
Directly deriving binary relation types from
concept types, especially process or role types
Editor(s): Name Surname, University, Country
Solicited review(s): Name Surname, University, Country
Open review(s): Name Surname, University, Country

Philippe Martina and Jérémy Bénard b

a Université de La Réunion (and adjunct researcher of Griffith University, Australia)
 EA2525 LIM, Saint-Denis de la Réunion, F-97490, France. E-mail: Philippe.Martin@univ-reunion.fr
b Logicells, 3, rue Désiré Barquisseau, 97410 Saint-Pierre, France. E-mail: jeremy.benard@logicells.com

Abstract. This article proposes an ontology design pattern for leading knowledge providers to represent knowledge in more
normalized, precise and inter-related ways, hence in ways that help the matching and exploitation of (rather independently created)
knowledge. This pattern is a knowledge sharing best practice that is domain and language independent and it can be used as a
criteria for measuring the quality of an ontology. This pattern is: "using binary relation types directly derived from concept types,
especially role types or types of process with nominal expressions as names". The article explains and illustrates this pattern, and
relates it to other patterns and general ontology quality criteria. It also provides an ontology for automatically deriving relation
types from concept types (e.g., those from lexical ontologies such as those derived from the WordNet lexical database). This
derivation helps normalizing knowledge, reduces having to introduce new relation types and helps keeping all the types organized.

Keywords: knowledge sharing, knowledge normalization, knowledge matching, best practices, relation type generation

1. Introduction

Ontology Design Patterns (ODPs) are "modeling
solutions to solve a recurrent ontology design prob-
lem" [16]. Many ODPs have been found, e.g., 160 are
currently registered in the "ODP catalog at http://on-
tologydesignpatterns.org" which, in this article, will
now be referred to as "ODPC". However, the thou-
sands of ontologies (UML schemas included) that
have been proposed so far are still poorly inter-con-
nected and heterogeneous in their design. It is then dif-
ficult for people and automated agents to compare or
match independently created knowledge representa-
tions (KRs, e.g., types or statements) to know if some
KRs are equivalent to others or specializations of oth-
ers. Thus, it is difficult for people and automated
agents to search, align, aggregate – and, more gener-
ally, relate, infer from or exploit – KRs or ontologies .

In other words, there is a need for ODPs specifically
aimed for knowledge sharing and, more precisely, for
solving the problem of leading knowledge providers to

create more matchable and re-usable KRs. As later de-
tailed, this implies leading them to create more precise,
normalized, well related and easy-to-understand KRs.
In order to be adopted, these ODPs should also be easy
to follow and easy to use as criteria for automatically
measuring the quality of an ontology, to help develop-
ing an ontology or selecting ontologies to re-use. Fi-
nally, the ODPs – or, at least the knowledge sharing
ODPs – should be well inter-related by semantic rela-
tions to help people i) know about them and their ad-
vantages, and ii) select those they want to commit to.
Then, tools can check or enforce these commitments.

This article proposes such a knowledge sharing fo-
cused ODP and best practice (BP) and relates it to
other ones, via specialization relations and "gradual
pattern" relations. This advocated BP, which in this
article will now be referred to as ABP, is: "using bi-
nary relation types directly derived from concept
types, especially role types or types of process with
singular nominal expressions as names". No ODP
catalog appears to include ODPs similar to this one or

to any of its parts. Like most BPs, it is domain and lan-
guage independent and it can be used for any dataset.
The sections 2, 3, 4 and 5 explain, formalize and illus-
trate the different parts of ABP. Section 6 relates them
to other ODPs and thereby also give more rationale.

2. Using binary relations

ABP starts by advocating the use of "binary rela-
tions" (or "properties" in RDF and OWL). Types that
are not relation types are "concept types" ("classes" in
RDF and OWL). However, from now on, to avoid a
too frequent use of the word "type", it is sometimes left
implicit when referring to a "concept/relation type" or
to "a type and/or any of its instances". The word "indi-
vidual" will be added when a type is not referred to.

Since ABP is language independent, this article uses
a general terminology, one compatible with RIF-FLD,
the W3C Framework for Logic Dialects of the Rule
Interchange Format [17]. For its formal textual exam-
ples, this article uses RIF-FLD PS, the Presentation
Syntax of RIF-FLD. Indeed, this notation is both ex-
pressive and rather intuitive. In the examples of this
article, relation names begin by "r__" and function
names begin by "f__". Logical rules are used since
RIF-FLD is used and since this shows the direction the
implications are expected to be used. However, in each
case, a logical equivalence could also be used instead.

Following ABP does not prevent using non-binary
relations as long as definitions or rules are also pro-
vided to enable the automatic translation of "KRs
using non-binary relations" into "KRs using binary re-
lations". Table 1 illustrates such rules for various kinds
of use cases (only the third row is also about the focus
of Section 3: deriving a relation from a concept).

One reason why such rules are useful for knowl-
edge sharing is that binary relations can be "com-
pared" while relations of different arities generally
cannot be (two types or KRs are "comparable" if and
only if an equivalence or specialization relation be-
tween them has been directly stated or can be in-
ferred). Thus, KRs using binary relations can be or-
dered by generalization relations, typically, implica-
tions. This is more difficult with KRs using relations
of different arities, thus reducing possibilities for
knowledge matching or inferences. E.g., as illustrated
by Table 1, many "directly un-comparable" relations
of different arities can be translated into binary rela-
tions of type r__list_of_surrounding_entities (which
uses a list). Then, they can be "compared".

A related reason is that they make more informa-
tion explicit. Normalizing, precising and supporting

Table 1

Examples of how and why defining a given relation type with re-
spect to other types (notes: here, rules are used for the definitions;
the RIF-FLD PS notation is used in the non-highlighted parts;
variables begin by "?"; "S1:- S2" can be read "If S2 then S1")

If you wish to (re-)use non-binary relations, as in
 r__spatial_entity_between_3_other_ones (Jack Joe John Mary)
 Exists ?X r__spatial_entity_between_2_other_ones (?X Joe John)
, instead of using binary relations, as in
 r__list_of_surrounding_entities (Jack List(Joe John Mary))
 Exists ?X r__list_of_surrounding_entities (?X List(Joe John))
, then provide ways to translate the 1st ones into the 2nd ones, e.g.,
 Forall ?A ?B ?C ?D
 r__list_of_surrounding_entities (?A List(?B ?C ?D))
 :- r__spatial_entity_between_3_other_ones (?A ?B ?C ?D)
, since it is then much easier to make inferences, e.g., ?X = Jack
and the above 3rd statement specializes (hence implies) the 4th

The above approach also works for contextualizations, e.g.,
 r__list-of-surrounding-entities_at-time (Jack Joe John D-Day)
 can automatically be translated into the binary relation
 r__list_of_surrounding-entities (Jack_at_D-Day
 List (Joe_at_D-Day John_at_D-Day))
This cannot be specified in RIF PS but something similar can be:
 Forall ?A ?B ?C ?time_T
 Exists (?A_at_time_T ?B_at_time_T ?C_at_time_T)
 And (r__list_of_surrounding_entities (?A_at_time_T
 List (?B_at_time_T ?C_at_time_T))
 r__extended_specialization (?A ?A_at_time_T)
 r__time (?A_at_time_T ?time_T)
 r__extended_specialization (?B ?B_at_time_T)
 r__time (?B_at_time_T ?time_T))
 :- r__list-of-surrounding-entities_at-time (?A ?B ?C ?time_T)

Similarly, if you wish to use relations for processes, as in
 r__landing (Joe Omaha_Beach D-Day)
 r__defining (Joe Square)
, instead of using classic primitive binary relations, as in
 Exists ?landing
 And (?landing # landing // "?i # ?t" <=> instanceOf (?i ?t)
 r__agent(?landing Joe) r__place(?landing Omaha_Beach)
 r__time(?landing D-Day)))
 Exists ?defining
 And (?defining # defining r__agent (? defining Joe)
 r__object (?defining "square")))
, then provide ways to translate the 1st ones into the 2nd ones, e.g.,
 r__directly_derived_relation (Landing r__landing)
 r__directly_derived_relation (Defining r__defining)

 Forall ?rel ?process ?agent ?time ?place
 And (r__agent (?process ?agent) r__place (?process ?place)
 r__time (? process ?time))
 :- And (?rel (?agent ?place ?time)
 r__process (?rel ?process))

 Forall ?rel ?process ?agent ?object
 And (r__agent (?process ?agent) r__object (?process ?object))
 :- And (?rel (?agent ?object)
 r__directly_derived_ relation (?process ?rel))
, since it is then much easier to make inferences,
e.g., for the statement in the next line, a match for ?X is Joe
 Exists ?A And(r__agent (Landing ?A) r__agent (Defining ?A))

knowledge comparability have strong relationships.
They are represented in Section 6.

In practice, with a KR language (KRL) allowing
"contexts" and sets or lists, it is easy to avoid the use
of relations with arity greater than 2. A "context" (or
"contextualizing statement") is a meta-statement speci-
fying restrictive conditions for the contextualized
statement to be true, e.g., via temporal relations or
modalities. Although RIF-FLD PS is not restricted to
first-order logic, it lacks a construct for expressing
contextualizations in simple ways, as in KIF [9] for
example. However, the second row of Table 1 shows
how simple contextualizations can still be represented
- albeit in a rather cumbersome way - using binary re-
lations. To that end, this example uses an adaptation of
the ODP named "Context Slices" in ODPC [20]. It re-
lies on introducing "concept individuals within a con-
text"and relating them to their context as well as to
their context-independent counterpart. This is an alter-
native to the more common approach of reifying a
statement and asserting a relation individual between
the reification and the context. With the reification
based approach, handling contexts is a bit more difficult
when simple KR management tools are re-used and
extended. Both approaches lead to rather lengthy state-
ments and are ad-hoc since they require extensions to
inference engines to fully handle them correctly.
Therefore, from a knowledge modeling and sharing
viewpoint, a BP is to i) use a KRL that handles con-
texts (or else design and use equivalent ad-hoc con-
cise constructs), and then ii) provide or use rules for
translating into the various ways to represent contexts
in other KRLs. The same idea applies for the many
ODPs dealing with the problems of translating "KRs
using high expressive constructs" into "KRs using
lower expressive constructs" (e.g., in ODPC, there are
many ODP for translations into OWL or from OWL).

It should also be noted that the practical absence
of "necessity to use non-binary relations" is compati-
ble with formal proofs that "besides unary and binary
relations, there must exist at least one ternary relation
in order to generate all possible relations" [5].

There is no claim here that the idea of "translating
non-binary relation types into binary ones or directly
using them" is original. Yet, it should be an ODP for
various reasons: i) it is useful, ii) some claims seem-
ingly about the necessity of using non-binary relations
are actually claims about the need for constructs sup-
porting different kinds of contexts (e.g., [21]), iii) this
best practice is often ignored by – or unknown to –
users of KRLs allowing non-binary relations.

3. Deriving relation types from concept types

ABP advocates the use of - or specifications of
translations into - binary relation types "directly de-
rived from concept types". This means that each of
these relations is defined with respect to one and only
one concept. In other words, if the relation is defined
via a genuine "type definition" instead of a rule, apart
from the concepts in the signature of the relation, there
is only one concept in the definition. The word "di-
rectly" refers to this "only one" restriction. A concept
type may have multiple "directly derived relation
types" if they have "un-comparable" signatures (i.e., if
none specializes another one). The third row of
Table 1 illustrates a way to directly derive a (binary or
not) relation from a concept without using a genuine
definition but using a rule and the relation individual
of type r__directly_derived_relation. The first two rows
illustrate the definitions of non-binary relations mainly
with respect to binary relations. This is useful as a inter-
mediary step: the final step – deriving these last binary
relations from a concept (e.g., named "List_of_sur-
rounding_entities") – is not illustrated in Table 1.

When genuine definitions or rules are manually
given for each derived relation, as illustrated in the
third row of Table 1, the advantages of the approach
(over directly using relations without defining them)
only come from the existence of this definition. It
makes some information explicit and ensures that
every distinction in the (specialization) hierarchy of re-
lations is also included in the concept hierarchy. This
last point is important for two reasons. First, it avoids
that some knowledge providers develop distinctions
only in the relation hierarchy while others develop dis-
tinctions only in the concept hierarchy, thus leading to
(automatically) undetected redundancies within a
shared knowledge base or in different ontologies. Sec-
ond, it ensures that any distinction can be used – with-
out loosing knowledge representation and matching
possibilities – with both its concept form and its rela-
tion form. More possibilities come from the concept
form since i) unlike relations, concepts can be quanti-
fied in many different ways (e.g., "3 landings", "all
landings" or "8% of landings" can only be described
via the concept "Landing", not the relation "r__land-
ing"), ii) it is easier to organize concepts (by subtype
relations) than relations, and iii) the number of used or
re-usable existing concept types is much greater than
the number of used or re-usable relation types.

These advantages come for free when the relation
types are automatically derived from concepts. Fur-

thermore, doing so permits a system to i) hide the au-
tomatically derived relation types in the relation type
hierarchy (which is then easier to read and grasp), or
ii) not actually create them at all. This second option
was used in the knowledge server Ontoseek [10] and
is used in the shared/personal knowledge base server
WebKB (www.webkb.org; [11]). In Ontoseek, any
type derived from noun-related part of the lexical on-
tology Sensus could be re-used as a concept type or a
relation type. WebKB also re-uses a lexical ontology
derived from WordNet but only allows the subtypes

of certain types to be re-used as relation types and
this is defined by specifications which users can
adapt. More precisely, this is defined by relation sig-
natures which are directly associated to certain top-
level concept types. Table 2 illustrates the approach
and then gives rules that would actually generate the
derived relation types (the next section complements
this framework by giving an ontology of the concept
types these rules can be applied to). These rules per-
mit to give a formalization of the framework. They
rely on the functions f__type_name and f__denota-

Table 2

Rules for automatically deriving a binary relation type from a concept type (and, if needed,doing so for all its subtypes) based on a kind of signature
associated to this concept type (note: in these examples, the types created by the authors of this article have no prefix to indicate their namespace).

Table 1 gave examples of how a rule can define a relation type with respect to a concept type. This had to be done for each relation type.
Here, the approach is simpler. The derived relation type does not have to be explicitly defined. Its signature is directly associated to the
concept type via a relation of type r__signature_for_derived_binary_relation or a function of type f__derived_binary_relation.
Thanks to their definitions, the derived relation type is automatically created (see the next paragraph in bold characters).
A concept type may have different relation types signature associated to it, as long as the signature are "un-comparable" (i.e., as long as
one does not specialize another).

 r__signature_for_derived_binary_relation (Father List (Animal Male))
 //-> derives a relation type r__father that has for domain an Animal and range a Male (note: this line is a comment)

 Forall ?t r__signature_for_derived_binary_relation (?t List (Thing ?t))
 :- ?t # thing_usable_for_deriving_a_binary_relation_with_it_as_destination
 //-> derives the expected relation type for each subtype of Thing_usable_for_deriving_a_binary_relation_with_it_as_destination

 Forall ?t Exists ?r And (?r = f__ derived_binary_relation (?t List (Agent Object))
 Forall ?agent ?object And (r__agent (?t ?agent) r__ object (?process ?object)

) :- ?r (?agent ?object)

) :- ?t # Process
 //-> derives the expected relation type for each subtype of Process

Here are rules that permit such derivations . Furthermore, the derived relation types have the same subtype relations as the
concept types they derive from. However, to keep things simple, it is here assumed that no relation with the same name as the
derived relation has previously been manually created. The relation type name is created by taking the concept type name,
lowering its initial and prefixing it with "r__". The functions f__denotation_of_type_name, f__type_name, f__cons, f__cdr,
f__lowercase used below are identical to their counterparts (without the prefix "f__") in KIF.

 Forall ?t ?r__t ?t_domain ?t_range ?t_supertype ?r__t_supertype ?t_sup_domain ?t_sup_range
 And (rdfs:domain (?r__t ?t_domain) rdfs:range (?r__t ?t_range)
 ?r__t = f__denotation_of_type_name (f__cons (f__lowercase (f__car (f__type_name (?t)))
 f__cdr (f__name (?t)))
 ?r__t # ?r__t_supertype
 :- And (?t # ?t_supertype
 ?r__t_supertype = f__ derived_binary_relation (?t_supertype List (?t_sup_domain ?t_sup_range)))
)
 :- ?r__t = f__ derived_binary_relation (?t List (?t_domain ?t_range))

 Forall ?t ?t_domain ?t_range Exists ?r__t ?r__t = f__ derived_binary_relation (?t List (?t_domain ?t_range))
 :- f__signature_for_derived_binary_relation (?t List (?t_domain ?t_range))

Other rules can be built upon these last ones, e.g., this rule for deriving functional binary relations :

Forall ?t ?t_domain ?t_range Exists ?r__t And (?r__t = f__ derived_binary_relation (?t List (?t_domain ?t_range))
 ?r__t ## owl:FunctionalProperty) //"##" means "is instance of"
 :- f__signature_for_derived_functional_binary_relation (?t List (?t_domain ?t_range))

tion_of_type_name which are identical to the KIF
functions name and denotation formalized in the docu-
mentation of KIF [9]. In WebKB, no such rules are
executed: when a concept type is used in places where
relation types are expected, WebKB simply checks
that one of the signatures associated to the concept
type is respected and acts as if the relevant derived
type was actually used. Thus, in WebKB, there is no
need to use the actual names of the virtually derived
relation types: the concept type names can be used di-
rectly. As in the framework described by Table 2, sig-
natures are inherited along subtype relations between
concept types and an error is generated if a concept
type is associated to two signatures that are "compara-
ble". This approach and ODP seem original.

4. Deriving from role types and processes

ABP advocates the derivation of concept types,
"especially role types or types of process". The third
row of Table 1 illustrated this for processes. In this
article, "process" refers to a "situation" (something
that occurs in a real/imaginary region of time and
space) that is not a "state", and hence that makes a
change. These conceptual distinctions come from the
Situation Semantics [2] and are the basis of John
Sowa's first top-level ontology [18]. There are re-
used in this article for at least the following reasons:

− They are rather intuitive.
− They generalize other well known types, e.g.,

Perdurant from Dolce [3] is subtype of Process.
− They are very adequate for the signatures of the-

matic relations [4], e.g., r__agent, r__recipient,
r__cause, r__instrument. Such types can actu-
ally be seen as particular top-level types of rela-
tions from a process.

− In this article, a "role (type)" (e.g., Agent, Experi-
encer, Recipient, Cause, Instrument) is a concept
which is defined – or could be defined – as
being the destination of a thematic relation.
This informal definition of a role is a bit more
general than what is usually thought to be a role
[13] but here it is sufficient: process and role
types (as defined here) can be used for deriving
concept types into binary relation types.

− Thematic relations or their subtypes can also be
used for defining most relations. Thus, doing so
normalizes KRs.

− Most statements implicitly or explicitly refer to
a process. Representing it, either directly (and

then using thematic relations or subtypes of
them) or via relations directly derived from a
process, strongly normalizes KRs. Not doing so,
which unfortunately is the case in most ontolo-
gies, amounts to loosing precisions and a lot of
KR comparison possibilities.

Table 3 displays subtype relations between types re-
lated to the type of "things usable for directly deriv-
ing a binary relation". Only its subtypes can be used
for deriving a binary relation; this includes process
types and roles. Table 4 displays common top-level
types of relations from a process, most of which are
thematic relations. Table 4 re-uses top-level types
shown in Table 3. All the types in these tables are
part of the "Multi-Source Ontology" (MSO [12])
which is accessible and cooperatively updatable via
WebKB. Hence, the names in these tables are names
accessible via this server. However, these tables have
not previously been published.

The MSO includes more than 75,000 categories
(mainly types) and relates them by more than
100,000 relations. It categorizes WordNet types (and
their instances) as well as types from various top-
level ontologies (DOLCE included) with respect to
the types shown in Table 3 or specializations of
them. More precisely, about a hundred of top-level
WordNet types and some more specialized WordNet
types were manually set as subtypes of those in
Table 3 or specializations of them. Thus, in the sub-
type hierarchy of the MSO for "things usable for di-
rectly deriving a binary relation", there are currently
a bit more than 4800 process types, 2900 role types
("things playing some role"), 650 types of "attributes
or qualities or measures" and 240 types of "descrip-
tion content/medium/container". This makes more
than 8600 types usable for creating relation individu-
als without having to declare new relation types. The
4800 process types can also be used directly with "re-
lations from a process". Finally, the types shown in
Table 4 for these relations can (implicitly or explic-
itly) have for subtypes types derived from the 2900
role types. To sum up, the proposed approach and the
MSO permit people and automated agents to create
KRs that are well normalized, inter-related and com-
parable. Furthermore re-using the approach and con-
tent of the MSO to extend other ontologies is eased
by the fact that i) the MSO relates, generalizes and
specializes types from various other ontologies, and
ii) it can be complemented online via WebKB.

In Table 3, the types named Relative_thing and
Mediating_thing come from John Sowa's second top-
level ontology [19].

Table 3

Some types and subtypes/supertypes for types of "thing usable for directly deriving a binary relation" (1st row) and their derived relation type (2nd
row) (notes: disjoint types and unions of disjoint types are made explicit via UML-like annotations; for namespaces, XMLshortcuts are used but
types created by the first author of this article have no prefix; "wn" refers to WordNet; "(*)" is the relation type signature for any set of arguments)

 owl:Thing
 Thing_usable_for_directly_deriving_a_binary_relation

 Thing_usable_for_directly_deriving_a_unary_function

 wn:employer wn:seller wn:price wn:license
 {not disjoint, complete}

 Thing_usable_for_deriving_a_binary_relation_without_it_as_destination

 Thing_usable_for_deriving_a_binary_relation_with_it_as_destination

 {disjoint, complete} {disjoint, complete}

 Entity Situation sowa:Independent_thing Thing_playing_some_role

 {disjoint, complete} {disjoint, complete}

 State Process sowa:Relative_thing sowa:Mediating_thing

 dolce:Perdurant wn:component_part wn:relation

 Situation_playing_some_role
 wn:marriage /* "marriage" as
 wn:outcome a "social relation" concept,
 not as a process, state or
 dolce:Endurant instance of a relation type */

 Entity_playing_some_role

 {disjoint, complete} wn:recipient

Spatial_entity Non-spatial_entity

 Attribute_or_quality_or_measure

 wn:measure wn:attribute wn:property

 Description_content/medium/container

 wn:subject_matter wn:language_unit wn:file

 r__relation (*)

 {disjoint, complete} {disjoint, complete}

 r__relation_from_a_situation (Situation, *) r__relation_not_directly_derived_from_a_concept_type (*)

 r__relation_from_an_entity (Entity, *) r__relation_directly_derived_from_a_concept_type (*)

 r__spatial_entity_between_2_other_ones (Spatial_entity, Spatial_entity, Spatial_entity) r__landing (Agent,Place,Time)

 r__binary_relation_directly_derived_from_a_thing_usable_for_deriving_a_binary_relation_with_it_as_destination
 (*, Thing_usable_for_deriving_a_binary_relation_with_it_as_destination)

 r__outcome (Situation, Situation)

To show how rules can be used to associate a sig-
nature to a concept type and thereby to a derived re-
lation type, examples in Table 2 used a process type
and the type of "things usable for deriving a binary
relation with it as destination". Similar rules can be
used for other types of "things usable for deriving a
binary relation". The second row of Table 3 shows
how the various relations types – derived or not from
concept types – can be related by subtype relations.
Organizing relations of different arities is permitted
by the use of "*" in the relation signatures: it refers to
any number of arguments. In Table 3, a signature is
shown as an ordered list of comma-separated argu-

ments, within parenthesis. Both KIF and RIF-FLD
allow relations with a variable number of arguments.
However, unlike in KIF, there is no special construct
in RIF-FLD PS for definitions, hence for signatures.

ODPC includes the DOLCE+DnS-Ultralite ontol-
ogy [7] as "content ODP" as well as smaller "content
ODPs" extracted from it, e.g., "ActingFor" and "Agent-
Role". Its DnS (Descriptions and Situations) part in-
cludes some types which can be seen as subtypes of
those in Table 4. It proposes many relations types
which could be – but, it seems, are not – derived
from process types, e.g., relation types with names
such as "actsFor", "conceptualizes" or "defines". Yet,

Table 4

Examples of common top-level types of relations from a process, most of which are thematic relations (notes: arrows with continuous lines
are subtype relations; arrows with dashed lines are relations like UML associations, i.e., the source type is universally quantified and a cardi -
nality/multiplicity is associated to the destination type; here, each cardinality/multiplicity is either "0 to many" or "1 to many", and is left im -
plicit; comments are enclosed within "/*" and "*/"; "e.g.," is used for introducing subtypes)

r__relation_to_another_spatial_entity r__relation_to_another_spatial_entity
 Spatial_entity Temporal_entity

 r__relation_from_process_to_spatial_entity r__relation_from_process_to_temporal_entity
 /* e.g., r__beginning_place, r__place, /* e.g., r__beginning_time, r__time, r__ duration,
 r__end_place, r__places */ r__end_time, r__frequency */

 r__predecessor_state r__successor_state
 /* e.g., r__beginning_state, r__cause /* e.g., r__end_state, r__consequence,
 r__precondition, r__cause */ r__postcondition, r__purpose */
State Process State

 r__relation_from_process_to_process_attribute r__relation_from_process_to_event
 /*e.g., r__manner, r__speed */ /* e.g., r__triggering_event, r__ending_event */

 Process_attribute Event /* Process seen as instantaneous from the viewpoint
 of the agent asserting relations from this process */

r__relation_to_another_process /* e.g., r__relation_to_process_participant /* e.g.,
 r__sub-process, r__method (relations of r__relation_to_used_object (e.g.,
 specialization may of course also be used) */ r__input-output_object, r__ parameter, r__material, r__instrument),
 r__relation_to_created-or-modified_object (e.g.,
 r__input-output_object, r__generated_object, r__deleted_object),
 r__relation_to_description r__relation_to_participating_agent (e.g.,
 /* e.g., r__description */ r__agent, r__initiator)
 r__relation_to_participating_agent (e.g.,
 r__patient, r__experiencer, r__recipient) */

 Description Process_participant /* e.g., Agent (Person or Automated_agent) */
 r__relation_to_another_description
 /* e.g., r__sub-description, r__correction
 (relations of specialization may also be used) */

some of its concept types have been aligned with On-
toWordNet [8]. Thus, the ontology and approach pro-
posed in this section (and the previous one) could be
used to extend DOLCE+DnS-Ultralite. This would
support more KR comparison possibilities.

5. Using singular nominal expressions for types

ABP advocates the use of "role types or types of
process with singular nominal expressions as
names". Thus, this part of ABP advocates a lexical
normalization. There is no required effort regarding
role types since apparently they always have singular
nominal expressions as names. More generally, this
section advocates using "singular nominal expres-
sions for the names of all concept/relation types".
This generalization was not included in ABP to keep
it simple: ABP is focused on concept type derivations
(hence the title of this article). In ODPC this general-
ization would be in the "Naming ODP" category
(which is currently empty).

First, here are inter-related reasons for using "re-
lation types with nominal expressions as names":

− This eases the reading of relations via the graph-
oriented reading convention according to which
"X R: Y" is read "X has for R Y" or "Y is the R
of X". E.g., "a landing has for r__agent Joe" or
"Joe is the r__agent of a landing". All thematic
relations and all the (derived or not) relation types
in this article follow this convention. It is often
given in the documentations of many frame-
based or graph-based KRLs. Yet, when using
these KRLs, people often add the prefix "has" to
their relation types, as in "hasAgent". This is not
a genuine problem since, when needed, such pre-
fixes can be automatically removed, e.g., in order
to have natural looking KRs when controlled nat-
ural languages are used. On the other hand, rela-
tions with suffix "Of" do not respect this conven-
tion. Finally, as is the case in KIF, functions are
often formalized via functional relations that have
the function result as last argument. For unary
functions, this leads to the above cited convention.

− Assuming that in current ontologies, there are
more types following the above convention that
not, following it is a good strategy for increasing
comparability between existing types. A better
strategy is to create relation types following the
convention and automatically derive their inverse
relation types, e.g., via rules similar to those de-
scribed in Section 3. These (implicitly or explic-

itly) derived relation types need not be displayed
in the relation type hierarchy. Indeed, having all
the displayed types following the same conven-
tion helps people understand the relation type hi-
erarchy, complement it and correctly use its types
(derived or not). This is unfortunately often not
the case in ontologies re-using other ones, e.g.,
SUMO [14]. In the MSO this problem is avoided
by always creating an inverse relation type when
a re-used relation type does not follow the con-
vention.

− This prevents the creation of "relation types with
verbs as names". These types – and relation in-
dividuals using them – cannot be read with the
graph-oriented reading convention. Thus, they
may be misunderstood and incorrectly subtyped.
People creating such types also tend not to give
them definitions with respect to a process.

Here are inter-related reasons for using "concept
types with nominal expressions as names":

− This prevents the creation of "concept types
with verbs as names". Indeed, quantifying nomi-
nal forms is easier, e.g., "8% of Landings" is
more intuitive than "8% of To_land" or "8% of
Land". Although in English most processes also
have a nominal form as name, a "lexical normal-
ization" BP is to use the gerund form of a verb
as name (as in "a Singing" or "a Representing")
and leave nominal forms to non-process types.
This helps understanding the KRs and hence
may avoid incorrect KR additions or re-uses
(not all can be detected automatically) and
therefore also undetected redundancies. The
above cited non-process types often are about
the object, agent or result of a process, e.g.,
Song, Definer, Representation.

− This prevents the creation of "concept types
with adjectives as names", e.g., Abstract, Rela-
tive. Like types with verbs as names, the mean-
ing of their quantification is not intuitive. Fur-
thermore, such names do not permit to know if
they refer to a particular "attribute or measure"
or to a thing that has such an attribute or mea-
sure. The last case is the most frequent: the au-
thor forgot to add "_thing" at the end, as in Rel-
ative_thing.

Finally, it is also a BP to avoid using plural nomi-
nal expressions for concept/relation types, e.g., "Par-
ents" or "r__parents". Indeed, they imply using col-
lection types and the meaning of quantifying them is
not intuitive. Using quantifiers on singular forms lead
to KRs that are more precise and comparable.

6. Relating to other ODPs

To be adopted, knowledge sharing ODPs should
be well inter-related by semantic relations to help
people know about them and the criteria or advan-
tages they fulfill, and thus select the ones they want
to look for or commit to. Then, tools can check or en-
force these commitments, or then retrieve ontologies
satisfying them.

Thus, ideally, ODPs should at least be organized
into categories related by specializations and exclusion
relations, as in the ontology presented in Table 3.
However, this is not easy. The most organized of cur-
rent ODPC or BP repositories [15] seems to be ODPC.
It organizes its ODPs into a specialization hierarchy
with a first level of six categories. Each of them has 0
to 3 sub-levels. These six categories and their current
content are:

− Content ODP: 101 ontologies, some having only
a few types.

− Reasoning ODP: no ODP has yet been submit-
ted in this category about making inferences.

− Structural ODP: 1 in the "architectural ODP" cat-
egory (BPs about the structure of an ontology,
e.g., the use of subtype partitions, i.e., unions of
disjoint types as in Table 3) and 13 in the "logical
ODP" category (translations between constructs
from KRLs of different expressiveness).

− Correspondence ODP: 12 in the "Reengineering
ODP" category (meta-model transformation rules
to create ontologies from structured but less for-
mal and semantic sources) and 13 in the "Align-
ment ODP" category (examples of relations be-
tween two elements from different ontologies).

− Lexico-Syntactic ODP: 20 linguistic structures
for extracting KRs or displaying them (as with a
controlled language).

− Presentation ODP: no submission of ODP has yet
been submitted in this category about the usability
and readability of ontologies. It has two subcate-
gories: "Annotation ODP" and "Naming ODP".

These categories are not exclusive. An ODP can
be placed in several of them. For instance, the ODPs
listed in the sections 2, 3 and 4 seem to be architec-
tural ODPs as well as logical ODPs and, for some of
them, also Content ODP (like DOLCE+DnS-Ultralite
is). The ODPs in Section 5 are Naming ODPs but are
also related to structural ODPs.

Since there are multiple categorization possibili-
ties, different persons will search or add a same ODP
in different categories, thus leading to less relations

between the ODPs and more undetected redundan-
cies (as noted in the previous sections). This structure
also does not lead ODP providers to collaboratively
build a finely organized hierarchy or graph of ODPs.
Such a structure could be obtained by formally repre-
senting each ODP as a process, using a same base on-
tology, e.g., the MSO (hence with the types shown in
Table 3 and Table 4 as top-level types). Most of the
subtype relations between ODPs could then be auto-
matically calculated. Although this approach would
scale well, such a formal and homogenous represen-
tation would be a huge work and would require quite
motivated ODP providers.

Furthermore, relations to criteria and advantages
would still probably not be sufficient since relating
ODPs to criteria – or process representing these crite-
ria – is difficult. Therefore, for the ODPs advocated
in this article, another approach has been adopted:
i) manually setting subtype relations between ODPs
(represented as process types) when this was possi-
ble, and ii) using positive "gradual pattern" relations.
Table 5 is the result.

These last relations represent rules of the form "the
more X, the more Y" ([1] gives a formalization). Ar-
rows with dashed lines are positive "gradual pattern"
relations. E.g., the dashed arrow from "keeping the
types organized" to "avoiding undetected redundan-
cies" can be read "the more 'keeping the types orga-
nized' is achieved, the more 'avoiding undetected re-
dundancies' is achieved". A simpler but less direct way
to read this is: "the more 'the types are kept organized',
the more 'undetected redundancies are avoided' ".

This last particular rule refers to the idea that was
mentioned again two paragraphs ago and which
could be rephrased as: "the more a KR (type or state-
ment) has a 'unique place' [6] in a hierarchy of KRs,
the less chances there are that another person will add
an equivalent KR in another place". For example, as
opposed to subtype hierarchies, taxonomies relate ob-
jects (terms, documents, ...) with relations which are
neither typed nor formal. Thus, people use these re-
lations for representing subtypes, parts, instances,
agents, etc. This leads to hierarchies that are difficult
to search and that often have redundancies. When
subtype partitions are used, this is far less the case.
This is also far less the case when the hierarchy is au-
tomatically built based on the definition of each type.
Like subtype relations, gradual pattern relations are
typed and transitive. Hence, if used correctly, each
KR in them can have a "unique place" [6], even when
such relations do not form a partial order. Indeed,
there is no partial order when some relations are bidi-

rectional (there are some bidirectional relations in
Table 5). However, gradual pattern relations permit
less automatic checking possibilities than subtype
partitions.

 Given the explanations provided in the previous
sections, the relations in Table 5 should now be under-
standable. Note to the reviewers: if more details are
needed, please tell us which relations from Table 5
should be explained.

The use of gradual pattern relations between ODPs
or BPs is original. The direct setting of subtype rela-
tions between them also seems original.

7. Conclusion

Knowledge sharing is difficult. It implies satisfying
many criteria – and following various BPs – which, as
Table 5 showed, are inter-related. To provide such BPs
and ways to follow them, this article focused on the
idea of deriving relation types from concept types and
showed its relationships to various BPs and ODPs for
knowledge modeling and sharing. Some of these BPs
and ODPs were already known, several were original.
In this domain, most BPs can actually be seen as
ODPs. E.g., [15] lists the W3C repository of BPs
(guidelines, ...) as an ODP repository.

This article also provided various kinds of ODPs.
According to the categories of ODPC, these are archi-
tectural, logical, content and naming ODPs. However,
given their inter-relations and the focus on derivation
mechanisms, it is also true that this article focused on
one ODP.

The proposed BPs and ODPs are applied to – and
supported by – the MSO (more than 75,000 cate-
gories) which is accessible and updatable via the
WebKB shared knowledge base server. Together, they
help people and automated agents create KRs that are
more normalized, inter-related, comparable and under-
standable. Furthermore, the multi-source nature of the
MSO would help applying the proposed content ODPs
to other ones such as DOLCE+DnS-Ultralite.

Finally, the following of the proposed BPs can
easily be tested, interactively (as within WebKB) or
via SPARQL queries on an ontology (e.g., it is easy
to test if each relation type is defined with respect to
one concept type). This makes these BPs usable as
criteria for selecting ontologies.

This work will be extended by relating knowledge
sharing techniques, BPs and criteria (including secu-
rity related criteria, although represented as pro-
cesses), via specialization relations and gradual pat-
tern relations, positive ones as well as negative ones
("the more X, the less Y"). The focus will be on repre-

Table 5

 Relation between the ODP advocated here (the process that has a name in italic bold characters) and related ODPs
 (notes: arrows with continuous lines are subtype relations, arrows with dashed lines are positive "gradual pattern" relations;

 arrows inherited via subtypes relations are left implicit, e.g., those inherited by "using precise and normalized statements")

 "using relation types directly derived from concept types" "keeping the
 relation type "using precise statements"
 "using binary relation types" hierarchy small"

 "avoiding undetected redundancies"
"using binary relation types "using primitive "keeping types
 directly derived from (hence binary) organized"
 concept types" "using process relation types" "using normalized
 types" statements"
 "using precise
"using binary relation types "using nominal and normalized
 directly derived from concept types, expressions for statements" "using
 especially role types or types of relation types" easy-to-understand
 process with nominal expressions statements"
 as names"

 "using nominal expressions "following the graph-oriented "using well related and
 for concept types" reading convention" easy-to-compare statements"

 "using precise quantifiers (e.g., numerical ones)"

senting various approaches to knowledge sharing,
e.g., those based on formal documents, those based
on collaborative editing within a shared ontology
server and those based on knowledge exchange be-
tween ontology servers. Thanks to the specialization
relations and the positive/negative gradual pattern re-
lations, the various kinds of ways to share knowledge
and their respective advantages and drawbacks
should be clearer.

References

[1] S. Ayouni, A. Laurent, S. Ben Yahia and P. Poncelet, Mining
closed gradual patterns, in: proceedings of ICAISC 2010, 10th
international conference on Artificial intelligence and soft
computing, pp. 267-274, Springer-Verlag Berlin, Heidelberg.

[2] J. Barwise, J. Gawron, G. Plotkin and S. Tutiya, Situation
Theory and its Applications (Vol. 2), CSLI Lecturre Notes no.
26, CSLI publications, Stanford, CA, 1991, 622 pages.

[3] S. Borgo and C. Masolo, Ontological Foundations of DOLCE,
in the Handbook on Ontologies (Second Edition), S. Staab and
R. Studer, ed., Springer Verlag 2009, pp. 361-382.

[4] A.Carnie, Syntax: A Generative introduction. 2nd Edition.
Blackwell Publishers, 2006.

[5] J. Correia and R. Pöschel, The Teridentity and Peircean Alge-
braic Logic, in: LNCS 4068/2006, Springer Berlin, pp. 229-
246, http://www.springerlink.com/content/42v7r03v4x08l831/

[6] G. Dromey, Scaleable Formalization of Imperfect Knowledge,
in: proceedings of AWCVS 2006, Macau, China.

[7] A. Gangemi, DOLCE+DnS-Ultralite, RDF+OWL ontology
at http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

[8] A. Gangemi, N. Guarino and A. Oltramari A., Restructuring
Wordnet's Top-Level. AI Magazine, 40(5), 2002, pp. 235-244.

[9] M. Genesereth and R. Fikes, Knowledge Interchange Format,
Version 3.0, Reference Manual. Technical Report Logic-92-1,
Computer Science Dept., Stanford University.
http://www.cs.umbc.edu/kse/

[10] N. Guarino, C. Masolo and G. Vetere, Ontoseek: Content-
based Access to the Web, IEEE Intelligent Systems, Vol. 14,
No. 3, 1999, pp. 70-80.

[11] Ph. Martin, Collaborative knowledge sharing and editing,
IJCSIS, Volume 6, Issue 1 (2011), pp. 14-29.

[12] Ph. Martin, Correction and Extension of WordNet 1.7, in:
LNAI 2746, pp. 160-173.
See also http://www.webkb.org/doc/MSO.html

[13] R. Mizoguchi, K. Kozaki and Y. Kitamura, Ontological
Analyses of Roles, in: proceedings of the IEEE FedCSIS
2012, pp. 489–496.

[14] I. Niles and A. Pease, Towards a standard upper ontology, in:
proceeding of FOIS 2001, ACM, pp. 2-9.

[15] M. Poveda-Villalón, M.C. Suárez-Figueroa and A. Gómez-
Pérez, Reusing Ontology Design Patterns in a Context Ontol-
ogy Network, in: proceedings of WOP 2010, CEUR-WS.org
volume 671, pp. 35-49.

[16] V. Presutti and A.Gangemi, Content Ontology Design Pat-
terns as Practical Building Blocks for Web Ontologies, in:
proceedings of ER 2008, Spaccapietra S. et al., ed.

[17] RIF-FLD, RIF Framework for Logic Dialects (2nd Edition),
W3C Recommendation of 2013, H. Boley and M. Kifer, ed.,
http://www.w3.org/TR/2013/REC-rif-fld-20130205/

[18] J.F. Sowa, Conceptual Graphs Summary, in: "Conceptual
Structures: current research and practice", Ellis Horwood,
1992, pp. 3-51.

[19] J.F. Sowa, Knowledge Representation: Logical, Philosophi-
cal, and Computational Foundations, Brooks Cole Publishing
Co., 2000, 594 pages.
See also http://www.jfsowa.com/ontology/toplevel.htm

[20] C. Welty, Context Slices, 2010, http://ontologydesignpat-
terns.org/wiki/Submissions:Context_Slices

[21] G. Zarri, Representation and Management of Narrative Infor-
mation: Theoretical Principles and Implementation, Springer
2009, Series: Advanced Information and Knowledge Processing,
312 pages.

	1. Introduction
	2. Using binary relations
	3. Deriving relation types from concept types
	4. Deriving from role types and processes
	5. Using singular nominal expressions for types
	6. Relating to other ODPs
	7. Conclusion

