
Undefined 1 (20) 1–5 1
IOS Press

Query Answering over Contextualized
RDF/OWL Knowledge with
Forall-Existential Bridge Rules: Decidable
Finite Extension Classes
Editor(s): Name Surname, University, Country
Solicited review(s): Name Surname, University, Country
Open review(s): Name Surname, University, Country

Mathew Joseph a,b,∗, Gabriel Kuper b, Till Mossakowski c, Luciano Serafini a
a DKM, FBK-IRST, Via Sommarive 18, 38050, Trento, Italy
b DISI, University Of Trento, Via Sommarive 5, 38123, Trento, Italy
c Faculty of Computer Science, Otto-von-Guericke University of Magdeburg, 39016, Magdeburg, Germany
E-mail: {joseph, kuper}@disi.unitn.it, {serafini}@fbk.eu, {mossakow}@iws.cs.uni-magdeburg.de

Abstract. The proliferation of contextualized knowledge in the Semantic Web (SW) has led to the popularity of knowledge
formats such as quads in the SW community. A quad is an extension of RDF triple with the contextual information of the
triple. We in this paper, study the problem of query answering over quads augmented with forall-existential bridge rules that
enable interoperability of reasoning between the triples in various contexts. We call a set of quads together with such expressive
bridge rules, a quad-system. Query answering over quad-systems is undecidable, in general. We derive decidable classes of
quad-systems, for which query answering can be done using forward chaining. Sound, complete and terminating procedures,
which are adaptations of the well known chase algorithm, are provided for these classes for deciding query entailment. Safe,
msafe, and csafe class of quad-systems restrict the structure of blank nodes generated during the chase computation process
to be directed acyclic graphs (DAGs) of bounded depth. RR and restricted RR classes do not allow the generation of blank
nodes during the chase computation process. Both data and combined complexity of query entailment has been established for
the classes derived. We further show that quad-systems are equivalent to forall-existential rules whose predicates are restricted
to ternary arity, modulo polynomial time translations. We subsequently show that the technique of safety, strictly subsumes in
expressivity, some of the well known and expressive techniques, such as joint acyclicity and model faithful acyclicity, used for
decidability guarantees in the realm of forall-existential rules.

Keywords: Contextualized Query Answering, Contextualized RDF/OWL knowledge bases, Multi-Context Systems, Quads,
Query answering, forall-existential rules, Knowledge Representation, Semantic Web

1. Introduction

As the Semantic Web (SW) is getting more and more
ubiquitous and its constellation of interlinked ontolo-
gies, the web of data, is seamlessly proliferating at a

*Corresponding author. E-mail: joseph@disi.unitn.it

steady rate, more and more applications have started
using SW as a back end, providing their users manifold
services, leveraging semantic technologies. One of the
main reasons why SW enjoys such admirable hospital-
ity from its mammoth geographically disparate users
is its “simple” and “open” model. The model is simple,
as the only intricacy that a creator/consumer of a SW

0000-0000/0-1880/$00.00 © 20 – IOS Press and the authors. All rights reserved

2 Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ...

application needs to equipped with, is that of a (RDF)
triple. A triple t = (s, p, o), represents the most basic
piece of knowledge in SW, where s called the subject,
is an identifier for a person, place, thing, value, or a
resource in general, about which the creator of t in-
tended to express his/her knowledge using t. p called
the predicate, is an identifier for a property, attribute,
or in general a relation that relates s with the third
component o, called the object, that is also an identi-
fier for a resource, similar to s. The model is called
open, as it allows anybody, anywhere around the world
to freely create their RDF/OWL ontologies about a do-
main of their choice, and publish them in (embedded)
RDF/OWL formats in their web portals, also linking
via URIs to the concepts in other similarly published
ontologies. Thus, the open model in order to promote
reuse and freedom, imposes no arbitration mechanism
for the ontologies users publish on the SW.

On the other hand, a problem caused by this open
model is that an ontology which a person publishes
is often his/her own perspective about a particular do-
main, which largely is relative to this person. As a con-
sequence, the truth value of a piece of knowledge in the
SW is context-dependent. Recently, as a solution to the
aforementioned problem, SW community, adopts the
use of a quad, an extension of a triple, as the primary
carrier of knowledge. A quad c : (s, p, o), thus adds the
fourth component of the context c to the triple (s, p, o),
thus explicating the identifier of the context in which
the triple holds. As a result, more and more triple stores
are becoming quad-stores. Some of the popular quad-
stores are 4store1, Openlink Virtuoso 2, and some of
the current popular triple stores like Sesame3, Allegro-
graph4 internally keep track of the contexts of triples.
Some of the recent initiatives in this direction have also
extended existing formats like N-Triples to N-Quads,
which the RDF 1.1 has introduced as a W3C recom-
mendation. The latest Billion triple challenge datasets
has been all released in the N-Quads format.

Another benefit of quads over triples are that they
allow knowledge creators to specify various attributes
of meta-knowledge that further qualify knowledge [2],
and also allow users to query for this meta knowl-
edge [3]. These attributes, which explicate the vari-
ous assumptions under which knowledge holds, are
also called context dimensions [4]. Examples of con-

1http://4store.org
2http://virtuoso.openlinksw.com/rdf-quad-store/
3http://www.openrdf.org/
4http://www.franz.com/agraph/allegrograph/

text dimensions are provenance, creator, intended user,
creation time, validity time, geo-location, and topic.
Having defined knowledge that is contextualized, as
in c1 : (Renzi, primeMinsiterOf, Italy) , one can
now declare in a meta-context mc, statements such as
mc : (c1, creator, John), mc : (c1, expiryTime, “jun-
2016”) that talk about the knowledge in context c1,
in this case its creator and expiry time. Another ben-
efit of such a contextualized approach is that it opens
possibilities of interesting ways for querying a con-
textualized knowledge base. For instance, if context
c1 contains knowledge about football world cup 2014
and context c2 about football euro cup 2012. Then the
query “who beat Italy in both world cup 2014 and euro
cup 2012” can be formalized as the conjunctive query:

c1: (x,beat, Italy) ∧ c2: (x,beat, Italy),

where x is a variable.
While reasoning with knowledge in quad form,

since knowledge can be grouped and divided context
wise and simultaneously be fed to separate reason-
ing engines, this approach improves both efficiency
and scalability. Besides the above flexibility, bridge
rules [5] can be provided for inter-operating the knowl-
edge in different contexts. Such rules are primarily of
the form:

c : φ→ c′ : φ′ (1)

where φ, φ′ are both atomic concept (role) symbols,
c, c′ are contexts. The semantics of such a rule is that
if, for any ~a, φ(~a) holds in context c, then φ′(~a) should
hold in context c′, where ~a is a unary/binary vector
depending on whether φ, φ′ are concept/role symbols.
Although such bridge rules serve the purpose of spec-
ifying knowledge interoperability from a source con-
text c to a target context c′, in many practical sit-
uations there is the need of inter-operating multiple
source contexts with multiple target targets, for which
the bridge rules of the form (1) is inadequate. Besides,
one would also want the ability of creating new values
in target contexts for the bridge rules.

In this work, we study contextual reasoning and
query answering over contextualized RDF/OWL knowl-
edge in the presence of forall-existential bridge rules
that allows conjunctions and existential quantifiers in
them, and hence is more expressive than those, in
DDL [5] and McCarthy et al. [6]. We provide a ba-
sic semantics for contextual reasoning based on which
we provide procedures for conjunctive query answer-
ing. For query answering, we use the notion of a

Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ... 3

distributed chase, which is an extension of the stan-
dard chase [19,20] that is widely used in the knowl-
edge representation (KR) and Database (DB) settings,
for similar purposes. As far as the semantics for rea-
soning is concerned, we adopt the approach given in
works such as Distributed Description Logics [5], E-
connections [21], and two-dimensional logic of con-
texts [22], to use a set of interpretation structures as
a model for contextualized knowledge. In this way,
knowledge in each context is separately interpreted to
a different interpretation structure. The main contribu-
tions of this work are:

1. We extend the standard RDF/OWL semantics
to a context-based semantics that can be used
for reasoning over contextualized RDF/OWL
knowledge. Studying conjunctive query answer-
ing over quad-systems. It turns out that the entail-
ment problem of conjunctive queries is undecid-
able for the most general class of quad-systems,
called unrestricted quad-systems.

2. We derive decidable subclasses of unrestricted
quad-systems, namely csafe, msafe, and safe
quad-systems, for which we detail both data and
combined complexities of conjunctive query en-
tailment. The classes are based on constrained
DAG structure of Skolem blank nodes generated
during the chase construction. We also provide
decision procedures to decide whether an input
quad-system is safe (csafe, msafe) or not.

3. We further derive less expressive classes, RR
and restricted RR quad-systems, for which no
Skolem blank nodes are generated during chase
construction.

4. We show that the class of unrestricted quad-
systems are equivalent to the class of ternary
∀∃ rule sets. We compare the derived classes of
quad-systems with well known subclasses of ∀∃
rule sets, such as jointly acyclic and model faith-
ful acyclic rule sets, and show that the technique
of safety, we propose, subsumes these other tech-
niques, in expressivity.

The paper is structured as follows. In section 2, we for-
malize the idea of contextualized quad-systems, giv-
ing various definitions and notations for setting the
background. In section 3, we formalize the problem of
query answering on quad-systems, define notions such
as distributed chase that is further used for query an-
swering, and give the undecidability results of query
entailment on unrestricted quad-systems. In section 4,
we present csafe, msafe, and safe quad-systems and

their computational properties. In section 5, the RR
quad-systems and the restricted RR quad-systems. In
section 6, we prove the equivalence of quad-systems
with ternary ∀∃ rule sets, and formally compare a few
well known decidable classes in the realm of ∀∃ rules
to the classes of quad-systems, we presented in section
4. We provide a detailed discussion to other relevant
related works in section 7, and conclude in section 8.

Note that parts of the contents of section 2 and sec-
tion 3 has been taken from conference papers [10] and
[11].

2. Contextualized Quad-Systems

In this section, we formalize the notion of a quad-
system and its semantics. For any vector or sequence
~x, we denote by ‖~x‖ the number of symbols in ~x,
and by {~x} the set of symbols in ~x. For any sets A
and B, A → B denotes the set of all functions from
set A to set B. Given the set of URIs U, the set
of blank nodes B, and the set of literals L, the set
C = U]B] L is called the set of (RDF) constants.
Any (s, p, o) ∈ C×C×C is called a generalized RDF
triple (from now on, just triple). A graph is defined as a
set of triples. A Quad is a tuple of the form c : (s, p, o),
where (s, p, o) is a triple and c is a URI5, called the
context identifier that denotes the context of the RDF
triple. A quad-graph is defined as a set of quads. For
any quad-graph Q and any context identifier c, we de-
note by graphQ(c) the set {(s, p, o)|c : (s, p, o) ∈ Q}.
We denote by QC the quad-graph whose set of con-
text identifiers is C. The set of constants occurring in
QC , given as C(QC) = {c, s, p, o | c : (s, p, o) ∈ QC}.
The set of URIs in QC , is given by U(QC) = C(QC)
∩ U. The set of blank nodes B(QC), the set of liter-
als L(QC) are similarly defined. Let V be the set of
variables, any element of the set CV = V ∪ C is a
term. Any (s, p, o) ∈ CV×CV×CV is called a triple
pattern, and an expression of the form c : (s, p, o),
where (s, p, o) is a triple pattern, c a context identi-
fier, is called a quad pattern. A triple pattern t, whose
variables are elements of the vector ~x or elements of
the vector ~y is written as t(~x, ~y). For any function
f : A→ B, the restriction of f to a set A′, is the map-
ping f |A′ from A′ ∩ A to B s.t. f |A′(a) = f(a), for
each a ∈ A ∩ A′. For any triple pattern t = (s, p, o)
and a function µ from V to a set A, t[µ] denotes

5Although, in general a context identifier can be a constant, for
the ease of notation, we restrict them to be a URI

4 Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ...

(µ′(s), µ′(p), µ′(o)), where µ′ is an extension of µ to
C s.t. µ′|C is the identity function. For any set of triple
patterns G, G[µ] denotes

⋃
t∈G t[µ]. For any vector

of constants ~a = 〈a1, . . . , a‖~a‖〉, and vector of vari-
ables ~x of the same length, ~x/~a is the function µ s.t.
µ(xi) = ai, for 1 ≤ i ≤ ‖~a‖. We use the notation
t(~a, ~y) to denote t(~x, ~y)[~x/~a]. Similarly, the above no-
tations are also extended to sets of quad-patterns. For
instance Q(~x, ~y) denotes a set of quad-patterns, whose
variables are from ~x or ~y, and Q(~a, ~y) is written for
Q(~x, ~y)[~x/~a]. For the sake of interoperating knowl-
edge in different contexts, bridge rules need to be pro-
vided:

Bridge rules (BRs) Formally, a BR is of the form:

∀~x∀~z [c1: t1(~x, ~z) ∧ ... ∧ cn: tn(~x, ~z)

→ ∃~y c′1: t′1(~x, ~y) ∧ ... ∧ c′m: t′m(~x, ~y)] (2)

where c1, ..., cn, c′1, ..., c
′
m are context identifiers, ~x, ~y,

~z are vectors of variables s.t. {~x}, {~y}, and {~z} are
pairwise disjoint. t1(~x, ~z), ..., tn(~x, ~z) are triple pat-
terns which do not contain blank-nodes, and whose set
of variables are from ~x or ~z. t′1(~x, ~y), ..., t′m(~x, ~y) are
triple patterns, whose set of variables are from ~x or
~y, and also does not contain blank-nodes. For any BR
r of the form (2), body(r) is the set of quad patterns
{c1: t1(~x, ~z),...,cn: tn(~x, ~z)}, and head(r) is the set
of quad patterns {c′1: t′1(~x, ~y), ... c′m: t′m(~x, ~y)}, and
the frontier of r, fr(r) = {~x}. Occasionally, we also
note the BR r above as body(r)(~x, ~z) → head(r)(~x,
~y). The set of terms in a BR r is:

CV(r) = {c, s, p, o | c : (s, p, o) ∈ body(r)∪head(r)}

The set of terms for a set of BRs R is CV(R) =⋃
r∈RCV(r). The URIs, blank nodes, literals, vari-

ables of a BR r (resp. set of BRs R) are similarly
defined, and are denoted as U(r), B(r), L(r), V(r)
(resp. U(R), B(R), L(R), V(R)), respectively.

Definition 2.1 (Quad-System). A quad-system QSC is
defined as a pair 〈QC , R〉, where QC is a quad-graph,
whose set of context identifiers is C, and R is a set of
BRs.

For any quad-system, QSC = 〈QC , R〉, the set of con-
stants in QSC is given by C(QSC) = C(QC)∪C(R).
The sets U(QSC), B(QSC), L(QSC), and V(QSC)
are similarly defined for any quad-system QSC . For
any quad-graph QC (BR r), its symbol size ‖QC‖
(‖r‖) is the number of symbols required to print QC
(r). Hence, ‖QC‖ ≈ 4 ∗ |QC |, where |QC | denotes the

cardinality of the set QC . Note that |QC | equals the
number of quads inQC . For a BR r, ‖r‖ ≈ 4∗k, where
k is the number of quad-patterns in r. For a set of BRs
R, ‖R‖ is given as Σr∈R‖r‖. For any quad-system
QSC = 〈QC , R〉, its size ‖QSC‖ = ‖QC‖+ ‖R‖.

Semantics In order to provide a semantics for en-
abling reasoning over a quad-system, we need to use a
local semantics for each context to interpret the knowl-
edge pertaining to it. Since the primary goal of this pa-
per is a decision procedure for query answering over
quad-systems based on forward chaining, we consider
the following desiderata for the choice of the local se-
mantics and its deductive machinery:

– there exists a set LIR of inference rules and an
operation lclosure() that computes the deductive
closure of a graph w.r.t to the local semantics us-
ing the inference rules in LIR,

– each inference rule in LIR is range restricted, i.e.
non value-generating,

– given a finite graph as input, the lclosure() oper-
ation, terminates with a finite graph as output in
polynomial time whose size is polynomial w.r.t.
to the input set.

Some of the alternatives for the local semantics satis-
fying the above mentioned criterion are Simple, RDF,
RDFS [30], OWL-Horst [26] etc. Assuming that a lo-
cal semantics has been fixed, for any context c, we
denote by Ic = 〈∆c, ·c〉 an interpretation structure
for the local semantics, where ∆c is the interpreta-
tion domain, ·c the corresponding interpretation func-
tion. Also |=local denotes the local satisfaction relation
between a local interpretation structure and a graph.
Given a quad graph QC , a distributed interpretation
structure is an indexed set IC = {Ic}c∈C , where Ic

is a local interpretation structure, for each c ∈ C. We
define the satisfaction relation |= between a distributed
interpretation structure IC and a quad-system QSC as:

Definition 2.2 (Model of a Quad-System). A dis-
tributed interpretation structure IC = {Ic}c∈C satis-
fies a quad-system QSC = 〈QC , R〉, in symbols IC |=
QSC , iff all the following conditions are satisfied:

1. Ic |=local graphQC (c), for each c ∈ C;
2. aci = acj , for any a ∈ C, ci, cj ∈ C;
3. for each BR r ∈ R of the form (2) and for each
σ ∈ V→ ∆C , where ∆C =

⋃
c∈C ∆c, if

Ic1 |=local t1(~x, ~z)[σ], ..., Icn |=local tn(~x, ~z)[σ],

then there exists function σ′ ⊇ σ, s.t.

Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ... 5

Ic
′
1 |=local t

′
1(~x, ~y)[σ′], ..., Ic

′
m |=local t

′
m(~x, ~y)[σ′].

Condition 1 in the above definition ensures that for any
model IC of a quad-graph, each Ic ∈ IC is a local
model of the set of triples in context c. Condition 2
ensures that any constant c is rigid, i.e. represents the
same resource across a quad-graph, irrespective of the
context in which it occurs. Condition 3 ensures that
any model of a quad-system satisfies each BR in it.
Any IC s.t. IC |= QSC is said to be a model ofQSC . A
quad-systemQSC is said to be consistent if there exists
a model IC , s.t. IC |= QSC , and otherwise said to be
inconsistent. For any quad-system QSC = 〈QC , R〉, it
can be the case that graphQC (c) is locally consistent,
i.e. there exists an Ic s.t. Ic |=local graphQC (c), for
each c ∈ C, whereas QSC is not consistent. This is
because the set of BRs R adds more knowledge to the
quad-system, and restricts the set of models that satisfy
the quad-system.

Definition 2.3 (Quad-system entailment). (a) A quad-
system QSC entails a quad c : (s, p, o), in sym-
bols QSC |= c : (s, p, o), iff for any distributed in-
terpretation structure IC , if IC |= QSC then IC |=
〈{c : (s, p, o)}, ∅〉. (b) A quad-system QSC entails a
quad-graph Q′C′ , in symbols QSC |= Q′C′ iff QSC |=
c : (s, p, o) for any c : (s, p, o) ∈ Q′C′ . (c) A quad-
systemQSC entails a BR r iff for any IC , if IC |= QSC
then IC |= 〈∅, {r}〉. (d) For a set of BRs R, QSC |= R
iff QSC |= r, for every r ∈ R. (e) Finally, a quad-
system QSC entails another quad-system QS′C′ =
〈Q′C′ , R′〉, in symbols QSC |= QS′C′ iff QSC |= Q′C′
and QSC |= R′.
We call the decision problems (DPs) corresponding to
the entailment problems (EPs) in (a), (b), (c), (d), and
(e) as quad EP, quad-graph EP, BR EP, BRs EP, and
quad-system EP, respectively.

3. Query Answering on Quad-Systems

In the realm of quad-systems, the classical conjunc-
tive queries or select-project-join queries are slightly
extended to what we call Contextualized Conjunctive
Queries (CCQs). A CCQ CQ(~x) is an expression of
the form:

∃~y q1(~x, ~y) ∧ ... ∧ qp(~x, ~y) (3)

where qi, for i = 1, ..., p are quad patterns over vectors
of free variables ~x and quantified variables ~y. A CCQ
is called a boolean CCQ if it does not have any free
variables. With some abuse, we sometimes discard the

logical symbols in a CCQ and consider it as a set of
quad-patterns. For any CCQ CQ(~x) and a vector ~a of
constants s.t. ‖~x‖ = ‖~a‖, CQ(~a) is boolean. A vector
~a is an answer for a CCQ CQ(~x) w.r.t. structure IC ,
in symbols IC |= CQ(~a), iff there exists assignment
µ : {~y} → B s.t. IC |=

⋃
i=1,...,p qi(~a, ~y)[µ]. A vector

~a is a certain answer for a CCQ CQ(~x) over a quad-
system QSC , iff IC |= CQ(~a), for every model IC of
QSC . Given a quad-system QSC , a CCQ CQ(~x), and
a vector ~a, DP of determining whetherQSC |= CQ(~a)
is called the CCQ EP. It can be noted that the other
DPs over quad-systems, namely Quad/Quad-graph EP,
BR(s) EP, Quad-system EP, are reducible to the CCQ
EP (See property 6.6). Hence, in this paper, we primar-
ily focus on the CCQ EP.

3.1. dChase of a Quad-System

In order to build a procedure for query answering over
a quad-system, we employ what has been called in the
literature, a chase [19,20]. Specifically, we adopt no-
tions of the restricted chase in Fagin et al. [23] (also
called non-oblivious chase). In order to fit the frame-
work of quad-systems, we extend the standard notion
of chase to a distributed chase, abbreviated dChase.
In the following, we show how the dChase of a quad-
system can be constructed.

For a set of quad-patterns S and a set of terms T ,
we define the relation T -connectedness between quad-
patterns in S as follows:

– q1 and q2 are T -connected, if CV(q1)∩CV(q2)∩
T 6= ∅, for any two quad-patterns q1, q2 ∈ S,

– if q1 and q2 are T -connected, and q2 and q3 are T -
connected, then q1 and q3 are also T -connected,
for any quad-patterns q1, q2, q3 ∈ S.

It can be noted that T -connectedness is an equiv-
alence relation and partitions S into a set of T -
components (similar notion is called a piece in Baget
et al. [14]). Note that for two distinct T -components
P1, P2 of S, CV(P1) ∩ CV(P2) ∩ T = ∅. For
any BR r = body(r)(~x, ~z) → head(r)(~x, ~y), sup-
pose P1, P2, . . . , Pk are the pairwise distinct {~y}-
components of head(r)(~x, ~y), then r can be replaced
by the semantically equivalent set of BRs {body(r)(~x, ~z)
→ P1, . . . , body(r)(~x, ~z)→ Pk} whose symbol size is
worst case quadratic w.r.t. the symbol size of r. Hence,
w.l.o.g. we assume that for any BR r, the set of quad-
patterns head(r) is a single component w.r.t. the set of
existentially quantified variables in r.

6 Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ...

Considering the fact that the local semantics for con-
texts are fixed a priori (for instance RDFS), both the
number of rules in the set of local inference rules LIR
and the size of each rule in LIR can be assumed to be
a constant. Note that each local inference rule is range
restricted and do not contain existentially quantified
variables in its head. Any ir ∈ LIR is of the form:

∀~x∀~z [t1(~x, ~z) ∧ . . . ∧ tk(~x, ~z)→ t′1(~x)],

where ti(~x, ~z), for i = 1, . . . , n are triple patterns,
whose variables are from {~x} or {~z}, and t′1(~x) is a
triple pattern, whose variables are from {~x}. Hence,
for any quad-system QSC = 〈QC , R〉 in order to ac-
complish the effect of local inferencing in each context
c ∈ C, for each ir ∈ LIR of the form (4), we could
augment R with a BR irc of the form:

∀~x∀~z [c : t1(~x, ~z) ∧ . . . ∧ c : tk(~x, ~z)→ c : t′1(~x)]

Since ‖LIR‖ is a constant and the size of the augmen-
tation is linear in |C|, w.l.o.g we assume that the set R
contains a BR irc, for each ir ∈ LIR, c ∈ C.

Given a quad-system QSC , we denote by Bsk ⊆
B, a set of blank nodes with unique node ids called
Skolem blank nodes, s.t. Bsk ∩B(QSC) = ∅. For any
BR r = body(r)(~x, ~z)→ head(r)(~x, ~y) and an assign-
ment µ : {~x} ∪ {~z} → C, the application of µ on r is
defined as:

apply(r, µ) = head(r)[µext(~y)]

where µext(~y) ⊇ µ s.t. µext(~y)(yi) = _ : b is a fresh
blank node from Bsk, for each yi ∈ {~y}.

We assume that there exists an order ≺l (for in-
stance, lexicographic order) on the set of constants.
We extend ≺l to the set of quads s.t. for any two
quads c : (s, p, o) and c′ : (s′, p′, o′), c : (s, p, o) ≺l
c′ : (s′, p′, o′), iff c ≺l c′, or c = c′, s ≺l s′, or c =
c′, s = s′, p ≺l p′, or c = c′, s = s′, p = p′, o ≺l o′.
It can be noted that ≺l is a strict linear order over the
set of all quads. For any quad-graph QC , ≺l-greatest
quad of QC , denoted greatestQuad≺l

(QC), is the quad
q ∈ QC s.t. q′ ≺l q, for every other q′ ∈ QC . Also,
the order ≺q is defined over the set of quad-graphs as
follows: for any two quad-graphs QC , Q′C′ ,

QC ≺q Q′C′ , if (i) QC ⊂ Q′C′ ;
QC ≺q Q′C′ , if (i) does not hold and (ii) greatestQu-

-ad≺l
(QC \ Q′C′) ≺l greatestQuad≺l

(Q′C′ \ QC);
QC 6≺q Q′C′ , if both (i) and (ii) are not satisfied;

A relation R over a set A is called a strict linear order
iff R is irreflexive, transitive, and R(a, b) or R(b, a)
holds, for every distinct a, b ∈ A.

Property 3.1. LetQ be the set of all quad-graphs;≺q
is a strict linear order over Q.

Also, we define the level of a quad in dChase of a quad-
system QSC = 〈QC , R〉 as follows: any quad in QC
is of level 0. The level of a set of quads is the largest
among levels of quads in the set. Level of any quad that
results from the application of a BR r w.r.t. an assign-
ment µ is one more than the level of the set body(r)[µ],
if it has already not been assigned a level. Let ≺ be
an ordering on the quad-graphs s.t. for any two quad-
graphs Q′C′ and Q′′C′′ of the same level, Q′C′ ≺ Q′′C′′ ,
iff Q′C′ ≺q Q′′C′′ . For Q′C′ and Q′′C′′ of different levels,
Q′C′ ≺ Q′′C′′ , iff level of Q′C′ is less than level of Q′′C′′ .
It can easily be seen that ≺ is a strict linear order over
the set of quad-graphs. For any BRs r, r′ and assign-
ments µ, µ′ over V(body(r)),V(body(r′)), respec-
tively, (r, µ) ≺ (r′, µ′) iff body(r)[µ] ≺ body(r′)[µ′].
For any quad-graph Q′C′ , a set of BRs R, a BR r ∈ R,
an assignment µ ∈ V(body(r)) → C, the boolean
function applicableR(r, µ,Q′C′) is defined as:

True, if (a) body(r)[µ] ⊆ Q′C′ , head(r)[µ′′] 6⊆ Q′C′ ,
∀µ′′ ⊇ µ, and (b) 6 ∃r′ ∈ R, 6 ∃µ′s.t. r′ 6= r or
µ′ 6= µ with (r′, µ′) ≺ (r, µ) and applicableR(
r′, µ′, Q′C′);

False, otherwise;

For any quad-system QSC = 〈QC , R〉, let
dChase0(QSC) = QC ;
dChasei+1(QSC) = dChasei(QSC) ∪ apply(r,

µ), if there exists r = body(r)(~x, ~z)→ head(r)(~x, ~y)
∈R, assignment µ : {~x} ∪ {~z}→C s.t. applicableR(r,
µ, dChasei(QSC));
dChasei+1(QSC) = dChasei(QSC), otherwise;

for any i ∈ N. The dChase ofQSC , noted dChase(QSC),
is given as:

dChase(QSC) =
⋃
i∈N

dChasei(QSC)

Intuitively, dChasei(QSC) can be thought of as the
state of dChase(QSC) at the end of iteration i. It can
be noted that, if there exists i s.t. dChasei(QSC) =
dChasei+1(QSC), then dChase(QSC) = dChasei(
QSC). The dChase dChase(QSC) of a consistent
quad-system QSC is a universal model [29] of the
quad-system, i.e. it is a model of QSC , and for
any model IC of QSC , there is a homomorphism
from dChase(QSC) to IC . Hence, for any boolean
CCQ CQ(), QSC |= CQ() iff there exists a map

Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ... 7

µ : V(CQ) → C s.t. {CQ()}[µ] ⊆ dChase(QSC).
We call the sequence dChase0(QSC), dChase1(QSC),
..., the dChase sequence ofQSC . The following lemma
shows that in a dChase sequence of a quad-system, any
dChase iteration can be performed in time exponential
w.r.t the size of the largest BR.

Lemma 3.2. For a quad-system QSC = 〈QC , R〉, for
any i ∈ N+, the following holds: (i) dChasei(QSC)
can be computed in timeO(|R|∗‖dChasei−1(QSC)‖rs),
where rs = maxr∈R‖r‖. (ii) ‖dChasei(QSC)‖ =
O(‖dChasei−1(QSC)‖+ ‖R‖).

Proof. (i) We can first find, if there exists an r ∈ R, as-
signment µ s.t. applicableR(r, µ, dChasei−1(QSC))
holds, in the following naive way: (1) bind the set
of variables in all rules in R with the set of con-
stants in dChasei−1(QSC). Let this set be called S.
Note that |S| = O(|R| ∗ ‖dChasei−1(QSC)‖‖rs‖),
where rs = maxr∈R‖r‖. Also, note that each of
the binding in S is of the form body(r)(~x, ~z)(µ) →
head(r)(~x, ~y)(µ′) (♥), where r ∈ R. (2) From the
set S we filter out every binding of the form (♥)
in which ~x[µ] 6= ~x[µ′]. Let S′ be the resulting set
after the above filtering operation. (3) From the set
S′, we now filter out all the bindings of the form
(♥) with head(r)(~x, ~y)(µ′) ⊆ dChasei−1(QSC),
with resulting set S′′. (4) If S′′ = ∅, then there
no r ∈ R, assignment µ s.t. applicableR(r, µ,
dChasei−1(QSC)) is True. Otherwise if S′′ 6= ∅,
then note that each binding of the form (♥) in S′′

is s.t. condition (a) of the true applicableR(r, µ,
dChasei−1(QSC)) is satisfied. Now, we can sort
S′′ w.r.t. ≺ and select the least binding b of the
form (♥), so that condition (b) in True condition of
applicableR() is satisfied for b. It can easily seen that
applicableR(r, µ, dChasei−1(QSC)) holds for the
r, µ extracted from b. Since, the size of each bind-
ing is at most ‖rs‖, the operations (1)-(4) can be per-
formed in timeO(|R| ∗‖dChasei−1(QSC)‖rs). Since
dChasei(QSC) = dChasei−1(QSC) ∪ head(r)[µ],
for r, µ with applicableR(r, µ, dChasei−1(QSC)),
dChasei(QSC) can be computed in time O(‖dChas
ei−1(QSC)‖rs).

(ii) Trivially holds, since in the worst case dChasei(
QSC) = dChasei−1(QSC) ∪ head(r)[µ], for r ∈ R.

Lemma 3.3. For any quad-system QSC , If _ : b is a
Skolem blank node in dChase(QSC), generated by the
application of assignment µ on r = body(r)(~x, ~z)→

head(r)(~x, ~y), with µext(~y)(yj) = _ : b, yj ∈ {~y},
then _ : b is unique for (r, yj , ~x[µext(~y)]).

Proof. By contradiction, suppose if _ : b is not unique
for (r, yj , ~x[µext(~y)]), i.e. there exists _ : b′ 6= _ : b in
dChase(QSC), with _ : b′ generated by r s.t. _ : b′ =
µ′ext(~y)(yj) and ~x[µext(~y)] = ~x[µ′ext(~y)]. W.l.o.g. sup-
pose _ : b was generated in an iteration l ∈ N and _ : b′

in an iteration m > l. This means that head(r)(~x,
~y)[µext(~y)] ⊆ dChasel(QSC) and hence, head(r)(~x,
~y)[µext(~y)] ⊆ dChasem−1(QSC). This means that
applicableR(r, µ′, dChasem−1(QSC)) is false, as
µ′ = µ, and our assumption that _ : b′ = yj [µ

′ext(~y)] is
false. Hence, _ : b is unique for (r, yj , ~x[µext(~y)]).

Although, we now know how to compute the dChase
of a quad-system, which can be used for deciding CCQ
EP, the following proposition reveals that for the class
of quad-systems whose BRs are of the form (2), which
we call unrestricted quad-systems, the dChase can be
infinite.

Proposition 3.4. There exists unrestricted quad-systems
whose dChase is infinite.

Proof. Consider an example of a quad-system QSc =
〈Qc, r〉, where Qc = {c : (a, rdf:type, C)}, and
the BR r = c : (x, rdf:type, C) → ∃y c : (x, P ,
y), c : (y, rdf:type, C). The dChase computation
starts with dChase0(QSc) = {c : (a, rdf:type,
C)}, now the rule r is applicable, and its application
leads to dChase1(QSc) = {c : (a, rdf:type, C),
c : (a, P, _ : b1), c : (_ : b1, rdf:type, C)}, where
_ : b1 is a fresh Skolem blank node. It can be noted
that r is yet again applicable on dChase1(QSc), for
c : (_ : b1, rdf:type, C), which leads to the genera-
tion of another Skolem blank node, and so on. Hence,
dChase(QSc) does not have a finite fix-point, and
dChase(QSc) is infinite.

A class C of quad-systems is called a finite ex-
tension class (FEC), iff every member QSC ∈ C,
dChase(QSC) is a finite set. Therefore, the class of
unrestricted quad-systems is not a FEC. This raises
the question if there are other approaches that can
be used, for instance, a similar problem of non-finite
chase is manifested in description logics (DLs) with
value creation, due to the presence of existential quan-
tifiers, whereas the approaches like the one in Glimm
et al. [27] provides an algorithm for CQ entailment
based on query rewriting. The theorem 3.5 below es-
tablishes the fact that the CCQ EP for unrestricted

8 Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ...

quad-systems is undecidable. Despite this, the reader
should note that the following undecidability result
and its proof is only provided for the sake of self con-
tainedness, and we do not claim the undecidability the-
orem nor its proof to be a novel contribution, as we
will show in section 6, ternary ∀∃ rule sets are polyno-
mially reducible to unrestricted quad-systems. Hence,
the undecidability results provided in Baget et al. [14]
can trivially be applied in our setting to obtain the un-
decidability result for unrestricted quad-systems.

Theorem 3.5. The CCQ entailment problem over un-
restricted quad-systems is undecidable.

Proof. (sketch) We show that the well known un-
decidable problem of non-emptiness of intersection
of context-free grammars (CFGs) is reducible to the
CCQ entailment problem. Given two CFGs, G1 =
〈V1, T, S1, P1〉 and G2 = 〈V2, T, S2, P2〉, where
V1, V2 are the set of variables, T s.t. T ∩ (V1∪V2) = ∅
is the set of terminals. S1 ∈ V1 is the start symbol of
G1, and P1 are the set of PRs of the form v → ~w,
where v ∈ V , ~w is a sequence of the form w1...wn,
where wi ∈ V1 ∪ T . Similarly s2, P2 is defined. De-
ciding whether the language generated by the gram-
mars L(G1) and L(G2) have non-empty intersection
is known to be undecidable [32].

Given two CFGs G1 = 〈V1, T, S1, P1〉 and G2 =
〈V2, T, S2, P2〉, we encode grammars G1, G2 into a
quad-system QSc = 〈Qc, R〉, with only a single con-
text identifier c. Each PR r = v → ~w ∈ P1 ∪ P2, with
~w = w1w2w3..wn, is encoded as a BR of the form:
c : (x1, w1, x2), c : (x2, w2, x3), ..., c : (xn, wn, xn+1)
→ c : (x1, v, xn+1), where x1, .., xn+1 are variables.
For each terminal symbol ti ∈ T , R contains a BR of
the form: c : (x,rdf:type, C) → ∃y c : (x, ti, y),
c : (y, rdf:type,C) andQc is the singleton: { c : (a,
rdf:type, C)}. It can be observed that:

QSc |= ∃y c : (a, S1, y) ∧ c : (a, S2, y)⇔

L(G1) ∩ L(G2) 6= ∅

We refer the reader to Appendix for the complete
proof.

4. Safe, Msafe and Csafe Quad-Systems:
Decidable FECs

In the previous section, we saw that the query answer-
ing problem over unrestricted quad-systems is unde-
cidable, in general. We will also see in section 6 that

any quad-system is polynomially translatable to a ∀∃
rule set, which is also a first order logic theory. Hence,
a possible solution approach is to translate to these
more expressive languages, and apply well known tests
(see related work for details on such tests) available
in these languages to check if query answering is de-
cidable. If the translated quad-system passes one of
these tests, then query answering can be performed on
this translation using available algorithms in these ex-
pressive languages. But, such an approach is often dis-
couraged, because of the non-applicability of the al-
ready available tools and techniques available for rea-
soning over quads. Instead, we in the following define
three classes of quad-systems, namely SAFE, MSAFE
and CSAFE, that are FECs and for which query entail-
ment is decidable. Finiteness/Decidability is achieved
by putting certain restrictions (explained below) on the
blank nodes generated in the dChase.

Recall that, for any quad-system QSC the set of
blank-nodes B(dChase(QSC)) in its dChase(QSC)
not only contain blank nodes present in QSC i.e.
B(QSC), but also contain Skolem blank nodes that
are generated during the dChase construction process.
Note that the following relation holds: Bsk(dChase(
QSC)) = B(dChase(QSC)) \ B(QSC). We assume
w.l.o.g. that for any set of BRs R, any BR in R has a
unique rule identifier, and we often write ri for the BR
in R, whose identifier is i.

Definition 4.1 (Origin RuleId/Vector). For any Skolem
blank node _ : b, generated in the dChase by the appli-
cation of a BR ri = body(ri)(~x, ~z) → head(ri)(~x, ~y)
using assignment µ : {~x} ∪ {~z} → C, i.e. _ : b =
µext(~y)(yj), for some yj ∈ ~y, with ~x[µext(~y)] =
~w, we say the origin ruleId (resp. vector) of _ : b
is i (resp. ~w), noted originRuleId(_ : b) = i (resp.
originV ector(_ : b) = ~w).

As we saw in lemma 3.3, any such Skolem blank node
_ : b, generated in the dChase can uniquely be repre-
sented by the expression (i, j, ~w), where i is rule id, j
is identifier of the existentially quantified variable yj
in ri substituted by _ : b during the application of µ on
ri. Also in the above case, we denote relation between
each constant k = µext(~y)(xh), xh ∈ {~x}, to _ : b
with the relation childOf. Moreover, since children of a
Skolem blank node can be Skolem blank nodes, which
themselves can have children, one can naturally de-
fine relation descendantOf =childOf+ as the transitive
closure of childOf. Note that according to the above
definition, ‘descendantOf’ is not reflexive. In addition,
we could keep track of the set of contexts in which

Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ... 9

a blank-node was first generated, using the following
notion:

Definition 4.2 (Origin-contexts). For any quad-system
QSC and for any Skolem blank node _ : b ∈Bsk(dCha
se(QSC)), the set of origin-contexts of _ : b is given
by originContexts(_ : b) = {c | ∃i. c:(s, p, o) ∈
dChasei(QSC), s= _ : b or p= _ : b or o= _ : b, and
@j < i with c′:(s′, p′, o′) ∈ dChasej(QSC), s′ = _ : b
or p′ = _ : b or o′ = _ : b, for any c′ ∈ C}.

Intuitively, origin-contexts for a Skolem blank node
_ : b is the set of contexts in which triples containing
_ : b are first generated, during the dChase construc-
tion. Note that there can be multiple contexts to which
_ : b can simultaneously be generated. By setting
originRuleId(k) = n.d., (resp. originV ector(k) =
n.d., resp. originContexts(k) = n.d.,) where n.d.
is an ad hoc constant, for every k 6∈ Bsk(dChase(
QSC)), we extend the definition of origin ruleId, (resp.
origin vector, resp. origin-contexts) to all the constants
in the dChase of a quad-system.

Example 4.3. Consider the quad-system 〈QC , R〉,
where QC = {c1 : (a, b, c)}. Suppose R is the follow-
ing set:

R =

c1 : (x11, x12, z1)→ c2 : (x11, x12, y1) (r1)
c2 : (z21, z22, x2)→ c3 : (y21, y22, x2) (r2)
c3 : (z3, x31, x32)→ c2 : (y3, x31, x32) (r3)


Suppose that for brevity quantifiers have been omitted,
and variables of the form yi or yij are implicitly exis-
tentially quantified. Iterations during dChase construc-
tion are:

dChase0(QSC) = {c1:(a, b, c)}

dChase1(QSC) = {c1 : (a, b, c), c2 : (a, b, _ : b1)}

dChase2(QSC) = {c1:(a, b, c), c2 : (a, b, _ : b1),

c3 : (_ : b2, _ : b3, _ : b1)}

dChase3(QSC) = {c1:(a, b, c), c2(a, b, _ : b1), c3 : (

_ : b2, _ : b3, _ : b1), c2 : (_ : b4, _ : b3, _ : b1)}

dChase4(QSC) = dChase3(QSC),

Also note:
originRuleId(_ : b1) = 1, originRuleId(_ : b2) =
originRuleId(_ : b3) = 2, originRuleId(_ : b4) =
3,
originV ector(_ :b1) = 〈a, b〉, originV ector(_ :b2)
= originV ector(_ :b3) = 〈_ : b1〉, originV ector(
_ :b4) = 〈_ :b3, _ :b1〉,

_:b4

3, 〈_:b3, _:b1〉, {c2}

_:b3

2, 〈_:b1〉,
{c3}

_:b1

1, 〈a, b〉,
{c2}

a b

Fig. 1. descendance graph of _ :b4 in example 4.3. Note: n.d. labels
note shown

originContexts(_ :b1) = {c2}, originContexts(_ : b2
) = originContexts(_ : b3) = {c3}, originContexts(
_ : b4) = {c2},
Also _ : b1 descendantOf _ : b3, _ : b1 descendantOf
_ : b2, _ : b3 descendantOf _ : b4, _ : b1 descendantOf
_ : b4.

For any Skolem blank node _ : b (in dChase), its de-
scendant hierarchy can be analyzed using a descen-
dance graph 〈V,E, λr, λv, λc〉, which is a labeled
graph rooted at _ : b, whose set of nodes V are con-
stants in the dChase, the set of edges E is s.t. (k, k′) ∈
E, iff k′ is a descendant of k. λr, λv , λc are node la-
beling functions λr(k) = originRuleId(k), λv(k) =
originV ector(k), s.t. λc(k) = originContexts(k),
for any k ∈ V . Descendance graph for _ :b4 of exam-
ple 4.3 is shown in Fig.1. For any two vectors of con-
stants ~v, ~w, we note ~v ∼= ~w, iff there exists a bijection
µ : B(~v)→ B(~w) s.t. ~w = ~v[µ].

Definition 4.4 (safe, msafe, csafe quad-systems). A
quad-system QSC is said to be unsafe (resp. un-
msafe, resp. uncsafe), iff there exists Skolem blank
nodes _ : b 6= _ : b′ in dChase(QSC) s.t. _ : b is
a descendant of _ : b′, with originRuleId(_ : b) =
originRuleId(_ : b′) and originV ector(_ : b) ∼=
originV ector(_ : b′) (resp. originRuleId(_ : b) =
originRuleId(_ : b′), resp. originContexts(_ : b)
= originContexts(_ : b′)). A quad-system is safe
(msafe, csafe) iff it is not unsafe (resp. unmsafe, resp.
uncsafe).

Intuitively, safe, msafe and csafe quad-systems, does
not allow repetitive generation of Skolem blank-nodes
with a certain set of attributes in its dChase. The con-
tainment relation between the class of safe, msafe, and

10 Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ...

csafe quad-systems are established by the following
theorem:

Theorem 4.5. Let SAFE,MSAFE, and CSAFE denote
the class of safe, msafe, and csafe quad-systems, re-
spectively, then the following holds:

CSAFE ⊂ MSAFE ⊂ SAFE

Proof. We first show MSAFE ⊆ SAFE, by showing the
inverse inclusion of their compliments, i.e. UNSAFE ⊆
UNMSAFE. Suppose a given quad-system QSC is un-
safe, then by definition its dChase contains two distinct
Skolem blank nodes _ : b, _ : b′ s.t. _ : b is a descendant
of _ : b′, with originRuleId(_ : b) = originRuleId(
_ : b′) and originV ector(_ : b) ∼= originV ector(
_ : b′) But this implies that originRuleId(_ : b) =
originRuleId(_ : b′). Hence, by definition QSC is
unmsafe. Hence, UNSAFE ⊆ UNMSAFE (†)

Now, we show that CSAFE ⊆ MSAFE, by showing
that UNMSAFE ⊆ UNCSAFE. Suppose a given quad-
system QSC = 〈QC , R〉 is unmsafe, then by defi-
nition its dChase contains two distinct Skolem blank
nodes _ : b, _ : b′ s.t. _ : b is a descendant of _ : b′, with
originRuleId(_ : b) = originRuleId(_ : b′). But this
implies that there exists a BR ri = body(ri)(~x, ~z)
→ head(ri)(~x, ~y), assignment µ, (resp. µ′,) s.t. _ : b
(resp. _ : b′) was generated in dChase(QSC) as result
of application of µ (resp. µ′) on ri. That is _ : b =
yj [µ

ext(~y)], and _ : b′ = yk[µ′ext(~y)], where yj , yk ∈ ~y.
We have the following two subcases (i) j = k, (ii) j 6=
k: Suppose j = k, then it immediately follows that
originContexts(_ : b) = originContexts(_ : b′).
Hence, QSC is uncsafe. Suppose j 6= k, then by con-
struction of dChase, on application of µ′ on ri, along
with _ : b′, there gets also generated a Skolem blank
node _ : b′′ = yj [µ

′ext(~y)], with yj ∈ ~y. Since, _ : b
and _ : b′′ are generated by substitutions of the same
variable yj ∈ ~y of BR ri, originContexts(_ : b) =
originContexts(_ : b′′). Also since childOf(_ : b′) =
childOf(_ : b′′) = {~x[µ′ext(~y)]}, _ : b is a descendant of
_ : b′′. Hence, by definition, it holds that QSC is unc-
safe. Hence, UNMSAFE ⊆ UNCSAFE (‡).

From † and ‡, it follows that CSAFE ⊆ MSAFE ⊆
SAFE. To show that the containments are strict, con-
sider the quad-system QSC in example 4.3. By defini-
tion, QSC is msafe, however uncsafe, as the Skolem
blank nodes _ : b1, _ : b4, which have the same origin
contexts are s.t. _ : b1 is a descendant of _ : b4. Hence,
CSAFE ⊂ MSAFE. For MSAFE ⊂ SAFE, the following
example shows an instance of a quad-system that is
unmsafe, yet is safe.

Example 4.6. whereQC = {c1 : (a, b, c), c2 : (c, d, e)}
R is given by:

c1 : (x11, x12, x13), c2 : (x13, x14, z1)→ c3 : (y1,

x11, x12), c4 : (x12, x13, x14) (r1)

c3 : (x21, a, x22), c4 : (x22, x23, x24)→ c1 : (x21, a,

x22), c2 : (x22, x23, x24) (r2)

c3 : (x21, x22, a), c4 : (a, x23, x24)→ c1 : (x21,

x22, a), c2 : (a, x23, x24) (r3)

c3 : (x21, x22, x23), c4 : (x23, a, x24)→ c1 : (x21,

x22, x23), c2 : (x23, a, x24) (r4)

c3 : (x21, x22, x23), c4 : (x23, x24, a)→ c1 : (x21,

x22, x23), c2 : (x23, x24, a) (r5)

Note that for brevity quantifiers have been omitted, and
variables of the form yi or yij are implicitly existen-
tially quantified. Iterations during dChase construction
are:

dChase0(QSC) = {c1:(a, b, c), c2:(c, d, e)}

dChase1(QSC) = dChase0(QSC) ∪ {c3 : (_ : b1,

a, b), c4 : (b, c, d)}

dChase2(QSC) = dChase1(QSC) ∪ {c1 : (_ : b1,

a, b), c2 : (b, c, d)}

dChase3(QSC) = dChase2(QSC) ∪ {c3 : (_ : b2,

_ : b1, a), c4 : (a, b, c)}

dChase4(QSC) = dChase3(QSC) ∪ {c1 : (_ : b2,

_ : b1, a), c2 : (a, b, c)}

dChase5(QSC) = dChase4(QSC) ∪ {c3 : (_ : b3,

_ : b2, _ : b1), c4 : (_ : b1, a, b)}

dChase6(QSC) = dChase5(QSC) ∪ {c1 : (_ : b3,

_ : b2, _ : b1), c2 : (_ : b1, a, b)}

dChase7(QSC) = dChase6(QSC) ∪ {c3 : (_ : b4,

_ : b3, _ : b2), c4 : (_ : b2, _ : b1, a)}

dChase8(QSC) = dChase7(QSC) ∪ {c1 : (_ : b4,

_ : b3, _ : b2), c2 : (_ : b2, _ : b1, a)}

dChase9(QSC) = dChase8(QSC) ∪ {c3 : (_ : b5,

_ : b4, _ : b3), c4 : (_ : b3, _ : b2, _ : b1)}

dChase(QSC) = dChase9(QSC)

Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ... 11

It can be seen that _ : b1, _ : b2, _ : b3, _ : b4, _ : b5 form
a descendant chain, since _ : bi descendantOf _ : bi+1,
for each i = 1, . . . , 4. Also, originRuleId(_ : bi) =
originRuleId(_ : bi+1), for each i = 1, . . . , 4. Hence,
it turns out that QSC is unmsafe. However, it can be
seen that originV ector(_ : bi) 6∼= originV ector(_ : bj),
for 1 ≤ i 6= j ≤ 5, and hence, by definition,QSC is safe
with a terminating dChase. It can be noticed that dur-
ing each distinct application of r1, the vector of con-
stants bound to the vector of variables 〈x11, . . . , x14〉
are different w.r.t ∼=. Safe quad-systems in this way
are capable of recognizing such positive cases of fi-
nite dChases, which are classified as negative cases
by msafe quad-systems, by also keeping track of the
origin vectors of Skolem blank-nodes in its dChase.

The following property shows that for a safe quad-
system, the descendance graph of any Skolem blank
node in its dChase is a directed acyclic graph (DAG):

Property 4.7 (DAG property). For a safe (csafe,
msafe) quad-system QSC , and for any blank node
b ∈ Bsk(dChase(QSC)), its descendance graph is a
DAG.

Proof. By construction, as there exists no descen-
dant for any constant k ∈ C(QSC), there cannot
be any out-going edge from any such k. Hence, any
member of C(QSC) cannot be involved in cycles.
Therefore, the only members that can be involved
can be the members of C(dChase(QSC))−C(QSC)
= Bsk(dChase(QSC)). But if there exists _ : b ∈
Bsk(dChase(QSC)), s.t. there exists a cycle through
_ : b, then this implies that _ : b is a descendant of _ : b.
Since this would violate the prerequisites of being safe
(resp. csafe, resp. msafe), and imply that QSC is un-
safe (resp. uncsafe, resp. unmsafe), which is a contra-
diction.

Since the descendance graph G of any Skolem blank
node _ : b ∈ Bsk(dChase(QSC)) is s.t. G is rooted at
_ : b and is acyclic, any directed path from _ : b termi-
nates at some node. Hence, one can use a tree traversal
technique, such as preorder (visit a node first and then
its children) to sequentially traverse nodes in G. The
algorithm 1 takes a descendance graph G and unravels
it into a tree. The algorithm first removes all the transi-
tive edges from G, i.e. if there are v, v′, v′′ ∈ V , with
(v, v′), (v′, v′′), (v, v′′) ∈ E, then it removes (v, v′′).
Note that, in the resulting graph, the presence of a path
from v to v′′ still gives us the information that v′′ is
a descendant of v. The algorithm then traverses the

Algorithm 1:
UnRavel (Descendance GraphG)
/* procedure to unravel, a descendance graph

into a tree */
Input : descendance graphG = 〈V,E, λr, λv, λc〉
Output: A labeled TreeG
begin

G = 〈V,E, λr, λv, λc〉 := RemoveTranstiveEdges(G);
foreach Node vo ∈ preOrder(G) do

if (k = indegree(vo)) > 1 then
{v1, ..., vk} :=getFreshNodes();/* each

vi 6∈ V is fresh */
/* replace old node vo by the fresh

nodes in V */
removeNodeFrom(vo, V);
addNodesTo({v1, ..., vk}, V);
foreach (vo, v

′) ∈ E do
/* replace each outgoing edge

from vo with a fresh outgoing
edges from each fresh node vi
*/

removeEdgeFrom((vo, v′), E);
addEdgesTo({(v1, v′), ..., (vk, v′)}, E);

i := 1;
foreach (v′, vo) ∈ E do

/* replace each incoming edge of
vo with an incoming edge for a
unique vi */

removeEdgeFrom((v′, vo), E);
addEdgeTo((v′, vi), E);
i++;

/* restrict node labels to the updated set
of nodes in V */

λr := λr|V , λv := λv|V , λc := λc|V ;
returnG;

graph in preorder fashion, as it encounters a node v,
if v has an indegree k greater than one, it replaces v
with k fresh nodes v1, ..., vk, and distributes the set of
edges incident to v across v1, ..., vk, s.t. (i) each vi has
at-most one incoming edge (ii) all the edges incident
to v are incident to some vi, i ∈ {1, . . . , k}. Whereas
out going edges of v are copied for each vi. Hence,
after the above operation each vi has an indegree 1,
whereas outdegree of vi is same as the outdegree of v,
i ∈ {1, . . . , k}. Hence, after all the nodes are visited,
every node except the root in the new graph G has an
indegree 1. G is still rooted, connected, acyclic, and is
hence a tree. The algorithm terminates as there are no
cycles in graph, and at some point reaches a node with
no children. For instance, the unraveling of the descen-
dance graph of _ :b4 in Fig. 1 is shown in Fig. 2. The
following property holds for any Skolem blank node
of a safe quad-system.

Property 4.8. For a safe quad-systemQSC = 〈QC , R〉,
and any Skolem blank node in dChase(QSC), the un-
raveling (Algorithm 1) of its descendance graph re-
sults in a tree t = 〈V , E, λr, λv , λc〉 s.t.:

12 Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ...

_:b4

3, 〈_:b3, _:b1〉, {c2}

_:b3

2, 〈_:b1〉,
{c3}

_:b1

1, 〈a, b〉,
{c2}

_:b1

1, 〈a, b〉,
{c2}

a b

a b

Fig. 2. descendance graph of Fig. 1 unraveled into a tree. Note: n.d.
labels are not shown

1. any leaf node of t is from the set C(QSC),
2. any non-leaf node of t is from the set Bsk(
dChase(QSC)),

3. order(t) ≤ w, where w = maxr∈R|fr(r)|,
4. there cannot be a path between b 6= b′ ∈ V , with
λr(b) = λr(b

′) and λv(b) ∼= λv(b
′),

5. there cannot be a path between b 6= b′ ∈ V , with
λr(b) = λr(b

′), if QSC is also msafe,
6. there cannot be a path between b 6= b′ ∈ V , with
λc(b) = λc(b

′), if QSC is also csafe.

Proof. 1. Since any node n in the descendance
graph is s.t. n ∈ C(dChase(QSC)), and since
C(dChase(QSC)) = C(QSC)]Bsk(dChase(
QSC)). Since any member m ∈ Bsk(dChase(
QSC)) is generated from an application of a BR
with an assignment µ s.t. its frontier variables
are assigned by µ with a set of constants, m has
at-least one child. But, since n is a leaf node,
n ∈ C(QSC).

2. Since any member m ∈ C(QSC) cannot have
descendants and since any non-leaf node has
children, m cannot be a non-leaf node. Hence,
non-leaf nodes should be from Bsk(dChase(
QSC)).

3. The order of t is the maximal outdegree among
the nodes of t, and outdegree of a node is the
number of children it has. Since any node in t
with non-zero outdegree is a Skolem blank-node

_ : b generated by application of an assignment µ
on r = body(r)(~x, ~z)→ head(r)(~x, ~y) ∈ R, the
number of children _ : b has equals ‖~x‖. Hence,
order of t is bounded by w.

4. Since any path from b to b′ implies that b′ is
a descendant of b, it should be the case that
λr(b) 6= λr(b

′) or λv(b) 6= λv(b
′) otherwise

safety condition would be violated.
5. Similar to above, immediate by definition.
6. Similar to above, immediate by definition.

The property above is exploited to show that there ex-
ists a finite bound in the dChase size and its computa-
tion time.

Lemma 4.9. For any safe/msafe/csafe quad-system
QSC = 〈 QC , R〉, the following holds: (i) the dChase
size ‖dChase(QSC)‖=O(22

‖QSC‖), (ii) dChase(QSC)
can be computed in 2EXPTIME, (iii) if ‖R‖ and the
set of schema triples in QC is fixed to a constant, then
‖dChase(QSC)‖ is a polynomial in ‖QSC‖ and can
be computed in PTIME.

Proof. The proofs are provided for safe quad-systems,
but since CSAFE ⊂ MSAFE ⊂ SAFE and since we are
giving upper bounds, they also propagate trivially to
msafe and csafe quad-systems.

(i) For any blank node in dChase(QSC), the size of
its originVector is upper bounded byw = maxr∈R|fr(
r)|. If S is the set of all origin vectors of blank-
nodes in dChase(QSC), then cardinality of the set
S′ = S\ ∼= is upper bounded by (|U(QSC)| +
|L(QSC)|+w)w, which means that S′ = O(2‖QSC‖).
Also, since the set of origin ruleId labels, Rids,
can at most be |R|, hence the cardinality of the set
Rids × S′ = O(2‖QSC‖). For the descendance tree
t of any Skolem blank node of dChase(QSC), since
there cannot be paths in t between distinct b and
b′, s.t. originRuleId(b) = originRuleId(b′) and
originV ector(b) ∼= originV ector(b′), the length of
any such path is upper bounded by Rids × S′ =
O(2‖QSC‖). However, it turns out that this above upper
bound provided is loose, as there is the need of addi-
tional filter BRs to transform/back-propagate vectors
of constants associated with Skolem blank nodes gen-
erated by repetitive application of the same BR. For
instance, consider the set of BRs in eg: 4.6. The BR
r1 transforms the origin vector to a new vector each
time during its application. BRs r2 - r5 deals with back
propagation of these vectors back to input origin vec-
tors of BR r1. Hence, such filter BRs rule out the case

Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ... 13

of a BR being applied to a quad that contains a Skolem
blank node that was generated using the same BR on
an isomorphic origin vector, ensuring that the safety
criteria for Skolem blank-nodes generated is not vio-
lated. It turns out that the number of such filter BRs
required is polynomial w.r.t. to the number of descen-
dants with the same rule id, for a node in t. Hence,
it turns out the depth of t is polynomially bounded
by ‖R‖. (Note that depth of t is bounded by |R| for
msafe quad-systems. Also since, the set of origin con-
text labels are bounded by the set of existential vari-
ables in R, depth of t is bounded by ‖R‖ for csafe
quad-systems.) Also order of the tree is bounded by w.
Hence, any such tree can have at most O(2‖QSC‖) leaf
nodes,O(2‖QSC‖) inner nodes, andO(2‖QSC‖) nodes.
Since each of the leaf nodes can only be from C(QSC)
and each of the inner nodes correspond to an existen-
tial variable in R, the number of such possible trees
are clearly bounded double exponentially in ‖QSC‖,
hence bounds the number of Skolem blank nodes gen-
erated in the dChase.

(ii) From (i) ‖dChase(QSC)‖ is double exponen-
tial in ‖QSC‖, and since each iteration add at-least
one quad to its dChase, the number of iterations
are bounded double exponentially in ‖QSC‖. Also,
by lemma 3.2 any iteration i can be done in time
O(‖dChasei−1(QSC)‖‖R‖). Hence, by using (i), we
get ‖dChasei−1(QSC)‖ = O(22

‖QSC‖). Hence, we
can infer that each iteration i can be done in time
O(2‖R‖∗2

‖QSC‖). Also since the number of iterations
is double exponential, computing dChase(QSC) is in
2EXPTIME.

(iii) Since ‖R‖ is fixed to a constant, the set of
existential variables is also a constant. Also in this
case, since the size of the frontier of any r ∈ R is
also a constant, the order and depth of any descendant
tree t of a Skolem blank node is a constant. Hence,
the number of (leaf) nodes of t is bounded by a con-
stant. Also in this setting, the label of inner nodes of
t, which correspond to existential variables, is also a
constant, and the leaf nodes of t can only be a con-
stant in C(QSC). Hence, the number of descendant
trees and consequentially, the number of Skolem blank
nodes generated is bounded by O(|C(QSC)|z), where
z is a constant. Hence, the set of constants generated
in dChase(QSC) is a polynomial in ‖QSC‖, and so is
‖dChase(QSC)‖.

Since in any dChase iteration except the final one,
at least one quad should be added, and also since the
final dChase can have at most O(‖QSC‖z) triples, the
total number of iterations are bounded byO(‖QSC‖z)

(†). By lemma 3.2, since any iteration i can be com-
puted in O(‖dChasei−1(QSC)‖‖R‖) time, and since
‖R‖ is a constant, the time required for each iteration is
a polynomial in ‖dChasei−1(QSC)‖, which is at most
a polynomial in ‖QSC‖. Hence, any dChase iteration
can be performed in polynomial time in size of QSC
(‡). From (†) and (‡), it can be concluded that dChase
can be computed in PTIME.

Lemma 4.10. For any safe/msafe/csafe quad-system,
the following holds: (i) data complexity of CCQ entail-
ment is in PTIME, (ii) combined complexity of CCQ
entailment is in 2EXPTIME.

Proof. Note that the proofs are provided for safe quad-
systems, but since CSAFE ⊂ MSAFE ⊂ SAFE and since
we are giving upper bounds, they also propagate triv-
ially to msafe and csafe quad-systems.

Given a safe quad-system QSC = 〈QC , R〉, since
dChase(QSC) is finite, a boolean CCQ CQ() can
naively be evaluated by binding the set of constants
in the dChase to the variables in the CQ(), and then
checking if any of these bindings are contained in
dChase(QSC). The number of such bindings can at
most be ‖dChase(QSC)‖‖CQ()‖ (†).

(i) Since for data complexity, the size of the BRs
‖R‖, the set of schema triples, and ‖CQ()‖ is fixed
to constant. From lemma 4.9 (iii), we know that un-
der the above mentioned settings the dChase can be
computed in PTIME and is polynomial in the size of
QSC . Since ‖CQ()‖ is fixed to a constant, and from
(†), binding the set of constants in dChase(QSC) on
CQ() still gives a number of bindings that is worst
case polynomial in the size of ‖QSC‖. Since member-
ship of these bindings can checked in the polynomially
sized dChase in PTIME, the time required for CCQ
entailment is in PTIME.

(ii) Since in this case ‖dChase(QSC)‖ = O(22
‖QSC‖)

(‡), from (†) and (‡), binding the set of constants in
dChase(QSC) toCQ() amounts toO(2‖CQ()‖∗2‖QSC‖)
number of bindings. Since the dChase is double expo-
nential in ‖QSC‖, checking the membership of each of
these bindings can be done in 2EXPTIME. Hence, the
combined complexity is in 2EXPTIME.

Theorem 4.11. For any safe/msafe/csafe quad-system,
the following holds: (i) The data complexity of CCQ
entailment is PTIME-complete (ii) The combined
complexity of CCQ entailment is 2EXPTIME-complete.

14 Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ...

Proof. (i)(Membership) See lemma 4.10 for the mem-
bership in PTIME.
(Hardness) Follows from the PTIME-hardness of data
complexity of CCQ entailment for Range-Restricted
quad-systems (Theorem 5.2), which are contained in
safe/msafe/csafe quad-systems.
(ii) (Membership) See lemma 4.10.
(Hardness) See following heading.

4.1. 2EXPTIME-Hardness of CCQ Entailment

In this subsection, we show that the combined com-
plexity of the decision problem of CCQ entailment
for context acyclic quad-systems is 2EXPTIME-hard.
We show this by reduction of the word-problem of
a 2EXPTIME deterministic turing machine (DTM) to
the CCQ entailment problem. A DTM M is a tuple
M = 〈Q,Σ,∆, q0, qA〉, where

– Q is a set of states,
– Σ is a finite set of letters that includes the blank

symbol �,
– ∆: (Q×Σ)→ (Q×Σ× {+1,−1}) is the tran-

sition function,
– q0 ∈ Q is the initial state.
– qA ∈ Q is the accepting state.

W.l.o.g. we assume that there exists exactly one ac-
cepting state, which is also the lone halting state. A
configuration is a word ~α ∈ Σ∗QΣ∗. A configuration
~α2 is a successor of the configuration ~α1, iff one of the
following holds:

1. ~α1 = ~wlqσσr ~wr and ~α2 = ~wlσ
′q′σr ~wr, if

∆(q, σ) = (q′, σ′, R), or
2. ~α1 = ~wlqσ and ~α2 = ~wlσ

′q′�, if ∆(q, σ) =
(q′, σ′, R), or

3. ~α1 = ~wlσlqσ ~wr and ~α2 = ~wlq
′σlσ

′ ~wr, if
∆(q, σ) = (q′, σ′, L).

where q, q′ ∈ Q, σ, σ′, σl, σr ∈ Σ, and ~wl, ~wr ∈ Σ∗.
Since number of configurations can at most be doubly
exponential in the size of the input string, and since
2EXPTIME ⊆ 2EXPSPACE, the number of tape cells
traversed by the DTM tape head is also bounded dou-
ble exponentially. A configuration ~c = ~wlq ~wr is an ac-
cepting configuration iff q = qA. A language L ⊆ Σ∗

is accepted by a 2EXPTIME bounded DTM M , iff for
every ~w ∈ L, M accepts ~w in time O(22

‖~w‖
).

Simulating DTMs using Safe Quad-Systems Con-
sider a double exponential time bounded DTM M =
〈Q,Σ,∆, q0, qA〉, and a string ~w, with ‖~w‖ = n.

In order to simulate M , we construct a quad-system
QSMC = 〈QMC , R〉, where C = {c1, ..., cn}, whose
various elements represents the constructs of M . We
follow the technique in works such as [34,36] to iter-
atively generate a doubly exponential number of ob-
jects that represent the cells of the tape of the DTM.
Let QMC be initialized with the following quads:

c0 : (k0,rdf:type, R), c0 : (k1,rdf:type, R),

c0 : (k0,rdf:type,min0), c0 : (k1,rdf:type,

max0), c0 : (k0, succ0, k1)

Now for each pair of elements of type R in ci, a
Skolem blank-node is generated in ci+1, and hence fol-
lows the recurrence relation r(m+ 1) = [r(m)]2, with
seed r(1) = 2, which after n iterations yields 22

n

. In
this way, a doubly exponential long chain of elements
is created in cn using the following set of rules:

ci : (x0,rdf:type, R), ci : (x1,rdf:type, R)→

∃y ci+1 : (x0, x1, y), ci+1 : (y,rdf:type, R) (eBr)

The combination of minimal element with the minimal
element (elements of type mini) in ci create the mini-
mal element in ci+1, and similarly the combination of
maximal element with the maximal element (elements
of typemaxi) in ci create the maximal element of ci+1

ci+1 : (x0, x0, x1), ci : (x0,rdf:type,mini)→

ci+1 : (x1,rdf:type,mini+1)

ci+1 : (x0, x0, x1), ci : (x0,rdf:type,maxi)→

ci+1 : (x1,rdf:type,maxi+1)

Successor relation succi+1 is created in ci+1 using the
following set of rules, using the well-known, integer
counting technique:

ci : (x1, succi, x2), ci+1 : (x0, x1, x3),

ci+1 : (x0, x2, x4)→ ci+1 : (x3, succi+1, x4)

ci : (x1, succi, x2), ci+1 : (x1, x3, x5), ci+1 : (x2,

x4, x6), ci : (x3,rdf:type,maxi), ci : (x4,

rdf:type,mini)→ ci+1 : (x5, succi+1, x6)

Each of the above set rules are instantiated for 0 ≤ i <
n, and in this way after n generating dChase iterations,
cn has doubly exponential number of elements of type
R, that are ordered linearly using the relation succn.
By virtue of the first rule below, each of the objects

Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ... 15

representing the cells of the DTM are linearly ordered
by the relation succ. Also the transitive closure of succ
is defined as the relation relation succt

cn : (x0, succn, x1)→ cn : (x0, succ, x1)

cn : (x0, succ, x1)→ cn : (x0, succt, x1)

cn : (x0, succt, x1), cn : (x1, succt, x2)

→ cn : (x0, succt, x2)

Also using a similar construction, we could reuse the
22

n−1

linearly ordered elements in cn−1 to create an-
other linearly ordered chain of double exponential
number of objects in cn that represents configurations
of M , whose minimal element is of type conInit, and
the linear order relation being conSucc.

Various triple patterns that are used to encode the
possible configurations, runs and their relations in M
are:

(x0, head, x1) denotes the fact that in configuration
x0, the head of the DTM is at cell x1.

(x0, state, x1) denotes the fact that in configuration
x0, the DTM is in state x1.

(x0, σ, x1) where σ ∈ Σ, denotes the fact that in con-
figuration x0, the cell x1 contains σ.

(x0, succ, x1) denotes the linear order between cells
of the tape.

(x0, succt, x1) denotes the transitive closure of succ.
(x0, conSucc, x1) to denote the fact that x1 is a suc-

cessor configuration of x0.
(x0,rdf:type, Accept) denotes the fact that the

configuration x0 is an accepting configuration.

Since in our construction, each σ ∈ Σ is represented as
relation, we could constrain that no two letters σ 6= σ′

are on the same cell using the following axiom:

cn : (z1, σ, z2), cn : (z1, σ
′, z2)→

for each σ 6= σ′ ∈ Σ. Note that the above BR has an
empty head, is equivalent to asserting the negation of
its body.

Initialization Suppose the initial configuration is
q0 ~w�, where ~w = σ0...σn−1, then we enforce this

using the following BRs in our quad-system QSMC as:

cn : (x0,rdf:type, conInit), cn : (x1,rdf:type,

minn)→ cn : (x0, head, x1), cn : (x0, state, q0)

cn : (x0,rdf:type,minn) ∧
n−1∧
i=0

cn : (xi, succ,

xi+1) ∧ cn : (xj ,rdf:type, conInit)→
n−1∧
i=0

cn : (xj , σi, xi) ∧ cn : (xj ,�, xn)

cn : (xj ,rdf:type, conInit), cn : (xj ,�, x0), cn :

(x0, succt, x1)→ cn : (xj ,�, x1)

The last BR copies the � to every succeeding cell in
the initial configuration.

Transitions For every left transition ∆(q, σ) = (qj ,
σ′, −1), the following BR:

cn : (x0, head, xi), cn : (x0, σ, xi), cn : (x0, state, q),

cn : (xj , succ, xi), cn : (x0, conSucc, x1)→ cn : (x1,

head, xj), cn : (x1, σ
′, xi), cn : (x1, state, qj)

For every right transition ∆(q, σ) = (qj , σ
′,+1), the

following BR:

cn : (x0, head, xi), cn : (x0, σ, xi), cn : (x0, state, q),

cn : (xi, succ, xj), cn : (x0, conSucc, x1),→ cn : (x1,

head, xj), cn : (x1, σ
′, xi), cn : (x1, state, qj)

Inertia If in any configuration the head is at cell i
of the tape, then in every successor configuration, ele-
ments in preceding and following cells of i in the tape
are retained. The following two BRs ensures this:

cn : (x0, head, xi), cn : (x0, conSucc, x1), cn : (xj ,

succt, xi), cn : (x0, σ, xj)→ cn : (x1, σ, xj)

cn : (x0, head, xi), cn : (x0, conSucc, x1), cn : (xi,

succt, xj), cn : (x0, σ, xj)→ cn : (x1, σ, xj)

The rules above are instantiated for every σ ∈ Σ.

Acceptance A configuration whose state is qA is ac-
cepting:

cn : (x0, state, qA)→ cn : (x0,rdf:type, Accept)

If a configuration of accepting type is reached, then
it can be back propagated to the initial configuration,

16 Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ...

using the following BR:

cn : (x0, conSucc, x1), cn : (x1,rdf:type, Accept)

→ cn : (x0,rdf:type, Accept)

Finally since M accepts ~w iff the initial configura-
tion is an accepting configuration. Let CQM be CCQ:
∃y cn(y, rdf:type, conInit), cn : (y, rdf:type,
Accept). It can easily be verified that QSMC |= CQM

iff the initial configuration is an accepting configura-
tion. In order to prove the soundness and completeness
of our simulation, we prove the following claims:

Claim (1) The quad-system QSMC in the aforemen-
tioned simulation is a csafe quad-system

It can be noted that only BRs in which existentials are
present are the BRs used to generate the double expo-
nential chain of tape cells and configurations, and are
of the form (eBr). Note that in each of application of
such a BR, a blank-node _ : b generated in a context ci,
for any i = 1, . . . , n, is s.t. originContexts(_ : b) =
{ci} and has exactly two child blank-nodes, each of
whose origin contexts is {ci−1}. Hence, any Skolem
blank-node generated in any ci, for i = 1 . . . n is s.t.
its child blank-nodes has origin contexts ci−1. Thanks
to the above property, it turns out there exists no two
blank-nodes _ : b, _ : b′ in the dChase of QSMC s.t. _ : b
is a descendant of _ : b′ and originContexts(_ : b) =
originContexts(_ : b′). Therefore QSMC is csafe.

Claim (2) QSMC |= CQM iff M accepts ~w.

Suppose that QSMC |= CQM , then it holds that in
any model IC = {Ici}i=1...n of QSMC , IC |= CQM ,
which implies that Icn has an object o in its domain
s.t. o ∈ conInitcn and o ∈ Acceptcn . But thanks to
the acceptance axioms it follows that there exists an
object o′ s.t. (o, o′) in the reflexive-transitive closure
of conSucccn s.t. o′ ∈ Acceptcn . Also thanks to the
initialization axioms, it can be seen that o represents
the initial configuration of M i.e. it represents the con-
figuration in which the initial state is q0, and the left
end of the read-write tape contains ~w followed by trail-
ing �s, with the read-write head positioned at the first
cell of the tape. Also the transition axioms makes sure
that if (o, o′′) ∈ conSucccn , then o′′ represents a suc-
cessor configuration of o. That is, if o represents the
configuration in which M is at state q with read-write
head at position pos of the tape that contains a letter
σ ∈ Σ, and if ∆(q, σ) = (q′, σ′, D), then o′′ repre-
sents the configuration in whichM is at state q′, which
read-write head at the position pos − 1/pos + 1 de-

pending on whether D = −1/ + 1, and σ′ at the po-
sition pos − 1/pos + 1 of the tape. As a consequence
of the above arguments, it follows that o′ represents an
accepting configuration of M , i.e. a configuration in
which the state is qA, the lone accepting, halting state.
This means that M accepts the string ~w.

For the converse, we briefly show that if QSMC 6|=
CQM then M does not accept ~w. Suppose that
QSMC 6|= CQM , then this implies that there exists a
model IC = {Ici}i=1...n of QSMC , s.t. IC 6|= CQM .
This means that no object in the domain of Icn exists
that is a member of both conInitcn and Acceptcn . By
the initialization axioms, we know that there exists an
object o in the domain of Icn with o ∈ conInitcn and
by preceding discussion, we know that o represents
the initial configuration of M . Also by the initial con-
struction axioms of QSMC , we know that o is the ini-
tial element of a double exponential chain of objects
that are linearly ordered by property symbol conSucc.
From transition axioms we know that for any o′′ s.t.
(o, o′′) ∈ conSucccn , then o′′ represents a valid suc-
cessor configuration of o, which itself holds for o′′,
and so on. This means that for none of the succeeding
double exponential configurations of M , the accept-
ing state qA holds. This means that M does not reach
an accepting configuration with string ~w, and hence
rejects it.

Since the construction above shows the existence of
a polynomial time reduction of the word problem of a
2EXPTIME DTM, which is a 2EXPTIME-hard prob-
lem, to the CCQ entailment problem over csafe quad-
systems, it immediately follows that CCQ entailment
over csafe/msafe/safe quad-systems is 2EXPTIME-
hard.

4.2. Procedure for detecting safe/msafe/csafe
quad-systems

In this subsection, we present a procedure for deciding
whether a given quad-system is safe (resp. msafe, resp.
csafe) or not. If the quad-system is safe (resp. msafe,
resp. csafe), the result of the procedure is a safe dChase
(resp. msafe dChase, csafe dChase) that contains the
standard dChase, and can be used for query answer-
ing. Since safety (resp. msafety, resp. csafety) prop-
erty of a quad-system is attributed to the dChase of the
quad-system, the procedure nevertheless performs the
standard operations for computing the dChase, but also
generate quads that indicate origin ruleIds and origin
vectors (resp. origin ruleIds, resp. origin-contexts) of
each Skolem blank node generated. In each iteration, a

Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ... 17

test for safety is performed, by checking the presence
of Skolem blank-nodes that violates the safety (resp.
msafety, resp. csafety) condition. In case a violation
is detected, a distinguished constant is generated and
the safe (resp. msafe, resp. csafe) dChase construction
is aborted, prematurely. On the contrary, if there ex-
ists an iteration in which no new quad is generated,
the safe (resp. msafe, resp. csafe) dChase computation
stops with a completed safe (resp. msafe, resp. csafe)
dChase that contains the standard dChase. Since all the
additional quads produced for accounting information,
uses a distinguished context identifier cc 6∈ C, the com-
puted safe (resp. msafe, resp. csafe) dChase itself can
be used for standard query answering. Before geting to
the details of the procedure, we give a few necessary
definitions.

Definition 4.12 (Context Scope). The context scope
of a term t in a set of quad-patterns Q, denoted by
cScope(t, Q) is given as: cScope(t, Q) = {c | c : (s,
p, o) ∈ Q, s = t ∨ p = t ∨ o = t}.
For any quad-system QSC = 〈QC , R〉, let cc be an
ad hoc context identifier s.t. cc 6∈ C, then for ri =
body(ri)(~x, ~z)→ head(ri)(~x, ~y)∈R, we define trans-
formations augS(ri), augM(ri), augC(ri) as fol-
lows:

augS(ri) = body(ri)(~x, ~z)→ head(ri)(~x, ~y) ∧ ∀yj ∈

{~y} [
∧

xk∈{~x}

cc : (xk, descendantOf, yj) ∧ cc : (yj ,

descendantOf, yj) ∧ cc : (yj , originRuleId, i) ∧

cc : (yj , originVector, ~x)]

It should be noted that cc : (yj , originVector, ~x) is
not a valid quad pattern, and is only used for nota-
tion brevity. In the actual implementation, vectors can
be stored using an rdf container data structure such as
rdf:List, rdf:Seq or by typecasting it as a string.

augM(ri) = body(ri)(~x, ~z)→ head(ri)(~x, ~y) ∧ ∀yj

∈ {~y} [
∧

xk∈{~x}

cc : (xk, descendantOf, yj) ∧ cc : (yj ,

descendantOf, yj) ∧ cc : (yj , originRuleId, i)]

augC(ri) = body(ri)(~x, ~z)→ head(ri)(~x, ~y) ∧ ∀yj ∈

{~y},∀c ∈ cScope(yj , head(ri)) [
∧

xk∈{~x}

cc : (xk,

descendantOf, yj) ∧ cc : (yj , descendantOf, yj) ∧

cc : (yj , originContext, c)]

Intuitively, the transformation augS/augM/augC on
a BR ri, augments the head part of ri with additional
types of quad patterns, which are the following:

1. cc : (xk, descendantOf, yj), for every existen-
tially quantified variable yj in ~y and universally
quantified variable xk ∈ {~x}. This is done be-
cause, during dChase computation any applica-
tion of an assignment µ on ri s.t. ~x[µ] = ~a,
resulting in the generation of a Skolem blank
node _ : b = µext(~y)(yj), any ai ∈ {~a} is a
descendant of _ : b. Hence, due to these addi-
tional quad-patterns, quads of the form cc : (ai,
descendantOf, _ : b) are also produced, and in
this way, keeps track of the descendants of any
Skolem blank node produced.

2. cc : (yj , descendantOf, yj), in order to maintain
also the reflexivity of ‘descendantOf’ relation.

3. cc : (yj , originContext, c), for every existentially
quantified variable yj in {~y}, every c ∈ cScope(
yj , head(ri)). This is done because during
dChase computation, any application of an as-
signment µ on ri, s.t. ~x[µ] = ~a, resulting in
the generation of a Skolem blank node _ : b =

µext(~y)(yj), c is an origin context of _ : b, Hence,
due to these additional quad-patterns, quads of
the form cc : (_ : b, originContext, c) is also pro-
duced. In this way, keeps track of the origin-
contexts of any Skolem blank node produced.

4. cc : (yj , originVector, ~x), This is done because
during dChase computation, any application of
an assignment µ on ri, s.t. ~x[µ] = ~a, resulting
in the generation of a Skolem blank node _ : b =

µext(~y)(yj), ~a is the origin vector of _ : b. Hence,
due to these additional quad-patterns, quads of
the form cc : (_ : b, originVector, ~a) is also pro-
duced. In this way, keeps track of the origin vec-
tor of any Skolem blank node produced.

5. cc : (yj , originRuleId, i), for every existentially
quantified variable yj in {~y}, inorder to keep
track of the ruleId of the BR used to create any
Skolem blank node.

It can be noticed that for any BR ri without ex-
istentially quantified variables, the transformations
augS/augM/augC leaves ri unchanged. For any set

18 Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ...

of BRs R, let

augS(R) (resp. augM(R), resp. augC(R)) =⋃
ri∈R

augS(ri) (resp. augM(ri), resp. augC(ri)) ∪

{cc : (x1, descendantOf, z1) ∧ cc : (z1, descendantOf,

x2)→ cc : (x1, descendantOf, x2)}

The function unSafeTest (resp. unMSafeTest, resp.
unCSafeTest) defined below, given a BR ri = body(ri)(~x,
~z) → head(ri)(~x, ~y), an assignment µ, and a quad-
graph Q checks, if application of µ on ri violates the
safety (resp. msafety, resp. csafety) condition on Q.
unSafeTest(ri, µ,Q)=True iff ∃_ : b, _ : b′ ∈ B, with
all the following conditions being satisfied:

– _ : b ∈ {~x[µ]}, and
– cc : (_ : b′, descendantOf, _ : b) ∈ Q, and
– cc : (_ : b′, originRuleId, i) ∈ Q, and
– cc : (_ : b′, originVector,~a) ∈ Q, and ~a ∼= ~x[µ].

Intuitively, unSafeTest returns True, if µ applied to r
will produce a fresh Skolem blank node _ : b′′, whose
child _ : b ∈ ~x[µ], and according to knowledge in Q,
_ : b′ a descendant of _ : b s.t. origin ruleId of _ : b′ is
i (which is also the origin ruleId of _ : b′′) and origin
vector of _ : b′ is isomorphic to origin vector of ~x[µ]
(which is also the origin vector of _ : b′′). The func-
tions unMSafeTest and unCSafeTest are similarly de-
fined as follows:
unMSafeTest(ri, µ, Q)=True iff ∃_ : b, _ : b′ ∈ B,
with all the following conditions being satisfied:

– _ : b ∈ {~x[µ]}, and
– cc : (_ : b′,descendantOf, _ : b) ∈ Q, and
– cc : (_ : b′, originRuleId, i) ∈ Q.

unCSafeTest(ri, µ,Q)=True iff ∃_ : b, _ : b′ ∈ B, ∃yj
∈ {~y}, with all the following being satisfied:

– _ : b ∈ {~x[µ]}, and
– cc : (_ : b′, descendantOf, _ : b) ∈ Q, and
– {c | cc : (_ : b′, originContext, c) ∈ Q} =
cScope(yj , head(ri)(~x, ~y)) \ {cc}.

For any BR ri and an assignment µ, the safe/msafe/csafe
application of µ on ri w.r.t. a quad-graphQC is defined
as follows:

applysafe(ri, µ,QC) =

unSafe, If unSafeTest(ri,
µ,QC) = True;

apply(ri, µ), Otherwise;

applymsafe(ri, µ,QC) =

unMSafe, If unMSafeTest(ri,
µ,QC) = True;

apply(ri, µ), Otherwise;

applycsafe(ri, µ,QC) =

unCSafe, If unCSafeTest(ri,
µ,QC) = True;

apply(ri, µ), Otherwise;

where unSafe = cc : (unsafe, unsafe, unsafe) (resp.
unMSafe = cc : (unmsafe, unmsafe, unmsafe), resp.
unCSafe = cc : (uncsafe, uncsafe, uncsafe)) is a dis-
tinguished quad that is generated, if the prerequisites
of safety (resp. msafety, resp. csafety) is violated. For
any quad-system QSC = 〈QC , R〉, we define its safe
dChase dChasesafe(QSC) as follows:
dChasesafe

0 (QSC) = QC ;
dChasesafe

m+1(QSC) = dChasesafe
m (QSC)∪ applysafe(

ri, µ, dChasesafe
m (QSC)), if there exists ri ∈ augS(R),

assignment µ s.t. applicableaugS(R)(ri, µ, dChasesafe
m (

QSC));
dChasesafe

m+1(QSC) = dChasesafe
m (QSC), otherwise;

for any m ∈ N.
dChasesafe(QSC) =

⋃
m∈N dChase

safe
m (QSC)

The termination condition for safe dChase compu-
tation can be implemented using the following condi-
tional: If there exists m s.t.
dChasesafe

m (QSC) = dChasesafe
m+1(QSC); then

dChasesafe(QSC) = dChasesafe
m (QSC).

Similarly, dChases dChasemsafe(QSC) and dChasecsafe(
QSC) are defined for msafe and csafe quad-systems,
respectively.
The following theorem shows that the procedure above
described for detecting unsafe quad-systems is sound
and complete:

Theorem 4.13. For any quad-systemQSC = 〈QC , R〉,
the quad unSafe (resp. unMSafe, resp. unCSafe)
∈ dChasesafe(QSC) (resp. dChasemsafe(QSC), resp.
dChasecsafe(QSC)), iff QSC is unsafe (resp. unmsafe,
resp. uncsafe).

It should be noted that for any quad-system QSC =
〈QC ,R〉, dChasesafe(QSC) (resp. dChasemsafe(QSC),
resp. dChasecsafe(QSC)) is a finite set and hence the
iterative procedure which we described earlier termi-
nates, regardless of whether QSC is safe (resp. msafe,
resp. csafe) or not. This is because if QSC is safe
(resp. msafe, resp. csafe), then, as we have seen be-
fore, there exists a double exponential bound on num-
ber of quads in its dChase. Hence, there is an itera-
tion in which no new quad is generated, which leads

Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ... 19

to stopping of computation. Otherwise, if QSC is un-
safe (resp. msafe, resp. csafe), then from theorem 4.13,
we know that the quad unSafe (resp. unMSafe,
resp. unCSafe) gets generated in dChasesafe(QSC)
(resp. dChasemsafe(QSC), resp. dChasecsafe(QSC)).
This implies that there exists an iteration m s.t.
the quad unSafe (resp. unMSafe, resp. unCSafe)
is in dChasesafe

m (QSC) (resp. dChasemsafe
m (QSC),

resp. dChasecsafe
m (QSC)). W.l.o.g, let m be the first

such iteration. This means that there exists a BR
ri ∈ R with head head(ri)(~x, ~y), assignment µ s.t.
applicableaugS(R)(ri, µ, dChasesafe

m−1(QSC)) (resp.
applicableaugM(R)(ri, µ, dChasemsafe

m−1(QSC)), resp.
applicableaugC(R)(ri, µ, dChasecsafe

m−1(QSC)) holds.
By construction, since head(ri)[µ

ext(~y)] is not gen-
erated, and instead the quad unSafe (resp. unMSafe,
resp. unCSafe) is generated, applicableaugS(R)(ri,
µ, dChasesafe

m (QSC)) (resp. applicableaugM(R)(ri, µ,
dChasemsafe

m (QSC)), resp. applicableaugC(R)(ri, µ,
dChasecsafe

m (QSC)) holds yet again. This means that
the termination condition is satisfied at iterationm+1,
and hence computation stops. Note that regardless
of whether a given quad-system is safe (resp. msafe,
resp. csafe) or not, the number of safe (resp. msafe,
resp. csafe) dChase iterations is double exponentially
bounded in the size of the quad-system.

Hence, after running procedure described above, if
the quad unSafe (resp. unMSafe, resp. unCSafe) is
not generated, then its safe (resp. msafe, resp. csafe)
dChase itself can be used for CCQ answering, as in
such a case the standard dChase is contained in safe
(resp. msafe, resp. csafe) dChase, and all the quads
generated for accounting information has the context
identifier cc. Hence, for any safe (resp. msafe, resp.
csafe) quad-system, for any boolean CCQ that does not
contain quad patterns of the form cc : (s, p, o), dChase
entails CCQ iff safe (resp. msafe, resp. csafe) dChase
entails CCQ.

5. Range Restricted Quad-Systems: Restricting to
Range Restricted BRs

In this section, we investigate the complexity of CCQ
entailment over quad-systems, whose BRs do not have
existentially quantified variables. Such BRs are of the
form:

c1 : t1(~x, ~z) ∧ ... ∧ cn : tn(~x, ~z)→

c′1 : t′1(~x) ∧ ... ∧ c′m : t′m(~x)

Note that any set of BRs R of the form above can be
replaced by semantically equivalent set R′, s.t. each
r ∈ R′ is the form:

c1 : t1(~x, ~z), ..., cn : tn(~x, ~z)→ c′1 : t′1(~x) (4)

Also ‖R′‖ is at most quadratic in ‖R‖, and hence,
w.l.o.g, we assume that each r ∈ R is of the form
(4). Borrowing the parlance from the ∀∃ rules setting,
where rules whose variables in the head part are con-
tained in the variables in the body part are called range
restricted rules [14], we call such BRs range restricted
(RR) BRs. We call a quad-system whose BRs are all
of RR-type, a RR quad-system. Since there exists no
existentially quantified variables in BRs of a RR quad-
system, no Skolem blank nodes are produced during
dChase computation. Hence, there can be no violation
of the safety/msafety/csafety condition in section 4,
and hence, the class of RR quad-systems are contained
in the class of safe/msafe/csafe quad-systems, and is
also a FEC. Of course, this containment is strict as
any quad-system that contains a BR with an existential
variable is not RR. We in the following see that restrict-
ing to RR BRs, size of the dChase becomes polyno-
mial w.r.t. size of the input quad-system, and the com-
plexity of CCQ entailment further reduces compared
to safe/msafe/csafe quad-systems.

Lemma 5.1. For any RR quad-systemQSC = 〈QC , R〉,
the following holds: (i) ‖dChase(QSC)‖=O(‖QSC‖4)
(ii) dChase(QSC) can be computed in EXPTIME
(iii) If ‖R‖ is fixed to be a constant, dChase(QSC)
can be computed in PTIME.

Proof. (i) Note that the number of constants in QSC
is roughly equal to ‖QSC‖. As no existential vari-
able occur in any BR in a RR quad-system QSC , the
set of constants C(dChase(QSC)) is contained in
C(QSC). Since each c : (s, p, o) ∈ dChase(QSC) is
s.t. c, s, p, o ∈ C(QSC), |dChase(QSC)|=O(|C(QSC
)|4). Hence, ‖dChase(QSC)‖ = O(|C(QSC)|4) =
O(‖QSC‖4).

(ii) Since from (i) |dChase(QSC)| = O(‖QSC‖4),
and in each iteration of the dChase at least one
new quad should be added, the number of itera-
tions cannot exceed O(‖QSC‖4). Since by lemma
3.2, each iteration i of dChase computation requires
O(|R| ∗ ‖dChasei−1(QSC)‖rs) time, where rs =
maxr∈R‖r‖, and rs ≤ ‖QSC‖, time required for each
iteration is of the order O(2‖QSC‖) time. Although the
number of iterations is a polynomial, each iteration
requires an exponential amount of time w.r.t ‖QSC‖.

20 Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ...

Hence, time complexity of dChase computation is in
EXPTIME.

(iii) As we know that the time taken for applica-
tion of a BR R is O(‖dChasei−1(QSC)‖‖R‖). Since
‖R‖ is fixed to a constant, application of R can be
done in PTIME. Hence, each dChase iteration can be
computed in PTIME. Also since the number of itera-
tions is a polynomial in ‖QSC‖, computing dChase is
in PTIME.

Theorem 5.2. Data complexity of CCQ entailment
over RR quad-systems is PTIME-complete.

Proof. (Membership) Follows from the membership in
P of data complexity of CCQ entailment for safe quad-
systems, whose expressivity subsumes the expressivity
of RR quad-systems (Theorem 4.11).

(Hardness) In order to prove P-hardness, we reduce
a well known P-complete problem, 3HornSat, i.e. the
satisfiability of propositional Horn formulas with at
most 3 literals. Note that a (propositional) Horn for-
mula is a propositional formula of the form:

P1 ∧ . . . ∧ Pn → Pn+1 (5)

where Pi, for 1 ≤ i ≤ n + 1, are either proposi-
tional variables or constants t, f , that represents true
and false, respectively. Note that for any propositional
variable P , the fact that “P holds” is represented by the
formula t → P , and “P does not hold” is represented
by the formula P → f . A 3Horn formula is a for-
mula of the form (5), where 1 ≤ n ≤ 2. Note that any
(set of) Horn formula(s) Φ can be transformed in poly-
nomial time to a polynomially sized set Φ′ of 3Horn
formulas, by introducing auxiliary propositional vari-
ables s.t. Φ is satisfiable iff Φ′ is satisfiable. A pure
3Horn formula is a 3Horn formula of the form 5, where
n = 2. Any 3Horn formula φ that is not pure can be
trivially converted to equivalent pure form by append-
ing a ∧ t on the body part of φ. For instance, P → Q,
can be converted to P ∧ t → Q. Hence, w.l.o.g. we
assume that any set of 3Horn formulas is pure, and is
of the form:

P1 ∧ P2 → P3 (6)

We, in the following, reduce the satisfiability problem
of pure 3Horn formulas to CCQ entailment problem
over a quad-system whose set of schema triples, the set
of BRs, and the CCQ CQ are all fixed.

For any set of pure Horn formulas Φ, we construct
the quad-systemQSC = 〈QC , R〉, where C = {ct, cf}.
For any formula φ ∈ Φ of the form (6), QC contains a

quad cf : (P1, P2, P3). In addition QC contains a quad
ct : (t, rdf:type, T).R is the singleton that contains
only the following fixed BR:

ct : (x1,rdf:type, T), ct : (x2,rdf:type, T),

cf : (x1, x2, x3)→ ct : (x3,rdf:type, T)

Let the CQ be the fixed query ct : (f,rdf:type, T).
Now, it is easy to see that QSC |= CQ, iff Φ is not

satisfiable.

Theorem 5.3. Combined complexity of CCQ entail-
ment over RR quad-systems is EXPTIME-complete.

Proof. (Membership) By lemma 5.1, for any RR quad-
system QSC , its dChase dChase(QSC) can be com-
puted in EXPTIME. Also by lemma 5.1, its dChase
size ‖dChase(QSC)‖ is a polynomial w.r.t to ‖QSC‖.
Since a boolean CCQ CQ() can naively be evaluated
by grounding the set of constants in the dChase to
the variables in the CQ(), and then checking if any
of these groundings are contained in dChase(QSC).
The number of such groundings can at most be
‖dChase(QSC)‖‖CQ()‖ (†). Since ‖dChase(QSC)‖
is a polynomial in ‖QSC‖, there are an exponential
number of groundings w.r.t ‖CQ()‖. Since contain-
ment of each of these groundings can be checked in
time polynomial w.r.t. the size of dChase(QSC), and
since ‖dChase(QSC)‖ is a polynomial w.r.t. ‖QSC‖,
the time complexity of CCQ entailment is in EXP-
TIME.

(Hardness) For EXPTIME-hardness, since we al-
ready saw in subsection 4.1 that with appropriate BRs
and triple patterns one can simulate a DTM. The
proof can slightly be modified to simulate an EXP-
TIME DTM. The steps in the proof is same as the
one in Dantsin et al. [25], where EXPTIME-hardness
of function-free Horn logic programs (Datalog) are
shown.

5.1. Restricted RR Quad-Systems

We call those quad-systems with BRs of form (4) with
a fixed bound on n as restricted RR quad-systems.
They can be further classified as linear, quadratic, cu-
bic,..., quad-systems, when n = 1, 2, 3, ..., respec-
tively.

Theorem 5.4. Data complexity of CCQ entailment
over restricted RR quad-systems is P-complete.

Proof. The proof is same as in theorem 5.2, since the
size of BRs are fixed to constant.

Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ... 21

Theorem 5.5. Combined complexity of CCQ entail-
ment over restricted RR quad-systems is NP-complete.

Proof. Let the problem of deciding if QSC |= CQ()
be called DP’.

(Membership) for any QSC whose rules are of
restricted RR-type, size of any r ∈ R is a con-
stant. Hence, by lemma 3.2, any dChase iteration
can be computed in PTIME. Since, number of itera-
tions are also polynomial in ‖QSC‖, dChase(QSC)
can be computed in PTIME in the size of QSC and
dChase(QSC) has a polynomial number of constants.
Hence, if we guess an assignment µ for all the exis-
tential variables in CCQ CQ(), to the set of constants
in dChase(QSC). Then, one can evaluate the CCQ,
by checking if c : (s, p, o) ∈ dChase(QSC), for each
c : (s, p, o) ∈ CQ()[µ], which can be done in time
O(‖CQ‖ ∗ ‖dChase(QSC)‖), and is hence is in non-
deterministic PTIME, which implies that DP’ is in NP.

(Hardness) We show that DP’ is NP-hard, by reduc-
ing the well known NP-hard problem, 3-colorability
to DP’. Given a graph G = 〈V , E〉, where V = {v1,
..., vn} is the set of nodes, E ⊆ V × V is the set of
edges, 3-colorability problem, is to decide if there ex-
ists a labeling function l : V → {r, b, g} that assigns
each v ∈ V to an element in {r, b, g} s.t. the condition:
(v, v′) ∈ E → l(v) 6= l(v′), for each (v, v′) ∈ E, is
satisfied.

One can construct a quad-system QSc = 〈Qc, ∅〉,
where graphQc(c) has the following triples:
{(r, edge, b), (r, edge, g), (b, edge, g), (b, edge, r),
(g, edge, r), (g, edge, b)}
Let CQ be the boolean CCQ: ∃v1,, vn

∧
(v,v′)∈E

[c : (v, edge, v′) ∧ c : (v′, edge, v)]. Then, it can be
seen that G is 3-colorable, iff QSc |= CQ.

6. Quad-Systems and Forall-Existential rules: A
formal comparison

In this section, we formally compare the formal-
ism of quad-systems with forall-existential (∀∃) rules,
which are also called Tuple generating dependencies
(Tgds)/Datalog+- rules. ∀∃ rules is a fragment of first
order logic in which every formula is restricted to a
certain syntactic form. A ∀∃ rule is a first order for-
mula of the form:

∀~x∀~z [p1(~x, ~z) ∧ ... ∧ pn(~x, ~y)→

∃~y p′1(~x, ~y) ∧ ... ∧ p′m(~x, ~y)] (7)

where ~x, ~y, ~z are vectors of variables s.t. {~x}, {~y} and
{~z} are pairwise disjoint, pi(~x, ~z), for 1 ≤ i ≤ n
are predicate atoms whose variables are from ~x or ~z,
p′1(~x, ~y), for 1 ≤ i ≤ m are predicate atoms whose
variables are from ~x or ~y. We, for short, occasionally
note a ∀∃ rule of the form (7) as φ(~x, ~z) → ψ(~x, ~y),
where φ(~x, ~z) = {p1(~x, ~z), ..., pn(~x, ~y)}, ψ(~x, ~y) =
{p′1(~x, ~y), ... p′m(~x, ~y)}. A set of ∀∃ rules is called a
∀∃ rule set. In the realm of ∀∃ rule sets, a conjunctive
query (CQ) is an expression of the form:

∃~y p1(~x, ~y) ∧ ... ∧ pr(~x, ~y) (8)

where pi(~x, ~y), for 1 ≤ i ≤ r are predicate atoms
over vectors ~x or ~y. A boolean CQ is defined as usual.
The DP of whether, for a ∀∃ rule set P and a CQ Q,
if P |=fol Q is called the CQ EP, where |=fol is the
standard first order logic entailment relation..

Notice that for any quad-graphQC = {c1 : (s1, p1, o1),
. . . , cn : (sr, pr, or)}, let rQC be the BR

→ ~∃yb1 , . . . , ybq c1 : (s1, p1, o1)[µB]

∧ . . . ∧ cr : (sr, pr, or)[µB],

where {_ : b1, . . . , _ : bq} is the set of blank nodes
in QC , and µB is the substitution function {_ : bi →
ybi}i=1,...,q that assigns each blank-node to a fresh ex-
istentially quantified variable. It can be noted the quad-
systems 〈QC , R〉 and 〈∅, R ∪ {rQC}〉 are semantically
equivalent.

The following property gives the relation between
CCQ entailment of unrestricted quad-systems and
standard first order CQ entailment of ∀∃ rule sets.

Property 6.1. Suppose τq be the function from the set
of quad patterns to the set of ternary atoms s.t. for any
quad-pattern c : (s, p, o), τq(c : (s, p, o)) = c(s, p, o).

Let τbr be a function from the set of BRs to the set of
∀∃ rules, s.t. for any BR r of the form (2):

τbr(r) = ∀~x∀~z [τq(c1 : t1(~x, ~z)) ∧ ... ∧ τq(cn : tn(~x, ~z))

→ ∃~y τq(c′1 : t′1(~x, ~y)) ∧ ... ∧ τq(c′m : t′m(~x, ~y))],

And, let τ be the function s.t. for any quad-system
QSC = 〈QC , R〉, τ(QSC) = τbr(R) ∪ {τbr(rQC)},
where τbr(R) =

⋃
r∈R τbr(r).

Also, let τccq be a function defined from the set
of boolean CCQs to the set of boolean CQs, s.t. for
any boolean CCQ CQ = ∃~y c1 : t1(~a, ~y) ∧ . . .∧
cr : tr(~a, ~y), τccq(CQ) is:

∃~y τq(c1 : t1(~a, ~y)) ∧ . . . ∧ τq(cr : tr(~a, ~y)),

then, for any quad-system QSC , CCQ CQ, QSC |=
CQ iff τ(QSC) |=fol τccq(CQ).

22 Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ...

Proof. Notice that every context c ∈ C becomes a
ternary predicate symbol in the resulting translation.
Also, τ(QSC) is a ∀∃ rule set, and for any CCQ CQ,
τccq(CQ) is a CQ.

In order to construct the restricted chase for τ(QSC),
suppose that ≺q is also extended to set of instances
s.t. for any two quad-graphs QC , Q′C′ , QC ≺q Q′C′
iff τq(QC) ≺q τq(Q′C′). Suppose ≺ is extended sim-
ilarly to set of instances. Also assume that during
the construction of standard chase chase(τ(QSC)) of
τ(QSC), for any application of a τbr(r) with existen-
tially quantified variables, with r ∈ R, suppose the
skolem blank nodes generated in chase(τ(QSC)) fol-
low the same order as they are generated in dChase(QSC).
Also let us extend the rule applicability function
to the ∀∃ rules settings s.t. for any set of BRs R,
for any r ∈ R, quad-graph Q′C′ , assignment µ,
applicableR(r, µ,Q′C′) iff applicableτbr(R)(τbr(r), µ,
τq(Q

′
C′)).

Now dChase0(〈∅, R ∪ {rQC}〉) = ∅, and also
chase0(τ(QSC)) = ∅, and dChase1(QSC) = apply(rQC ,
µ∅), where µ∅ is the empty function, and chase1(τ(QSC))
= apply(τbr(rQC), µ∅), and so on. It is straightfor-
ward to see that for any m ∈ N, τq(dChasem(〈∅, R ∪
{rQC}〉)) = chasem(τ(QSC)). Hence, τq(dChase(QSC))
= chase(τ(QSC)), and {CQ}[σ] ⊆ dChase(QSC)
iff {τccq(CQ)}[σ] ⊆ chase(τ(QSC)).

Consequently, it follows that for any quad-system
QSC = 〈QC ,R〉 and a boolean CCQ CQ,QSC |= CQ
iff τ(QSC) |=fol τccq(CQ).

Theorem 6.2. There exists a polynomial time trans-
lation function τ (resp. τccq) from the set of unre-
stricted quad-systems (resp. CCQs) to the set of ∀∃
rule sets (resp. CQs), s.t. for any unrestricted quad-
system QSC and a CCQ CQ, QSC |= CQ iff τ(QSC)
|=fol τccq(CQ).

Proof. It is easy to see that τq , τbr, τ , and τccq in prop-
erty 6.1 can be implemented using simple syntax trans-
formation, by iterating through the respective compo-
nents of a quad-system/CCQ, and the time complexity
of these functions are linear w.r.t their inputs.

Notice that for any CCQ CQ (resp. CQ Q), → CQ
(resp.→ Q) is a bridge (resp. ∀∃) rule, with an empty
body. Also, since for any quad-graph QC , the transla-
tion function τbr defined above can directly be applied
on rQC to obtain a ∀∃ rule, the following theorem im-
mediately follows:

Theorem 6.3. For quad-systems, the EPs: (i) quad
EP, (ii) quad-graph EP, (iii) BR EP, (iv) BRs EP, (v)
Quad-System EP, and (vi) CCQ EP are polynomially
reducible to entailment of ∀∃ rule sets.

A ∀∃ rule set P is said to be a ternary ∀∃ rule set, iff all
the predicate symbols in the vocabulary of P is of arity
less than or equal to three. P is a purely ternary rule set,
iff all the predicate symbols in the vocabulary P is of
arity three. Similarly, a (purely) ternary CQ is defined.
The following property gives the relation between the
CQ entailment problem of ∀∃ rule sets and CCQ EP of
unrestricted quad-systems.

Theorem 6.4. There exists a polynomial time tranla-
tion function ν (resp. νcq) from ternary ∀∃ rule sets
(resp. ternary CQs) to unrestricted quad-systems (resp.
CCQs) s.t. for any ∀∃ rule set P and a CQ Q, P
|=fol CQ iff 〈∅, ν(P)〉 |= νcq(Q).

Proof. Note that the CQ EP of any ternary ∀∃ rule set
P, whose set of predicate symbols is P , and CQQ over
P , can polynomially reduced to the CQ EP of a purely
ternary rule set P′ and purely ternary CQ Q′, by the
following transformation function χ. Let � be an ad-
hoc fresh URI; χ is s.t. for any ternary atom c(s, p, o),
χ(c(s, p, o)) = c(s, p, o). For any binary atom c(s, p),
χ(c(s, p)) = c(s, p,�), and for any unary atom c(s),
χ(c(s)) = c(s,�,�). For any ∀∃ rule r of the form
(7),

χ(r) = ∀~x∀~z [χ(p1(~x, ~z)) ∧ . . . ∧ χ(pn(~x, ~z))

→ ∃~y χ(p′1(~x, ~y)) ∧ . . . ∧ χ(p′m(~x, ~y))]

And, for any ∀∃ rule set P, χ(P) =
⋃
r∈P χ(r). For

any CQQ, χ(Q) is similarly defined. Note that for any
ternary ∀∃ rule set P, ternary CQQ, χ(P) (resp. χ(Q))
is purely ternary, and P |=fol Q iff χ(P) |=fol χ(Q).

Also, it can straightforwardly seen that τ−1br (χ(P))
(resp. τ−1ccq(χ(Q))) is a set of BRs (resp. CCQ). Sup-
pose, ν(P) is s.t. ν(P) = QSC = 〈∅, τ−1br (χ(P))〉. In-
tuitively, C contains a context identifier c, for each
predicate symbol c ∈ P . Also suppose, νcq(Q) =
τ−1ccq(χ(Q)). Notice that νcq(Q) is CCQ. It can straight-
forwardly seen that ν and νcq can be computed in poly-
nomial time, and P |=fol Q iff ν(P) |= νcq(Q).

Thanks to the theorem 6.2 and theorem 6.4, the follow-
ing theorem immediately holds:

Theorem 6.5. The CCQ EP over quad-systems is
polynomially equivalent to CQ EP over ternary ∀∃
rule sets.

Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ... 23

By virtue of the theorem above, we derive the follow-
ing property:

Property 6.6. For quad-systems, the Quad EP, Quad-
graph EP, BR(s) EP, and Quad-system EP are polyno-
mially reducible to CCQ EP.

Proof. The following claim is a folklore in the realm
of ∀∃ rules.

Claim (1) The ∀∃ rule set EP is polynomially re-
ducible to CQ EP.

Reducibility of ∀∃ rule EP to CQ EP is a folklore in
the realm of ∀∃ rules. For a formal proof, we refer the
reader to Baget et al. [14], where it is shown that the
∀∃ rule EP is polynomially reducible to fact (a set of
instances) EP, and fact EP are equivalent to CQ EP.
Also, Cali et al [33] shows that CQ containment prob-
lem, which is equivalent to ∀∃ rule EP, is reducible to
CQ EP. Since a ∀∃ rule set is a set of ∀∃ rules, by using
a series of oracle calls to a function that solves the ∀∃
rule EP, we can define a function for deciding ∀∃ rule
set entailment. Hence, the claim holds.

(a) Thanks to translation functions τ , τbr defined
earlier, s.t. for any quad-systemQSC , quad-graphQ′C′ ,
QSC |= Q′C′ iff τ(QSC) |=fol τbr(rQ′C′), we can in-
fer that quad-graph EP is polynomially reducible to
∀∃ rule set EP. Applying claim 1, it follows the quad-
graph EP over quad-systems is polynomially reducible
to CQ EP over ∀∃ rule sets. By theorem 6.4, we can
deduce that quad-graph EP is polynomially reducible
to CCQ EP.

(b) By the translation functions τ and τbr, defined
earlier, s.t. for any quad-system QSC , a set of BRs R,
QSC |= R iff τ(QSC) |=fol τbr(R), we can infer that
BRs EP is polynomially reducible to ∀∃ rule set EP.
Similar to (a) above, we deduce that BRs EP is poly-
nomially reducible to CCQ EP.

From (a) and (b), it follows that Quad-system EP is
reducible to CCQ EP.

Having seen that the CCQ EP over quad-systems is
polynomially equivalent to CQ EP over ternary ∀∃ rule
sets, we now compare some of the well known tech-
niques used to ensure decidability of CQ entailment in
the ∀∃ rules settings to the decidability techniques for
quad-systems that we saw earlier in the previous sec-
tions. Note that since all the quad-system classes we
proposed in this paper are FECs, for a judicious com-
parison, the ∀∃ rule classes to which we compare are
classes which have a finite chase property. We compare
to the following three well known classes: (i) Weakly

Acyclic rule sets (WA), (ii) Jointly Acyclic rule sets
(JA), and (iii) Model Faithful Acyclic ∀∃ rule sets
(MFA). The following property is well known in the
realm of ∀∃ rules:

Property 6.7. For the any ∀∃ rule set P, the following
holds:

1. If P ∈ WA, then P ∈ JA (from [36]),
2. If P ∈ JA, then P ∈ MFA (from [31]),
3. WA ⊂ JA ⊂ MFA (from [36] and [31]).

Note that a description of few other ∀∃ rule classes that
do not have the finite chase property, but still enjoy
decidability of CQ entailment are given in the related
work.

6.1. Weak Acyclicity

Weak acyclicity [23,24] is a popular technique used to
detect whether a ∀∃ rule set has a finite chase, thus
ensuring decidability of query answering. The set WA

represents class of ternary ∀∃ rule sets that have the
weak acyclicity property.

For any predicate atom p(t1, . . . , tn), an expression
〈p, i〉, for i = 1, . . . , n is called a position of p. In the
above case, t1 is said to occur at position 〈p, 1〉, t2 at
〈p, 2〉, and so on. For a set of ∀∃ rules P, its depen-
dency graph is a graph whose nodes are positions of
predicate atoms in P; for each r ∈ P of the form (7),
and for any variable x occurring in position 〈p, i〉 in
head of r:

1. if x is universally quantified and x occurs in body
of r at position 〈p′, j〉, then there exists an edge
from 〈p′, j〉 to 〈p, i〉

2. if x is existentially quantified, then for any uni-
versally quantified variable x′ occurring in head
of r, with x′ also occurring in the body of r at
position 〈p′, j〉, there exists a special edge from
〈p′, j〉 to 〈p, i〉.

P is called weakly acyclic, iff its dependency graph
does not contain cycles going through a special edge.
For any ∀∃ rule set P, if P is WA, then its chase is
finite, and hence CQ EP is decidable. Note that the
nodes in the dependency graph that has incoming spe-
cial edges corresponds to the positions of predicates
where new values are created due to existential vari-
ables, and the normal edges capture the propagation of
constants from one predicate position to another pred-
icate position. In this way, absence of cycles involv-
ing special edges ensures that newly created Skolem

24 Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ...

〈c1, 1〉

〈c1, 2〉

〈c2, 1〉

〈c2, 3〉

〈c2, 2〉

〈c3, 3〉 〈c3, 2〉

〈c3, 1〉

∗

∗

∗

∗

∗

∗

Fig. 3. dependency graph of the quad-system in example 4.3.

blank nodes are not recursively used to create other
new Skolem blank nodes in the same position, leading
to termination of chase computation.

Example 6.8. Let us revisit the quad-system QSC =
〈QC , R〉 mentioned in example 4.3, whose depen-
dency graph is shown in Fig. 3. Note that the QSC
is uncsafe, since its dChase contains a Skolem blank-
node _ : b4, which has as descendant another Skolem
blank node _ : b1, with the same origin context c2 (see
Fig. 1). However, it can be seen from Fig. 3 that the
dependency graph of τ(QSC) does not contain any di-
rected cycle involving special edges. Hence, τ(QSC)
is weakly acyclic.

It turns out that there exists no inclusion relationship
between the classes WA and CSAFE in either directions,
i.e. WA 6⊆ CSAFE (from example 6.8), and CSAFE 6⊆
WA (from the fact that WA ⊂ JA, and example 6.9 be-
low). Whereas WA ⊂ MSAFE, since WA ⊂ MFA and
MFA ≡ MSAFE (theorem 6.10).

6.2. Joint Acyclicity

Joint acyclicity [36] extends weak acyclicity, by also
taking into consideration the join between variables in
body of ∀∃ rules while analyzing the rules for acyclic-
ity. The set JA represents the class of all ternary ∀∃
rule sets that have the joint acyclicity property. A ∀∃
rule set P is said to be renamed apart, if for any
r 6= r′ ∈ R, V(r) ∩V(r′) = ∅. Since any set of rules
can be converted to an equivalent renamed apart one
by simple variable renaming, we assume that any rule
set P is renamed apart. Also for any r ∈ P and for a
variable y, let PosrH(y) (PosrB(y)) be the set of po-
sitions in which y occurs in the head (resp. body) of
r. For any ∀∃ rule set P and an existentially quantified

variable y occurring in a rule in P, we define MovP(y)
to be as follows:

– PosrH(y) ⊆MovP(y), if y occurs in r;
– PosrH(x) ⊆MovP(y), if x is a universally quan-

tified variable and PosrB(x) ⊆MovP(y);

for any r ∈ P. The existential dependency graph of
a (renamed apart) set of rules P is a graph whose
nodes are the existentially quantified variables in P.
There exists an edge from a variable y to y′, if r is
a rule in which y′ occurs and there exists a univer-
sally quantified variable x in the head (and body) of r
s.t. PosrB(x) ⊆ MovP(y). A ∀∃ rule set P is jointly
acyclic, iff its existential dependency graph is acyclic.
Analyzing the containment relationships, it happens to
be the case that JA 6⊆ CSAFE (since WA ⊂ JA, and
eg. 6.8). Also example 6.9 shows us that CSAFE 6⊆ JA.
However JA ⊂ MSAFE, since JA ⊂ MFA and MFA ≡
MSAFE (theorem 6.10).

Example 6.9. Consider the quad-system QSC =
〈QC , R〉, where QC = {c1 : (a, b, c)}. Suppose R is
the following set:

R =


c1 : (x11, x12, z1)→ c2 : (x11, x12, y1) (r1)
c1 : (x21, x22, z2), c2 : (x22, x21, x23)→
c3 : (x21, x22, x23) (r2)
c3 : (x31, x32, x33)→ c1 : (x33, x31, x32) (r3)


Iterations during dChase construction are:

dChase0(QSC) = {c1:(a, b, c)}

dChase1(QSC) = {c1 : (a, b, c), c2 : (a, b, _ : b1)}

dChase(QSC) = dChase1(QSC)

Note that the lone Skolem blank node generated is
_ : b1, which do not have any descendants. Hence, by
definition QSC is csafe (msafe/safe). Now analyzing
the BRs for joint acyclicity, we note that for the only
existentially quantified variable y1,
MovR(y1) = {〈c2, 3〉, 〈c3, 3〉, 〈c1, 1〉}

Since the BR r1 is which y1 occurs contains the
universally quantified variable x11 in head of r1 s.t.
Posr1B (x11) ⊆ MovR(y1), there exists a cycle from
y1 to y1 itself in the existential dependency graph
of τ(QSC). Hence, by definition τ(QSC) is not joint
acyclic. Also since the class of weakly acyclic rules are
contained in the class of jointly acyclic rule, it follows
that τ(QSC) is also not weakly acyclic.

Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ... 25

6.3. Model Faithful Acyclicity (MFA)

MFA, proposed in Bernardo et al. [31], is an acyclicity
technique that guarantees finiteness of chase and de-
cidability of query answering, in the realm of ∀∃ rules.
The set MFA denotes class of all ternary ∀∃ rule sets
that is model faithfully acyclic. As far as we know, the
MFA technique subsumes almost all other known tech-
niques that guarantee a finite chase, in the ∀∃ rules set-
tings. Obviously, WA ⊂ JA ⊂ MFA.

For any ∀∃ rule r = φ(r)(~x, ~z) → ψ(r)(~x, ~y),
for each yj ∈ {~y}, let Y jr be a fresh unary predicate
unique for yj and r; furthermore, let S a be fresh bi-
nary predicate. The transformation mfa of r is defined
as:

mfa(r) = φ(r)(~x, ~z)→ ψ(r)(~x, ~y) ∧∧
yj∈{~y}

[Y jr (yj) ∧
∧

xk∈{~x}

S(xk, yj)]

Also let r1 and r2 be two additional rules defined as:

S(x1, z) ∧ S(z, x2)→ S(x1, x2) (r1)

Y jr (x1) ∧ S(x1, x2) ∧ Y jr (x2)→ C (r2)

where C is a fresh nullary predicate. For any set of
∀∃ rules P, let ad(P) be the union of r1 with the set
of rules obtained by instantiating r2, for each r ∈ P,
for each existential variable yj in r. For a set of ∀∃
rules P, mfa(P) =

⋃
r∈P mfa(r) ∪ ad(P). A ∀∃ rule

set P is said to be MFA, iff mfa(P) 6|=fol C. It was
shown in Cuenca Grau et al. [31] that if P is MFA,
then P has a finite chase, thus ensuring decidability of
query answering. The following theorem establishes
the fact that notion of msafety is equivalent to MFA,
thanks to the polynomial time translations between
quad-systems and ternary ∀∃ rule sets.

Theorem 6.10. Let τ be the translation function from
the set of unrestricted quad-systems to the set of
ternary ∀∃ rule sets, as defined in property 6.1, then,
for any quad-system QSC = 〈QC , R〉, QSC is msafe iff
τ(QSC) is MFA.

Proof. (outline) Recall that for τ = 〈τq, τbr〉, where
τq is the quad translation function and τbr is the trans-
lation function from BRs to ∀∃ rules. Also, τ(QSC)
= τbr({rQC} ∪ R). Also, recall that for every blank
node b in QC , the BR rQC contains a corresponding
existentially quantified variable yb. We already saw
that for such a transformation, the following prop-
erty holds: for any m ∈ N, τq(dChasem(QSC))
= chasem(τ(QSC)), and for any BR r ∈ R ∪

{rQC}, an assignment µ, applicableR∪{rQC}(r, µ,
dChasem(QSC)) iff applicableτ(QSC)(τbr(r), µ,
chasem(τ(QSC))). Also notice that for any two blank
nodes _ : b1, _ : b2, S(_ : b1, _ : b2) ∈ chase(τ(QSC)),
iff _ : b1 is a descendant of _ : b2 in dChase(QSC).
Hence, the relations S and descendantOf are identical.

Intuitively, MFA looks for cyclic creation of a
skolem blank-node whose descendant is another skolem
blank-node that are generated by the same rule r =
body(r)(~x, ~z) → head(r)(~x, ~y), by the same exis-
tential variable in yj ∈ {~y} of r. Wheras, msafety
looks only for generation of a skolem blank-node _ : b′

whose descendant is another skolem _ : b using the
same rule r. Hence, if τ(QSC) is not MFA, then QSC
is not msafe, and consequently onlyIf part of the theo-
rem trivially holds.

(If part) Suppose QSC is unmsafe, and µ and µ′ are
the assignments applied on r ∈ R to create Skolem
blank nodes _ : b and _ : b′, respectively, and suppose
_ : b is a descendant of _ : b′ in the dChase(QSC).
That is _ : b = µ(yj) and _ : b′ = µ′(yk), for yj , yk ∈
{~y} of r. Suppose j = k, then the prerequisite of
non-MFA is trivially satisfied. Suppose if j 6= k is
the case, then there exists _ : b′′ in dChase(QSC) s.t.
_ : b′′ = µ′(yj), since µ′ is applied on r and yj ∈ {~y}.
This means that also in this case, the prerequisite of
non-MFA is satisfied. As a consequence τ(QSC) is not
MFA. Hence it follows that, QSC is msafe iff τ(QSC)
is MFA.

Let us revisit the quad-system QSC in example 4.6, it
can be easily seen that τ(QSC) is not MFA. Recall that
we have seen that QSC is safe but not msafe. We con-
sider the theorem 6.10 to be of importance, as it not
only establishes the equivalence of MFA and msafety,
but thanks to it and the translation τ , it can be deduced
that the technique of safety, which we presented ear-
lier, (strictly) extends the MFA technique. As far as we
know, the MFA class of ∀∃ rule sets is one of the most
expressive class in the realm of ∀∃ rule sets which al-
lows a finite chase. Hence, the notion of safety that
we propose can straightforwardly be ported to ∀∃ set-
tings. The main difference between MFA and safety
is that MFA only looks for cyclic creation of two dis-
tinct Skolem blank-nodes _ : b, _ : b′ that are generated
by the same rule r, by the same existential variable in
r. Whereas safety also takes into account the origin
vectors ~a and ~a′ used during rule application to create
_ : b and _ : b′, respectively, and only raises an alarm
if ~a ∼= ~a′. Although, equivalence relation holds only
between quad-systems and ternary ∀∃ rule sets, it can

26 Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ...

easily be noticed that the technique of safety can be ap-
plied to ∀∃ rule sets of arbitrary arity, and can be used
to extend currently established tools and systems that
work on existing notions of acyclicity such as WA, JA,
or MFA.

7. Related Work

Contexts and Distributed Logics Work on contexts
gained its attention as early as in the 80s, as Mc-
Carthy [1] proposed context as a solution to the gen-
erality problem in AI. After this, various studies about
logics of contexts mainly in the field of KR was done
by Guha [17], Distributed First Order Logics by
Ghidini et al. [16] and Local Model Semantics by
Giunchiglia et al. [8]. Primarily in these works con-
texts are formalized as a first order/propositional the-
ory and bridge rules were provided to inter-operate the
various theories of contexts. Some of the initial works
on contexts relevant to semantic web were the ones
like Distributed Description Logics [5] by Borgida et
al., and Context-OWL [7] by Bouquet et al., and the
work of CKR [12,9] by Serafini et al. These were
mainly logics based on DLs, which formalized con-
texts as OWL KBs, whose semantics is given using
a distributed interpretation structure with additional
semantic conditions that suits varying requirements.
Compared to these works, the bridge rules we consider
are much more expressive with conjunctions and ex-
istential variables that supports value/blank-node cre-
ation.

Temporal RDF/Annotated RDF Studies in extending
standard RDF with dimensions such as time and anno-
tations has already been accomplished. Gutierrez et al.
in [38] tried to add a temporal extension to RDF and
defines the notion of a ‘temporal rdf graph’, in which a
triple is augmented to a quadruple of form t : (s, p, o),
where t is a time point. Whereas annotated extensions
to RDF and querying annotated graphs has been stud-
ied in Udrea et al. [39] and Straccia et al. [40]. Un-
like the case of time, here the quadruple has the form:
a : (s, p, o), where a is an annotation. The authors pro-
vide semantics, inference rules and query language
that allows to express temporal/annotated queries. Al-
though these approaches, in a way address contexts by
means of time and annotations, the main difference in
our work is that we provide the means to specify ex-
pressive bridge rules for inter-operating the reasoning
between the various contexts.

DL+rules Works on extending DL KBs with Data-
log like rules was studied by Horrocks et al.[28] giving
rise to the SWRL[28] language. The related initiatives
proposes a formalism using which one can mix a DL
ontology with the Unary/Binary Datalog RuleML sub-
languages of the Rule Markup Language, and hence
enables horn-like rules to be combined with an OWL
KB. Since SWRL is undecidable in general, studies on
computable sub-fragments gave rise to works like De-
scription Logic Rules [37], where the authors deal with
rules that can be totally internalized by a DL knowl-
edge base, and hence if the DL considered is decid-
able, then also is a DL+rules KB. The authors give
various fragments of the rule bases like SROIQ rules,
EL++ rules etc. and show that certain new constructs
that are not expressible by plain DL can be expressed
using rules although they are finally internalized into
DL KBs. Unlike in our scenario, these works consider
only horn rules with out existential variables.

∀∃ rules, TGDs, Datalog+- rules Query answer-
ing over rules with universal-existential quantifiers
in the context of databases, where these rules are
called Datalog+- rules/tuple generating dependencies
(TGDs), was done by Beeri and Vardi [13] even in the
early 80s, where the authors show that the query en-
tailment problem, in general, is undecidable. However,
recently many classes of such rules have been iden-
tified for which query answering is decidable. These
classes (according to [14]) can broadly be divided into
the following three categories: (i) bounded treewidth
sets (BTS), (ii) finite unification sets (FUS), and (iii)
finite extension sets (FES). BTS contains the classes
of ∀∃ rule sets, whose models have bounded treewidth.
Some of the important classes of these set are the linear
∀∃ rules [19], (weakly) guarded rules [33], (weakly)
frontier guarded rules [14], and jointly frontier guarded
rules [36]. BTS classes in general need not have a fi-
nite chase, and query answering is done by exploit-
ing the fact that the chase is tree shaped, whose nodes
(which are sets of instances) start replicating (upto iso-
morphism) after a while. Hence, one could stop the
computation of the chase, once it can be made sure that
any future iterations of chase can only produce nodes
that are isomorphic to existing nodes. A deterministic
algorithm for deciding query entailment for this class
is provided in Thomazo et al. [15].

FUS classes includes the class of ‘sticky’ rules [34],
atomic hypothesis rules in which body of each rule
contains only a single atom, and also the class of lin-
ear ∀∃ rules. The approach used for query answering

Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ... 27

in FUS classes is to rewrite the input query w.r.t. to
the ∀∃ rule sets to another query that can be evalu-
ated directly on the set of instances, s.t. the answers for
the former query and latter query coincides. The ap-
proach is called the query rewriting approach. Com-
pared to approaches proposed in this paper, these ap-
proaches do not enjoy the finite chase property, and is
hence not conducive to materialization/forward chain-
ing based query answering.

Unlike BTS and FUS, the FES classes are character-
ized by the finite chase property, and hence is most re-
lated to the techniques proposed in our work. Some of
the classes in this set employ termination guarantying
checks called ‘acyclicity tests’ that analyze the infor-
mation flow between rules to check whether cyclic de-
pendencies exists that can lead to infinite chase. Weak
acyclicity [23,24], was one of the first such notions,
and was extended to joint acyclicity [36] and super
weak acyclicity [35]. The main approach used in these
techniques is to exploit the structure of the rules and
use a dependency graph that models the propagation
path of constants across various predicates in the rules,
and restricting the dependency graph to be acyclic. The
main drawback of these approaches is that they only
analyze the schema/Tbox part of the rule sets, and ig-
nore the instance part, and hence, produces a large
number of false alarms, i.e. it is often the case that al-
though dependency graph is cyclic, the chase is finite.
Recently, a more dynamic approach, called the MFA
technique, that also takes into account the instance part
of the rule sets was proposed in Cuenca grau et al. [31],
where existence of cyclic Skolem blank-node/constant
generations in the chase is detected by augmenting the
rules with extra information that keeps track of the
Skolem function used to generate each Skolem blank-
node. As shown in section 6, our technique of safety
subsumes the MFA technique, and supports for much
more expressive rule sets, by also keeping track of the
vectors used by rule bodies while Skolem blank-nodes
are generated.

Data integration Studies in query answering on in-
tegrated heterogeneous databases with expressive in-
tegration rules in the realm of data integration is pri-
marily studied in the following two settings: (i) Data
exchange [23], in which there is a source database
and target database that are connected with existential
rules, and (ii) Peer-to-peer data management systems
(PDMS) [18], where there are an arbitrary number of
peers that are interconnected using existential rules.

The approach based on dependency graph, for in-
stance, is used by Halevi et al. in the context of peer-
peer data management systems [18], and decidability
is attained by not allowing any kind cycles in the peer
topology. Whereas in the context of Data exchange,
WA is used in [23,24] to assure decidability, and the
recent work by Marnette [35] employs the super weak
acyclicity (SWA) to ensure decidability. It was shown
in Cuenca Grau et al [31] that their MFA technique
strictly subsumes both WA and SWA techniques in ex-
pressivity. Since, we saw in section 6 that our tech-
nique of safety subsumes the MFA technique and al-
lows to represent much more expressive rule sets,
safety technique can straightforwardly be employed in
the above mentioned systems with decidability guar-
antees for query answering.

8. Summary and Conclusion

In this paper, we study the problem of query answer-
ing over contextualized RDF knowledge in the pres-
ence of forall-existential bridge rules. We show that
the problem, in general, is undecidable, and present
a few decidable classes of quad-systems. Table 1 dis-
plays the complexity results of chase computation
and query entailment for the various classes of quad-
systems, we have derived. Classes csafe, msafe, and
safe, ensure decidability by restricting the structure of
Skolem blank-nodes generated in the dChase. Briefly,
the above classes do not allow an infinite descen-
dant chain for Skolem blank-nodes generated, by con-
straining each Skolem blank-node in a descendant
chain to have a different value for certain attributes,
whose value sets are finite. RR and restricted RR quad-
systems, do not allow the generation of Skolem blank
nodes, thus constraining the dChase to have only con-
stants from the initial quad-system. The above classes
which suit varying situations, can be used to extend the
currently established tools for contextual reasoning to
give support for expressive bridge rules with conjunc-
tions and existential quantifiers with decidability guar-
antees. From an expressivity point of view, the class
of safe quad-systems subsumes all the above classes,
and other well known classes in the realm of ∀∃ rules
with finite chases. We view the results obtained in this
paper as a general foundation for contextual reasoning
and query answering over contextualized RDF knowl-
edge formats such as quads, and can straightforwardly
be used to extend existing quad stores.

28 Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ...

Quad-System Chase size w.r.t Data Complexity of Combined Complexity
Fragment input quad-system CCQ entailment of CCQ entailment

Unrestricted Quad-Systems Infinite Undecidable Undecidable
Safe Quad-Systems Double exponential PTIME-complete 2EXPTIME-complete

MSafe Quad-Systems Double exponential PTIME-complete 2EXPTIME-complete
CSafe Quad-Systems Double exponential PTIME-complete 2EXPTIME-complete

RR Quad-Systems Polynomial PTIME-complete EXPTIME-complete
Restricted RR Quad-Systems Polynomial PTIME-complete NP-complete

Table 1
Complexity info for various quad-system fragments

References

[1] J.McCarthy, “Generality in AI,” Comm. of the ACM, vol. 30,
no. 12, pp. 1029–1035, 1987.

[2] J. Carroll, C. Bizer, P. Hayes, and P. Stickler, “Named graphs,
provenance and trust,” in Proc. of the 14th int.l. conf. on WWW,
(New York, NY, USA), pp. 613–622, ACM, 2005.

[3] B. Schueler, S. Sizov, S. Staab, and D. T. Tran, “Querying for
meta knowledge,” in WWW ’08: Proceeding of the 17th interna-
tional conference on World Wide Web, (New York, NY, USA),
pp. 625–634, ACM, 2008.

[4] D.Lenat, “The Dimensions of Context Space,”
tech. rep., CYCorp, 1998. Published online
http://www.cyc.com/doc/context-space.pdf.

[5] A. Borgida and L. Serafini, “Distributed Description Logics: As-
similating Information from Peer Sources,” J. Data Semantics,
vol. 1, pp. 153–184, 2003.

[6] J. McCarthy, S. Buvac, T. Costello, R. Fikes, M. Genesereth, and
F. Giunchiglia, “Formalizing Context (Expanded Notes),” 1995.

[7] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and
H. Stuckenschmidt. C-OWL: Contextualizing Ontologies. In
ISWC, pages 164–179, 2003.

[8] F. Giunchiglia and C. Ghidini. Local models semantics, or con-
textual reasoning = locality + compatibility. Artificial Intelli-
gence, 127, 2001.

[9] M.Joseph and L.Serafini. Simple reasoning for contextualized
RDF knowledge. In Proc. of Workshop on Modular Ontologies
(WOMO-2011), 2011.

[10] M.Joseph and G.Kuper and L.Serafini. Query Answering over
contextualized RDF Knowledge with Forall-Existential Bridge
Rules: Attaining Decidability using Acyclicity. In Proc. of Ital-
ian Conference in Computational Logic (CILC-2014), 2014.

[11] M.Joseph and G.Kuper and L.Serafini. Query Answering over
contextualized RDF/OWL Knowledge with Forall-Existential
Bridge Rules: Attaining Decidability using Acyclicity. In Proc.
of International Conference on Web Reasoning and Rule Sys-
tems (RR-2014), To Appear, 2014.

[12] L. Serafini and M. Homola. Contextualized knowledge repos-
itories for the semantic web. Web Semantics: Science, Services
and Agents on the World Wide Web, 2012.

[13] C. Beeri and M. Y. Vardi. The Implication Problem for Data
Dependencies. In ICALP, pages 73–85, 1981.

[14] Baget, J.-F.; Leclère, M.; Mugnier, M.-L.; and Salvat, E. 2011.
On rules with existential variables: Walking the decidability
line. Artificial Intelligence 175(9-10):1620–1654.

[15] Thomazo, M.; Baget, J.-F.; Mugnier, M.-L.; and Rudolph, S.

A Generic Querying Algorithm for Greedy Sets of Existential
Rules. In KR’12: International Conference on Principles of
Knowledge Representation and Reasoning, 096–106. 2012.

[16] C. Ghidini and L. Serafini. Distributed first order logics. In
Frontiers Of Combining Systems 2, Studies in Logic and Com-
putation, pages 121–140. Research Studies Press, 1998.

[17] R.Guha. Contexts: a Formalization and some Applications.
PhD thesis, Stanford, 1992.

[18] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov, “Schema
mediation in peer data management systems,” in In ICDE,
pp. 505–516, 2003.

[19] D. S. Johnson and A. C. Klug, “Testing containment of con-
junctive queries under functional and inclusion dependencies,”
J. Comput. Syst. Sci., vol. 28, no. 1, pp. 167–189, 1984.

[20] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.
Addison-Wesley, 1995.

[21] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev, “E-
Connections of Abstract Description Systems,” Artificial Intel-
ligence, vol. 156, no. 1, pp. 1–73, 2004.

[22] S. Klarman and V. Gutiérrez-Basulto, “Two-dimensional de-
scription logics for context-based semantic interoperability,” in
Proceedings of AAAI-11, 2011.

[23] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa, “Data Ex-
change: Semantics and Query Answering,” in Theoretical Com-
puter Science, pp. 28(1):89–124, 2005.

[24] A. Deutsch and V. Tannen, “Reformulation of XML Queries
and Constraints,” in In ICDT, pp. 225–241, 2003.

[25] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity
and expressive power of logic programming. Computing Sur-
veys (CSUR, 33(3), September 2001.

[26] H. J. ter Horst, “Completeness, decidability and complexity of
entailment for RDF Schema and a semantic extension involving
the OWL vocabulary,” Web Semantics: Science, Services and
Agents on the WWW, vol. 3, no. 2-3, pp. 79–115, 2005. Selcted
Papers from the ISWC, 2004.

[27] B. Glimm, C. Lutz, I. Horrocks, and U. Sattler, “Answering
conjunctive queries in the SHIQ description logic,” in Pro-
ceedings of the IJCAI’07, pp. 299–404, AAAI Press, 2007.

[28] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean, “SWRL: A Semantic Web Rule Lan-
guage Combining OWL and RuleML,” w3c member submis-
sion, World Wide Web Consortium, 2004.

[29] A. Deutsch, A. Nash, and J. Remmel, “The chase revisited,”
in Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, PODS
’08, (New York, NY, USA), pp. 149–158, ACM, 2008.

Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ... 29

[30] P. Hayes, ed., RDF Semantics. W3C Recommendation, Feb.
2004.

[31] B. Cuenca Grau, I. Horrocks, M. Krötzsch, C. Kupke,
D. Magka, B. Motik, and Z. Wang, “Acyclicity Notions for Exis-
tential Rules and Their Application to Query Answering in On-
tologies,” in Journal of Artificial Intelligence Research (JAIR),
vol. 47, pp. 741–808, AI Access Foundation, 2013.

[32] M. A. Harrison, Introduction to Formal Language Theory.
Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1st ed., 1978.

[33] A. Calì, G. Gottlob, and M. Kifer Taming the infinite chase:
Query answering under expressive relational constraints. In KR,
70–80. 2008.

[34] A. Calì, G. Gottlob, and A. Pieris, “Query Answering un-
der Non-guarded Rules in Datalog+/-,” in RR (P. Hitzler and
T. Lukasiewicz, eds.), vol. 6333 of Lecture Notes in Computer
Science, pp. 1–17, Springer, 2010.

[35] B. Marnette, “Generalized schema-mappings: from termi-
nation to tractability,” in Proceedings of the twenty-eighth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, PODS ’09, (New York, NY, USA), pp. 13–22,
ACM, 2009.

[36] M. Krötzsch and S. Rudolph, “Extending decidable existen-
tial rules by joining acyclicity and guardedness,” in Proceed-
ings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI’11) (T. Walsh, ed.), pp. 963–968, AAAI
Press/IJCAI, 2011.

[37] M. Krötzsch, S. Rudolph, and Pascal Hitzler. Description logic
rules. In Proceedings of the 18th European Conference on Arti-
ficial Intelligence (ECAI’08), pages 80–84. IOS Press, 2008.

[38] C. Gutierrez, C. A. Hurtado, and A. A. Vaisman, “Temporal
rdf,” in ESWC, pp. 93–107, 2005.

[39] O. Udrea, D. R. Recupero, and V. S. Subrahmanian, “Anno-
tated RDF,” ACM Transactions in Computational Logic, vol. 11,
no. 2, pp. 1–41, 2010.

[40] U. Straccia, N. Lopes, G. Lukacsy, and A. Polleres, “A gen-
eral framework for representing and reasoning with annotated
semantic web data,” in Proceedings of the 24th AAAI Confer-
ence on Artificial Intelligence (AAAI 2010), Special Track on
Artificial Intelligence and the Web, July 2010.

Appendix

A. Proofs of Section 3

Property 3.1. Note that a strict linear order is a relation
that is irreflexive, transitive, and linear.

Irreflexivity: By contradiction, suppose ≺q is not ir-
reflexive, then there exists Q ∈ Q s.t. Q ≺q Q holds.
This means that neither of the conditions (i) and (ii) of
≺q definition holds forQ. Hence, due to condition (iii)
Q 6≺q Q, which is a contradiction.

Linearity: Note that for any two distinct Q,Q′ ∈ Q,
one of the following holds: (a) Q ⊂ Q′, (b) Q′ ⊂ Q,
or (c) Q \ Q′ and Q′ \ Q are non-empty and disjoint.
Suppose (a) is the case, thenQ ≺q Q′ holds. Similarly,

if (b) is the case then Q′ ≺q Q holds. Otherwise if (c)
is the case, then by condition (ii), either Q ≺q Q′ or
Q′ ≺q Q should hold. Hence,≺q is a linear order over
Q.

Transitivity: Suppose there exists Q,Q′, Q′′ ∈ Q
s.t. Q ≺q Q′ and Q′ ≺q Q′′. Then, one of the fol-
lowing four cases hold: (a) Q ≺q Q′ due to (i) and
Q′ ≺q Q′′ due to (i), (b) Q ≺q Q′ due to (i) and
Q′ ≺q Q′′ due to (ii), (c) Q ≺q Q′ due to (ii) and
Q′ ≺q Q′′ due to (i), (d) Q ≺q Q′ due to (ii) and
Q′ ≺q Q′′ due to (ii).

Suppose if (a) is the case, then trivially Q ⊂ Q′′,
and hence by applying condition (i) Q ≺q Q′′. Other-
wise if (b) is the case, then either (1) Q ⊂ Q′′ or (2)
Q 6⊂ Q′′. Suppose, (1) is the case then, by (i) Q ≺q
Q′′. Otherwise, if (2) is the case, then since, Q ⊂ Q′,
it cannot be the case that greatestQuad≺l

(Q′′ \ Q) ≺l
greatestQuad≺l

(Q′′\Q′), and it cannot be the case that
greatestQuad≺l

(Q′ \Q′′)≺l greatestQuad≺l
(Q\Q′′).

Hence, it should be the case that greatestQuad≺l
(Q′′ \

Q′)�l greatestQuad≺l
(Q′′\Q) and greatestQuad≺l

(Q\
Q′′) ≺l greatestQuad≺l

(Q′ \Q′′). But since, greatest-
Quad≺l

(Q′ \Q′′) ≺l greatestQuad≺l
(Q′′ \Q′), it fol-

lows that greatestQuad≺l
(Q\Q′′)≺l greatestQuad≺l

(
Q′′\Q), and hence by condition (ii),Q ≺q Q′′. Hence,
if (b) is the case, then in both possible case (1) or (2),
it should be the case that Q ≺q Q′′. Otherwise if (c) is
the case, then similar to the arguments in (b), by condi-
tion (i) or (ii), it can easily be the seen that Q ≺q Q′′.

Otherwise, if (d) is the case, then it should be the
case that greatestQuad≺l

(Q\Q′)≺l greatestQuad≺l
(Q′\

Q) (†) and greatestQuad≺l
(Q′\Q′′)≺l greatestQuad≺l

(
Q′′ \Q′) (‡). Suppose by contradiction Q′′ ≺q Q, then
one of the following holds: (1) Q′′ ≺q Q by condi-
tion (i) or (2) Q′′ ≺q Q by condition (ii). Suppose, (1)
is the case, then it should be the case that Q′′ ⊂ Q.
Hence, it should not be the case that greatestQuad≺l

(
Q \ Q′) ≺l greatestQuad≺l

(Q′′ \ Q′) and it should
not be the case that greatestQuad≺l

(Q′ \ Q′′) ≺l
greatestQuad≺l

(Q′ \ Q). Hence, it should be the case
that greatestQuad≺l

(Q′′ \Q′) �l greatestQuad≺l
(Q \

Q′) (♥), and it should be the case that greatestQuad≺l
(

Q′ \ Q) �l greatestQuad≺l
(Q′ \ Q′′) (♠). Apply-

ing, (‡) in (♥), we get greatestQuad≺l
(Q′ \ Q′′) ≺l

greatestQuad≺l
(Q \Q′), and Applying, (†) in (♠), we

get greatestQuad≺l
(Q \ Q′) ≺l greatestQuad≺l

(Q′ \
Q′′), which is a contradiction. Suppose if (2) is the
case, then greatestQuad≺l

(Q′′\Q)≺l greatestQuad≺l
(

Q\Q′′). The above can be written as: greatestQuad≺l
(

Q′′ \ (Q ∩ Q′′)) ≺l greatestQuad≺l
(Q \ (Q ∩ Q′′)).

Using Q ∩ Q′ ∩ Q′′ ⊆ Q ∩ Q′, it follows that

30 Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ...

greatestQuad≺l
(Q′′\(Q∩Q′∩Q′′))�l greatestQuad≺l

(
Q \ (Q ∩Q′ ∩Q′′)) (♣). Also applying similar trans-
formation in (†) and (‡), we get greatestQuad≺l

(Q \
(Q ∩ Q′ ∩ Q′′)) �l greatestQuad≺l

(Q′ \ (Q ∩ Q′ ∩
Q′′)), and greatestQuad≺l

(Q′ \ (Q ∩ Q′ ∩ Q′′)) �l
greatestQuad≺l

(Q′′ \ (Q ∩ Q′ ∩ Q′′)). From which,
it follows that greatestQuad≺l

(Q \ (Q ∩ Q′ ∩ Q′′))
�l greatestQuad≺l

(Q′′ \ (Q ∩ Q′ ∩ Q′′)). Using
(♣) in the above, we get greatestQuad≺l

(Q \ (Q ∩
Q′ ∩ Q′′)) = greatestQuad≺l

(Q′ \ (Q ∩ Q′ ∩ Q′′))
= greatestQuad≺l

(Q′′ \ (Q ∩ Q′ ∩ Q′′)), which is
a contradiction. Hence, it should be the case that
Q ≺q Q′′.

Theorem 3.5. We show that CCQ entailment is un-
decidable for unrestricted quad-systems, by showing
that the well known undecidable problem of “non-
emptiness of intersection of context-free grammars” is
reducible to the CCQ answering problem.

Given an alphabet Σ, string ~w is a sequence of sym-
bols from Σ. A language L is a subset of Σ∗, where
Σ∗ is the set of all strings that can be constructed from
the alphabet Σ, and also includes the empty string ε.
Grammars are machineries that generate a particular
language. A grammar G is a quadruple 〈V, T, S, P 〉,
where V is the set of variables, T , the set of terminals,
S ∈ V is the start symbol, and P is a set of production
rules (PR), in which each PR r ∈ P , is of the form:

~w → ~w′

where ~w, ~w′ ∈ {T ∪ V }∗. Intuitively application of a
PR r of the form above on a string ~w1, replaces every
occurrence of the sequence ~w in ~w1 with ~w′. PRs are
applied starting from the start symbol S until it results
in a string ~w, with ~w ∈ Σ∗ or no more production rules
can be applied on ~w. In the former case, we say that
~w ∈ L(G), the language generated by grammarG. For
a detailed review of grammars, we refer the reader to
Harrison et al. [32]. A context-free grammar (CFG)
is a grammar, whose set of PRs P , have the following
property:

Property A.1. For a CFG, every PR is of the form
v → ~w, where v ∈ V , ~w ∈ {T ∪ V }∗.

Given two CFGs, G1 = 〈V1, T, S1, P1〉 and G2 =
〈V2, T, S2, P2〉, where V1, V2 are the set of variables, T
such that T∩(V1∪V2) = ∅ is the set of terminals. S1 ∈
V1 is the start symbol of G1, and P1 are the set of PRs
of the form v → ~w, where v ∈ V , ~w is a sequence of
the formw1...wn, wherewi ∈ V1∪T . Similarly s2, P2

is defined. Deciding whether the language generated
by the grammars L(G1) and L(G2) have non-empty
intersection is known to be undecidable [32].

Given two CFGs, G1 = 〈V1, T, S1, P1〉 and G2 =
〈V2, T, S2, P2〉, we encode grammars G1, G2 into a
quad-system of the formQSc = 〈Qc, R〉, with a single
context identifier c. Each PR r = v → ~w ∈ P1 ∪ P2,
with ~w = w1w2w3..wn, is encoded as a BR of the
form:

c : (x1, w1, x2), c : (x2, w2, x3), ..., c : (xn, wn, xn+1)

→ c : (x1, v, xn+1) (9)

where x1, .., xn+1 are variables. W.l.o.g. we assume
that the set of terminal symbols T is equal to the set
of terminal symbols occurring in P1 ∪ P2. For each
terminal symbol ti ∈ T , R contains a BR of the form:

c : (x,rdf:type, C)→ ∃y c : (x, ti, y),

c : (y,rdf:type, C) (10)

and Qc contains only the triple:

c : (a,rdf:type, C)

We in the following show that:

QSc |= ∃y c : (a, S1, y) ∧ c : (a, S2, y)↔

L(G1) ∩ L(G2) 6= ∅ (11)

Claim (1) For any ~w = t1, ..., tp ∈ T ∗, there ex-
ists b1, ...bp, such that c : (a, t1, b1), c : (b1, t2, b2), ...,
c : (bp−1, tp, bp), c : (bp,rdf:type, C) ∈ dChase(
QSc).

we proceed by induction on the |~w|.

base case suppose if |~w| = 1, then ~w = ti, for
some ti ∈ T . But Since by construction c : (a,
rdf:type, C) ∈ dChase0(QSc), on which
rules of the form (10) is applicable. Hence, there
exists an i such that dChasei(QSc) contains
c : (a, ti, bi), c : (bi,rdf:type, C), for each
ti ∈ T . Hence, the base case.

hypothesis for any ~w = t1...tp, if |~w| ≤ p′, then
there exists b1, ..., bp, such that c : (a, t1, b1),
c : (b1, t2, b2), ..., c : (bp−1, tp, bp), c : (bp,
rdf:type, C) ∈ dChase(QSc).

inductive step suppose ~w = t1...tp+1, with |~w| ≤
p′ + 1. Since ~w can be written as ~w′tp+1, where
~w′ = t1...tp, and by hypothesis, there exists
b1, ..., bp such that c : (a, t1, b1), c : (b1, t2, b2),
..., c : (bp−1, tp, bp), c : (bp,rdf:type, C) ∈

Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ... 31

dChase(QSc). Also since rules of the form (10)
are applicable on c : (bp, rdf:type, C), and
hence produces triples of the form c : (bp, ti, b

i
p+1),

c : (bip+1), rdf:type, C), for each ti ∈ T .
Since tp+1 ∈ T , the claim follows.

For a grammar G = 〈V, T, S, P 〉, whose start symbol
is S, and for any ~w ∈ {V ∪ T}∗, for some Vj ∈ V ,
we denote by Vj →i ~w, the fact that ~w was derived
from Vj by i production steps, i.e. there exists steps
Vj → r1, ..., ri → ~w, which lead to the production of
~w. For any ~w, ~w ∈ L(G), iff there exists an i such
that S →i ~w. For any Vj ∈ V , we use Vj →∗ ~w to
denote the fact that there exists an arbitrary i, such that
Vj →i ~w.

Claim (2) For any ~w = t1...tp ∈ {V ∪ T}∗, and
for any Vj ∈ V , if Vj →∗ ~w and there exists
b1, ..., bp+1, with c : (b1, t1, b2), ..., c : (bp, tp, bp+1) ∈
dChase(QSc), then c : (b1, Vj , bp+1) ∈ dChase(QSc).

We prove this by induction on the size of ~w.

base case Suppose |~w| = 1, then ~w = tk, for
some tk ∈ T . If there exists b1, b2 such that
c : (b1, tk, b2). But since there exists a PR Vj →
tk, by transformation given in (9), there exists a
BR c : (x1, tk, x2)→ c : (x1, Vj , x2) ∈ R, which
is applicable on c : (b1, tk, b2) and hence the quad
c : (b1, Vj , b2) ∈ dChase(QSc).

hypothesis For any ~w = t1...tp, with |~w| ≤ p′,
and for any Vj ∈ V , if Vj →∗ ~w and there
exists b1, ...bp, bp+1, such that c : (b1, t1, b2), ...,
c : (bp, tp, bp+1) ∈ dChase(QSc), then c : (b1,
Vj , bp+1) ∈ dChase(QSc).

inductive step Suppose if ~w = t1...tp+1, with |~w| ≤
p′ + 1, and Vj →i ~w, and there exists b1, ...bp+1,
bp+2, such that c : (b1, t1, b2), ..., c : (bp+1, tp+1,
bp+2) ∈ dChase(Qc). Also, one of the follow-
ing holds (i) i = 1, or (ii) i > 1. Suppose
(i) is the case, then it is trivially the case that
c : (b1, Vj , bp+2) ∈ dChase(QSc). Suppose if
(ii) is the case, one of the two sub cases holds (a)
Vj →i−1 Vk, for some Vk ∈ V and Vk →1 ~w
or (b) there exist a Vk ∈ V , such that Vk →∗
tq+1...tq+l, with 2 ≤ l ≤ p, where Vj →∗
t1...tqVktp−l+1...tp+1. If (a) is the case, triv-
ially then c : (b1, Vk, bq+2) ∈ dChase(QSc), and
since by construction there exists c : (x0, Vk, x1)
→ c : (x0, Vk+1, x1), ..., c : (x0, Vk+i, x1) →
c : (x0, Vj , x1) ∈R, c : (b1, Vj , bq+2) ∈ dChase(
QSc). If (b) is the case, then since |tq+1...tq+l| ≥

2, |t1...tqV2tp−l+1...tp+1| ≤ p′. This implies that
c : (b1, Vj , bp+2) ∈ dChase(QSc).

Similarly, by construction of dChase(QSc), the fol-
lowing claim can straightforwardly be shown to hold:

Claim (3) For any ~w = t1...tp ∈ {V ∪ T}∗, and
for any Vj ∈ V , if there exists b1, ..., bp, bp+1, with
c : (b1, t1, b2), ..., c : (bp, tp, bp+1) ∈ dChase(QSc)
and c : (b1, Vj , bp+1) ∈ dChase(QSc), then Vj →∗ ~w.

(a) For any ~w = t1...tp ∈ T ∗, if ~w ∈ L(G1) ∩ L(G2),
then by claim 1, since there exists b1, ..., bp, such that
c : (a, t1, b1), ..., c : (bp−1, tp, bp) ∈ dChase(QSc).
But since ~w ∈ L(G1) and ~w ∈ L(G2), S1 → ~w and
S2 → ~w. Hence by claim 2, c : (a, S1, bp), c : (a, S2, bp)
∈ dChase(QSc), which implies that dChase(QSc)
|= ∃y c : (a, s1, y) ∧ c : (a, s2, y). Hence, QSc |= ∃y
c : (a, s1, y) ∧ c : (a, s2, y).
(b) Suppose if QSc |= ∃y c : (a, S1, y) ∧ c : (a, S2, y),
then this implies that there exists bp such that c : (a,
S1, bp), c : (a, S2, bp) ∈ dChase(QSC). Then it is
the case that there exists ~w = t1...tp ∈ T ∗, and
b1, ..., bp such that c : (a, t1, b1), ..., c : (bp−1, tp, bp),
c : (a, S1, bp), c : (a, S2, bp) ∈ dChase(QSc). Then
by claim 3, S1 →∗ ~w, S2 →∗ ~w. Hence, w ∈
L(G1) ∩ L(G2).

By (a),(b) it follows that there exists ~w ∈ L(G1) ∩
L(G2) iff QSc |= ∃y c : (a, s1, y) ∧ c : (a, s2, y). As
we have shown that the intersection of CFGs, which
is an undecidable problem, is reducible to the problem
of query entailment on unrestricted quad-system, the
latter is undecidable.

B. Proofs of Section 4

Theorem 4.13. We in the following show the case of
dChasecsafe(QSC), i.e. unCSafe∈ dChasecsafe(QSC)
iff QSC is uncsafe. The proof follows from lemma B.1
and lemma B.2 below.

The proofs for the case of dChasesafe(QSC) and
dChasemsafe(QSC) is similar, and is omitted.

Lemma B.1 (Soundness). For any quad-systemQSC =
〈QC , R〉, if the quad unCSafe ∈ dChasecsafe(QSC),
then QSC is uncsafe.

Proof. Note that augC(R) =
⋃
r∈R augC(r) ∪

{brTR}, where brTR is the range restricted BR
cc : (x1, descendantOf, z), cc : (z, descendantOf, x2)
→ cc : (x1, descendantOf, x2). Also for each r ∈ R,

32 Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ...

body(r) = body(augC(r)), and for any c ∈ C,
c : (s, p, o) ∈ head(r) iff c : (s, p, o) ∈ head(augC(r)).
That is, head(r) = head(augC(r))(C), where head(
r)(C) denotes the quad-patterns in head(r), whose
context identifiers is in C. Also, head(augC(r))
= head(augC(r))(C) ∪ head(augC(r))(cc), and
also the set of existentially quantified variables in
head(augC(r))(cc) is contained in the set of existen-
tially quantified variables in head(augC(r))(C) (†).
We first prove the following claim:

Claim (0) For any quad-system QSC = 〈QC , R〉, let i
be a csafe dChase iteration, let j be the number of csafe
dChase iterations before i in which brTR was applied,
then dChasei−j(QSC) = dChasecsafe

i (QSC)(C).

We approach the proof the above claim by induction
on i.

base case If i = 1, then dChasecsafe
0 (QSC)(cc) = ∅

and dChasecsafe
0 (QSC)(C) = dChasecsafe

0 (QSC)
= dChase0(QSC). Hence, it should be the case
that applicableaugC(R)(brTR, µ, dChase

csafe
0 (

QSC)) does not hold, for any µ. Hence, applicableR(
r, µ, dChase0(QSC)) iff applicableaugC(R)(augC(
r), µ, dChasecsafe

0 (QSC)), for any r ∈ R,
assignment µ. Also using (†), it follows that
dChase1(QSC) = dChasecsafe

1−0(QSC)(C).
hypothesis for any i ≤ k, if i is a csafe dChase iter-

ation, and j be the number of csafe dChase iter-
ations before i in which brTR was applied, then
dChasei−j(QSC) = dChasecsafe

i (QSC)(C).
inductive suppose i = k+1, then one of the following

three cases should hold: (a) applicableaugC(R)(r,
µ, dChasecsafe

k (QSC)) does not hold for any r ∈
augC(R), assignment µ, and dChasecsafe

k+1(QSC)

= dChasecsafe
k (QSC), or (b) applicableaugC(R)(

brTR, µ, dChasecsafe
k (QSC)) holds, for some

assignment µ, or (c) applicableaugC(R)(r, µ,
dChasecsafe

k (QSC)) holds, for some r ∈ augC(R)\
{brTR}, for some assignment µ. If (a) is the case,
then it should be the case that applicableR(r′, µ,
dChasek−j(QSC)) does not hold, for any r′ ∈
R, assignment µ. As a result dChasek+1−j(QSC)
= dChasek−j(QSC), and hence, dChasek+1−j(
QSC) = dChasecsafe

k+1(QSC)(C). If (b) is the case,
then since dChasecsafe

k+1(QSC)(C) = dChasecsafe
k (

QSC)(C), dChasecsafe
k+1(QSC)(C) = dChasek+1−j−1(

QSC) = dChasek−j(QSC). If (c) is the case,
then it should the case that applicableR(r′, µ,
dChasek−j(QSC), where r = augC(r′) and
head(r)(C) = head(r). Hence, it should be the

case that dChasecsafe
k+1(QSC)(C) = dChasek+1−j(

QSC).

The following claim, which straightforwardly follows
from claim 0, shows that any quad c : (s, p, o), with
c ∈ C derived in csafe dChase, is also derived in its
standard dChase. In this way, csafe dChase do not gen-
erate any unsound triples in any context c ∈ C.

Claim (1) For any quad c : (s, p, o), where c ∈ C, if
c : (s, p, o) ∈ dChasecsafe(QSC), then c : (s, p, o) ∈
dChase(QSC).

The following claim shows that the set of origin con-
text quads are also sound.

Claim (2) If there exists quad cc : (b, originContext, c)
∈ dChasecsafe(QSC), then c ∈ originContexts(b).

If cc : (b, originContext, c) ∈ dChasecsafe(QSC),
there exists i ∈ N, s.t. cc : (b, originContext, c) ∈
dChasecsafe

i (QSC) and there exists no j < i with
cc : (b, originContext, c) ∈ dChasecsafe

j (QSC). But
if cc : (b, originContext, c) ∈ dChasecsafe

i (QSC) im-
plies that there exists an augC(r) = body(~x, ~z) →
head(~x, ~y) ∈ augC(R), with cc : (yj , originContext,
c) ∈ head(~x, ~y), yj ∈ {~y}, s.t. cc : (b, originContext,
c) was generated due to application of an assignment
µ on augC(r), with b = yj [µ

ext(~y)]. This implies that
there exists c : (s, p, o) ∈ head(~x, ~y), with s = yj or
p = yj or o = yj , c ∈ C. Since according to our as-
sumption, i is the first iteration in which cc : (b, origin-
Context, c) is generated, it follows that i is the first it-
eration in which c : (s, p, o)[µext(~y)] is also generated.
Let k be the number of iterations before i in which
brTR was applied. By applying claim 0, it should be
the case that c : (s, p, o)[µext(~y)] ∈ dChasei−k(QSC),
and i − k should be the first such dChase iteration.
Hence, c ∈ orginContexts(b).
In the following claim, we prove the soundness of the
descendant quads generated in a safe dChase.

Claim (3) For any two distinct blank nodes b, b′ in
dChasecsafe(QSC), if cc : (b′, descendantOf, b) ∈
dChasecsafe(QSC) then b′ is a descendant of b.

Since any quad of the form cc : (b′, descendantOf, b)
∈ dChasecsafe(QSC) is not an element of QC , and
can only be introduced by an application of a BR
r ∈ augC(R), any quad of the form cc : (b′, descen-
dantOf, b) can only be introduced, earliest in the first
iteration of dChasecsafe(QSC). Suppose cc : (b′, de-
scendantOf, b) ∈ dChasecsafe(QSC), then there ex-
ists an iteration i ≥ 1 s.t. cc : (b′, descendantOf, b)

Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ... 33

∈ dChasecsafe
j (QSC), for any j ≥ i, and cc : (b′,

descendantOf, b) 6∈ dChasecsafe
j′ (QSC), for any j′ < i.

We apply induction on i for the proof.

base case suppose cc:(b′, descendantOf, b)∈ dChasecsafe
1 (

QSC) and since b 6= b′, then there exists a
BR r ∈ augC(R), ∃µ s.t. applicableaugC(R)(r,
µ, dChasecsafe

0 (QSC)), i.e. body(r)(~x, ~z)[µ] ⊆
dChasecsafe

0 (QSC) and cc : (b′, descendantOf, b)
∈ head(r)(~x, ~y)[µext(~y)]. Then by construction
of augC(r), it follows that b = yj [µ

ext(~y)], for
some yj ∈ {~y} and b′ = µ(xi), for some xi ∈
{~x}. Since dChase0(QSC) = dChasecsafe

0 (QSC),
it follows using (†) that applicableR(r′, µ, dChase0(
QSC)) holds, for r′ = body(r′)(~x, ~z)→ head(r′)(~x,
~y), with augC(r′) = r. Hence, by construction, it
follows that b = yj [µ

ext(~y)] ∈ C(dChase1(QSC)),
for yj ∈ {~y} and b′ = µ(xi), for xi ∈ {~x}. Hence
b′ is a descendant of b (by definition).

hypothesis if cc : (b′, descendantOf, b)∈ dChasecsafe
i (

QSC), for 1 ≤ i ≤ k, then b′ is a descendant of b.
inductive step suppose cc : (b′, descendantOf, b) ∈

dChasecsafe
k+1(QSC), then either (i) cc : (b′, descen-

dantOf, b) ∈ dChasecsafe
k (QSC) or (ii) cc : (b′,

descendantOf, b) 6∈ dChasecsafe
k (QSC). Sup-

pose (i) is the case, then by hypothesis, b′ is
a descendant of b. If (ii) is the case, then ei-
ther (a) cc : (b′, descendantOf, b) is the result
of the application of a brTR ∈ augC(R) on
dChasecsafe

k (QSC) or (b) cc : (b′, descendantOf, b)
is the result of the application of a r ∈ augC(R)\
{brTR} on dChasecsafe

k (QSC). If (a) is the case,
then there exists a b′′ ∈ C(dChasecsafe

k (QSC))
s.t. cc : (b′, descendantOf, b′′) ∈ dChasecsafe

k (QSC)
and cc : (b′′, descendantOf, b) ∈ dChasecsafe

k (QSC).
Hence, by hypothesis b′ is a descendantOf b′′ and
b′′ is a descendantOf b. Since ‘descendantOf’ re-
lation is transitive, b′ is a descendantOf b. Oth-
erwise if (b) is the case then similar to the argu-
ments used in the base case, it can easily be seen
that b′ is a descendant of b.

Suppose if the quad unCSafe ∈ dChasecsafe(QSC),
then this implies that there exists an iteration i s.t.
the function unCSafeTest on augC(r), with r =
body(r)(~x, ~z) → head(r)(~x, ~y) ∈ R, assignment µ,
and dChasecsafe

i (QSC) returns True. This implies that,
there exists b, b′ ∈ B, yj ∈ {~y} s.t. body(r)(~x, ~z)[µ]
⊆ dChasecsafe

i (QSC), b ∈ {µ(~x)}, cc : (b′, descen-
dantOf, b) ∈ dChasecsafe

i (QSC) and {c | cc : (b′, orig-
inContext, c) ∈ dChasecsafe

i (QSC)} = cScope(yj ,
head(r)(~x, ~y)). Suppose k be the number of csafe

dChase iterations before i, in which brTR was ap-
plied. Hence, by claim 0, dChasei−k−1(QSC) =
dChasecsafe

i−1 (QSC)(C), and consequently applicableR(r,
µ, dChasei−k−1(QSC)) holds. Hence, as a result of
µ being applied on r, there exists b′′ = yj [µ

ext(~y)] ∈
B(dChasei−k(QSC))), with b ∈ {µ(~x)}. Hence, by
definition originContext(b′′) = cScope(yj , head(r)),
and b is a descendantOf b′′. If b 6= b′, then by Claim
2, b′ is a descendantOf b, otherwise b′ = b and hence
b′ is a descendantOf b′′. Consequently, b′ is a de-
scendantOf b′′. Also, applying claim 3, we get that
originContexts(b′) = originContexts(b′′), which
means that prerequisites of uncsafety is satisfied, and
hence, QSC is uncsafe.

Lemma B.2 (Completeness). For any quad-system,
QSC = 〈QC , R〉, if QSC is uncsafe then unCSafe ∈
dChasecsafe(QSC).

Proof. We first prove a few supporting claims in order
to prove the theorem.

Claim (0) For any quad-system QSC = 〈QC , R〉,
suppose unCSafe 6∈ dChasecsafe(QSC), then for any
dChase iteration i, there exists a j ≥ 0 s.t. dChasei(QSC)
= dChasecsafe

i+j (QSC)(C).

We approach the proof by induction on i.

base case for i = 0, we know that dChase0(QSC) =
dChasecsafe

0 (QSC) = QC . Hence, the base case
trivially holds.

hypothesis for i ≤ k ∈ N, there exists j ≥ 0 s.t.
dChasei(QSC) = dChasecsafe

i+j (QSC)
step case for i = k + 1, one of the following holds:

(a) dChasek+1(QSC) = dChasek(QSC) or (b)
dChasek+1(QSC) = dChasek(QSC)∪ head(r)(
~x, ~y)[µext(~y)] and applicableR(r, µ, dChasek(
QSC)) holds, for some r = body(r)(~x, ~z) →
head(r)(~x, ~y), assignment µ. If (a) is the case,
then trivially the claim holds. Otherwise, if (b) is
the case, then let j ∈ N be s.t. dChasek(QSC) =
dChasecsafe

k+j(QSC)(C). Let j′ ≥ j, l ∈ N be s.t.
applicableaugC(R)(brTR, µ, dCasecsafe

k+l (QSC)),
for any j′ ≥ l ≥ j, and applicableaugC(R)(brTR,
µ, dCasecsafe

k+j′+1(QSC)) does not hold. By con-
struction, it should be the case that applicable(r′,
µ, dCasecsafe

k+j′+1(QSC)) holds, where r′ = augC(
r). Also since no new Skolem blank node was
introduced in any csafe dChase iteration k + l,
for any j ≤ l ≤ j′. It should be the case that
head(r)[µext(~y)] = head(r′)[µext(~y)](C). Since,
dChasecsafe

k+l (QSC)(C) = dChasek(QSC), for

34 Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ...

any j ≤ l ≤ j′, and dChasecsafe
k+j′+1(QSC) =

dChasecsafe
k+j′(QSC) ∪ head(r′)[µext(~y)], dChas

ecsafe
k+j′+1(QSC)(C) = dChasek+1(QSC). Hence,

the claim follows.

The following claim, which straightforwardly follows
from claim 0, shows that, for csafe quad-systems its
standard dChase is contained in its safe dChase.

Claim (1) Suppose unCSafe 6∈ dChasecsafe(QSC),
then dChase(QSC) ⊆ dChasecsafe(QSC).

Claim below shows that the generation of originCon-
text quads in csafe dChase is complete.

Claim (2) For any quad-system QSC , if unCSafe 6∈
dChasecsafe(QSC), then for any skolem blank-node b
generated in dChase(QSC), and for any c ∈ C, if c
∈ originContexts(b), then there exists a quad cc : (b,
originContext, c) ∈ dChasecsafe(QSC).

Since the only way a skolem blank node b gets gen-
erated in any iteration i of dChase(QSC) is by the
application of a BR r ∈ R, i.e. when there ∃r =
body(r)(~x, ~z) → head(r)(~x, ~y) ∈ R, assignment
µ, s.t. applicableR(r, µ, dChasei−1(QSC)), and b =
yj [µ

ext(~y)], for some yj ∈ {~y}, and dChasei(QSC)
= dChasei−1(QSC) ∪ head(r)(~x, ~y)[µext(~y)]. Also
since c ∈ originContexts(b), it should be the case
that c ∈ cScope(yj , head(r)). From claim 0, we
know that there exists j ≥ 0, s.t. dChasei(QSC) =
dChasecsafe

i+j (QSC)(C). W.l.o.g, assume that i + j is
the first such csafe dChase iteration. Hence, it follows
that applicableaugC(R)(r

′, µ, dChasecsafe
i+j−1(QSC)),

where r′ = augC(r). Since, head(r) ⊆ head(r′),
it should be the case that c ∈ cScope(yj , head(r′)).
Hence, by construction of augC, cc : (yj , originCon-
text, c) ∈ head(r′), and as a result of application of
µ on r′ in iteration i + j, cc : (b, originContext, c)
gets generated in dChasecsafe

i+j (QSC). Hence, the claim
holds.

For the claim below, we introduce the concept of
the sub-distance. For any two blank nodes, their sub-
distance is inductively defined as:

Definition B.3. For any two blank nodes b, b′, sub-
distance(b, b′) is defined inductively as:

– sub-distance(b, b′) = 0, if b′ = b;
– sub-distance(b, b′) = ∞, if b 6= b′ and b is not a

descendant of b′;

– sub-distance(b, b′) =mint∈{~x[µ]}{ sub-distance(b,
t)} + 1, if b′ was generated by application of µ
on r = body(r)(~x, ~z)→ head(r)(~x, ~y), i.e. b′ =
yj [µ

ext(~y)], for some yj ∈ {~y}, and b is a descen-
dant of b′.

Claim (3) For any quad-system QSC = 〈QC , R〉,
if unCSafe 6∈ dChasecsafe(QSC), then for any two
skolem blank nodes b, b′ in dChase(QSC), if b is a
descendant of b′ then there exists a quad of the form
cc : (b, descendantOf, b′) ∈ dChasecsafe(QSC).

Note by the definition of sub-distance that if b is a de-
scendant of b′, then sub-distance(b, b′) ∈ N. Assum-
ing unCSafe 6∈ dChasecsafe(QSC), and b is a descen-
dant of b′, we approach the proof by induction on sub-
distance(b, b′).

base case Suppose sub-distance(b, b′) = 1, then this
implies that there exists r = body(~x, ~z) →
head(r)(~x, ~y), assignment µ s.t. b′ was gen-
erated due to application of µ on r, i.e. b′ =
yj [µ

ext(~y)], for some yj ∈ {~y}, and b ∈ {~x[µ]}.
This implies that there exists a dChase itera-
tion i s.t. applicableR(r, µ, dChasei(QSC)) and
dChasei+1(QSC) = dChasei(QSC) ∪ apply(r,
µ). Since unCSafe 6∈ dChasecsafe(QSC), using
claim 0, there exists k ≥ i s.t. dChasei(QSC)
= dChasecsafe

k (QSC)(C). W.l.o.g., let k be the
first such csafe dChase iteration. This means that
applicableaugC(R)(r

′, µ, dChasecsafe
k (QSC)),

where r′ = augC(r), and dChasecsafe
k+1 = dChas

ecsafe
k (QSC) ∪ head(r′)[µext(~y)], and b, b′ ∈
head(r′)[µext(~y)], b ∈ {~x[µ]}, b′ = yj [µ

ext(~y)].
By construction of augC(), since there exists
a quad-pattern cc : (xl, descendantOf, yj) ∈
head(r′), for any xl ∈ {~x}, yj ∈ {~y}, it follows
that cc : (b, descendantOf, b′) ∈ dChasecsafe

k+1(QSC).
hypothesis Suppose sub-distance(b, b′) ≤ k, k ∈ N,

then cc : (b, descendantOf, b′)∈ dChasecsafe(QSC).
inductive step Suppose sub-distance(b, b′) = k + 1,

then there exists a b′′ 6= b, assignment µ, and BR
r = body(r)(~x, ~z) → head(r)(~x, ~y) ∈ R s.t. b′

was generated due to the application of µ or r
with b′′ ∈ {~x[µ]}, i.e. b′ = yj [µ

ext(~y)], for yj ∈
{~y}, and b is a descendant of b′′. This implies that
sub-distance(b′′, b′) = 1, and sub-distance(b, b′′)
= k, and hence by hypothesis cc : (b, descen-
dantOf, b′′) ∈ dChasecsafe(QSC), and cc : (b′′,
descendantOf, b′) ∈ dChasecsafe(QSC). Hence,
by construction of csafe dChase, cc : (b, descen-
dantOf, b′) ∈ dChasecsafe(QSC).

Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules ... 35

Suppose QSC is uncsafe, then by definition, there
exists a blank nodes b, b′ in Bsk(dChase(QSC)),
s.t. b is descendant of b′, and originContexts(b) =

originContexts(b′). By contradiction, if unCSafe 6∈
dChasecsafe(QSC), then by claim 1, dChase(QSC) ⊆
dChasecsafe(QSC). Since by claim 2, for any c ∈
originContexts(b), there exists quads of the form
cc : (b, originContext, c) ∈ dChasecsafe(QSC) and
for every c′ ∈ originContexts(b′), there exists
cc : (b′, originContext, c′) ∈ dChasecsafe(QSC). Since
originContexts(b) = originContexts(b′), it fol-
lows that {c | cc : (b, originContext, c) ∈ dChasecsafe(

QSC)}= {c′ | cc : (b′, originContext, c′)∈ dChasecsafe(

QSC)} Also by claim 3, since b is a descendant of b′,
there exists a quad of the form cc : (b, descendantOf,

b′) in dChasecsafe(QSC). But, by construction of
dChasecsafe(QSC), it should be the case that there ex-
ist a b′′ ∈ Bsk(dChasecsafe(QSC)), r = body(r)(~x,
~z) → head(r)(~x, ~y) ∈ augC(R), assignment µ s.t.
b′ was generated due to the application of µ on r,
i.e. b′ = yj [µ

ext(~y)] with b′′ ∈ {~x[µ]}, and cc : (b,
descendantOf, b′′) ∈ dChasecsafe(QSC). But, since
{c | cc : (b, originContext, c) ∈ dChasecsafe(QSC)}
= cScope(yj , head(ri)), the method unCSafeTest(r,
µ, dChasecsafe

l (QSC)) should return True, for some
l ∈ N. Hence, it should be the case that unCSafe
∈ dChasecsafe(QSC), which is a contradiction to our
assumption. Hence unCSafe ∈ dChasecsafe(QSC), if
dChase(QSC) is uncsafe.

