioning. In the semantics community,
ontology evolution and versioning research has made many advances in the last dec-
ade. Several attempts have been made to conceptualize and structure ontology evolu-
tion into a process model that describes the various tasks involved, both to provide a
complete understanding of various components of ontology evolution and also as a
design requirement for software frameworks to support ontology evolution [14].
Some examples of projects that support the process of ontology evolution are KAON
[15], Change-management plugin and PROMPT plugin to Protégé [16], OntoView
[17] and Evolva plugin to NeON toolkit [18]. KAON supports the whole ontology

1 Categorical models are created by using training data and estimating the parameters of the

classifier used. This helps to classify the test data (or pixels in an image) into different cate-
gories. Depending on the classifier used, the categorical model can be a probability distribu-
tion model or equations that define partitions in the multispectral space [8].

evolution cycle, from discovering changes to updating ontologies and propagating
changes to the dependent artifacts; however, it considers versioning as a separate task
and only records the latest conceptualization. Protégé plugins and OntoView support
change management for distributed ontologies with a special focus on versioning but
do not support the change discovery aspect. Evolva supports ontology evolution with
a focus on discovering changes from existing domain data that are external to the
ontology. Each of these frameworks has their own underlying process model for on-
tology evolution, reflecting their perspective and focus.

The main problem with the current solutions (schema and ontology evolution) is
that they are largely disconnected from the process of science. Commonly, changes
captured and implemented in ontology evolution tools are straightforward, such as
addition or deletion of concepts, motivated by ontology learning mechanisms. None
of these tools, to our knowledge, connect with the scientific processes to capture and
implement changes in domain conceptualization: all of these changes are considered
to be top-down and are often left for ontology engineers to deal with. It is understand-
able that it is hard to capture and digitally represent the process of change – such as
how a change is conceptualized and the factors that led to it – if it happens outside the
computational realm. However, in several domains of science, changes in categories
are conceptualized computationally. For example, the classes in land cover databases
often change as researchers interact with training data and classification methods and
as their experience with domain concepts deepens. But, usually the tools that might
capture such changes in categories (data analysis tools for example) are disconnected
from the tools that record and support evolution of ontologies.

1.3 Our Approach

This work tries to bridge the gap between the process and products of science and
blend together ontology and workflows within a model for the process of science that
supports category evolution. It is inspired by Whitehead’s process philosophy [2],
which considers science as a perpetual process and scientific artifact as a snapshot of
this process. It suggests that the current representation of a taxonomy only captures its
temporal understanding (understanding at a specific point of time), and neglect the
deeper understanding that lies in the process of its construction and evolution (con-
cerns often heard in our research discussions [19]). This work also recognizes the
cognitive dimension of concept modeling that informs how we use concepts in our
mind in a highly dynamic and flexible way, such that their meaning changes tempo-
rally, spatially and with different situations and contexts [20]. However, we rarely see
such aspects in our computational representations, with few exceptions [21].

Our AdvoCate tool, described in what follows, is designed to support the process
view and the dynamic nature of categories. It allows category evolution to be modeled
while maintaining a category versioning system that captures different versions of a
category along with the process of its exploration and evolution; this helps us to better
understand and communicate different versions of categories and the reasons and
decisions behind any changes. And more importantly, it ties together a temporal series
of science products (such as land cover change maps) even though their underlying

categories may shift. For the purpose of this paper, we concentrate on modeling cate-
gories, though, of course, we acknowledge that other facets of the scientific process,
such as hypothesis (for example, as in [22]) and descriptive models could eventually
be treated in the same manner.

2 Deepening the Representation of Categories

In this paper, we adopt the following cognitive science view of concepts and catego-
ries – concepts are the mental representation of classes of things that connect our past
experiences to our present interactions with the world, and categories, on the other
hand, represent the classes of objects in the world that concepts describe [23]. We
consider categories as instantiations of concepts, represented (albeit incompletely) in
some computational system. This work keeps this distinction between concepts and
categories in mind while constructing the data model for AdvoCate.

Contemporary science practices often use the three facets – intension, extension
and position in a conceptual hierarchy – to represent a category in a computational
system at any point of time during its life, and these facets together represent a cate-
gory’s identity (the concept it is grounded in). The intension of a category refers to
the set of associated attributes or features (its schema) and the extension of a category
refers to all the entities or items that belong to the category based on some rule(s) and
adherence to the schema. Commonly, categories are not represented individually in a
scientific domain; rather they are woven into the domain’s existing conceptual model,
where they form relationships with other categories. Even when a category’s inten-
sion or extension remain unchanged, its place in a conceptual hierarchy may change
over time, which implies that our understanding of how a category relates to other
categories may change. Even these three facets are not explicitly represented in our
current representation schemes (e.g., SKOS, OWL and OBO). We typically have to
infer a category’s full intension from its relationships with other categories, which is a
subjective interpretation and can vary with different users and applications [11].

Fig. 1. An overview of the life-cycle of a category, starting form the birth, then evolution and
finally the death of the category.

Fig. 1 gives an overview of a category’s life cycle, which comprises some key fac-
tors responsible for its birth, evolution and death. We argue that the contemporary
computational representation of a category does not fully explain the category’s exist-
ence, nor its identity. The factors responsible for causing changes in a category, the
decisions made during the process of a category formation or revision, and the pro-
cesses (social, physical or computational) themselves play key roles that are important
to capture and should be connected explicitly in some way to the category. This in-
formation will help researchers understand how and why a category is what it is [24].
It is quite evident that not all of this information is easy to capture and represent com-
putationally as the decision making and reasoning involved in category formation
(and revision) is often based on subjective and intuitive considerations, but we may
capture some key aspects of the information that will consequently provide a deeper
and more complete meaning. For example, a researcher’s knowledge, intuition and
experience play a significant role in choosing the appropriate computational tech-
niques and methods, which is hard to capture computationally, but we can capture the
decisions made by the researcher, which reflect in part the researcher’s understanding.

In most cases, knowledge producers do not explicitly connect the factors discussed
above with the categories they use for two main reasons: 1) we tend to record this
information after a category is created or changed and then accepted by the communi-
ty, rather than during the process of creation or change. Often, by that time, the pro-
cess that aided the discovery of some new categorical insight is forgotten. 2) Current-
ly, the systems we use tend to enforce a separation between knowledge representation
and analysis activities. The reality is that it is a burden for researchers to record this
information during the science process, unless the digital tools they used are designed
to automate this recording.

Fig. 2. AdvoCate uses five facets to represent a category. The (red) dashed line indicates that
changes to any of the facets result a change to the category’s identity, leading to a new version.
The ovals show examples of intension, extension and relationships of the ‘Forest’ category.

Fig. 2 shows the different facets that AdvoCate uses to represent categories. We
explicitly represent a category’s intension and extension, and its relationships with
other categories; changes to any of these facets may result in a new category version.
The category is also connected to the (mental) concept it represents, so that we can
compare and harmonize categories from different legends representing the same con-
cept. Finally, and most importantly, we connect the category with both its initial ex-
ploration and discovery (birth) and its evolution. Exploration refers to the iterative
interplay that often takes place between the various classification methods available
(classifiers), the training data, other related categories and human concepts as it pro-
ceeds towards a stable initial state [25]. The evolution process refers to the changes
that occur once the category is in use.

3 Overview of AdvoCate Tool

The fundamental goal of this tool is to move a step forward of the traditional soft-
ware frameworks used in scientific investigation, which are built to fulfill certain
functional requirements, but which are usually not concerned about the knowledge
they carry. AdvoCate not only fulfills the functional requirement, modeling and evo-
lution of categories in this case, but also materializes conceptual connections between
various knowledge artifacts by explicitly connecting them. Categories are commonly
used in databases (in the form of a logical schema) and ontologies (as concepts and
properties). The tool also connects categories and their changes with ontologies and
databases, via existing tools that support ontology and database evolution. As changes
in a category are modeled in AdvoCate, they are analyzed and distributed to the relat-
ed ontologies and databases; hence, synchronizing the various tools that consume or
use categories through the change process. The resulting system thus presents an ag-
gregated view of the scientific process by connecting various scientific artifacts and
repositories for data and knowledge through the lens of flux in scientific knowledge.
Since, the focus of this paper is mainly on the evolution of categories and legends, we
concentrate on describing the services supporting those activities.

3.1 Underlying Technologies

AdvoCate is built using the Python programming language as it provides extensive
open-source libraries for scientific programming. For the purpose of building categor-
ical models, we use the Python scientific library, scikit-learn [26], which provides a
broad range of simple and efficient tools for machine learning. For UI development,
we use Bootstrap (http://getbootstrap.com), a front-end framework for developing
responsive web pages, which provides pre-compiled CSS and JavaScript libraries. To
build AdvoCate, we used Django (https://www.djangoproject.com), a commonly used
Python web framework because it provides several useful components for fast web
development, such as an object-relational mapper that supports building data models
and provides a dynamic database-access API.

Fig. 3. An overview of the three-tiered architecture of AdvoCate, illustrating various UIs and
supported services. The outer dashed line subsumes ontology and database tools, portraying
that they are conceptually connected to the AdvoCate architecture. The aspects of the architec-
ture with yellow background (enclosed with dotted rectangle) are within the scope of this paper.

3.2 Design

Fig. 3 illustrates the overall architecture of AdvoCate. In this paper, we only dis-
cuss details of the sections with yellow background. The rests of the services –
Change Broadcasting and Visualization – are still under development and will be
discussed in a later paper. The architecture consists of three tiers:

1. User Interface Tier: The tool provides three main interfaces (UIs) that support (i)
category modeling, (ii) change recognition and implementation, where either
change(s) to categories are supplied directly by a user or they are identified by the
system (iii) visualization of categories, legends and their evolution. The UIs are
built using Django templates and the Bootstrap library. The Django template system
provides several useful functionalities, such as tags to include programming con-
structs and template inheritance to adhere to the DRY (Don’t Repeat Yourself) prin-
ciple. We will discuss the Category Modeling and Change Recognition and Imple-
mentation services in the Services section below.

2. Services Tier: The Services tier consists of external libraries – scikit-learn and
Bootstrap – to support category modeling and building dynamic user interfaces.
The Django view consists of callback functions for various URLs addressing dif-
ferent UIs and describes which data will be sent to those UIs. Our two main ser-
vices Provenance Tracker and Change Implementation (discussed below in the
Services section) are connected with the callback functions in Django views. (A
Django view acts as a mediator between the presentation layer and the database

layer by fetching data, which is tied to Django models.) The Django models de-
scribe database layout in Python code using the object-relational mapper. The
Change Broadcasting service captures changes in categories as they occur and
broadcasts them to ontology and database evolution tools in a JSON format using
REST services. The service thus connects category models with associated data-
bases and ontologies – through the networks of change and evolution. The outer
dashed line in Fig. 3 shows ontology and database tools subsumed within the archi-
tecture of AdvoCate to portray that they are conceptually connected.

3. Database Tier: The database tier stores the category versioning system in a MySQL

database server. The database stores different versions of categories and their asso-
ciated legends or taxonomies, along with their exploration and evolution paths. We
describe the data model developed for this purpose in subsection 3.4 below.

3.3 Services

AdvoCate provides various services to support modeling category development
and change, recording the details of relating to exploration and evolution paths, so
that a user may not only look back at the history of categories, but may also examine
each step in greater detail – no information about a category is discarded, it is simply
versioned. No categories in our system ever become inaccessible, even after their
death. In AdvoCate, death is just a state for a category that is no longer subject to
evolution, but the category still remains in the system and may be needed to explain
old data products it appears in. We now describe the supporting services:

1. Category Modeler: The Category Modeler service provides users the capability to
experiment with categories, training data, classifiers and their own understanding of
those categories (concepts) and to propose different categorical models, as well as
changes in the stable categories. The interface provides access to various classifiers
from the scikit-learn machine-learning library, as well as to the associated parame-
ters and validation methods to assess how categorical models change.

2. Change Recognition and Implementation: After categories are analyzed in the Cat-
egory Modeler interface, AdvoCate identifies changes to categories based on
Change identification rules. The rules define what to compare to identify changes
in categories and how much change quantitatively crosses the threshold to make it
worth recording. The rules may change with different types of categorical models
and with different usage scenarios. The system currently defines rules only for
probability distribution models; adding rules for other models will be added in fu-
ture work. The system compares the currently modeled state of a category and the
latest version of the category stored in the database to recognize changes based on
the given rules. For example, the intension (determined by covariance and mean in
a statistical distribution) is compared with the intension of the latest version of the
category stored in the database. When AdvoCate recognizes the changes to be im-
plemented, it presents them to the user for approval in the Change Recognition in-

terface. The interface allows users to add changes to one or more categories or to
the whole legend itself. Often a single change scenario may result in several
changes to multiple categories. For example, new training data may cause the birth
of a new category, which may in turn change the boundaries of pre-existing catego-
ries (drift), which in turn may lead to changes in the intension and extension of
multiple categories or the whole legend. To ease the process of defining a change
scenario, the tool incorporates a list of elementary and composite change opera-
tions, as shown in Table 1. We will describe several change scenarios in the next
section as a proof-of-concept.

Change operation Syntax and Explanation
 Elementary Changes:

Add Category
AddCategory (c) – Creates the new category c and add it to the selected
legend

Delete Category
DeleteCategory (c) – Expires the category (It still remains in the system but
an expiry date is added to it)

Add Relationship AddRelationhsip (c1, c2, r) – Adds a new relationship r between c1 and c2
Delete Relationship DeleteRelationship (c1, c2, r) – Expires the relationship r between c1 and c2

Delete All Relationships DeleteAllRelationships (c) – Expires all relationships of category c

Change Label
ChangeLabel (c, l) – Create a new version of the category c and change its
label to l

Change Intension
ChangeIntension (L, i) – Create a new version of the Legend and change its
intension to i. The intension is linked to the legend, rather than to categories
(please see explanation in Data Model section)

 Composite Changes:
Born

Born (c, p) – Add a new category c as a child to category p.
AddCategory (c); AddRelationship (c, p, “child-of”)

Die

Die(c) – Delete the category and all its relationships.
DeleteCategory (c); DeleteAllRelationships (c)

Merge

Merge (c, c1, c2) – Categories c1 and c2 merge (still remains in the system)
to form their parent category c. Born (c);
AddRelationship (c, c1, “parent-of”); AddRelationship (c, c2, “parent-of”)

Split

Split (c, c1, c2) – Category c splits into two new child categories c1 and c2
Born (c1, c); Born (c2, c)

Drift

A drift in category can be change in intension, extension, label or its relation-
ships with other categories or a combination of them

Table 1. Elementary and composite change operations incorporated in AdvoCate

3. Provenance Tracker: The Provenance Tracker service, tied within the Django
views, tracks and records the process, intermediate results and products, as the cat-
egories evolve. This information is modeled as two separate, but related, entities:
exploration path and evolution path. At the initial stage of category construction, a
category may pass through several cycles of revision before it becomes stable and
is added to the domain taxonomy. Exploration paths are the recordings of interplay
between various factors involved in proposing categories at this stage. Different
exploration paths may provide different categorical models for the same set of in-
put values. Such diversity may be particularly useful in a case where different cat-
egorical models have different drivers, such as accuracy or descriptive power. Re-
playing these exploration paths may help users to choose a categorical model for

their specific needs, or better understand one that has already been selected. Once a
categorical model gets stabilized and operationalized (‘published’), changes to it
are stored under evolution paths. This may help us to understand how and why a
change took place. Uncovering and preserving these details helps us to better un-
derstand the implicit meaning in older science products (land cover maps in our
case). In addition, this information can be queried to track the effects of a change
on a category, which can be referred back to enable the same target effects in a fu-
ture change scenario. Currently the system only stores this information; an API to
query the information will be added in future.

3.4 Data Model

Fig. 4 depicts the portion of the data model that supports the above functionality.
Versioning is considered as the first-class citizen in AdvoCate – category, legend,
training set, classification model and classifier are all subject to versioning as shown
in the schema. The detailed understanding (knowledge-how and -why) of versioning
is captured in exploration and evolution paths. The schema explicitly distinguishes
concepts and categories, as discussed in section 2. Similar categories (extensions of
the same concept) may exist in different legends and can be represented by different
intension and extension. Explicit connection between concepts and categories will
help to map such categories in different legends and thus help in harmonizing leg-
ends. The category table is directly connected to relationships and a training set,
which represent (respectively) a category’s relationship with other categories (or its
position in a legend) and its extension. The intension of categories, represented by a
classification model is connected to the corresponding legend and not to the individu-
al categories. In a categorical model, change in the boundary of a category often re-
sults in a drift to boundaries of other categories in the legend. So, if the intension of a
category changes, it often means that the whole categorical model is revised and leads
to change in the intension of all (or some) categories. For this reason, we linked the
classification model to the legend class.

Fig. 4. A section of the data model of AdvoCate tool

4 Change Scenarios

In this section, we discuss three change scenarios; triggering several changes to the
New Zealand (NZ) land cover categories2, with details of their evolution process.
Fig. 5 (a) – (d) show the evolution of land cover categories, describing them through
the revisions to maps and taxonomies. The screenshot from AdvoCate in Fig. 5(e)
shows how corresponding changes in ‘Built Space’ (as an example) are recorded in
the system as multiple versions of the category along with the details of the changes.
Fig. 5(a) shows the initial map, which contains four basic categories: Forest, Built
space, Water and Grassland. The initial map was created by classifying remote sens-
ing image data (comprising 4 spectral bands) using the initially proposed categorical
models. As new sensing devices with improved spectral characteristics came into
existence, the image data was captured in 7 spectral bands. The new rich training data
with increased spectral bands (or data attributes) is used for analysis using the Advo-
Cate system and two key changes emerge: (i) a new category, Shrubland, is born,
which was unidentifiable before and was interpreted as Forest; (ii) Forest and Built
Space split into new sub-categories. Fig. 5(b) shows that the Forest class splits into
Indigenous and Exotic Pine classes, and Built Space splits into Urban Area and
Mines/Dumps. The training data with new spectral bands causes the existing clusters
(groups of data in a multispectral space corresponding to different categories) to split
into multiple smaller clusters, which results into their specializations. Also, we can
see the land cover, which was earlier classified as Forest in the bottom right hand
corner of Fig. 5(a), is then reclassified to Shrubland, as shown in Fig. 5(b). This
shows that the previous bands could not distinguish between these two categories.
However the data in new spectral bands can differentiate them, leading to the birth of
the new category and extensional drift in Forest. These changes are caused by tech-
nical advancements in remote sensing, which provide richer data with better-
calibrated spectral bands that improve differentiation of land cover classes. The
screenshot in Fig 5(e) shows the resulting new version of the Built Space class in
AdvoCate, reflecting the changes in the map and taxonomy.

The next change scenario is to allow government to estimate the land cover under
agriculture, so that they can track efficiency of agricultural production. This required
merging three land cover classes – Grassland, Forest and Shrubland. The training data
for Grassland, Forest and Shrubland, along with their sub-classes, were relabeled as
‘Agricultural land’. The new training data was run through data analysis in AdvoCate
to update the categorical model. However, this change in the model does not affect
the boundaries of other categories. AdvoCate then adds the new category, agricultural

2 Land cover categories are often modeled as statistical distributions or decision rules by

analyzing remote sensing image data that represents spatial distribution of energy reflected
from the earth in different spectral bands [8]. Different spectral bands have their own
strengths in terms of the information they convey to the remote sensing procedure. For ex-
ample, in the visible/infrared range, the value reflects the properties such as moisture con-
tent, cellular structure of vegetation and the level of sedimentation of water.

(a) (b) (c) (d)

(e)

Fig. 5. (a) – (d) show the evolution of land cover categories, through the revisions to maps and taxonomies. The red (dashed) lines in the maps show
new/changed boundaries and red classes are new categories. In taxonomies, red (dashed) edges signify new/changed relationships, and red (dashed)
nodes represent new classes or drift in the classes. The screenshot in (e) shows the corresponding changes (highlighted by red transparent rectangles) in
different versions of ‘Built Space’ category, as stored in the AdvoCate system.

land, as the parent class to the three merged categories (with the user’s consent) as
shown in Fig. 5(c). The motivation in this scenario can be seen as a social/scientific
need leading to the merging of three categories.

Lastly, the final change scenario originates from a change in classification method.
Previously, a maximum likelihood classifier was used for data analysis, but a new
classifier (a non-parametric neural network classifier) was created that provides better
accuracy; thus we used it for data analysis on the existing training data. The new clas-
sifier changed the boundaries of several classes as shown in Fig. 5(d) and resulted in a
more accurate categorical model, leading to change in intension of most of the catego-
ries. In this scenario, we created a new version of the legend as well as the categories.
The change can also be seen in the resulting new version of Built Space as shown in
Fig. 5(e).

5 Conclusion

AdvoCate supports 'deepening the representation' of both categories and the evolu-
tion process – an important aspect to support scientific reusability and reproducibility.
This information can also be seen as provenance. However, in current practice, we do
not capture rich provenance, such as how and why a change occurs. Advocate explic-
itly captures these details; hence enriching the provenance of change. The unique
contribution of this tool is the blend of a cognitive model of categories, ontology (leg-
end in this case) and workflows (process of exploration and evolution of categories)
in a single model, bridging the gap between process and products of science. Moreo-
ver, its usefulness is demonstrated in the previous section, which shows how Advo-
Cate connects a temporal series of maps and taxonomies as the underlying land cover
categories change, along with the detailed understanding of the changes. In conclu-
sion, AdvoCate not only records the temporal series of land cover maps for a
knowledge producer, but also captures the detailed understanding of how the maps are
constructed and changed for knowledge consumers to use this information efficiently
– improving both knowledge production and consumption.

Future work includes completing the Change Broadcasting service (propagating
changes to databases and ontology evolution tools) and visualization of category evo-
lution. This also includes refining the data model through validation with use-cases,
adding in change recognition rules for various categorical models, and finally expand-
ing the scope beyond categories to include additional aspects of the science process.

References

1. A. N. Whitehead, Adventures of Ideas. Cambridge: Cambridge Univ. Press, 1933.
2. A. N. Whitehead, Process and Reality: An Essay in Cosmology. New York: Social Science

Book Store, 1929.
3. J. Shrager and P. Langley, Computational models of scientific discovery and theory for-

mation. San Mateo, CA: Morgan Kaufmann, 1990.

4. S. C. J. Lam, D. Sleeman, and W. Vasconcelos, “ReTAX+: A Cooperative Taxonomy Re-
vision Tool,” in Proc. AI-2004 Conf., Cambridge, UK, 2004, pp. 64–77.

5. M. Gahegan, W. Smart, S. Masoud-Ansari, and B. Whitehead, “A semantic web map me-
diation service: interactive redesign and sharing of map legends,” presented at the 1st
ACM SIGSPATIAL International Workshop, New York, USA, 2011, pp. 1–8.

6. M. Herold et al., “A joint initiative for harmonization and validation of land cover da-
tasets,” IEEE Trans. Geosci. Remote Sensing, vol. 44, no. 7, pp. 1719–1727, Jul. 2006.

7. D. Ribes and G. C. Bowker, “A learning trajectory for ontology building,” Annual
Knowledge and Organizations Conference, May 2005.

8. J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis, 3rd ed. New York:
Springer, 1999.

9. A. Tsymbal, “The problem of concept drift: definitions and related work,” Trinity College,
Dublin, Ireland, TCD-CS-2004-15, 2004.

10. N. Fanizzi, C. d’Amato, and F. Esposito, “Conceptual clustering and its application to con-
cept drift and novelty detection,” presented at the Proc. 5th European Semantic Web Conf.,
Spain, 2008, pp. 318–332.

11. S. Wang, S. Schlobach, and M. Klein, “Concept drift and how to identify it,” Journal of
Web Semantics, vol. 9, pp. 247–265, Sep. 2011.

12. M. Hartung, J. Terwilliger, and E. Rahm, “Recent advances in schema and ontology evolu-
tion,” in Schema Matching and Mapping, Springer Berlin Heidelberg, 2011, pp. 149–190.

13. C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo, “Automating the database schema
evolution process,” The VLDB Journal, vol. 22, pp. 73–98, Feb. 2013.

14. F. Zablith et al., “Ontology evolution: a process-centric survey,” Knowledge Eng. Review,
pp. 1–31, 2014.

15. L. Stojanovic, “Methods and Tools for Ontology Evolution,” Ph.D. dissertation, Univ. of
Karlsruhe, Germany, 2004.

16. N. F. Noy, A. Chugh, W. Liu, and M. A. Musen, “A framework for ontology evolution in
collaborative environments,” presented at the Proc. 5th Intl. Conf. The Semantic Web,
Athens, GA, USA, 2006, pp. 544–558.

17. M. Klein and N. F. Noy, “A component-based framework for ontology evolution,” pre-
sented at the Proc. of the IJCAI-03 Workshop on Ontologies and Distributed Systems.

18. F. Zablith, “Evolva: a comprehensive approach to ontology evolution,” presented at the
Proc. 6th European Semantic Web Conf., Crete, Greece, 2009, pp. 944–948.

19. P. N. Edwards et al., “knowledge infrastructures: intelligent frameworks and research chal-
lenges,” University of Michigan School of Information, May 2012.

20. E. Rosch and B. B. Lloyd, “Principles of Categorization,” in Cognition and Categoriza-
tion, E. Rosch and B. B. Lloyd, Eds. Hillsdale,NJ: L.Erlbaum Associates, 1978, pp. 27–48.

21. C. Parent, S. Spaccapietra, and E. Zimányi, Conceptual Modeling for Traditional and Spa-
tio-Temporal Applications. Springer, 2006.

22. B. Gonçalves and F. Porto, “Research lattices: Towards a scientific hypothesis data mod-
el,” presented at the 25th International Conference, New York, New York, USA, 2013.

23. G. L. Murphy, The Big Book of Concepts. Cambridge, MA: MIT Press, 2002.
24. M. Gahegan, “Beyond tools: visual support for the entire process of GIScience,” in Ex-

ploring Geovisualization, no. 4, J. Dykes, A. M. Maceachren, and M. J. Kraak, Eds. Else-
vier, 2005, pp. 83–99.

25. X. Dai, “Integrated approach for the exploration of geospatial datasets: The interaction of
concepts, methods and data,” Ph.D. dissertation, The PA state Univ., PA, 2007.

26. F. Pedregosa et al., “Scikit-learn: machine learning in Python,” J. Machine Learning Re-
search, vol. 12, pp. 2825–2830, Feb. 2011.

