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Abstract.  This article proposes an ontology design pattern for leading knowledge providers to represent knowledge in more 
normalized, precise and inter-related ways, hence in ways that help the matching and exploitation of (rather independently created) 
knowledge. This pattern is a knowledge sharing best practice that is domain and language independent and it can be used as a  
criteria for measuring the quality of an ontology. This pattern is: "using binary relation types directly derived from concept types, 
especially role types or types of process with nominal expressions as names". The article explains and illustrates this pattern, and 
relates it to other patterns and general ontology quality criteria. It also provides an ontology for automatically deriving relation 
types from concept types (e.g., those from lexical ontologies such as those derived from the WordNet lexical database). This  
derivation helps normalizing knowledge, reduces having to introduce new relation types and helps keeping all the types organized.
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1.  Introduction

Ontology  Design  Patterns  (ODPs)  are  "modeling 
solutions to solve a recurrent  ontology design prob-
lem" [16]. Many ODPs have been found, e.g., 160 are 
currently registered in the "ODP catalog at http://on-
tologydesignpatterns.org"  which,  in  this  article,  will 
now be referred to as "ODPC".  However,  the thou-
sands  of  ontologies  (UML  schemas  included)  that 
have been proposed so far are still poorly inter-con-
nected and heterogeneous in their design. It is then dif-
ficult for people and automated agents to  compare or 
match independently  created  knowledge  representa-
tions (KRs, e.g., types or statements) to know if some 
KRs are equivalent to others or specializations of oth-
ers.  Thus,  it  is  difficult  for  people  and  automated 
agents to search, align, aggregate  – and, more gener-
ally, relate, infer from or exploit – KRs or ontologies .

In other words, there is a need for ODPs specifically 
aimed for knowledge sharing and, more precisely, for 
solving the problem of leading knowledge providers to 

create more matchable and re-usable KRs. As later de-
tailed, this implies leading them to create more precise, 
normalized, well related and easy-to-understand KRs. 
In order to be adopted, these ODPs should also be easy 
to follow and easy to use as criteria for automatically 
measuring the quality of an ontology, to help develop-
ing an ontology or selecting ontologies to re-use. Fi-
nally, the ODPs  – or, at least the knowledge sharing 
ODPs – should be well inter-related by semantic rela-
tions to help people i) know about them and their ad-
vantages, and ii) select those they want to commit to. 
Then, tools can check or enforce these commitments.  

This article proposes such a knowledge sharing fo-
cused ODP and best practice (BP) and relates it  to 
other ones, via specialization relations and "gradual 
pattern" relations. This advocated BP, which in this 
article will now be referred to as ABP, is: "using bi-
nary  relation  types  directly  derived  from  concept  
types, especially role types or types of process with  
singular  nominal  expressions  as  names".  No ODP 
catalog appears to include ODPs similar to this one or 



to any of its parts. Like most BPs, it is domain and lan-
guage independent and it can be used for any dataset. 
The sections 2, 3, 4 and 5 explain, formalize and illus-
trate the different parts of ABP. Section 6 relates them 
to other ODPs and thereby also give more rationale. 

2.  Using binary relations

ABP starts by advocating the use of "binary rela-
tions" (or "properties" in RDF and OWL).  Types that 
are not relation types are "concept types" ("classes" in 
RDF and OWL). However, from now on, to avoid a 
too frequent use of the word "type", it is sometimes left 
implicit when referring to a "concept/relation type" or 
to "a type and/or any of its instances". The word "indi-
vidual" will be added when a type is not referred to.  

Since ABP is language independent, this article uses 
a general terminology, one compatible with RIF-FLD, 
the W3C Framework for Logic Dialects of the Rule 
Interchange Format [17]. For its formal textual exam-
ples,  this  article  uses  RIF-FLD PS,  the Presentation 
Syntax of RIF-FLD. Indeed, this notation is both ex-
pressive and rather intuitive. In the examples of this 
article,  relation  names  begin  by  "r__"  and  function 
names begin by "f__".   Logical rules are used since 
RIF-FLD is used and since this shows the direction the 
implications are expected to be used. However, in each 
case, a logical equivalence could also be used instead.

Following ABP does not prevent using non-binary  
relations as long as definitions or rules are also pro-
vided  to  enable  the  automatic  translation  of  "KRs  
using non-binary relations" into "KRs using binary re-
lations". Table 1 illustrates such rules for various kinds 
of use cases (only the third row is also about the focus 
of Section 3: deriving a relation from a concept).

One reason why such rules are useful for knowl-
edge  sharing  is  that  binary  relations can  be  "com-
pared"  while  relations  of  different  arities  generally 
cannot be (two types or KRs are "comparable" if and 
only if an equivalence or specialization relation be-
tween  them has  been  directly  stated  or  can  be  in-
ferred). Thus, KRs using binary relations can be or-
dered by generalization relations, typically,  implica-
tions. This is more difficult with KRs using relations 
of  different  arities,  thus  reducing  possibilities  for 
knowledge matching or inferences. E.g., as illustrated 
by Table 1, many "directly un-comparable" relations 
of different arities can be translated into binary rela-
tions of type r__list_of_surrounding_entities (which 
uses a list). Then, they can be "compared".

A related reason is that they make more informa-
tion explicit.  Normalizing, precising and supporting

Table 1

Examples of how and why defining a given relation type with re-
spect to other types (notes:  here, rules are used for the definitions; 
the  RIF-FLD  PS  notation  is  used  in  the  non-highlighted  parts; 
variables begin by "?";   "S1:- S2" can be read "If S2 then S1")

If  you wish to (re-)use non-binary relations, as in
 r__spatial_entity_between_3_other_ones ( Jack   Joe  John  Mary )
 Exists ?X   r__spatial_entity_between_2_other_ones (?X  Joe  John)
, instead of using binary relations, as in
 r__list_of_surrounding_entities ( Jack   List( Joe  John  Mary )  )
 Exists ?X   r__list_of_surrounding_entities ( ?X   List( Joe  John ) )
, then provide ways to translate the 1st ones into the 2nd ones, e.g.,
 Forall  ?A  ?B  ?C  ?D
     r__list_of_surrounding_entities ( ?A  List( ?B  ?C  ?D ) )
        :- r__spatial_entity_between_3_other_ones ( ?A  ?B  ?C  ?D )
, since it is then much easier to make inferences, e.g.,  ?X = Jack
and the above 3rd statement  specializes (hence implies) the 4th

The above approach also works for contextualizations, e.g.,
 r__list-of-surrounding-entities_at-time ( Jack   Joe  John    D-Day )
 can automatically be translated into the binary relation
 r__list_of_surrounding-entities ( Jack_at_D-Day 
                    List (Joe_at_D-Day   John_at_D-Day)  )
This cannot be specified in RIF PS but  something similar can be:
 Forall  ?A   ?B  ?C   ?time_T
    Exists ( ?A_at_time_T    ?B_at_time_T    ?C_at_time_T )
       And ( r__list_of_surrounding_entities (?A_at_time_T
                                    List (?B_at_time_T   ?C_at_time_T) )
                  r__extended_specialization (?A  ?A_at_time_T) 
                      r__time ( ?A_at_time_T   ?time_T ) 
                  r__extended_specialization (?B  ?B_at_time_T) 
                      r__time ( ?B_at_time_T   ?time_T )   )
       :- r__list-of-surrounding-entities_at-time (?A   ?B  ?C  ?time_T)

Similarly, if you wish to use relations for processes, as in
 r__landing ( Joe   Omaha_Beach   D-Day )
 r__defining (Joe  Square)
, instead of using classic primitive binary relations, as in
 Exists  ?landing 
    And (  ?landing  #  landing      // "?i  # ?t" <=> instanceOf (?i ?t)
               r__agent(?landing Joe)   r__place(?landing Omaha_Beach)
               r__time(?landing  D-Day)   )  )
 Exists  ?defining
    And (  ?defining  #  defining           r__agent (? defining  Joe)  
                r__object (?defining  "square")   )  )
, then provide ways to translate the 1st  ones into the 2nd ones, e.g.,
 r__directly_derived_relation ( Landing  r__landing )
 r__directly_derived_relation ( Defining  r__defining )

 Forall  ?rel   ?process   ?agent  ?time  ?place
     And (   r__agent (?process  ?agent)     r__place (?process  ?place)
                  r__time (? process  ?time)  )
        :- And (   ?rel ( ?agent   ?place   ?time )
                        r__process ( ?rel   ?process )   )

 Forall   ?rel   ?process   ?agent  ?object
     And (  r__agent (?process  ?agent)   r__object (?process  ?object) )
        :- And (   ?rel ( ?agent  ?object )
                        r__directly_derived_ relation ( ?process  ?rel )   )
, since it is then much easier to make inferences, 
e.g.,  for the statement in the next line, a match for  ?X  is Joe 
 Exists ?A   And(  r__agent (Landing  ?A)   r__agent (Defining  ?A)  )



knowledge  comparability  have  strong relationships. 
They are represented in Section 6.

In practice,  with a KR language (KRL) allowing 
"contexts" and sets or lists, it is easy to avoid the use 
of relations with arity greater than 2. A "context" (or 
"contextualizing statement") is a meta-statement speci-
fying  restrictive  conditions  for  the  contextualized 
statement  to  be  true,  e.g.,  via  temporal  relations  or 
modalities. Although RIF-FLD PS is not restricted to 
first-order  logic,  it  lacks  a  construct  for  expressing 
contextualizations in simple ways,  as in KIF [9] for 
example. However, the second row of Table 1 shows 
how simple contextualizations can still be represented 
- albeit in a rather cumbersome way - using binary re-
lations. To that end, this example uses an adaptation of 
the ODP named "Context Slices" in ODPC [20]. It re-
lies on introducing "concept individuals within a con-
text"and relating them to their context as well  as to 
their context-independent counterpart. This is an alter-
native  to  the  more  common approach  of  reifying  a 
statement and asserting a relation individual between 
the  reification  and  the  context.  With  the  reification 
based approach, handling contexts is a bit more difficult 
when simple KR management  tools are re-used and 
extended. Both approaches lead to rather lengthy state-
ments and are ad-hoc since they require extensions to 
inference  engines  to  fully  handle  them  correctly. 
Therefore,  from a knowledge modeling and sharing  
viewpoint, a BP is to i) use a KRL that handles con-
texts (or else design and use equivalent ad-hoc con-
cise constructs), and then ii) provide or use rules for  
translating into the various ways to represent contexts  
in other KRLs. The same idea applies for the many  
ODPs dealing with the problems of translating "KRs  
using  high  expressive  constructs"  into  "KRs  using 
lower expressive constructs" (e.g., in ODPC, there are 
many ODP for translations into OWL or from OWL). 

It should also be noted that the practical absence 
of "necessity to use non-binary relations" is compati-
ble with formal proofs that "besides unary and binary 
relations, there must exist at least one ternary relation 
in order to generate all possible relations" [5]. 

There is no claim here that the idea of "translating 
non-binary relation types into binary ones or directly 
using them" is original. Yet, it should be an ODP for 
various reasons: i) it  is useful, ii) some claims seem-
ingly about the necessity of using non-binary relations 
are actually claims about the need for constructs sup-
porting different kinds of contexts (e.g., [21]), iii) this 
best practice is often ignored by  – or unknown to  – 
users of KRLs allowing non-binary relations.

3.  Deriving relation types from concept types

ABP advocates  the use of  -  or  specifications  of 
translations into - binary relation types  "directly de-
rived from concept  types".  This means that  each  of 
these relations is defined with respect to one and only 
one concept. In other words, if the relation is defined 
via a genuine "type definition" instead of a rule, apart 
from the concepts in the signature of the relation, there 
is only one concept in the definition. The word "di-
rectly" refers to this "only one" restriction. A concept 
type  may  have  multiple  "directly  derived  relation 
types" if they have "un-comparable" signatures (i.e., if 
none  specializes  another  one).  The  third  row  of 
Table 1 illustrates a way to directly derive a (binary or 
not) relation from a concept without using a genuine 
definition but using a rule and the relation individual 
of type r__directly_derived_relation. The first two rows 
illustrate the definitions of non-binary relations mainly 
with respect to binary relations. This is useful as a inter-
mediary step: the final step – deriving these last binary 
relations  from  a  concept  (e.g.,  named  "List_of_sur-
rounding_entities") – is not illustrated in Table 1.

When genuine definitions or  rules  are manually  
given for each derived relation,  as illustrated in the 
third row of Table 1, the advantages of the approach 
(over directly using relations without defining them) 
only  come  from  the  existence  of  this  definition.  It 
makes  some  information  explicit  and  ensures  that 
every distinction in the (specialization) hierarchy of re-
lations is also included in the concept hierarchy. This 
last point is important for two reasons. First, it avoids 
that  some  knowledge  providers  develop  distinctions 
only in the relation hierarchy while others develop dis-
tinctions only in the concept hierarchy, thus leading to 
(automatically)  undetected  redundancies within  a 
shared knowledge base or in different ontologies. Sec-
ond, it ensures that any distinction can be used – with-
out  loosing knowledge representation and matching  
possibilities – with both its concept form and its rela-
tion form. More possibilities come from the concept 
form since i) unlike relations, concepts can be quanti-
fied in many different  ways  (e.g.,  "3 landings",  "all 
landings" or "8% of landings" can only be described 
via the concept "Landing", not the relation "r__land-
ing"),  ii) it is easier to organize concepts (by subtype 
relations) than relations, and iii) the number of used or 
re-usable existing concept types is much greater than 
the number of used or re-usable relation types.  

These advantages come for free when the relation  
types are automatically derived from concepts. Fur-



thermore, doing so permits a system to i) hide the au-
tomatically derived relation types in the relation type 
hierarchy (which is then easier to read and grasp), or 
ii) not actually create them at all. This second option 
was used in the knowledge server Ontoseek [10] and 
is used in the shared/personal knowledge base server 
WebKB (www.webkb.org;  [11]).  In  Ontoseek,  any 
type derived from noun-related part of the lexical on-
tology Sensus could be re-used as a concept type or a 
relation type. WebKB also re-uses a lexical ontology 
derived from WordNet but only allows the subtypes 

of certain types to be re-used as relation types and 
this  is  defined  by  specifications  which  users  can 
adapt. More precisely, this is defined by relation sig-
natures which are directly associated to certain top-
level concept types.  Table 2 illustrates the approach 
and then gives rules that would actually generate the 
derived relation types (the next section complements 
this framework by giving an ontology of the concept 
types these rules can be applied to). These rules per-
mit to give a formalization of the framework. They 
rely on the functions  f__type_name and  f__denota-

Table 2

Rules for automatically deriving a binary relation type from a concept type (and, if needed,doing so for all its subtypes) based on a kind of signature  
associated to this concept type  (note: in these examples, the types created by the authors of this article have no prefix to indicate their namespace).

Table 1 gave examples of how a rule can define a relation type with respect to a concept type. This had to be done for each relation type.
Here, the approach is simpler. The derived relation type does not have to be explicitly defined. Its signature is directly associated to the 
concept type via a relation of type  r__signature_for_derived_binary_relation  or a  function of type  f__derived_binary_relation.
Thanks to their definitions, the derived relation type is automatically created (see the next paragraph in bold characters).
A concept type may have different relation types signature associated to it, as long as the signature are "un-comparable" (i.e., as long as
one does not specialize another).

 r__signature_for_derived_binary_relation ( Father    List ( Animal  Male )  ) 
        //-> derives a relation type  r__father  that has for domain an Animal and range a Male  (note: this line is a comment)

 Forall  ?t     r__signature_for_derived_binary_relation ( ?t   List ( Thing  ?t ) )
                          :-   ?t  #  thing_usable_for_deriving_a_binary_relation_with_it_as_destination
       //-> derives the expected relation type for each subtype of  Thing_usable_for_deriving_a_binary_relation_with_it_as_destination

 Forall  ?t   Exists ?r    And (  ?r = f__ derived_binary_relation ( ?t   List ( Agent  Object ) )
                                                Forall  ?agent  ?object    And ( r__agent (?t  ?agent)   r__ object (?process  ?object) 

                                                                                                     )  :-  ?r (?agent  ?object)

                                              )   :-   ?t  #  Process  
       //-> derives the expected relation type for each subtype of Process

Here are rules that permit such derivations . Furthermore, the derived relation types have the same subtype relations as the 
concept types they derive from. However, to keep things simple, it is here assumed that no relation with the same name as the
derived relation has previously been manually created.  The relation type name is created by taking the concept type name, 
lowering its initial and prefixing it with "r__".   The functions  f__denotation_of_type_name,  f__type_name,  f__cons, f__cdr,  
f__lowercase used below are identical to their counterparts (without the prefix "f__") in KIF. 

 Forall  ?t   ?r__t    ?t_domain   ?t_range      ?t_supertype    ?r__t_supertype    ?t_sup_domain   ?t_sup_range  
      And (  rdfs:domain (?r__t   ?t_domain )       rdfs:range (?r__t   ?t_range )
                  ?r__t  =  f__denotation_of_type_name ( f__cons ( f__lowercase ( f__car ( f__type_name ( ?t ) ) ) 
                                                                                   f__cdr ( f__name ( ?t ) )    ) 
                  ?r__t    #   ?r__t_supertype   
                      :-   And (  ?t   #  ?t_supertype 
                                       ?r__t_supertype  =  f__ derived_binary_relation ( ?t_supertype    List ( ?t_sup_domain  ?t_sup_range )  )    )
              ) 
       :-   ?r__t   =   f__ derived_binary_relation ( ?t   List ( ?t_domain  ?t_range ) ) 

 Forall  ?t   ?t_domain   ?t_range      Exists  ?r__t      ?r__t   =   f__ derived_binary_relation ( ?t    List ( ?t_domain  ?t_range ) )
       :-   f__signature_for_derived_binary_relation ( ?t   List ( ?t_domain  ?t_range ) ) 

        
Other rules can be built upon these last ones, e.g., this rule for deriving functional binary relations :

Forall  ?t   ?t_domain   ?t_range    Exists  ?r__t   And ( ?r__t   =   f__ derived_binary_relation ( ?t    List ( ?t_domain  ?t_range ) )
                                                                                         ?r__t  ##  owl:FunctionalProperty   )    //"##" means "is instance of"
      :-   f__signature_for_derived_functional_binary_relation ( ?t   List ( ?t_domain  ?t_range ) ) 



tion_of_type_name  which  are  identical  to  the  KIF 
functions name and denotation formalized in the docu-
mentation of KIF [9].  In WebKB, no such rules are 
executed: when a concept type is used in places where 
relation  types  are  expected,  WebKB simply  checks 
that  one of  the  signatures  associated  to  the concept 
type is respected and acts as if the relevant derived 
type was actually used. Thus, in WebKB, there is no 
need to use the actual names of the virtually derived 
relation types: the concept type names can be used di-
rectly. As in the framework described by Table 2, sig-
natures are inherited along subtype relations between 
concept types and an error is generated if a concept 
type is associated to two signatures that are "compara-
ble".  This approach and ODP seem original.

4.  Deriving from role types and processes

ABP advocates  the derivation of  concept  types, 
"especially role types or types of process". The third 
row of Table 1 illustrated this for processes. In this 
article,  "process"  refers  to  a  "situation" (something 
that  occurs in  a  real/imaginary  region  of  time and 
space) that is not a "state",  and hence that makes a 
change. These conceptual distinctions come from the 
Situation  Semantics  [2]  and  are  the  basis  of  John 
Sowa's  first  top-level  ontology  [18].  There  are  re-
used in this article for at least the following reasons:

− They are rather intuitive.
− They generalize  other  well  known types,  e.g., 

Perdurant from Dolce [3] is subtype of Process.
− They are very adequate for the signatures of the-

matic relations [4], e.g.,  r__agent,  r__recipient, 
r__cause,  r__instrument.  Such  types  can  actu-
ally be seen as particular top-level types of rela-
tions from a process.

− In this article, a "role (type)" (e.g., Agent, Experi-
encer, Recipient, Cause, Instrument) is a concept 
which  is  defined  – or  could  be  defined  – as 
being  the  destination  of  a  thematic  relation. 
This informal definition of a role is a bit more 
general than what is usually thought to be a role 
[13]  but  here  it  is  sufficient:  process  and  role 
types (as defined here) can be used for deriving 
concept types into binary relation types. 

− Thematic relations or their subtypes can also be 
used for defining most relations. Thus, doing so 
normalizes KRs.

− Most statements implicitly or explicitly refer to 
a  process.  Representing it,  either  directly  (and 

then  using  thematic  relations  or  subtypes  of 
them) or  via  relations  directly  derived  from a 
process, strongly normalizes KRs. Not doing so, 
which unfortunately is the case in most ontolo-
gies, amounts to loosing precisions and a lot of 
KR comparison possibilities.

Table 3 displays subtype relations between types re-
lated to the type of "things usable for directly deriv-
ing a binary relation".  Only its subtypes can be used 
for deriving a binary relation; this includes process 
types and roles. Table 4 displays common top-level 
types of relations from a process, most of which are 
thematic  relations.  Table 4  re-uses  top-level  types 
shown in Table 3. All the types in these tables are 
part  of  the  "Multi-Source  Ontology"  (MSO  [12]) 
which is accessible and cooperatively updatable via 
WebKB. Hence, the names in these tables are names 
accessible via this server. However, these tables have 
not previously been published.

The MSO includes more than 75,000 categories 
(mainly  types)  and  relates  them  by  more  than 
100,000 relations. It categorizes WordNet types (and 
their  instances)  as  well  as  types  from various  top-
level  ontologies  (DOLCE included) with respect  to 
the  types  shown  in  Table  3  or  specializations  of 
them. More precisely,  about a hundred of top-level 
WordNet types and some more specialized WordNet 
types  were  manually  set  as  subtypes  of  those  in 
Table 3 or specializations of them. Thus, in the sub-
type hierarchy of the MSO for "things usable for di-
rectly deriving a binary relation", there are currently 
a bit more than 4800 process types, 2900 role types 
("things playing some role"), 650 types of "attributes 
or qualities or measures" and 240 types of "descrip-
tion  content/medium/container".  This  makes  more 
than 8600 types usable for creating relation individu-
als without having to declare new relation types. The 
4800 process types can also be used directly with "re-
lations from a process". Finally, the types shown in 
Table 4 for these relations can (implicitly or explic-
itly) have for subtypes types derived from the  2900 
role types. To sum up, the proposed approach and the 
MSO permit people and automated agents to create 
KRs that are well normalized, inter-related and com-
parable. Furthermore re-using the approach and con-
tent of the MSO to extend other ontologies is eased 
by the fact  that i) the MSO relates,  generalizes and 
specializes types from various other ontologies, and 
ii) it can be complemented online via WebKB.

In  Table  3,  the  types  named Relative_thing and 
Mediating_thing come from John Sowa's second top-
level ontology [19].



Table 3

Some types and subtypes/supertypes for types of "thing usable for directly deriving a binary relation" (1st row) and their derived relation type (2nd  
row)  (notes: disjoint types and unions of disjoint types are made explicit via UML-like annotations;  for namespaces, XMLshortcuts are used but  
types created by the first author of this article have no prefix; "wn" refers to WordNet;  "(*)" is the relation type signature for any set of arguments)

    
      owl:Thing
                                                                                                                     Thing_usable_for_directly_deriving_a_binary_relation     

                                                                                                                                       Thing_usable_for_directly_deriving_a_unary_function 

                                                                                                                                                         wn:employer     wn:seller     wn:price     wn:license
                                                                               {not disjoint, complete}   

                                                                               Thing_usable_for_deriving_a_binary_relation_without_it_as_destination

                                                                                                                    Thing_usable_for_deriving_a_binary_relation_with_it_as_destination

               {disjoint, complete}                                                    {disjoint, complete}   

  Entity                      Situation                                             sowa:Independent_thing             Thing_playing_some_role    

                                              {disjoint, complete}                                                                                                          {disjoint, complete}   

                                                State                    Process                                                      sowa:Relative_thing      sowa:Mediating_thing 

                                                                                     dolce:Perdurant                                         wn:component_part         wn:relation

                                              Situation_playing_some_role                                                                                                         
                                                                                                                                                                  wn:marriage     /* "marriage" as
                                                                                          wn:outcome                                                           a "social relation" concept,  
                                                                                                                                                                         not  as a process, state  or 
                                dolce:Endurant                                                                                                                instance of a relation type */

                           Entity_playing_some_role

           {disjoint, complete}                           wn:recipient

Spatial_entity                        Non-spatial_entity      

                                                                                                 Attribute_or_quality_or_measure   

                                                                                                     wn:measure     wn:attribute     wn:property

                                                                                      Description_content/medium/container         

                                                                               wn:subject_matter     wn:language_unit     wn:file

                                                                                                r__relation (*)

                                    {disjoint, complete}                                                                           {disjoint, complete} 

 r__relation_from_a_situation (Situation, *)                                             r__relation_not_directly_derived_from_a_concept_type (*)

                                 r__relation_from_an_entity (Entity, *)                                           r__relation_directly_derived_from_a_concept_type (*)

             r__spatial_entity_between_2_other_ones (Spatial_entity, Spatial_entity, Spatial_entity)         r__landing (Agent,Place,Time)

                                    r__binary_relation_directly_derived_from_a_thing_usable_for_deriving_a_binary_relation_with_it_as_destination 
                                                                                                           (*, Thing_usable_for_deriving_a_binary_relation_with_it_as_destination)
 
 r__outcome (Situation, Situation)



To show how rules can be used to associate a sig-
nature to a concept type and thereby to a derived re-
lation type, examples in Table 2 used a process type 
and the type of "things usable for deriving a binary 
relation with it as destination". Similar rules can be 
used for other  types of "things usable for deriving a 
binary relation".  The second row of Table 3 shows 
how the various relations types – derived or not from 
concept types – can be related by subtype relations. 
Organizing relations of different arities is permitted 
by the use of "*" in the relation signatures: it refers to 
any number of arguments.  In Table 3, a signature is 
shown as an ordered list of comma-separated argu-

ments,  within  parenthesis.  Both  KIF  and  RIF-FLD 
allow relations with a variable number of arguments. 
However, unlike in KIF, there is no special construct 
in RIF-FLD PS for definitions, hence for signatures.

ODPC includes the DOLCE+DnS-Ultralite ontol-
ogy [7] as "content ODP" as well as smaller "content 
ODPs" extracted from it, e.g., "ActingFor" and "Agent-
Role". Its DnS (Descriptions and Situations) part in-
cludes some types which can be seen as subtypes of 
those  in  Table  4.  It  proposes  many relations types 
which  could  be – but,  it  seems,  are  not – derived 
from process  types,  e.g.,  relation types with names 
such as "actsFor", "conceptualizes" or "defines". Yet, 

Table 4

Examples of common top-level types of relations from a process, most of which are thematic relations  (notes:  arrows with continuous lines  
are subtype relations;   arrows with  dashed lines are relations like UML associations, i.e., the source type is universally quantified and a cardi -
nality/multiplicity is associated to the destination type;   here, each cardinality/multiplicity is either "0 to many" or "1 to many", and is left im -
plicit;   comments are enclosed within "/*" and "*/";  "e.g.," is used for introducing subtypes)

r__relation_to_another_spatial_entity                                                                                          r__relation_to_another_spatial_entity    
                                                                      Spatial_entity                   Temporal_entity 

             r__relation_from_process_to_spatial_entity                                             r__relation_from_process_to_temporal_entity
              /* e.g.,  r__beginning_place,  r__place,                                                    /* e.g.,  r__beginning_time,  r__time,  r__ duration,
                           r__end_place,  r__places */                                                                       r__end_time,  r__frequency  */

                                                                                                                                                          

                    r__predecessor_state                                                                                       r__successor_state 
                     /* e.g.,  r__beginning_state,  r__cause                                                           /* e.g.,  r__end_state,   r__consequence, 
                                   r__precondition,  r__cause */                                                                        r__postcondition,   r__purpose */
State                                                                                         Process                                                                                                                  State

 r__relation_from_process_to_process_attribute                                                                    r__relation_from_process_to_event 
  /*e.g., r__manner,  r__speed */                                                                                              /* e.g.,  r__triggering_event,  r__ending_event */

                         Process_attribute                                                                                Event  /* Process seen as instantaneous from the viewpoint
                                                                                                                                                         of the agent asserting relations from this process */

r__relation_to_another_process  /* e.g.,                                                  r__relation_to_process_participant   /* e.g.,  
   r__sub-process,  r__method  (relations of                                                  r__relation_to_used_object  (e.g.,
   specialization may of course also be used) */                                                 r__input-output_object, r__ parameter,  r__material, r__instrument  ),
                                                                                                                        r__relation_to_created-or-modified_object  (e.g.,
                                                                                                                             r__input-output_object,  r__generated_object,  r__deleted_object ),
                                       r__relation_to_description                                      r__relation_to_participating_agent  (e.g.,
                                        /* e.g.,  r__description  */                                            r__agent,  r__initiator )
                                                                                                                        r__relation_to_participating_agent (e.g.,
                                                                                                                             r__patient, r__experiencer, r__recipient)  */

                                                                       Description                        Process_participant   /* e.g.,  Agent (Person  or  Automated_agent) */
      r__relation_to_another_description
      /* e.g., r__sub-description,  r__correction 
          (relations of specialization may  also be used) */  



some of its concept types have been aligned with On-
toWordNet [8]. Thus, the ontology and approach pro-
posed in this section (and the previous one) could be 
used  to  extend  DOLCE+DnS-Ultralite.  This  would 
support more KR comparison possibilities.

5.  Using singular nominal expressions for types

ABP advocates the use of "role types or types of  
process  with  singular  nominal  expressions  as  
names". Thus, this part of ABP advocates a  lexical 
normalization. There is no required effort regarding 
role types since apparently they always have singular 
nominal expressions as names. More generally,  this 
section  advocates  using  "singular  nominal  expres-
sions  for  the  names  of  all  concept/relation  types".  
This generalization was not included in ABP to keep 
it simple: ABP is focused on concept type derivations 
(hence the title of this article). In ODPC this general-
ization  would  be  in  the  "Naming  ODP"  category 
(which is currently empty).

First, here are inter-related reasons for using "re-
lation types with nominal expressions as names":

− This eases the reading of relations via the graph-
oriented reading convention according to which 
"X R: Y" is read "X has for R Y" or "Y is the R 
of X". E.g., "a landing has for r__agent Joe" or 
"Joe is the r__agent of a landing". All thematic 
relations and all the (derived or not) relation types 
in this article follow this convention. It is often 
given  in  the  documentations  of  many  frame-
based  or  graph-based  KRLs.  Yet,  when  using 
these KRLs, people often add the prefix "has" to 
their relation types, as in "hasAgent". This is not 
a genuine problem since, when needed, such pre-
fixes can be automatically removed, e.g., in order 
to have natural looking KRs when controlled nat-
ural languages are used. On the other hand, rela-
tions with suffix "Of" do not respect this conven-
tion. Finally, as is the case in KIF, functions are 
often formalized via functional relations that have 
the function result  as  last  argument.  For  unary 
functions, this leads to the above cited convention.

− Assuming  that  in  current  ontologies,  there  are 
more types following the above convention that 
not, following it is a good strategy for increasing 
comparability  between  existing  types.  A  better 
strategy is to create relation types following the 
convention and automatically derive their inverse 
relation types, e.g., via rules similar to those de-
scribed in Section 3. These (implicitly or explic-

itly) derived relation types need not be displayed 
in the relation type hierarchy. Indeed, having all 
the displayed types following the same conven-
tion helps people understand the relation type hi-
erarchy, complement it and correctly use its types 
(derived or not). This is unfortunately often not 
the case in ontologies re-using other ones, e.g., 
SUMO [14]. In the MSO this problem is avoided 
by always creating an inverse relation type when 
a re-used relation type does not follow the con-
vention.  

− This prevents the creation of "relation types with 
verbs as names". These types – and relation in-
dividuals using them  – cannot be read with the 
graph-oriented  reading  convention. Thus,  they 
may be misunderstood and incorrectly subtyped. 
People creating such types also tend not to give 
them definitions with respect to a process. 

Here are inter-related reasons for using "concept 
types with nominal expressions as names":  

− This  prevents  the  creation  of  "concept  types 
with verbs as names". Indeed, quantifying nomi-
nal  forms  is  easier,  e.g.,  "8% of  Landings"  is 
more intuitive than "8% of To_land" or "8% of 
Land".  Although in English most processes also 
have a nominal form as name, a "lexical normal-
ization" BP is to use the gerund form of a verb  
as name (as in "a Singing" or "a Representing")  
and leave nominal forms to non-process types. 
This  helps  understanding  the  KRs  and  hence 
may  avoid  incorrect  KR  additions  or  re-uses 
(not  all  can  be  detected  automatically)  and 
therefore  also  undetected  redundancies.  The 
above cited  non-process  types  often  are  about 
the  object,  agent  or  result  of  a  process,  e.g., 
Song, Definer, Representation. 

− This  prevents  the  creation  of  "concept  types 
with adjectives as names", e.g., Abstract, Rela-
tive. Like types with verbs as names, the mean-
ing of their quantification is not intuitive. Fur-
thermore, such names do not permit to know if 
they refer to a particular "attribute or measure" 
or to a thing that has such an attribute or mea-
sure. The last case is the most frequent: the au-
thor forgot to add "_thing" at the end, as in Rel-
ative_thing. 

Finally, it is also a BP to avoid using plural nomi-
nal expressions for concept/relation types, e.g., "Par-
ents" or "r__parents". Indeed, they imply using col-
lection types and the meaning of quantifying them is 
not intuitive. Using quantifiers on singular forms lead 
to KRs that are more precise and comparable.



6.  Relating to other ODPs

To be adopted,  knowledge sharing ODPs should 
be  well  inter-related  by semantic relations to help 
people know about them and the criteria  or advan-
tages they fulfill, and thus select the ones they want 
to look for or commit to. Then, tools can check or en-
force these commitments, or then retrieve ontologies 
satisfying them.

Thus, ideally,  ODPs should at  least  be organized 
into categories related by specializations and exclusion 
relations,  as  in  the  ontology  presented  in  Table 3. 
However, this is not easy.  The most organized of cur-
rent ODPC or BP repositories [15] seems to be ODPC. 
It  organizes its ODPs into a specialization hierarchy 
with a first level of six categories. Each of them has 0 
to 3 sub-levels. These six categories and their current 
content are:

− Content ODP: 101 ontologies, some having only 
a few types.

− Reasoning ODP: no ODP has yet been submit-
ted in this category about making inferences.

− Structural ODP: 1 in the "architectural ODP" cat-
egory (BPs about the structure of  an ontology, 
e.g., the use of subtype partitions, i.e.,  unions of 
disjoint types as in Table 3) and 13 in the "logical 
ODP" category (translations between constructs 
from KRLs of different expressiveness).

− Correspondence ODP: 12 in the "Reengineering 
ODP" category (meta-model transformation rules 
to create ontologies from structured but less for-
mal and semantic sources) and 13 in the "Align-
ment ODP" category (examples of relations be-
tween two elements from different ontologies).

− Lexico-Syntactic  ODP:  20  linguistic  structures 
for extracting KRs or displaying them (as with a 
controlled language).

− Presentation ODP: no submission of ODP has yet 
been submitted in this category about the usability 
and readability of ontologies. It has two  subcate-
gories: "Annotation ODP" and "Naming ODP".

These categories  are not exclusive.  An ODP can 
be placed in several of them. For instance, the ODPs 
listed in the sections 2, 3 and 4 seem to be architec-
tural ODPs as well as logical ODPs and, for some of 
them, also Content ODP (like DOLCE+DnS-Ultralite 
is). The ODPs in Section 5 are Naming ODPs but are 
also related to structural ODPs.

Since  there  are  multiple  categorization  possibili-
ties, different persons will search or add a same ODP 
in different categories, thus leading to less relations 

between the ODPs and more  undetected redundan-
cies (as noted in the previous sections). This structure 
also does not lead ODP providers to collaboratively 
build a finely organized hierarchy or graph of ODPs. 
Such a structure could be obtained by formally repre-
senting each ODP as a process, using a same base on-
tology, e.g., the MSO (hence with the types shown in 
Table 3 and Table 4 as top-level types). Most of the 
subtype relations between ODPs could then be auto-
matically calculated.  Although this approach would 
scale well, such a formal and homogenous represen-
tation would be a huge work and would require quite 
motivated ODP providers. 

Furthermore,  relations  to  criteria  and  advantages 
would still  probably not be sufficient  since relating 
ODPs to criteria – or process representing these crite-
ria – is difficult. Therefore, for the ODPs advocated 
in  this  article,  another  approach  has  been  adopted: 
i) manually setting subtype relations between ODPs 
(represented as process types) when this was possi-
ble, and ii) using positive "gradual pattern" relations. 
Table 5 is the result.

These last relations represent rules of the form "the 
more X, the more Y" ([1] gives a formalization). Ar-
rows with dashed lines are positive "gradual pattern" 
relations.  E.g.,  the  dashed  arrow from "keeping  the 
types  organized"  to  "avoiding  undetected  redundan-
cies" can be read "the more 'keeping the types orga-
nized' is achieved, the more 'avoiding undetected re-
dundancies' is achieved". A simpler but less direct way 
to read this is: "the more 'the types are kept organized', 
the more 'undetected redundancies are avoided' ". 

This last particular rule refers to the idea that was 
mentioned  again  two  paragraphs  ago  and  which 
could be rephrased as: "the more a KR (type or state-
ment) has a 'unique place' [6] in a hierarchy of KRs, 
the less chances there are that another person will add 
an equivalent KR in another place". For example, as 
opposed to subtype hierarchies, taxonomies relate ob-
jects (terms, documents, ...) with relations which are 
neither typed nor formal. Thus,  people use these re-
lations  for  representing  subtypes,  parts,  instances, 
agents, etc. This leads to hierarchies that are difficult 
to  search  and  that  often  have  redundancies.  When 
subtype partitions are used, this is far less the case. 
This is also far less the case when the hierarchy is au-
tomatically built based on the definition of each type. 
Like subtype relations, gradual pattern relations are 
typed and transitive.  Hence,  if  used correctly,  each 
KR in them can have a "unique place" [6], even when 
such  relations  do not  form a  partial  order.  Indeed, 
there is no partial order when some relations are bidi-



rectional  (there  are  some  bidirectional  relations  in 
Table 5). However, gradual pattern relations  permit 
less  automatic  checking  possibilities  than   subtype 
partitions.

 Given the explanations provided in the previous 
sections, the relations in Table 5 should now be under-
standable.  Note to the reviewers: if more details are  
needed, please tell us which relations from Table 5 
should be explained.

The use of gradual pattern relations between ODPs 
or BPs is original. The direct setting of subtype rela-
tions between them also seems original.

7. Conclusion

Knowledge sharing is difficult. It implies satisfying 
many criteria – and following various BPs – which, as 
Table 5 showed, are inter-related. To provide such BPs 
and ways to follow them, this article focused on the 
idea of deriving relation types from concept types and 
showed its relationships to various BPs and ODPs for 
knowledge modeling and sharing. Some of these BPs 
and ODPs were already known, several were original. 
In  this  domain,  most  BPs  can  actually  be  seen  as 
ODPs.  E.g.,  [15]  lists  the  W3C  repository  of  BPs 
(guidelines, ...) as an ODP repository. 

This article also provided various  kinds of ODPs. 
According to the categories of ODPC, these are archi-
tectural, logical, content and naming ODPs. However, 
given their inter-relations and the focus on derivation 
mechanisms, it is also true that this article focused on 
one ODP.

The proposed BPs and ODPs are applied to – and 
supported  by – the  MSO  (more  than  75,000  cate-
gories)  which  is  accessible  and  updatable  via  the 
WebKB shared knowledge base server. Together, they 
help people and automated agents create KRs that are 
more normalized, inter-related, comparable and under-
standable. Furthermore, the multi-source nature of the 
MSO would help applying the proposed content ODPs 
to other ones such as DOLCE+DnS-Ultralite.

Finally,  the  following  of  the  proposed  BPs  can 
easily be tested, interactively (as within WebKB) or 
via SPARQL queries on an ontology (e.g., it is easy 
to test if each relation type is defined with respect to 
one concept type).  This makes these BPs usable as 
criteria for selecting ontologies. 

This work will be extended by relating knowledge 
sharing techniques, BPs and criteria (including secu-
rity  related  criteria,  although  represented  as  pro-
cesses), via specialization relations and  gradual  pat-
tern relations, positive ones as well as negative ones 
("the more X, the less Y"). The focus will be on repre-

Table 5

                      Relation between the ODP advocated here (the process that has a name in italic bold characters) and related ODPs
                (notes: arrows with continuous lines are subtype relations,  arrows with  dashed lines are positive "gradual pattern" relations;

                      arrows inherited via subtypes relations are left implicit, e.g., those inherited by "using precise and normalized statements")

             "using relation types directly derived from concept types"                  "keeping the
                                                                                                                                relation type                          "using precise statements"   
                              "using  binary relation types"                                                  hierarchy small" 
                                                                                                                              
                                                                                                                                                                               "avoiding undetected redundancies"
"using binary relation types                              "using primitive                     "keeping types                      
  directly derived from                                        (hence binary)                       organized"                   
  concept types"                 "using process           relation types"                                                               "using normalized
                                              types"                                                                                                               statements"
                                                                                                                              "using  precise                           
"using binary relation types                             "using nominal                           and normalized                      
  directly derived from concept types,                expressions for                          statements"                              "using                
  especially role types or types of                        relation types"                                                                                easy-to-understand
  process with nominal expressions                                                                                                                           statements"
  as names"                                                                                                                                                                 
                                                                                                                                                                             
      "using nominal expressions                       "following the graph-oriented                                          "using well related and
        for concept types"                                       reading convention"                                                         easy-to-compare statements"

                                                   "using precise quantifiers (e.g., numerical ones)"



senting  various  approaches to  knowledge  sharing, 
e.g.,  those based on formal documents, those based 
on  collaborative  editing  within  a  shared  ontology 
server and those based on knowledge exchange be-
tween ontology servers. Thanks to the specialization 
relations and the positive/negative gradual pattern re-
lations, the various kinds of ways to share knowledge 
and  their  respective  advantages  and  drawbacks 
should be clearer.
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