Ontology Design Pattern Property Specialisation
Strategies

Karl Hammar!-2
! Information Engineering Group, Jénkdping University, Sweden
2 Department of Computer and Information Science, Link6ping University, Sweden
karl.hammar@jth.hj.se

Abstract. Ontology Design Patterns (ODPs) show potential in enabling
simpler, faster, and more correct Ontology Engineering by laymen and
experts. For ODP adoption to take off, improved tool support for ODP
use in Ontology Engineering is required. This paper presents and evalu-
ates the effects of strategies for object property specialisation in ODPs,
and suggests tool improvements based on those strategies.

1 Introduction

Content Ontology Design Patterns (hereafter ODPs) were introduced by Gangemi
[7] and Blomqvist & Sandkuhl [3] in 2005 (extending upon ideas by the W3C
Semantic Web Best Practices and Deployment Working Group?), as a means
of facilitating practical ontology development. These patterns are intended to
help guide ontology engineering work by non-expert users, by packaging best
practice into small reusable blocks of ontology functionality, to be adapted and
specialised by those users in their individual ontology development use cases.
Studies indicate that ODPs can help lower the number of modelling errors and
inconsistencies in ontologies, and that they are by the users perceived as useful
and helpful [2, 5].

This idea has gained some traction within the academic community, as ev-
idenced by the Workshop on Ontology Patterns series of workshops held on
conjunction with the International Semantic Web Conference. However, the
adoption of ODPs among practitioners is still quite limited. In order to sup-
port increased adoption and use of ODPs (and potentially, as a result thereof,
increased adoption and use of Semantic Web technologies and ontologies in gen-
eral), methods and tooling supporting their usage are required. While there are
available tools for ODP use (e.g., the XD Tools for NeOn Toolkit), the function-
ality of these tools is limited; they are based on their authors’ largely intuitive
understanding of ODP usage and practices at the time when ODPs were first
proposed. In order to improve tooling to support today’s users, an empirically
founded understanding of how ODPs are actually used today is needed.

The author’s present research concerns the development of such improved
ODP tooling based on published ODPs and ontologies. In this paper, the focus

3 http://www.w3.org/2001/sw/BestPractices/

is on the choices that users face when specialising an ODP, and the potential
consequences those choices may give rise to. The work was initiated using the
following research question:

— How are Content Ontology Design Patterns used or specialised in Ontology
Engineering projects for the Semantic Web, and what are the effects of such
usage?

In studying this rather generally expressed question, as further described
in Section 3.1, several ODP application strategies were observed (listed and
discussed in Section 3.2). The discovery of these strategies gave rise to more
specific research questions on their usages and effects:

1. To what degree are the class-oriented, property-oriented, or hybrid ODP
specialisation strategies used in published ODPs and ontologies?

2. What are the reasoning performance effects of specialising ODPs and ontolo-
gies in accordance with the class-oriented or property-oriented strategies?

The main contributions of this paper are a classification of three different
strategies for ODP specialisation based on the semantics of object property do-
mains and ranges, and a partial understanding of the consequences of employing
two of these specialisation strategies. Additionally, the paper contributes sugges-
tions on how to implement tooling supporting users in specialising ODPs based
on a strategy that is consistent with their preferences and goals.

The paper is structured as follows: Section 2 introduces the background and
some related work in the area. Section 3 describes the ODP specialisation strate-
gies and the method by which they were discovered. Section 4 details a study on
the use of these strategies in published ontologies, and the effects of such uses.
Section 5 discussed the consequences of these findings for the development of
ODP support tools. Section 6 concludes the paper by summarising the answers
to the posed research questions.

2 Background and Related Work

Ontology Design Patterns were introduced at around the same time indepen-
dently by Gangemi [7] and Blomqvist and Sandkuhl [3]. The former define such
patterns by way of a number of characteristics that they display, including exam-
ples such as “/lan ODP] is a template to represent, and possibly solve, a modelling
problem” [7, p. 267] and “/an ODP] can/should be used to describe a ‘best prac-
tice” of modelling” [7, p. 268]. The latter describes ODPs as generic descriptions
of recurring constructs in ontologies, which can be used to construct components
or modules of an ontology. Both approaches emphasise that patterns, in order to
be easily reusable, need to include not only textual descriptions of the modelling
issue or best practice, but also some formal encoding of the proposed solution.
The understanding of Ontology Design Patterns has been heavily influenced
by the work taking place in the NeOn Project, the results of which include a

pattern typology [12]. This typology is based on the uses to which patterns are
put, whether they represent best practice in reasoning, naming, transformation,
content modelling, etc. This paper focuses exclusively on Content patterns (the
most common type of patterns). Content patterns represent some content in the
domain of discourse, and their formal representations are typically packaged as
reusable mini-ontologies in OWL format.
Ontology Design Patterns have also been studied within the CO-ODE project|[1,

6], the results of which include a repository of patterns* and an Ontology Pre-
Processing Language (OPPL)®. The patterns proposed and developed in these
works are also Content ODPs, but they are generally more abstract or founda-
tional in nature than those developed within the NeOn project. These patterns
also double as transformation patterns, since they can be used in conjunction
with the OPPL macro language to enable rapid transformation of large ontolo-
gies.

2.1 eXtreme Design

The eXtreme Design (XD) collaborative ontology development methods, devel-
oped within the NeOn Project, is based on the use of Ontology Design Patterns
[4]. XD is defined as “a family of methods and associated tools, based on the ap-
plication, exploitation, and definition of Ontology Design Patterns (ODPs) for
solving ontology development issues” [11, p. 83]. The method is influenced by
the eXtreme Programming (XP) agile software development method, and like
it, emphasises incremental development and continuous requirements manage-
ment. Like XP it also recommends pair development, test driven development,
refactoring, and a divide-and-conquer approach to problem-solving [10].

The XD method consists of a number of tasks, as illustrated in Figure 1. The
main development tasks are performed in iterating loops; these tasks are in the
figure enclosed in a grey box. The “Reuse and integrate ODPs” task is where the
developer specialises a selected ODP (representing a general reusable solution)
to the specific modelling scenario. It is the choices that the developer need make
when performing this task, which are explored in the scope of this paper.

2.2 XD Tools

The XD method is supported by the XD Plugin for the Eclipse-based NeOn
Toolkit®. The XD Plugin provides a number of components that simplify pattern
browsing, selection, and specialisation. The specialisation component provides a
wizard interface for specialising ODPs, consisting of three steps:

1. Specialising leaf classes of the class hierarchy by defining subclasses

2. Specialising leaf properties of the property hierarchy by defining subproper-
ties

4 http://odps.sourceforge.net/odp/html/index.html

® http://oppl2.sourceforge.net,/
5 http://neon-toolkit.org/

Project initiation
and scoping

Elicit
requirements

e
ool

Select set

Integrate partial
solutions,
evaluate, revise

Release new
version

Allreq:s
covered?
No
Identify CODP Yes
catalogues

Collect Match and Release module
requirement select ODPs
stories
N
No
Reuse and)
integrate ODPs All stories
covered?

Fig. 1. XD Workflow (adapted from [11])

3. Defining domains and ranges of newly defined subproperties to correspond
with the new subclasses

The specialisation wizard also provide a certain degree of validation of the
generated specialisations, by presenting the user with a list of generated axioms,
expressed in natural language, for the user to reject or accept. Unfortunately,
the XD Tools plugin’s dependence on the NeOn Toolkit (which is no longer
developed or maintained) means that ontology engineers who want to use newer
tools and standards are unable to use XD Tools. Instead, they have to do their
ODP-based ontology engineering without adequate tool support.

3 Understanding ODP Specialisation

In order to answer the initial research question, a two-part method was em-
ployed. Initially, a set of ODP-using ontologies were studied in order to extract
commonalities or strategies regarding how ODPs were specialised. The following
two subsections describe this process, and the ODP specialisation strategies dis-
covered by it. Subsequently, the usage of those specialisation strategies among
ontologies and the consequences of such use, were evaluated. These latter eval-
uations are described in section 4.

3.1 Study Setup

Ontologies making use of ODPs first had to be located and downloaded. For
this purpose, a method combining several different sources of ontologies was
employed. The initial set of ODP-using patterns was retrieved using the Google

Custom Search API7. This API was queried repeatedly, using all known ODP
URIs; the results were downloaded, filtered based on type, and only such results
that held both one or more instances of owl:Ontology and one or more references
to known ODP namespaces were kept. Additionally, the LODStats® list of RDF
dataset vocabularies, the Linked Open Vocabularies® dataset, and the known
uses and instantiations of ODPs from OntologyDesignPatterns.org'® were added
to this set (the same criteria for filtering were employed). This resulted in 22
ODP-using OWL ontologies being found and downloaded. Additionally, a set of
19 such ontologies originating with the IKS'' project were added to the set.

From these 41 ontologies, 107 specialisation mapping axioms, that is, sub-
sumption or equivalence axioms linking a class or property defined in the on-
tology to a class or property defined in a known ODP, were extracted. These
mapping axioms were analysed for recurring patterns based on the features of
the ODP class or property being specialised, and based on the type of mapping
properties used. An excerpt of the set of extracted mapping axioms is displayed
in Table 1.

Table 1. Excerpt from the set of extracted ODP specialisation mapping axioms.

ODP Class/Property Role in specialisation |Occurrences
place.owl#Place superclass 4
parameter.owl#Parameter superclass 2
collectionentity.owl#hasMember |superproperty 1
bag.owl#hasltem superproperty 1
bag.owl#hasltem used in property restriction 4

Table 2 summarises the type of mappings used in the gathered data. As the
table shows, simple mapping using OWL:subClassOf and OWL:subPropertyOf
predicates against ODP named classes is the most common, together account-
ing for 85 % of all specialisation axioms. In all but a handful of these uses,
ODP classes and properties act as superclasses and superproperties to specialised
classes and properties. Equivalency mappings against named ODP concepts are
used less often; no uses of OWL:equivalentProperty are observed at all, and
OWL:equivalentClass is only used in a few cases.

The use of existential or universal quantification restrictions involving ODP
classes and properties is worth noting. In the studied set of ontologies, such
restrictions are used to constrain the uses of ODP object properties, locally em-
ulating domain or range axioms; for instance, a WeatherForecast is defined as

" https://developers.google.com/custom-search/
8 http://stats.lod2.eu/

9 http://lov.okfn.org/
10 http://ontologydesignpatterns.org/
M http://www.iks-project.eu/

Table 2. ODP Specialisation Mapping Axioms Summary

Mapping axiom type Occurrences
owl:subClassOf against named ODP class 32
owl:subPropertyOf against named ODP property 59

owl:equivalentClass against named ODP class

owl:equivalentProperty against named ODP property

owl:equivalentClass against value constraint over ODP property

owl:subClassOf against value constraint over ODP class

3
0
owl:subClassOf against value constraint over ODP property 7
2
4
0

owl:equivalentClass against value constraint over ODP class

being equivalent to the union of two restrictions, one using a project-defined vo-
cabulary, and one on the WeatherForecast being an information realisation (i.e.,
EquivalentClass (WeatherForecast objectSomeValuesFrom(informationRealization:realizes
WeatherInformation))).

Such a use of restrictions to constrain the local semantics of object properties
can be seen as a form of specialisation of a more general model, or ODP, for a
particular modelling case. This observation leads us to consider how this type
of specialisation strategy differs from the more common strategy of specialising
subproperties with defined domains and ranges, as supported by the existing
XD Tools. In order to develop tool support for the use of property restrictions
in ODP specialisation, the consequences of applying this type of modelling need
be studied, such that users can be informed of the potential effects of applying
either the traditional (hereafter denoted “property-oriented”, due to the use of
subproperties) strategy for ODP specialisation, or the alternative restriction-
based strategy (hereafter denoted “class-oriented”, due to the use of property
restrictions on subclasses).

3.2 Study Results

The following section discusses and exemplifies the two initially discovered strate-
gies of ODP specialisation. The possibilities of and the consequences of combin-
ing the two strategies in a third, hybrid strategy, are also discussed. Two things
are important to note. Firstly, an ODP specialisation is here defined as the
set of specialisation mapping axioms that together specialise a single ODP for
use in a target ontology. In most cases each ODP specialisation will consist of
several specialisation mapping axioms, each specialising different classes or prop-
erties of the ODP. Often this set of axioms will be held in an ontology module
imported into the target ontology, an ODP specialisation module. Secondly, in
discussing the relative usage frequency of the strategies, we here compare those
ODP specialisations that modify the semantics of object properties (simple class
taxonomies have been filtered out), and we also include specialisations of ODP

specialisations; as OWL imports are transitive, this type of layered structure is
not uncommon. This gives a total of 20 ODP specialisations.

Property-oriented Strategy The property-oriented strategy is the most com-
mon type of ODP specialisation seen in the originally studied set of ODP special-
isations (being used in 9 out of 20 cases), possibly due to the fact that OWL tools
and tutorials tend to emphasize properties as basic language features, and the
construction of property subsumption hierarchies specialising those properties
as fundamental modelling tasks.

rdfs:domain rdfs:range
ce:Collection cethasMember ———— owl:Thing
JAN

rdfs:subClassOf rdfs:subPropertyOf rdfs:subClassOf

rdfs:domain rdfs:range
cc:Content cc:Content
. cc:hasContentMember ——»|
Collection Item

Fig. 2. Property-oriented ODP Specialisation Strategy

The process by which an ODP is specialised in accordance with the property-
oriented strategy is illustrated and exemplified in Figure 2 (the example is taken
from an ontology developed in the IKS project). In the figure, the ce: namespace
prefix indicates that classes or properties are defined within the CollectionEntity
ODP'2, whereas the cc namespace prefix indicates that classes or properties are
defined within the ODP specialisation module ContentCollection. We see that
the higher level class definitions defined in the ODP or OWL language itself
(ce:Collection, owl: Thing) are specialised for the modelling problem at hand us-
ing newly defined subclasses (cc:ContentCollection, cc:Contentltem), and that
the usage of ce:hasMember is specialised to apply to these new class definitions
via a new subproperty cc:hasContentMember with corresponding domain and
range declarations. Formally, the owl:subPropertyOf definition implies that the
instantiations of the subproperty are a subset of the instantiations of the super-
property, and consequently the domains and ranges of subproperties are more
narrow than those of their superproperties.

It should be noted that this specialisation strategy does not necessarily need
to be fully instantiated in all parts; there are several cases where only one sub-
class is created, and where either the domain or range of the created subproperty

12 http://ontologydesignpatterns.org/wiki/Submissions: CollectionEntity

are therefore defined over a more general term. Indeed, that is the way in which
the CollectionEntity ODP itself is structured in Figure 2, with ce:hasMember
having a range of owl:Thing. The important thing about this strategy, and the
key differentiator against the class-oriented strategy, is the definition of a sub-

property.

Class-oriented Strategy The class-oriented strategy is a little less common
in the studied set of ODP specialisations, being seen in 6 of 20 cases. The fun-
damental idea of this strategy is to avoid creating specialised subproperties, by
instead reusing the object properties of the original ODP, and locally constrain-
ing the usage of those properties by way of property restrictions on specialised
classes. As shown by Horridge et al. [8] the definitions SubClassOf(A ObjectAll-
ValuesFrom(someProperty B)) imposes a local range of B on the property some-
Property for the class A. Using the same approach, we can represent a local
domain of A over the property someProperty where the target of that property
is B, by defining EquivalentClass(A ObjectSomeValuesFrom(someProperty B)).

rdfs:domain rdfs:range
ir:Information) . ir:Informati
P ir.realizes A
Realization onObject

ir:realizes only ir:realizes some
wf:Weather wf:Weather
Information Information

rdfs:subClassOf
‘ rdfs:subClassOf

rdfs:subClassOf owl:equivalentClass

wf:Weather

Information

wf:Weather

Forecast

Fig. 3. Class-oriented ODP Specialisation Strategy (rounded rectangles denote named
classes, ovals denote property restriction axioms)

The concept is illustrated in Figure 3. The namespaces used in the figure are
ir:, denoting the Information Realization ODP'?, and wf:, denoting the Weather
Forecast ODP specialisation module. In this example a wf: WeatherForecast class
is defined in terms of how its member individuals are connected via the ir:realizes
property to members of the wf: WeatherInformation class. In layman terms, the
owl:equivalentClass property restriction imposes the condition that any indi-
vidual which is connected via ir:realizes to some other individual that is a

13 http://ontologydesignpatterns.org/wiki/Submissions:Information_realization

wf: WeatherInformation, must itself be a wf: WeatherForecast; this restriction cor-
responds to the use of a rdfs:domain definition over a specialised property in
the property-oriented strategy. Similarly, the rdfs:subClassOf property restric-
tion imposes the condition that only individuals that are wf: WeatherInformation
may be linked via ir:realizes from an individual that is a wf: WeatherForecast;
this corresponds to a rdfs:range axiom in the property-oriented strategy.

Note that the use of the term corresponds to above does not imply that
the described uses of property restriction axioms are logically equivalent to the
use of domain or range axioms; merely that both modelling strategies allow
for describing similar phenomena, via expressing constraints on which types of
entities that object properties can connect.

Hybrid Strategy In addition to the pure property-oriented or pure class-
oriented strategies for ODP specialisation, the combination of the two in a hybrid
strategy approach also occurs in the set of ODP specialisations: 5 of the 20 ODP
specialisations use such a hybrid strategy. In these specialisations, subproperties
with domain and range declarations are defined, and the classes involved are also
defined using universal and /or existential quantification restrictions ranging over
the newly created subproperties. The latter restriction axioms are logically re-
dundant if they are in this manner defined over properties that have themselves
got domains and ranges. They could however be helpful from a usability perspec-
tive, in a large ontology of taxonomic nature, i.e. with a large class subsumption
hierarchy, where one wants readers of said ontology to be able to easily grasp how
classes are intended to be interconnected without having to study the property
subsumption hierarchy.

4 Strategy Usage and Effects

As seen in Section 3.1, the number of ODP published specialisations modifying
object property semantics is limited; only 20 such specialisations were found.
This is too small a dataset to base conclusions on. This section broadens the
scope from just ODP specialisations to ontologies in general. If the same strate-
gies are also observed in a larger set of ontologies, this strengthens the notion
that ontology engineers need tool support for these strategies. Similarly, if the ef-
fects of applying these strategies can be observed on ontologies in general, ODP
specialisation tooling need take this into account, and guide the user accord-
ingly when constructing ontologies using ODPs. Section 4.1 describes a study
on to what extent the strategies are employed in ontologies published on the
web. Section 4.2 discusses the effects of using the property-oriented or class-
oriented strategies, and details a benchmark-based evaluation of the reasoning
performance effects of such use.

4.1 Strategy Use

The ontologies studied were gathered in the same manner as described in Sec-
tion 3.1. While we previously selected only those downloaded RDF files that held

instances of owl:Ontology and that had references to known ODP namespaces,
in this case the latter selection filter was dropped, and all downloaded graphs
containing OWL ontologies were kept. This resulted in 405 ontologies for study.

Input: graph = An RDF graph containing an owl:Ontology
1 restrictionProperties = [|;

2 hasDomainOrRange = [J;

3 for subProperty defined in graph do

4 if hasDomain(subProperty) or hasRange (subProperty) then
5 ‘ Union(hasDomainOrRange,subProperty);

6 for class defined in graph do

7 superClass = getSuperClass(class);

8 if hasPredicate(superClass, owl:allValuesFrom) then
9 restrictionProperty = get0Object (superClass,owl:onProperty);

w | |

11 equivalentClass = getEquivalentClass(class);

12 if hasPredicate(equivalentClass, owl:someValuesFrom) then

13 restrictionProperty = get0Object (equivalentClass,owl:onProperty);
14 Union (restrictionProperties,restrictionProperty);

15 if Overlap(hasDomainOrRange,restrictionProperties) > 0 then

16 ‘ Return (Hybrid strategy);

17 if Size(hasDomainOrRange) == 0 AND Size (restrictionProperties) == 0 then
18 ‘ Return(No property specialisation occurring);

19 if Size(hasDomainOrRange) > Size(restrictionProperties) then

20 ‘ Return(Property-oriented strategy);

21 else

22 ‘ Return(Class-oriented strategy);

Union (restrictionProperties,restrictionProperty);

Algorithm 1: Detects ontology property specialisation strategy. For rea-
sons of brevity loops around lines 8 and 12 (accounting for the possibility of
multiple super- or equivalent classes per ontology class) have been removed.

Algorithm 1 was then executed over the ontology set. Per the algorithm, the
number of specialised object properties that have domain or range definitions are
compared against the number of properties that occur in a restriction emulating
a local domain or range, and the ontology as a whole is classified based on the
most commonly occurring type of structure. In the case that an overlap exists
between these two sets, that is, that there are individual object properties that
are specialised in both ways, the ontology is classified as employing the hybrid
strategy. The results of this classification are summarised in Table 3 (simple
taxonomies and alignment ontologies not defining any own OWL constructs have
been filtered out of the results).

These results indicate that all three object property specialisation strategies
discovered in Section 3.2 to some extent also occur in ontology engineering where
ODPs are not used. The results also indicate that the property-oriented strategy
is by a significant margin the most commonly used strategy. Comparing against

Table 3. Ontology Specialisation Strategy Use

Specialisation strategy Occurrences
Property-oriented 191
Class-oriented 35
Hybrid 23
No property specialisation occurring 98

the previously studied ODP specialisations, we see that the class-oriented and
hybrid strategies are used less frequently in ontologies (14 % vs 30 % of cases
for the former, 9 % vs 25 % of cases for the latter). This suggests there may
be a difference in how ontology engineering is performed when using ODPs as
compared to in the general case.

4.2 Strategy Effects

An advantage of the property-oriented strategy is that it creates new subprop-
erties, which can themselves be dereferenced and annotated or typed as needed.
For instance, such a specialised subproperty could be defined to be transitive or
functional, without this definition affecting the parent property. Another advan-
tage is that this type of modelling is accessible from a usability perspective; the
simple tree view of the property subsumption hierarchy as used in many tools
enables the ontology engineer or end-user to get an at-a-glance understanding
of how the properties are organised and intended to be used. Yet another ad-
vantage is that, given that domains and ranges are defined, inferring the type
of individuals connected via the property is a relatively fast operation, when
compared to the class-oriented strategy.

The main advantage of the class-oriented specialisation strategy is that no
subproperties are created, but rather that the original parent properties are
reused. This allows RDF datasets that are expressed in accordance with an
ontology using this strategy to be natively interoperable with other datasets
using the same property, without the need for reasoning. This is particularly
relevant in an ODP context, where the ODP and its properties are intended be
reused extensively. Such interoperability can have many advantages, including in
querying, where SPARQL triple patterns will often define only the predicate used
and leave subject and object variables unbound. Further, this strategy allows for
modelling typing based on property links, much like duck typing in programming;
such an approach can have advantages in situations where the ontology engineer
does not control the predicates used in data creation or extraction, but rather
has to deal with what they are given.

There are also downsides to this strategy, most noticeably in terms of reason-
ing performance. As pointed out by Horridge et al. [8], universal quantification
axioms, used in this strategy to emulate rdfs:range definitions, are disallowed
in the computationally friendly OWL 2 EL profile. As illustrated by Urbani
et al. [14], using property restrictions to infer typing requires multiple joins

between large sets of candidate entities, greatly complicating reasoning, particu-
larly when dealing with large datasets. The results of Kang et al. [9] also indicate
that there may be performance penalties associated with this type of reasoning.
Their predictive model for reasoning performance includes eight ontology met-
rics categorised as impacting or strongly impacting reasoning performance; of
these, three (the number of existential quantifications, average class out-degree,
and subsumption tree impurity) are increased by employing the class-oriented
strategy, as opposed to the property-oriented one. The strongest impact factor
of any metric in their model is the number of existential quantification axioms,
which are heavily used in this modelling strategy.

Reasoning Performance Evaluation In order to evaluate the reasoning per-
formance effects of the class-oriented and property-oriented specialisation strate-
gies, an experiment was set up using the well known LUBM'* and BSBM bench-
marks'®. The hypothesis was that, due to the above mentioned characteristics of
the two strategies, the execution of reasoning tasks on datasets using ontologies
adhering to the property-oriented strategy would be faster than on the same
datasets using ontologies adhering to the class-oriented strategy.

Each of the two benchmark suite ontologies were adapted to both the property-
oriented and class-oriented strategies, via replacing domain and range axioms by
universal and existential quantification restrictions or vice versa (in the case of
BSBM, as an OWL ontology is not provided, said ontology first had to be created
from scratch using the BSBM Dataset Specification). Datasets of non-trivial size
(LUBM: 1053084 triples, BSBM: 334479 triples) were then generated using each
benchmark suite’s data generator. In order to make the performance evalua-
tion tasks which include inferring typing axioms non-trivial, RDF typing axioms
generated by the benchmark data generators were removed.

The datasets were then used together with the property- and class-oriented
benchmark ontologies as input for two leading OWL reasoners, Pellet and Her-
mlIT. The operations performed were consistency checking (ensuring that no
contradictory axioms exist in the datasets and ontologies), and realization (find-
ing the most specific class that a named individual belongs to). As the HermiT
reasoner does not support performing realization from the command line, it was
only used to perform consistency checking over the two datasets. The experi-
ments were executed on a quad-core 2.6 GHz Intel Core i7 machine with an 8
GB Java heap size, running Mac OS X 10.9.3.

As illustrated in Table 4, the hypothesis holds for the generated datasets. In
all of the reasoning tasks performed, the use of class-oriented ontologies resulted
in slower execution than the use of property-oriented ontologies. In most cases
the effects were severe; in one case execution of the reasoning task was halted
when no results were reported after 4 hours of continuous execution. It should be
noted that the reported results of the reasoning tasks were equivalent, regardless
of which strategy the ontology in question used.

' http://swat.cse.lehigh.edu/projects/lubm/
15 http:/ /wifo5-03.informatik.uni-mannheim.de/bizer /berlinsparqlbenchmarlk/

Table 4. Specialisation strategy realisation performance effects.

Reasoning task Benchmark|Reasoner|PO time{CO time
Consistency checking| BSBM Pellet 1.274s [1.897s
Consistency checking| BSBM HermiT [1.984s |27.193 s
Consistency checking| LUBM Pellet 8.230s [42.887 s
Consistency checking| LUBM HermiT |10.097 s |46 min, 17 s
Realising individuals |[BSBM Pellet 2.389s (9.482 s
Realising individuals |LUBM Pellet 1.801 s |4+ hours

5 Discussion

As shown above, the different strategies for object property specialisation are
used both in the specialisation of ODPs and in specialisation of ontologies. The
consequences of selecting one or the other of the strategies can be significant, and
there is a trade-off to make: the class-oriented strategy can reduce the complexity
of RDF data integration via the use of shared RDF predicates, but is very slow to
reason with, while on the other hand the property-oriented strategy is far more
efficient for reasoning but requires the use of new properties. This tradeoff is not
common knowledge in the ontology engineering community, and consequently,
methods and tools that aid engineers in understanding it, would be beneficial.
Furthermore, it seems that the usages of the two strategies differ such that the
class-oriented strategy is more commonly used in ODP specialisation than in
ontologies in general. If this is the case, and if this more common use of the
class-oriented strategy is a consequence of the design or use of ODPs, then
tooling for ODP specialisation needs to support ontology engineers in applying
this to them unfamiliar type of modelling.

Such improved ODP specialisation tooling needs to support at least three
different tasks: applying a strategy when specialising an ODP, visualising strat-
egy use in an ODP-based ontology in a user-friendly manner, and refactoring an
ODP-based ontology from using one strategy to another.

The first task requires updating the ODP specialisation wizard from the
existing XD Tools to be strategy-aware. Upon initiating said wizard, the user
needs to be given the choice of by which strategy the ODP is to be specialised.
This choice needs to be supported by both information on known effects of
strategy use (e.g., guidance texts regarding the trade-offs) and by information on
existing strategy use in the ontology project under development and/or the ODP
itself. In the case that the user selects the class-oriented or hybrid strategies, the
second and third steps of the existing XD tools specialisation wizard (specialising
leaf properties, and defining domains and ranges) would need be either replaced
or modified, to support the implementation of said strategy.

The second task concerns how to display strategy use in an accessible manner,
such that an ontology engineer can quickly ascertain the suitability of an ODP-
based ontology for different purposes. For this purpose, the existing Protégé
ontology metrics view could be extended with metrics indicating specialisation

strategy. In order to simplify the use of ontologies built using a class-oriented
strategy, displaying the “emulated” domains and ranges of specialised properties
in proximity to those properties’ definitions would be helpful.

The third task concerns refactoring an ontology from using one strategy to
another, and also harmonising strategy use in the case that different strategies
are employed in different parts of an ontology. This appears to be a good use case
for the OPPL (Ontology Pre-Processing Language) macro language for ontology
transformation discussed in Section 2.

In addition to improved ODP tools, the discovery of these specialisation
strategies may also warrant updates to ODP repositories; these repositories
would need to provide examples of ODPs specialised per the different strate-
gies. This may necessitate new visual representations for representing universal
and existential restrictions in an accessible and user-friendly manner; the work
of Stapleton et al.[13] in this direction appears very promising.

5.1 Delimitations and Future Work

This is, to the author’s best knowledge, the first work on specialisation strate-
gies for object properties. Consequently, there are many delimitations in place,
and many opportunities for further work. To begin with, the numbers of ODP
specialisations initially studied, benchmarks used for reasoning performance eval-
uation, and reasoners used for that testing, is limited. Validation of these results
on larger datasets and other benchmarks and reasoners would be welcome.

It is likely that the strategies discovered here have more effects and tradeoffs
associated with them than just those discussed in this paper. For instance, we
note that using the class-oriented strategy, typing is inferred from the typing
of related individuals; from this we see that the degree of interconnectedness
of individuals in a knowledge base expressed according to the class-oriented
strategy will have an impact on reasoning performance over that knowledge base;
the strategy used may give rise to different effects across different datasets.

Two other areas that the author aims to explore further in the near future
are the effects of applying the hybrid strategy, and if, and in that case how, these
strategies can be applied to datatype properties.

6 Conclusions

In this paper we have studied how Content Ontology Design Patterns (ODPs)
are used and specialised in practical Ontology Engineering tasks, with an eye
towards improving tooling for such engineering work. The main contributions of
this work are a classification of three different strategies for ODP specialisation,
and an initial understanding of some consequences of employing these strategies.
We have shown that these strategies are being used in modelling of publicly
released ontologies, both ODP-based and non ODP-based ones. We have noted
the trade-off that an ontology engineer may need to make between reasoning
performance efficiency on the one hand, and data integration simplicity on the

other. Finally, we have suggested and are in the process of implementing tooling
improvements to better support Ontology Engineers in understanding and using
these strategies.

References

10.

11.

12.

13.

14.

Aranguren, M.E., Antezana, E., Kuiper, M., Stevens, R.: Ontology Design Patterns
for Bio-ontologies: A Case Study on the Cell Cycle Ontology. BMC Bioinformatics
9(Suppl 5) (2008)

. Blomqvist, E., Gangemi, A., Presutti, V.: Experiments on Pattern-based Ontol-

ogy Design. In: Proceedings of the Fifth International Conference on Knowledge
Capture. pp. 41-48. ACM (2009)

Blomgvist, E., Sandkuhl, K.: Patterns in Ontology Engineering: Classification of
Ontology Patterns. In: Proceedings of the 7th International Conference on Enter-
prise Information Systems. pp. 413416 (2005)

Daga, E., Blomqvist, E., Gangemi, A., Montiel, E., Nikitina, N., Presutti, V.,
Villazon-Terrazas, B.: D2.5.2: Pattern Based Ontology Design: Methodology and
Software Support. Tech. rep., NeOn Project (2007)

Dzbor, M., Suarez-Figueroa, M.C., Blomqvist, E., Lewen, H., Espinoza, M.,
Goémez-Pérez, A., Palma, R.: D5.6.2 Experimentation and Evaluation of the NeOn
Methodology. Tech. rep., NeOn Project (2007)

Egana, M., Rector, A., Stevens, R., Antezana, E.: Applying Ontology Design Pat-
terns in Bio-Ontologies. In: Knowledge Engineering: Practice and Patterns, pp.
7-16. Springer (2008)

Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: The Se-
mantic Web-ISWC 2005, pp. 262-276. Springer (2005)

Horridge, M., Aranguren, M.E., Mortensen, J., Musen, M.A., Noy, N.F.: Ontology
Design Pattern Language Expressivity Requirements. In: Proceedings of the 3rd
Workshop on Ontology Patterns (2012)

Kang, Y.B., Li, Y.F., Krishnaswamy, S.: Predicting reasoning performance using
ontology metrics. In: The Semantic Web-ISWC 2012, pp. 198-214. Springer (2012)
Presutti, V., Blomqvist, E., Daga, E., Gangemi, A.: Pattern-Based Ontology De-
sign. In: Ontology Engineering in a Networked World, pp. 35-64. Springer (2012)
Presutti, V., Daga, E., Gangemi, A., Blomqvist, E.: eXtreme Design with Content
Ontology Design Patterns. In: Proceedings of the Workshop on Ontology Patterns
(WOP). p. 83 (2009)

Presutti, V., Gangemi, A., David, S., Aguado de Cea, G., Sudrez-Figueroa, M.C.,
Montiel-Ponsoda, E., Poveda, M.: D2.5.1: A Library of Ontology Design Patterns:
Reusable Solutions for Collaborative Design of Networked Ontologies. Tech. rep.,
NeOn Project (2007)

Stapleton, G., Howse, J., Taylor, K., Delaney, A., Burton, J., Chapman, P.: To-
wards diagrammatic ontology patterns. In: Proceedings of the 4th Workshop on
Ontology and Semantic Web Patterns (2014)

Urbani, J., Kotoulas, S., Maassen, J., Van Harmelen, F., Bal, H.. OWL reasoning
with WebPIE: calculating the closure of 100 billion triples. In: The Semantic Web:
Research and Applications, pp. 213-227. Springer (2010)

