Semantic Web 0 (2014) 1-0
10S Press

Forest Logging: A Trace-Based Analysis of
Large Rule-Based Computations

Editor(s): Wolfgang Faber, University of Huddersfield, UK; Domenico Lembo, Sapienza University of Rome, Italy
Solicited review(s): Maurice Bruynooghe, KU Leuven, Belgium; Erwan Jahier, Laboratoire Verimag , France; Frangois Bry, University of

Munich, Germany; one anonymous reviewer

Terrance Swift

Coherent Knowledge Systems, Inc. and NOVALincs, Universidade Nova de Lisboa, Portugal. E-mail:

terranceswift @ gmail.com.

Abstract. Knowledge representation systems based on the
well-founded semantics can offer the degree of scalability
required for semantic web applications and make use of ex-
pressive semantic features such as Hilog, frame-based rea-
soning, and defeasibility theories. Such features can be com-
piled into Prolog tabling engines that have good support for
indexing and memory management. However, due both to
the power of the semantic features and to the declarative
style typical of knowledge representation rules, the resources
needed for query evaluation can be unpredictable. In such
a situation, users need to understand the overall structure
of a computation and examine problematic portions of it.
This problem, of profiling a computation, differs from debug-
ging and justification which address why a given answer was
or wasn’t derived, and so profiling requires different tech-
niques. In this paper we present a trace-based analysis tech-
nique called forest logging which has been used to profile
large, heavily tabled computations. In forest logging, criti-
cal aspects of a tabled computation are logged; afterwards
the log is loaded and analyzed. As implemented in XSB, for-
est logging slows down execution of practical programs by a
constant factor that is often small; and logs containing tens
or hundreds of millions of facts can be loaded and analyzed
in minutes.

Keywords: Scalable Reasoning, Tabled Resolution, Trace-
Based Analysis

1. Introduction

Much of the literature on knowledge representation
and reasoning (KRR) has been concerned with the use
of expressive reasoning components such as ASP and
ALC-based description logics. However, there has also
been interest in basing KRR systems on weaker deduc-

tive methods that more easily offer the type of scal-
ability needed by semantic web applications. For de-
scription logics, an example of such an approach is
the £L family [2]. For rule-based systems, examples
are Flora-2 [12] and its commercial extensions: the
Silk and Ergo systems', all of which are based on
logic programming under the well-founded semantics.
The Ergo system, for instance, is currently used as a
KRR tool to leverage web-based textual information
to reason about financial regulations and medical in-
formatics. Silk and Ergo support features that are not
common for rule-based systems, including the object-
oriented syntax of F-logic [13], higher-order syntax
based on Hilog [3], rule descriptors, the intermixture of
defeasibility theories [20], and the use of bounded ra-
tionality through a technique called restraint [8], along
with various types of quantitative reasoning.

The use of these features can lead to concise repre-
sentation of knowledge, but also to unpredictability in
the time and space a computation requires, even when
such a computation terminates. This unpredictability
especially emerges when a knowledge base is pro-
duced by a team of knowledge engineers working in
a loosely coordinated manner to create rules that may
depend on one another. In such situations, the question
arises whether the size of a resource intensive compu-
tation is due to the sophistication of the reasoning it
requires; to redundant or unoptimized rules; or to rules
that are simply incorrect. The following example illus-
trates a case that arose during a KRR effort for the Silk
project.

Thttp://silk.semwebcentral.org, http://coherentknowledgesystems.com

1570-0844/14/$27.50 (© 2014 — I0S Press and the authors. All rights reserved

2 Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations

Example 1.1 Over the course of several months, por-
tions of the Cyc reasoner > and knowledge base were
translated and compiled first into Flora-2 and then
into XSB [19]. In addition, several hundred first-
year college biology questions were then formulated
and queried . The translated system was able to an-
swer some of these questions quickly, often in less than
1 second of CPU time. Other questions took half a
minute or more; while still others could not be an-
swered because of timeouts, or because of aborts due
to lack of memory. In general, a medium-sized query
might take several minutes to execute.

Silk and Ergo are implemented using XSB [19], so
that their operational semantics ultimately is based on
tabled logic programming. In fact, because of the use
of frames, defeasibility and Hilog, user predicates in
Flora-2 and its extensions are tabled unless they are
explicitly declared otherwise — a default that is the ex-
act opposite of tabling in Prolog. To investigate the
time and space required for queries like those of Ex-
ample 1, a knowledge engineer who understood the
operational semantics of Silk would use information
about the tables to help determine why a computation
was costly. For instance, she might want to examine
which tabled subgoals were queried most often; how
the answers were distributed among the tables; how
the queries depended on one another; and how those
dependencies affected the overall search. These ques-
tions indicate a need to model a tabled evaluation as a
structure that can be examined in itself. Accordingly,
we denote the problem of exploring large tabled com-
putations as the Profiling Problem. Note that profiling
addresses the nature of a computation as a whole in
order to determine why a computation may not termi-
nate, or why it is costly if it does terminate. Profil-
ing may thus be used on correctly executing programs,
and does not address the question of why given solu-
tions are returned or omitted. For this reason, profiling
differs from previously reported approaches based on
procedural or declarative debugging or on justification
(e.g., [9,16]).

This paper presents forest logging, an approach to
the profiling problem based on a trace-based analysis
of SLG forests, an operational semantics for tabling.
As its name implies, operational aspects of a compu-

2http://www.cyc.com.

3These questions were Advanced Placement exam
questions published by the College Board Association
(http://apcentral.collegeboard.com/).

tation are written to a log that is later loaded and ana-
lyzed. Specifically,

— We present the design of the logs, and formalize
their properties; in particular we show how logs
preserve dependency information, and specify the
conditions under which the logs can construct a
homomorphic image of an SLG forest.

— We present analysis predicates to display opera-
tional information about a tabled computation in
an efficient manner, and describe how these rou-
tines can be customized in order to represent de-
pendency and other information at different levels
of abstraction.

— We demonstrate by benchmark tests that the over-
head of logging is a constant factor. We demon-
strate the scalability of log analysis which can
load and analyze logs of hundreds of millions of
facts.

Section 2 informally reviews SLG and presents the for-
mat of forest logs. Some basic properties are shown in
Section 3, while Section 4 discusses the analysis rou-
tines and describes the implementation of forest log-
ging along with performance results. Related work is
covered in Section 6.

All forest logging features discussed in this paper
are available in the latest release of XSB (version 3.5).
In addition, these features form the basis of the forest
logging library in the publically available version of
Flora-2 (version 0.99.3), as well as in the commercial
Silk and Ergo systems.

2. Representing an SLG Forest via a Log

SLG resolution (Linear resolution with Selection
function for General logic programs) [4] was formu-
lated in [18], to model a tabled evaluation as a se-
quence of forests of SLG trees. Before discussing the
logs themselves, we review those aspects of the forest
of trees model for SLG that are necessary to under-
stand forest logging and its applications. As SLG and
its extensions have been presented in the literature, our
review is largely an informal overview; for full cov-
erage with formal definitions see the references con-
tained in [19]. All code examples are in Prolog syntax.

2.1. A Review of SLG by Examples

For simplicity, we restrict the discussion of SLG to
finitely terminating evaluations (which correspond to

Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations 3

forests with a finite set of finite trees), and always as-
sume a left-to-right literal selection strategy.

2.1.1. Definite Programs
We begin with an example of SLG evaluation of a
query to a definite program.

Example 2.1 Fig. 1 shows a simple program along
with an SLG forest for the query reach(1,Y) to the
right-recursive tabled predicate reach/2. An SLG for-
est consists of an SLG tree associated with each tabled
subgoal S (where variant subgoals are considered to
be identical); each such tree has root S:-|S. Each SLG
operation transforms a given forest JF,, to a new forest
Fn+1 by adding a new tree, adding a new node, or by
annotating a tree. As a result, each SLG tree represents
the resolution steps that have been executed to derive
answers for its root subgoal S.

Given an SLG tree T with root S :- IS, T is some-
times referred to as the tree for S. In general, nodes of
an SLG tree for S have the form (S :- Delays|Goals)f;
where Goals is the sequence of literals remaining to
prove SO; Delays are used for negation and are ex-
plained below, as are the numbers associated with
each node. Children of a root node are obtained
through resolution against program clauses, modeled
in SLG by the operation PROGRAM CLAUSE RESOLU-
TION. Children of non-root nodes are obtained through
the SLG ANSWER RESOLUTION operation if the (left
most) selected literal is tabled (e.g., children of the
node reach(1,Y):- | reach(2,Y))*; or via PROGRAM
CLAUSE RESOLUTION if the leftmost selected literal
is not tabled (e.g., children of the node reach(1,Y):-
| edge(1,Z),reach(Z,Y)). Nodes with empty Goals are
termed answers.

The evaluation keeps track of each tabled subgoal S’
that it encounters by creating a tree for S’ via the NEW
SUBGOAL operation. Later if S’ is selected again, res-
olution will use answers from the tree for S’ rather
than program clauses; if no answers for S’ are avail-
able, the computation will suspend and try to derive
answers using some other computation path. Once ad-
ditional answers have been derived, the evaluation will
resume the suspended computation. Similarly, after a
computation has resolved all answers currently avail-

4We slightly abuse terminology since it is the predicate symbol
of the atom within the literal that is tabled. We further abuse termi-
nology by sometimes using selected literal to refer to the underlying
atom on which the literal is based, when it is clear to do so.

able for S’, the computation path will suspend, and re-
sume after further answers are found >.

When it is determined that a (perhaps singleton)
set S of subgoals can produce no more answers, the
tree for every subgoal in S is marked as completed
(cf. the tree for reach(2,Y) in Fig. 1). The incremental
use of COMPLETION within tabling is a critical feature
to supporting the well-founded semantics as it causes
most atoms in unfounded sets to be set to false: in fact
the use of COMPLETION is sufficient to correctly eval-
uate unfounded sets in definite programs. From an im-
plementational point of view, stack space and other
resources for a completed subgoal S;omy can be re-
claimed — apart from the table for S o, consisting of
Scomp and its answers.

As seen from Example 2.1, a tabled evaluation eval-
uates mutually dependent sets of subgoals, marking
them as completed when it is no longer possible to de-
rive answers for these subgoals. In this way, a tabled
evaluation can be viewed as a series of fixed point com-
putations for sets of interdependent subgoals. Because
of these considerations, much of the operational state
of a SLG forest F can be captured by a Subgoal De-
pendency Graph.

Definition 2.1 (Subgoal Dependency Graph (SDG))
Let F be a forest, and let Sy:-|S1 be the root of a non-
completed tree in F. The subgoal S; directly depends
on a subgoal Ss iff S is not completed in F, and there
is some node N in the tree for Sy such that S is the
underlying subgoal of the selected literal of N.

The Subgoal Dependency Graph of 7 SDG(F) =
(V.E) of F is a directed graph in which (S;,S;) € E
iff subgoal S; directly depends on subgoal S;, and V
is the underlying set of nodes in E. S, “depends on”
Sy in F if there is a path from S to Ss in SDG(F).

Since SDG(F) is a directed graph, sets of sub-
goals that are mutually recursive in F can be cap-
tured as Strongly Connected Components (SCCs) of
SDG(F). In Fig. 1, there is a single SCC consisting
of reach(1,Y) and reach(3,Y), as reach(2,Y) is com-
pleted. While SCCs are critical for determining when
subgoals can be completed, if an answer for a tabled
subgoal § is derived that has the empty substitution,
every ground atomic fact that unifies with § is true in
the model of the program. Accordingly, S can be com-
pleted before the other subgoals in its SCC through

SThis explanation implicitly assumes call variance: that a new
tree is created for S’ if there is not already a tree for (a variant of) S’.

4 Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations

1. reach(1,Y) :— Ireach(1,Y)

2. reach(1,Y) :— ledge(1,Z2), reach(Z,Y)

3. reach(1,Y):— Ireach(2,Y)

10. reach(1,2) :— | 22. reach(1,2) -l

4. reach(2,Y) :— Ireach(2,Y)

5.reach(2,Y) :— ledge(2,Z),reach(Z,Y)

6. reach(2,Y) :— Ireach(2,Y)

9. reach(2,2) :— |

11. reach(1,Y):— Ireach(3,Y)

23.reach(1,1) :— |

18. reach(1,Y) :— ledge(1,Y)
19. reach(1,2) :— | 20. reach(1,3) :— |
24. reach(1,3) :— |
complete (9a)

7. reach(2,Y):— ledge(2,Y)

8. reach(2,2) :— |

12. reach(3,Y) ;— Ireach(3,Y)

13. reach(3,Y) :— ledge(3,Z),reach(Z,Y)

14. reach(3,Y) :— Ireach(1,Y)

15. reach(3,2) :— | 21. reach(3,3) :— |

16. reach(3,Y):— ledge(3,Y)

17. reach(3,1) :— |

25. reach(3.1) :— |

:— table reach/2.

reach(X,Y):— edge(X,Y).
edge(1,2).

reach(X,Y):— edge(X,Z),reach(Z,Y).

edge(1,3).

edge(2,2). edge(3,1).

Fig. 1. A Definite Program and SLG Forest for Evaluation of the Query reach(1,Y)

early completion. Otherwise, a subgoal S can be com-
pleted when all possible resolution steps have been
performed for S and the other subgoals in its SCC.
Understanding the changing dependencies of an
evaluation is critical to a number of operational as-
pects. For instance, a local evaluation restricts opera-
tions so that there is always a unique maximal inde-
pendent SCC. Note that an SCC § is independent iff
no subgoal in S depends on any (non-completed) sub-
goals that is not in S itself, and an SCC is maximal iff
it is not a subgraph of any other SCC. Local evaluation

is efficient for many applications since it can be shown
that it performs a “depth-first” search through SCCs.
However if there are several operations possible within
a maximal independent SCC, their order is not speci-
fied within a local evaluation. The number associated
with each node in Fig. 1 corresponds to the node’s cre-
ation under XSB’s implementation of local evaluation

(and is not part of an SLG tree per se).

Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations 5

1 p(c) := 1 p(c)

2 p(c):— I not p(a)

14 p(c):— not p(a) |

17 p(c) :— |

3 p(a) :=Ip(a)

4 p(a):— It(a,Y,Z),not p(Y), not p(Z).

5 p(a):— Inot p(a),not p(b)

6 p(a):— | not p(b), not p(a)

11 p(a):— | not p(c), not p(b).

15 p(a):— not p(a) | not p(b) 10 fail 12 p(a):— not‘p(c) [not p(b).
16 fail 13 fail
7 p(b) :— I p(b) 9 complete
8 p(b) :— 1

:— table p/1. t(a,a,b).
p(b). t(a,b,a).
p(c):— not p(a). t(a,c,b).
p(a):—t(a,Y,Z),not p(Y),not p(Z).

Fig. 2. A Normal Program Py, orm and SLG Forest for Evaluation of the Query p(c)

2.1.2. Normal Programs

Arguably, the main difference between SLG resolu-
tion and other tabling methods is the use of DELAYING
and SIMPLIFICATION to handle default negation.

Example 2.2 Fig. 2 shows a program with negation,
Prorm and illustrates SLG resolution for the query
p(c) to P,orm. The nodes in Fig. 2 have been anno-
tated with the order in which they were created under
an instance of local evaluation; and as mentioned in
Example 1, the symbol | in a node separates the un-
resolved goals to its right from the delayed goals to
its left. In the evaluation state where nodes 1 through
11 have been created, p(b) has been completed, and in
fact was early completed so that the program clause
p(X):- t(X,Y,Z),not p(Y),not p(Z) did not need to be re-
solved against p(b). The only non-completed subgoals,
p(a) and p(c), are in the same SCC. There are no more

clauses or answers to resolve, but p(a) is involved in a
loop through negation with itself in node 5, and nodes
2 and 11 involve p(a) and p(c) in a negative loop.

In situations such as this, where all resolution has
been performed for nodes in an SCC, an evaluation
may have to apply a DELAYING operation to a nega-
tive literal such as not p(a), in order to explore whether
other literals to its right might fail. In a forest where
different nodes each have a selected literal that could
be delayed (e.g., in nodes 2, 5, or 11), an arbitrary
node is chosen. In this case, the evaluation applys a
DELAYING operation to the selected literal of node
11 to produce 12, whose selected literal is not p(b).
Since node 8 is an answer for p(b) with empty De-
lays (termed an unconditional answer), a NEGATIVE
RETURN operation creates node 13, termed a failure
node), signifying that the computation path has failed

6 Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations

(node 10 was produced in a similar manner). Next, a
DELAYING operation is applied to the selected literal
of node 2 to produce node 14, which is a conditional
answer — an answer with a non-empty Delays set. The
final DELAYING operation is applied to the literal not
p(a) in node 5, so that the new selected literal for its
child, node 15, is not p(b). As with nodes 10 and 13,
a NEGATIVE RETURN operation produces the failure
node, node 16.

At this stage the SCC {p(a),p(c)} is completely eval-
uated meaning that there are no more operations ap-
plicable for goal literals (as opposed to delay literals).
Since p(a) is completely evaluated with no answers,
conditional or otherwise, the evaluation determines it
to be failed as part of a COMPLETION operation. After-
wards, a SIMPLIFICATION operation can be applied to
the conditional answer of node 14, removing not p(a)
from its Delays. leading to the unconditional answer in
node 17 and success of the literal p(c).

There is one additional SLG operation that was not
used in either Example 2.1 or 2.2. The ANSWER COM-
PLETION operation fails sets of conditional answers
that correspond to unfounded sets by creating failure
nodes as their children ®. Although ANSWER COM-
PLETION is needed to ensure the completeness of SLG
(cf. [4] for details), the operation is rarely needed in
the practical strategies used by tabling engines, as most
unfounded sets are detected during COMPLETION op-
erations.

2.2. The Forest Log

Forest logging allows one to run a tabled query and
to produce a log, from which a number of properties of
the SLG forest can be inferred. The design of the log
attempts to balance several goals: the log should be as
informative as possible, but also easy to use and should
not overly slow down computations. The log (or trace)
consists of Prolog-readable facts (or events) that may
be loaded and analyzed, leading to the need to support
quick load times and scalable analysis routines 7. The

SFailure nodes are only created by the NEGATIVE RETURN opera-
tion, to indicate that derivation of an atom A atom has failed a com-
putation path that depends on not A, and to denote the failure of
conditional answers by the action of SIMPLIFICATION or ANSWER
COMPLETION operations [18].

7For presentation purposes we consider only tabling with call
variance, and local evaluation. However the forest logging features
described here are also implemented for call subsumption and for
other scheduling strategies.

log facts described below correspond directly to SLG
operations, except as noted. Each log fact has a counter
Cnir, indicating the ordinal number of the fact within
the log. Since logs can be very large, an effort is made
to keep only the most critical information in the logs
so that their memory footprint is kept to a minimum.

— A call to a tabled subgoal. When a literal L is
selected in a node N, where N is in the tree for
Scaller and L is positive (L = Scq104) then a fact

tc(Scalleda Scallera Stat€7 CntT)

is logged (“tc” stands for “tabled call”). State is

x new if Scqjieq 18 @ new subgoal

x cmp if Seqiieq 18 not a new subgoal and has
been completed

* incmp if Scqiieq 1S not a new subgoal but has
not been completed

If the selected literal L is negative and L =
not S.qiied, fact

nC(Scalled7 Scallera Stat67 C’ntr)

is logged instead (“nc” stands for “negative call”).

Note that if state = new, tc/4 and nc/4 correspond
to the NEW SUBGOAL operation; otherwise they do
not correspond to an SLG operation, but instead di-
rectly log dependency information. If Sq;;cq is the first
tabled subgoal called in an evaluation, then S¢qer 18
set to null.

— ANSWER RESOLUTION. When an answer
A = Scaiteat:-Delays|

is returned to a selected positive literal S¢qjjeq in
a tree for S.q10r, a fact

ar(@, Scalleda Scallerv Cntr)

is logged if A is unconditional (i.e., if Delays is
empty); and a fact

dar(é), Scalled» Scaller> C’ntr)

is logged if A is conditional.

Although ANSWER RESOLUTION operations are logged,
PROGRAM CLAUSE RESOLUTION operations are not;
attempts to log these operations usually slowed down

Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations 7

computations so much that logging became unusable
for all but small computations.

NEGATIVE RETURN operations are logged in a sim-
ilar manner. as ANSWER RESOLUTION.

— NEGATIVE RETURN. For a node
N = Scaitert:-Delays|notSeaiied, Body

with Scqaieq @ ground atom, the SLG NEGATIVE
RETURN will produce a child fail for N if S;qj1eq
is successful, and a child

Scallert:-Delays|Body

if S.qiieq 18 failed. In this latter case, when Scqjeq
is failed (sometimes called a NEGATIVE SUCCESS
operation), a fact

7/LT(Scalledv Scallera C?’LtT’)

is logged.

NEGATIVE RETURN operations are not logged when
creating a failure node as a child, as the failure of a
negative literal can be inferred from absence of other
logged facts.

The logging of new answers does not correspond to
an SLG operation but is useful for analysis.

— New Answer. When a new answer
N = (Subgoalcqiier:-D|)0

is derived for subgoal S¢qier (i-€., N is not al-
ready an answer for S.q;) a fact

na(, Seatier, Cntr)
is logged if NV is unconditional (D = (}) and
na(0, Scaiter, D, Cntr)

is logged if N is conditional.

Note that na/3 can be seen as a specialization of na/4
that reduces the memory footprint of the loaded log. A
similar specialization is described below for simplifi-
cation.

— COMPLETION. When an SCC § is completed, a
fact

emp(S, SCCipna, Cntr)

is logged foreach S' € S. Here SC'C;,,4 is a index
that groups subgoals into their mutually recursive
components at the time they were completed. If S
was early completed, a fact

emp(S, ec, Cntr)

is logged at the time of early completion. When
the original SCC for S is completed, another
completion fact for S will be logged indicating its
index as just described and showing (for the pur-
pose of analysis) the SCC in which S had been
called.

— DELAYING When the selected literal not A is de-
layed in a node in a tree for Scqzer-> @ fact

dly(A7 Scallerv CTLtT)

is logged.

— SIMPLIFICATION operations are logged as fol-
lows. Let Scqizer8:-D| be the answer to which
SIMPLIFICATION is applied.

x If a literal L € D becomes failed, and L =
Scalledn 18 positive, where Scqcq 1S a tabled
subgoal, a fact

smpl_fail(Scaiter, 0, Scaited, n, Cnitr)
is logged; if L = not Scaiied,
Smpl_fail(scallera ‘9’ Scalleda C’ntr)
is logged instead.

x If aliteral L € D succeeds and if L = S¢qj1eq4n
is positive, where S.qcq is a tabled subgoal, a
fact

Smpl_SUCC(Scaller, 9, Scalleda m, C’I’Lt’l‘)
is logged; if L = not Scaiied,

Smpl_succ(scaller7 97 Scalled7 C’ntr)

is logged instead.

— ANSWER COMPLETION. If answer completion
fails an answer S¢q;.-0 in a tree for S.q7er, a fact

ansc(0, Scaiter, Cnitr)

Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations

Log File

Assoc. Node in Fig. 1

Explanation

tc(reach(1,_v0),null,new,0)
tc(reach(2,_v0),reach(1,_v0),new,1)
te(reach(2,_v0),reach(2,_v0),incmp,2)
na([2],reach(2,_v0),3)
ar([2],reach(2,_vO0),reach(2,_v0),4)
cmp(reach(2,_v0),2,5)
ar([2],reach(2,_vO0),reach(1,_v0),6)
na([2],reach(1,_v0),7)
tc(reach(3,_v0),reach(1,_v0),new,8)
te(reach(1,_v0),reach(3,_v0),incmp,9)
ar([2],reach(1,_vO0),reach(3,_v0),10)
na([2],reach(3,_v0),11)
na([1],reach(3,_v0),12)
na([3],reach(1,_v0),12)
ar([3],reach(1,_vO0),reach(3,_v0),14)
na([3],reach(3,_v0),15)
ar([2],reach(3,_v0),reach(1,_v0),16)
ar([1],reach(3,_vO0),reach(1,_v0),18)
na([1],reach(1,_v0),18)
ar([3],reach(3,_vO0),reach(1,_v0),19)
ar([1],reach(1,_vO0),reach(3,_v0),20)

node 1
node 4
node 6
node 8
node 9

node 10
node 10
node 12
node 14
node 15
node 15
node 17
node 20
node 21
node 21
node 22
node 23
node 23
node 24
node 25

cmp(reach(1,_v0),1,21)
cmp(reach(3,_v0),1,22)

NEW SUBGOAL

NEW SUBGOAL

repeated subgoal registered
registered as an answer
ANSWER RESOLUTION
reach(2,_v0) COMPLETION
ANSWER RESOLUTION
registered as an answer
NEW SUBGOAL

repeated subgoal registered
ANSWER RESOLUTION
registered as an answer
registered as an answer
registered as an answer
ANSWER RESOLUTION
registered as an answer
ANSWER RESOLUTION
ANSWER RESOLUTION
registered as an answer
ANSWER RESOLUTION
ANSWER RESOLUTION
reach(1,_v0) COMPLETION
reach(3,_v0) COMPLETION

Fig. 3. A Log File Corresponding to the SLG Forest in Fig. 1

is logged 8.

Example 2.3 The forest for reach(1,Y) in Example 2.1
has the log file as shown in Fig. 3 °. The actual log file
facts are shown, along with the associated node they
produced (if any) and an explanation. Similarly, the
log file for the forest in Example 2.2 is shown in Fig. 4.

3. Properties of the Forest Log

Forest logs capture several important aspects of
tabled computations. We begin by showing how they
capture the subgoal dependency graph of a given forest
(Definition 2.1) a property that is heavily used in Sec-
tion 4. Next, Section 3.2 clarifies the extent to which
a forest log can be used to reproduce an SLG forest,
by discussing conditions under which a homomorphic
image of an SLG forest can be constructed from a log.

8 ANSWER COMPLETION differs from SIMPLIFICATION since it
completes sets of answers corresponding to unfounded sets of atoms
that have not been failed due to incremental completion.

9 As mentioned above, no fact is logged for an answer A to a sub-
goal S unless A is newly added for S. For instance, no fact is logged
for the creation of the answer reach(1,2) in node 19, since the same
atom was added as an answer by node 10 (and logged).

3.1. Capturing Dependency Information

Definition 3.1 Let L be a forest log with n facts, and
let 0 < ¢ < n. Then the log dependency graph induced
by c: (V, E), is defined as follows.

— A subgoal S is incomplete in L if
—3Ssce, . ((emp(S, Ssee, ') € Land " < ¢

- (51,82) € E for every fact tc(Ss, S1, state, ')
or ne(Sa, S1, state,) in L such that ¢ < ¢,
S1 # null, and Sy, Sy are incomplete in L.

— V is the underlying set of nodes in E.

Since the log dependency graph is parameterized by
a log’s counter, the log can be used to construct the
SDG (Definition 2.1) at various stages in the evalua-
tion. This is formalized by Theorem 3.1 which states
that the SDG for any forest of an evaluation can be re-
constructed from the log dependency graph. This the-
orem directly underlies the analysis routines of Sec-
tion 4; and because it holds for any forest, the theorem
also underlies analysis of partial computations — e.g.,
computations that were interrupted because they were
suspected to be non-terminating (cf. the discussion of
the Terminyzer tool [15] in Section 6).

Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations 9

Log File Assoc. Node in Fig. 2 Explanation

te(p(c),null,new,0). node 1 NEW SUBGOAL
nc(p(a),p(c),new,1). node 3 NEW SUBGOAL
nc(p(b),p(a),new,2). node 7 NEW SUBGOAL

na([],p(b),3). node 8 registered as an answer
cmp(p(b),ec,4). early completion of p(b)
cmp(p(b),3,5). completion of (trivial) SCC of p(b)
dly(p(c),p(a),6). node 12 DELAYING

dly(p(a),p(c),7). node 14 DELAYING
na([],p(c),[tnot(p(a))],8). node 14 registered as a conditional answer
dly(p(a),p(a),9). node 15 DELAYING

cmp(p(c),1,10). completion of SCC {p(c),p(a)}
cmp(p(a),1,11). completion of SCC {p(c),p(a)}
smpl_fail(p(c),[],p(a),12). node 17 SIMPLIFICATION

Fig. 4. A Log File Corresponding to the SLG Forest in Fig. 2

To be able to reconstruct the SDG of a given forest
JF, there needs to be a guarantee of correspondence be-
tween the creation of F and the time when given facts
are logged. A property termed eager subgoal logging
is sufficient for this. Eager subgoal logging means that
whenever a tabled literal L is selected in a tree Scqjjer,
a te/4 or nc/4 fact is immediately logged, regardless
of whether a NEW SUBGOAL operation is applicable.
For instance, if the underlying atom of the positive lit-
eral L is S¢qieq, then

tC(Scalledy Sealier <state>, ¢ + 1)

is logged, with the value of state as new, cmp or in-
cmp. There is thus a difference in the behavior of the
logging mechanism from the formalism of SLG, as a
NEW SUBGOAL operation is performed only if S¢qjieq
is new to the evaluation. Eager subgoal logging is sup-
ported by XSB, and should be easy to guarantee for
any tabling engine that implements forest logging'.

Theorem 3.1 Let £ = Fy, ..., F,, be an SLG evalua-
tion and L a log created using eager subgoal logging.
Then for any SDG(F;), 0 < ¢ < n, there is a ¢ such
that SDG(F;) is isomorphic to the log dependency
graph induced by ¢ 1.

3.2. Constructing a Homomorphism of an SLG Forest

Because SLG forests capture the operational as-
pects of tabling, the ability to fully reconstruct a forest

10Within XSB this is done within the tabletry instruction (cf.
[17D.

" Proofs are provided in the appendix of this paper.

would mean that a wide variety of operational prop-
erties could be obtained by analyzing a log. However,
because forest logs do not keep track of PROGRAM
CLAUSE RESOLUTION, reconstructing a tree is not al-
ways possible. Given a forest log and program, ques-
tions then arise of how much can be reconstructed, and
under what conditions. This section defines a homo-
morphism of SLG trees, and shows sufficient condi-
tions under which a homomorphic image of an SLG
tree can be constructed.

More precisely, forest logging may lose information
about the direct edges between nodes within an SLG
tree 7 if there is a significant amount of non-tabled res-
olution required to prove the root subgoal of 7. We be-
gin by characterizing a morphism that removes infor-
mation about PROGRAM CLAUSE RESOLUTION corre-
sponding to cases where it may be difficult to recon-
struct from a log and program.

Definition 3.2 Let T be an SLG tree. The graph mor-
phism H(T) is defined as follows.

1. Forany node n € T, H(n) is defined as:

(a) If the selected literal of n is tabled, then

H(n) =n;
(b) If n is the immediate child of the root of T,
then H(n) =n;

(c) Ifnis an answer or failure node whose near-
est ancestor either has a selected tabled lit-
eral or is in H(T), then H(n) = n;

(d) Otherwise, H(n) is the closest ancestor of n
whose selected literal is tabled.

10 Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations

2. If there is an edge between nodes n1 and no in
T, then there is either an edge between H(ny)
and H(nz) or H(n1) = H(na).

Let F be an SLG Forest. Then H(F) is defined as the
union of H(T) for each T € F.

Note that since the root of any SLG tree has a selected
tabled literal, any node whose selected literal is non-
tabled has an ancestor that is tabled; because the an-
cestor relation is a tree, the closest such node is unique,
so that H is well-defined. Given these considerations,
it is evident that H defines a homomorphism of an
SLG forest F where F is taken as a graph with labeled
nodes.

Example 3.1 The homomorphism of Definition 3.2 is
partially illustrated by its effect on the forest of Fig. 1
as shown in Fig. 5. It can be seen that for an SLG tree
T, the root subgoal of T is always in H(T) by con-
dition I(a), and its immediate children by condition
1(b). Condition 1(c) states that an answer A will be in
H(T) if its immediate parent has a selected tabled lit-
eral. In the case of the forest in Fig. 1, the only nodes
lost are the answers 8, 17, 19, and 20, whose parent
does not have a selected tabled literal. However, note
that by condition 1(c) if A is in H(T), any children of
A formed by SIMPLIFICATION or ANSWER COMPLE-
TION will also be in H(T).

In order to reconstruct an SLG tree in 7 from H(T),
the parent of each logged fact f needs to be determined
and the edges themselves constructed. When ANSWER
RESOLUTION and other tabling operations are logged,
their representation of the caller and called subgoals
can be used for this purpose. However in the case of
program clauses resolution, the program clauses must
be sufficiently distinct so that the parent of each fact
can be uniquely identified. These conditions are speci-
fied by Definition 3.3.

Definition 3.3 Let Body and Body' be two sequences
of literals. Then Body and Body' are distinguishable

if
— Both Body and Body' contain at least one

tabled literal, Body = L, ..., L, and Body =
Ly, ..,L and

1. The leftmost literals Ly and L} are tabled and
the sequences Lo, ...,L, and L}, ..., L} are
distinguishable or empty; or

2. The leftmost tabled literal L; of Body does
not unify with any literal in Body', the left-
most tabled literal L'; of Body' does not unify
with any literal in Body, and the sequences
Liy1,y Ly and Ly, ..., Ly, are distinguish-
able or empty.

Two rules are distinguishable if their bodies are empty
or distinguishable.

If all predicates in a program are tabled, all rules will
be distinguishable. When all rules for a given goal are
distinguishable, an SLG tree for the goal can be con-
structed by starting at the root node, and iteratively
constructing the children of each node, using the in-
formation from the log and the rules themselves. This
is formalized in the algorithm reconstruct_ tree(),
which can be found in the appendix of this paper.

Theorem 3.2 Let P be a program, £ a finitely termi-
nating evaluation, L its log and T a completed tree
with root Subgoal:-|Subgoal in a forest of £; and as-
sume all rules in P whose head unifies with Subgoal
are distinguishable. Then reconstruct_tree(Subgoal)
produces a graph, (NodeSet,EdgeSet), that is isomor-
phic to H(T).

Assuming a fixed maximal size for terms in T and
P, then the cost of reconstruct_tree(Subgoal) is

O(size(T)log(size(T)) + size(P)).

3.2.1. Rule-level Analysis and H(T)

Although #(T) is introduced as a means to charac-
terize the information maintained in a forest log H(7),
there are also practical motivations for constructing
H(T).

While dependency information among subgoals as
discussed in Section 3.1 is critical to understanding an
evaluation, other aspects are important as well. For ex-
ample, applications in knowledge representation and
business rule development may require analysis of de-
pendencies or of answers that arise from application of
a particular rule r for a predicate p/n, against a sub-
goal S. Such analysis is particularly important when
Hilog is used, as the transformations involved in Hilog
can remove information about predicates. When rules
are distinguishable, dependencies based on rules can
be easily obtained from the SLG tree 7 for S. The
children of the root of 7 can be examined, the subtree
corresponding to PROGRAM CLAUSE RESOLUTION by
r determined, and dependency and answer information
directly obtained.

Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations 11

2. reach(1,Y) :— ledge(1,Z), reach(Z,Y)

3. reach(1,Y):— Ireach(2,Y)

10. reach(1,2) :— | 22.reach(1,2) :—

5.reach(2,Y) :— ledge(2,Z),reach(Z,Y)

6. reach(2,Y) :— Ireach(2,Y)

9. reach(2,2) :—|

23.reach(1,1) :— |

1. reach(1,Y) :— Ireach(1,Y)

18. reach(1,Y) :— ledge(1,Y)

11. reach(1,Y):— Ireach(3,Y)

24. reach(1,3) :—|

4. reach(2,Y) :— Ireach(2,Y)

7. reach(2,Y):— ledge(2,Y)

12. reach(3,Y) ;— Ireach(3,Y)

13. reach(3,Y) :— ledge(3,Z),reach(Z,Y)

14. reach(3,Y) :— Ireach(1,Y)

15. reach(3,2) :— | 21.reach(3,3) :— |

16. reach(3,Y):— ledge(3,Y)

25.reach(3.1) :— |

Fig. 5. Homomorphic Image of the SLG Forest of Fig. 1

Of course the tree edges that represent rules can be
explicitly represented by rewriting a program. For in-
stance, each rule H :- Body of interest may be trans-
formed by folding Body into a new tabled predicate,
producing: H :- tabledBody and tabledBody :- Body.
By logging an evaluation with such a transformed pro-
gram, rule-based dependency information can be ob-
tained, via Theorem 3.1. However, such rewriting leads
to inefficiencies when there is a large overlap among
the answers produced by different rules. From a practi-
cal viewpoint, Theorem 3.2 provides sufficient condi-
tions under which rule-level analysis for a subgoal can
be constructed directly from a log without transform-
ing a program.

Note that as more predicates are tabled, the num-
ber of rules that are distinguishable increases. Thus,
Theorem 3.2 implies that forest logging can often sup-
port rule level analysis for heavily tabled computa-
tions, such as those that occur in Flora-2 '2.

12The current set of forest log analysis routines does not perform
rule level analysis and do not explicitly construct homomorphic im-
ages.

4. Analyzing the Log; Seeing the Forest through
the Trees

We now turn to a series of examples illustrating the
uses of forest logging as it is implemented in the cur-
rent version of XSB (version 3.5). Before doing so, we
note that XSB’s implementation differs slightly from
the description of the previous sections. XSB uses a so-
called completed table optimization, where resolving
answers from completed tables is nearly identical to
resolving program clauses. Because of this, for reasons
of efficiency in the current implementation answers re-
turned from completed tables are not logged. In ad-
dition, the current version of forest logging does not
log ansc/3 facts, (which are rarely needed). However
XSB’s implementation of forest logging does record
practical events that are not modeled by SLG or its ex-
tensions including exceptions thrown during an evalu-
ation, and table abolishes.

4.1. Using the Log to Analyze Dependencies

Continuing Example 1.1, we consider execution of
a particular biology query that took more space and
time than expected. This query took about 30 seconds
of CPU time and created about 600,000 tables with
about 300,000 answers total. Overall about 8.7 million

12 Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations

tabled subgoals were called. The query required about
300 megabytes of table space, while XSB’s combined
trail and choice point stack region had allocated over 1
gigabyte of space'’. The computation was rerun with
forest logging. Forest logging has no impact on mem-
ory usage, although for this example the elapsed exe-
cution time increased form 30 to 52 seconds. The log
file had a size of 3.6 gigabytes and contained 14.1 mil-
lion facts.

After loading the log, the top-level analysis query,
forest_log_overview/0, gave the results in Fig. 6 (the
execution time for forest_log_overview was 22.1 sec-
onds — cf. Fig. 1). The forest log overview first shows
the total number of completed and non-completed sub-
goals and SCCs, along with a count of how many of
the completed subgoals were early-completed (Sec-
tion 2.1). Information about non-completed subgoals
is useful for analyzing computations that do not termi-
nate. The overview also distinguishes between positive
and negative calls to tabled subgoals, and for each such
class further distinguishes subgoals that were new,
completed, or incomplete. Recall that calls to com-
pleted tabled subgoals essentially treat the answers in
the table as facts, so that such calls are efficient. Mak-
ing a call to an incomplete subgoals on the other hand
means that the calling and called subgoals are mutu-
ally recursive; '* and execution of recursive sets of sub-
goals can be expensive, especially in terms of execu-
tion stack space. Aggregate counts of DELAYING and
SIMPLIFICATION are also given along with counts of
both conditional and unconditional answers. Negation
does not appear to play a major role in this computa-
tion, and it appears likely that the portion of the pro-
gram relevant to the query has a 2-valued well-founded
model, although further exploration would be needed
to determine this (cf. Section 4.3).

The overview also provides the distributions of
tabled subgoals across SCCs formed by the SDGs
of the various forests in the evaluation. While most
of the SCCs were small, one was very large with
nearly 150,000 mutually dependent subgoals. Clearly
the large SCC should be examined. The first step is
to obtain the index of its SCC (a unique integer that
denotes the SCC). The query get_scc_size(Index,Size),

13 All times reported in this paper were from a 64-bit machine with
3 Intel dual-core 3.47 GHz CPUs and 188 megabytes of RAM run-
ning under Fedora Linux. The default 64-bit, single-threaded SVN
repository version of XSB was used for all tests.

14This statement is true not only in local evaluation but also in
another common scheduling strategy called batched evaluation.

Size > 1000. indicated that the index of the large SCC
was 39. The query analyze_an_scc(39) then provided
the information in Fig.7 '°. For this, SDG information
was extracted from the log and this information was
analyzed. It is evident from the count of edges in the
first line of this report that the vast majority of the calls
to incomplete tables during this computation occurred
in the SCC under investigation. Since information on
incomplete tables is kept in XSB’s choice point stack
(cf. [17]), the evaluation of SCC 39 is the likely cul-
prit behind the large amount of stack space required.
The subgoals in the SCC are first broken out by their
predicate name and arity, then the edges within the
SCC are broken out by the predicates of their caller
and called subgoals. Fig. 7 contains a number of pred-
icates used to encode Cyc’s reasoning into XSB, such
as lookupSentence/3, forwardSentence/3 and others.
A programmer can review the various rules for these
predicates to determine whether the recursion is in-
tended and if so, whether it can be simplified. In the
actual example, examination of these rules showed that
the use of Hilog resulted in calling a number of unex-
pected predicates. Additional guards were placed on
the Hilog call, greatly reducing the time and space
needed for the computation.

4.2. Using abstraction in the analysis

Within the SCC analysis, information about a given
tabled subgoal S is abstracted: only the functor and
arity of S is presented. For SCC 39 in the running
example, abstraction is necessary, as directly report-
ing 150,000 subgoals or 4,000,000+ edges would not
provide a human with useful information. However, it
could be the case that seeing the tabled subgoals them-
selves would be useful for a smaller SCC. Even for a
large SCC, it can be useful for different levels of ab-
straction to provide mode or type information. For this
reason, forest log analysis predicates support calls such
as analyze_an_scc(39,abstract_modes(_,_)) which ap-
plies the predicate abstract_modes/2 in the break-
downs of subgoals and edges. abstract_modes(In,Out)
simply goes through each argument of the term /n and
unifies the corresponding argument of the term Out
with

— v if the argument is a variable;
— g if the argument is ground; and

I5For the purpose of space, the lists of predicates and edges in the
SCC have been abbreviated.

Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations 13

There were 613448 subgoals in 463446 (completed)

93909 subgoals were early-completed.
0 subgoals were not completed in the log.

SCCs.

There were a total of 8638299 positive tabled subgoal calls:

582754 were calls to new subgoals

4460609 were calls to incomplete subgoals
3594936 were calls to completed subgoals

There were a total of 30694 negative tabled subgoal calls:

30694 were calls to new subgoals

0 were calls to incomplete subgoals

0 were calls to completed subgoals
There were a total of 5 negative delays

There were total of 6 simplifications

a
There were a total of 304447 unconditional answers derived:
a

There were

Number of SCCs with 1 subgoals is 463437
Number of SCCs with 4 subgoals is 1
Number of SCCs with 7 subgoals is 1
Number of SCCs with 52 subgoals is 1
Number of SCCs with 110 subgoals is 5
Number of SCCs with 149398 subgoals is 1

total of 6 conditional answers derived:

Fig. 6. Output of Forest Log Overview for the Program and Query in Example 1.1

There are 149671 subgoals and 4461290 edges (average of 30.8073

edges/subgoal) within the SCC

There are 2 subgoals in the SCC for backchainForbidden / 0

There are 2 subgoals in the SCC for

www.cyc.com/transformationPredicate / 0

There are 18770 subgoals in the SCC for forwardSentence / 3
There are 18771 subgoals in the SCC for lookupSentence / 3

Calls from assertedSentence/3 to lookupSentence/3:32
Calls from backchainForbidden/0 to www.cyc.com/transformationPredicate/0:2

Calls from transformationSentence/2 to sbhlSentence/3:5479
Calls from tvaSentence/3 to removalSentence/3:7695

Fig. 7. Output of SCC Analysis for the Program and Query in Example 1.1

— m (for mixed) otherwise.

The resulting output is shown in Fig. 8. Examination
of this output indicates that the SCC consists of a large
number of fully ground calls to several predicates:
rewriting code to make fewer but less instantiated calls
to these predicates will often optimize a computation
in such cases.

Of course, abstract_modes/2 is simply an example:

term abstraction predicates are easy to write, and any

such predicate may be passed into the last argument of
analyze_an_scc/3 16

4.3. Analyzing Negation

Many programs that use negation are stratified in
such a way that they do not require the use of DE-
LAYING and SIMPLIFICATION operations. However if
a program does not have a two-valued a well-founded

16Due to its use of Hilog, Flora-2 terms are all instances of the
generic predicates apply/[1,...,n]. Accordingly, abstraction was used
to break out predicate-level information in the output of Section 4.1,
while a special version of abstract_modes/2 was used here.

14 Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations

There are 149671 subgoals and 4461290 edges (average of 30.8073

edges per subgoal) within the SCC

There are 3 subgoals in the SCC for backchainRequired(g, g)

There are 2 subgoals in the SCC for backchainForbidden (g, g)

There are 29254 subgoals in the SCC for gpLookupSentence (g, qg)
There are 29254 subgoals in the SCC for removalSentence (g, g)

Calls from assertedSentence(g,g) to lookupSentence(g,g):10
Calls from assertedSentence (m,g) to lookupSentence (m,g) :22

Calls from transformationSentence(m,g) to sbhlSentence (m,qg) :741
Calls from tvaSentence(g,g) to removalSentence(g,g):7695

Fig. 8. Output of SCC Analysis for the Program and Query in Example 1.1

model, a user would often like to understand why this
is. Even in a program that is two-valued, the heavy use
of DELAYING and SIMPLIFICATION can indicate that
some rules may need to be optimized by having their
literals reordered.

As indicated previously, the forest log overview in-
cludes a total count of DELAYING and SIMPLIFICA-
TION operations, as well as a count of conditional an-
swers. In addition, SCC analysis counts negative as
well as positive edges within the SCC. Forest logging
also provides an analysis routine to examine why an-
swers have an undefined truth value. Recall from Ex-
ample 2.2 that there are two types of causes of an un-
defined truth value: either 1) a negative literal explic-
itly undergoes a DELAYING operation; or 2) a condi-
tional answer may be used to resolve a literal. It can be
shown that in local evaluation, a conditional answer A
will never be returned out of an SCC if A is successful
or failed in the well-founded model of a program. This
means that the operational cause making an answer for
S undefined is either a DELAYING operation within the
SCC of S; or a DELAYING operation within some other
SCC on which S depends. So to understand why an
atom is undefined it can be useful to understand the
“root causes” of the delay: that is, to examine SCCs in
which DELAYING operations were executed and con-
ditional answers were derived, but where the answers
could not be simplified.

Example 4.1 As a use case, logging was made of exe-
cution of a Flora-2 program that tested out a new de-
feasibility theory (cf. [20]). The forest log overview in-
dicated that the top-level query was undefined:

There were a total of 55 negative delays
There were a total of 0 simplifications
There were a total of 695 unconditional

answers derived
There were a total of 66 conditional
answers derived

The analysis predicate three_valued_scc(List) pro-
duces a list of all SCC indices in which DELAYING
caused the derivation of conditional answers. These
SCCs were then analyzed as discussed in the previous
sections.

5. Implementation and Performance of Logging
and Analysis Routines

A user of XSB may invoke forest logging so that the
log is created as described in Section 2. Alternately,
a user may invoke partial logging. This option omits
facts produced by the ANSWER RESOLUTION opera-
tion, which returns an answer to a node with a selected
literal that is tabled. Partial logging can save time and
space while supporting analysis of mutually recursive
components as in Sections 4.1 and 4.2. However it
does not support the negation analysis of Section 4.3.

Regardless of the level that is enabled, logging is
performed by conditional code in large virtual ma-
chine instructions of XSB’s engine, the SLG-WAM,
such as tabletry (NEW SUBGOAL), answer_return,
new_answer and check_completion (COMPLETION)
(cf. [17]). Subgoals and bindings are then written using
registers, tables, answer templates, and lists of delayed
literals. Access to calling subgoals (e.g., the second
arguments of tc/4 and nc/4) is obtained by the SLG-
WAM'’s root subgoal register, which was originally in-
troduced for tabled negation [17]. For efficiency, log-
ging minimizes interaction with the operating system:
information is written into internal buffers; once the
buffers contain all information for a log fact, they are

Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations 15

written to the output stream using a single printf{)
statement. The subgoals and answers that are logged
may be quite large, particularly when non-termination
may be an issue: thus all buffers used are automati-
cally expandable. The current implementation of for-
est logging also handles cyclic terms, and terms with
attributed variables.

All facts are written canonically'” so that loading a
log exploits XSB’s efficient reading and asserting of
canonical dynamic code. The cmp/3 (COMPLETION)
facts are trie-indexed (cf. [19]), while most other facts
index on multiple arguments. For instance, ar/4 (AN-
SWER RESOLUTION) facts are indexed on their second
and third arguments (calling and called subgoals), so
that indexing is used if either argument is bound. For
each argument, a type of indexing in XSB called star-
indexing is used, which can index on up to the first four
positions of a given argument [19].

Analysis routines are written in standard Prolog
with one exception. Counting the number of (ab-
stracted) edges in an SCC makes use of the code frag-
ment

te(T1,T2,incmp,_Ctr),
check_variant(cmp(T1,S,_),1),
check_variant(cmp(T2,S,_),1)

The predicate check_variant(Goal,DontCareNum) is
implemented only for trie-asserted code (e.g., cmp/3).
If Goal is an atom for predicate p/n, check_variant/2
determines whether a variant of the first N - Dont-
CareNum arguments of Goal is in the trie for p/n. The
check_variant/2 predicate is implemented in C, and
directly traverses the C-based data structures used by
XSB to represent tries. check_variant/2 begins match-
ing the leftmost element of a term ¢ with the root of
the trie, and proceeds to match each subsequent sym-
bol with a child node of the current trie position; if no
match is found check_variant/2 fails. As a result, only
a single path from the root need be examined in order
to determine whether a variant of ¢ is in the trie. On
the other hand, for large SCCs in which there are nu-
merous subgoals that may unify with one another (but
aren’t variants), a Prolog search for variance may be
subject to a great deal of backtracking, and the time
required may be proportional to the size of the trie,
rather than to the size of ¢ as with check variant/2. Not

"In Prolog, canonical syntax does not allow operator declara-
tions so that with the exception of list symbols, all function symbols
are prefixed and their arguments fully parenthesized. In addition all
numbers are written in base 10.

surprisingly, the use of check variant/2 is critical to
a good analysis time. For example, in the analysis of
SCC 309 for the Cyc example presented above, the use
of check_variant/2 reduced the time for the forest log
overview over 100-fold.

5.1. Performance

Table 1 shows performance results for logging and
analysis of various sets of examples:

— Cyc Series. Cyc 1 is the working biology example
used throughout this paper; Cyc 3 is a similar, but
larger, biology example, Both systems are based
on the translation of the Cyc inference engine into
Flora-2 and then into XSB.

— Pref-kb Series. Pref-kb contains a small set of
tabled Prolog rules about personal preferences
that demonstrate reasoning about existential in-
formation in a manner similar to description log-
ics, and make use of default and explicit negation.
Queries to these rules were run over sets of 3.7
million and 14.8 million base facts'S.

— Reach N Series. This series tests logging of an
open query to the right-recursive reach/2 predi-
cate in Fig. 1 over fully connected graphs with
2000-12000 nodes. Since these queries measure
reachability from all nodes in the graphs the cost
of an open query scales quadratically with respect
to the number of nodes in the graph. Although
the tabling behavior of a simple transitive closure
query such as reach/2 is well understood, this se-
ries is included to test the scalability of logging
and of its analysis.

5.1.1. Load Time

In part because of XSB’s library predicates for load-
ing canonical dynamic facts, XSB’s load time is ef-
ficient for the various types of logs, loading approx-
imately 100,000 facts per second for the Cyc series,
over 150,000 facts per second for the Pref-kb series,
and nearly 200,000 facts per second for the reach N se-
ries. After being loaded, the Cyc examples took about
500 bytes per fact, the Pref-kb examples about 300
bytes per fact, and the reach N facts about 200 bytes
per fact. Much of this space is due to the heavy in-
dexing of log facts. The reason that the Cyc logs take
the longest to load and the most space to represent
is due to the fact that the subgoals and answers for

8Details of this series, including the code used to generate the
datasets, are available at sites.unife.it/ai/termination.

16 Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations

Program Number of facts | Load time (secs) | Load Space (bytes) | Forest Log Overview (secs)
Cyc 1 14,009,602 140.1 7,857,572,736 22.1
Cyc 3 66,256,186 612.2 36,950,074,144 92.2
Pref-kb 3.7 2,500,193 16.5 725,972,288 2.3
Pref-kb 14.8 8,000,140 52.5 2,336,039,512 7.3
reach 2000 12,006,002 78.4 2,496,927,880 8.4
reach 4000 48,012,002 280.1 9,985,835,352 13.2
reach 8000 192,024,003 1227.7 39,940,961,128 59.7
reach 12000 432,036,000 2332.9 89,864,542,056 132.8
Table 1

Timings for Loading and Analyzing Logs

this benchmark were generated by Flora-2 compila-
tion. For instance, the Hilog transformation used by
Flora-2 transforms n-ary predicates and function sym-
bols to n+1 ary predicates and function symbols. As a
slightly simplified instance, a term such as p(a,f(b),1)
is converted to flora_apply(p,a,flora_apply(f,b),1). In
addition, Flora-2 represents module information as an
additional argument of each atom, requiring further
space.

5.1.2. Analysis Time

Once the log has been loaded, the indexing makes
analysis fast enough to be interactive: for the Cyc bi-
ology example the top level analysis took around 22
seconds, and analyzing SCC 39 took about 20 seconds
when the built-in predicate-arity abstraction was used,
and about 60 seconds for the parameterizable version
that used abstract_modes/2. Although computing the
forest log overview requires several table scans in ad-
dition to indexed retrievals, timings for both the Pref-
kb and the reach N series show a sublinear growth of
analysis time with respect to log size.

5.1.3. Logging Overhead

The overhead of query evaluation was also mea-
sured, i.e., the time it took to execute a query when for-
est logging was turned on, compared to no logging. At
a general level it is easy to see that forest logging im-
poses an overhead on an evaluation that is a constant
factor. Within XSB’s virtual machine, the SLG-WAM,
calls to functions that write log facts are placed di-
rectly in tabling instructions and never cause any path
through an instruction to be re-executed. The cost of
logging a given fact is bounded by a factor that is con-
stant for each terminating evaluation £. Let £ require
execution of n instructions in XSB’s virtual machine,
and let s be the maximal size of any tabled subgoal in
£. The maximal cost of traversing each logged fact can
be treated as a linear function of the maximal subgoal

size, s, and the maximal number used for the counter,
n. Thus, for a given evaluation £ with s and n fixed,
the cost of, e.g., t¢/4 is the constant function 2s + n 19
Of course, even an overhead that is a constant fac-
tor can have practical importance. For the Cyc series,
the overhead of logging increased the time for Cyc I
by 72% and for Cyc 3 by 132% which was consid-
ered acceptable by knowledge engineers. Similarly, the
Pref-kb series, which uses a heavily tabled Prolog pro-
gram, has an average logging overhead of about 225%.
On the other hand, for the reach N series the over-
head of forest logging on query execution was nat-
urally high (about 2 orders of magnitude), as reach
N performed very little PROGRAM CLAUSE RESOLU-
TION. This overhead may be considered as representa-
tive of a worst-case for forest logging overhead 2°.

5.1.4. Partial Logging

For some large examples, partial logging (men-
tioned at the beginning of this section) can reduce the
logging overhead, the time required to load a log, and
the space the loaded log requires. An example of this
is as follows.

Example 5.1 In analyzing the log for a query to Pref-
kb, it became apparent that much of the resources the
query required were due to large SCCs composed al-
most entirely of goals to equals/2, the predicate used
for equality of non-identical terms. By examining the
program, a rule for equals/2 was translated from a
right-recursive form to a left-recursive form. Simpli-
fying somewhat, this meant translating a rule of the
form:

19Full details would require a lengthy exposition of low-level de-
tails of the implementation of forest logging with XSB’s virtual ma-
chine.

20The reach N series was included to benchmark scalability, but
partial logging as described in the next section can greatly reduce
the logging overhead and log space of the reach N series, if needed.

Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations 17

equals(X,Z):- basePredicate(X,Y),equals(Y,Z)
to

equals(X,Z):- equals(Y,Z),basePredicate(X,Y)

The left-recursive form is usually faster for tabled Pro-
log, as Prolog’s left-to-right literal selection strategy
means that the right-recursive form will generate sep-
arate tabled queries for different instantiations of Y
while the left-recursive form will not.

After performing the above translation, the query
time for the transformed series, Pref-kb-Ir was reduced
by 300-400%, and the maximum memory required for
query evaluation was reduced by about 700-800%.
However, while the translation optimized the query it-
self, when logging was turned on the left-recursive
query slowed down substantially, even compared to the
time required by the right-recursive form when using

logging.

Inspection of the log for the query to left-recursive
Pref-kb showed that a large number of answers were
produced for the top-level query and its tabled sub-
queries. Since partial logging removes most informa-
tion about answer derivations it can substantially re-
duce the logging time and log size for queries with a
large number of answers. Table 2 shows that partial
logging reduces the size of the log for left-recursive
Pref-kb by many orders of magnitude. On the other
hand, evaluation of the query to right-recursive Pref-kb
produces a large number of subgoals and relatively few
answers, so that partial logging is not more efficient

than full logging in this case®'.

6. Related Work

Trace-based analysis has been widely used to ana-
lyze the behavior of concurrent systems, security vul-
nerabilities, suitability for optimization strategies and
other program properties. Within logic programming,
it has been used to support debugging of Prolog [5],
Mercury [6], and evaluations that make use constraint-
based reasoning [7,14]; the trace analyzer for Mercury
was extended to support synchronous program moni-
toring [11]. More recently, a well-known use of trace-

21 Although the left-recursive and the right-recursive forms of
Pref-kb are semantically equivalent, the left-recursive form makes
fewer queries than the right-recursive form but its queries are not as
instantiated. The left-recursive form thus has a larger search space
than the right-recursive form, but it creates far fewer queries for its
search and for that reason is more efficient under XSB’s tabling im-
plementation.

based analysis is the Ciao pre-processor, which infers
call and success conditions for a variety of domains
based on execution of queries (see [10] for further de-
tails).

Based on XSB’s forest logging, a system for ana-
lyzing non-termination of Flora-2, Silk and Ergo pro-
grams, called Terminyzer has been developed [15].
In addition to the logging mechanisms described so
far, Terminyzer relies on special routines that translate
compiled Flora-2 code back from a Prolog syntax to a
more readable Flora-2 syntax. Displays for Terminyzer
are shown in the IDEs of both Silk and Ergo and have
been used for debugging by knowledge engineers [1].
The analysis presented in Section 4 predates the termi-
nation analysis of [15], and is complementary to it. For
instance, the analyses in Section 4.1 considered a pro-
gram and query that terminated, but was inefficient due
to unexpected dependencies among subgoals; while
the negation analysis of Section 4.3 helped indicate
why a 2-valued model was not obtained.

7. Discussion

The design of a forest log attempts to balance the
amount of information logged against the time it takes
to load and analyze a log. The propositions of Sec-
tion 3 show that a forest log suffices to analyze de-
pendency information and, under certain conditions,
has the information available to construct a homomor-
phic image of an SLG forest. The analysis predicates
of Section 4 show how the representation is used to
provide meaningful information to users about tabled
programs with and without negation. The benchmarks
of Section 5 further demonstrate practicality of this ap-
proach and its scalability to logs consisting of hun-
dreds of millions of facts. As a result forest logging is
now fully integrated into XSB and Flora-2, and under-
lies tools in the commercial Silk and Ergo IDEs.

More generally, trace-based analysis provides an al-
ternative to static analysis for a number of program
or query properties. Unlike static analysis, trace-based
analysis requires realistic data along with a representa-
tive set of queries. On the other hand, for programs that
include Hilog, defeasibility, equational reasoning and
other features of Flora-2, Ergo and Silk, static analy-
sis techniques may not exist, may not be implemented,
or may not be powerful enough for practical use. As
a result, trace-based analysis is a viable technique to
determine properties of large tabled computations.

18 Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations

equals/2 form EDB Size | LogLevel | Log Overhead | Nbr of facts | Load time Load Space | Forest Log Overview

Right-recursive | 3.7 million full 236% 2,500,254 16.5 725,972,288 2.3

Right-recursive | 3.7 million partial 236% 2,500,126 16.5 724,037,016 2.3

Left-recursive 3.7 million full 2685% 11,983,203 89.3 | 3,904,201,328 1.1

Left-recursive 3.7 million partial < 1% 115 <0.1 80,202 < 0.1
Table 2

Comparing Full and Partial Logs for Pref-kb: Times are in Seconds and Space is in Bytes

An interesting direction for future work involves
having a separate process (or thread) monitor the forest
log as the information is produced (cf. [11]). Depend-
ing on the application, a monitor may need to retain
only a small portion of the log and so would reduce
the sometimes significant load and analysis times for a
full log. An even more intriguing extension would be
to have the monitor communicate back to the execu-
tion engine to adapt tabling definitions to ensure termi-
nation or to improve efficiency.

Acknowledgements.

This work was partially supported by Project Halo

and FCT Project ERRO PTDC/ EIACCO/121823/2010.

The author thanks Fabrizio Riguzzi for making avail-
able the server on which the timings were run, and is
grateful to F. Bry, M. Bruynooghe, E. Jahier and an
anonymous reviewer for their comments, which have
substantially improved the paper.

References

[1] C. Andersen, B. Benyo, M. Calejo, M. Dean, P. Fodor,
B. Grosof, M. Kifer, S. Liang, and T. Swift. Understanding
Rulelog computations in Silk. In Workshop in Logic-based

Methods in Programming Environments, 2013. Available at

http://arxiv.org/abs/1308.4125.

F. Baader, S. Brandt, and C. Lutz. Pushing the £L envelope. In

L. Kaelbling and A. Saffiotti, editors, IJCAI-05, Proceedings

of the Nineteenth International Joint Conference on Artificial

Intelligence, pages 364-369. Professional Book Center, 2005.

W. Chen, M. Kifer, and D. S. Warren. HiL.og: A foundation for

higher-order logic programming. Journal of Logic Program-

ming, 15(3):187-230, 1993.

[4] W. Chen and D. S. Warren. Tabled Evaluation with Delaying
for General Logic Programs. Journal of the ACM, 43(1):20-74,
1996.

[5] M. Ducassé. Opium: An extendable trace analyser for Prolog.
Journal of Logic Programming, 39:177-223, 1999.

[6] M. Ducassé and E. Jahier. Efficient automated trace analy-
sis: Examples with Morphine. Electronic Notes on Theoretical
Computer Science, 55(2):118-133, 2001.

[7]1 M. Ducassé and L. Langevine. = Automated analysis of
CLP(FD) program execution traces. In P. J. Stuckey, editor,
Logic Programming, 18th International Conference, volume

[2

—

3

=

2401 of Lecture Notes in Computer Science, pages 470-471.
Springer, 2002.

[8] B. Grosof and T. Swift. Radial restraint: A semantically clean
approach to bounded rationality for logic programs. In M. des-
Jardins and M. Littman, editors, Proceedings of the Twenty-
Seventh AAAI Conference on Artificial Intelligence. AAAI
Press, 2013.

[9] H. Guo, C. R. Ramakrishnan, and I. V. Ramakrishnan. Spec-
ulative beats conservative justification. In P. Codognet, editor,
Logic Programming, 17th International Conference, volume
2237 of Lecture Notes in Computer Science, pages 150-165.
Springer, 2001.

[10] M. V. Hermenegildo, F. Bueno, M. Carro, P. Lopez-Garcia,
E. Mera, F. Morales, and G. Puebla. An overview of Ciao and
its design philosophy. Theory and Practice of Logic Program-
ming, 12(1-2):219-252, 2012.

[11] E. Jahier and M. Ducassé. Generic program monitoring by
trace analysis. Theory and Practice of Logic Programming,
2(4-5):611-643, 2002.

[12] M. Kifer. Nonmonotonic reasoning in FLORA-2. In C. Baral,
G. Greco, N. Leone, and G. Terracina, editors, Logic Program-
ming and Nonmonotonic Reasoning, Sth International Con-
ference, volume 3662 of Lecture Notes in Computer Science,
pages 1-12. Springer, 2005.

[13] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-
oriented and frame-based languages. Journal of the ACM,
42:741-843, July 1995.

[14] L. Langevine and M. Ducassé. A tracer driver to enable de-
bugging, monitoring and visualization of CLP executions from
a single tracer. In B. Demoen and V. Lifschitz, editors, Logic
Programming, 20th International Conference, volume 3132 of
Lecture Notes in Computer Science, pages 462—463. Springer,
2004.

[15] S.Liang and M. Kifer. A practical analysis of non-termination
in large logic programs. Theory and Practice of Logic Pro-
gramming, 13(4-5):705-719, 2013.

[16] E. Pontelli, T.C. Son, and O. Elkatib. Justifications for logic
programs under the answer set semantics. Theory and Practice
of Logic Programming, 9:1-56, 2009.

[17] K. Sagonas and T. Swift. An abstract machine for tabled ex-
ecution of fixed-order stratified logic programs. ACM Trans-
actions on Programming Languages and Systems, 20(3):586 —
635, May 1998.

[18] T. Swift. A new formulation of tabled resolution with delay. In
P. Barahona and J. Alferes, editors, Progress in Artificial Intel-
ligence, volume 1695 of Lecture Notes in Computer Science,
pages 163—177. Springer, 1999.

[19] T.Swiftand D.S. Warren. XSB: Extending the power of Prolog
using tabling. Theory and Practice of Logic Programming,
12(1-2):157-187, 2012.

Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations 19

[20] H. Wan, B. Grosof, M. Kifer, P. Fodor, and S. Liang. Logic pro-
gramming with defaults and argumentation theories. In P. Hill
and D. S. Warren, editors, Logic Programming, 25th Interna-
tional Conference, volume 5649 of Lecture Notes in Computer
Science, pages 432-448. Springer, 2009.

Appendix
A. Proofs of Theorems in Section 3

Theorem 3.1 Let £ = Fy, ..., F,, be an SLG eval-
uation and L a log created using eager subgoal log-
ging. Then for any SDG(F;), 0 < i < n, there is a
¢ such that SDG(F;) is isomorphic to the log depen-
dency graph induced by c.

Proof: The proof is by induction on ¢ such that F; is a
forestin &£.

For the base case, SDG(Fp) is empty, which cor-
responds to the log dependency graph induced by 0.
To see this, note that the first 7¢/4 or nc/4 fact sets the
calling subgoal to null and so by Definition 3.1 is not
included in the log dependency graph induced by 0.

For the inductive case, assume the statement holds
for F; with log counter c¢; and we consider the cases
where F; 1 was produced by F;.

— NEW SUBGOAL. Suppose a tree with root

Scalled:'|Scalled

was created due to S being selected in a node
Scaiter9:-Delays|Body. In this case, by the eager
subgoal logging property, a tc/4 or nc/4 fact with
state new and counter ¢; + 1 will be logged. E.g.,
if the dependency is positive, the log fact would
be:

tc(scallech Scallera new, c; + 1)

By Definition 3.1, setting c to ¢; + 1 preserves the
induction statement for F;4;, since neither sub-
goal will be completed.

— PROGRAM CLAUSE RESOLUTION. Note that this
operation will affect the SDG only if the opera-
tion produces a child node with selected literal L
whose underlying atom A is tabled, but has not
been completed. In such a case, by the eager sub-
goal logging property, a tc/4 or nc/4 fact will be
logged as the ¢; + 1st fact. Setting ¢ to ¢; + 1
preserves the property for ;1.

— ANSWER RESOLUTION. As in the case of PRO-
GRAM CLAUSE RESOLUTION, this operation
will affect the SDG only if the operation pro-
duces a child node with selected literal L whose
underlying atom A is tabled, but has not been
completed. By the eager subgoal logging prop-
erty, after an ar/3 or dar/4 fact is logged as the

20 Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations

c + 1st fact, a tc/4 or nc/4 fact will be logged as
the ¢; + 2nd log fact. As in the previous case, the
second argument of this fact will be S.qiieq. By
Definition 3.1, setting c to ¢; + 2 preserves the
property for F 4.

— DELAYING, and NEGATION SUCCESS are argued
in the same manner as ANSWER RESOLUTION??,

— SIMPLIFICATION and ANSWER COMPLETION
both affect only conditional answers. Since an-
swers do not have a selected goal literal, they do
not contribute to the SDG, so that the induction
step holds trivially in these cases.

— NEGATION FAILURE adds a failure node, which
does not affect the SDG, so that the induction step
holds trivially in this case.

— COMPLETION. Completion of a subgoal S alters
the SDG by removing all edges incident on S. In
this case, the log contains a cmp/3 fact for every
subgoal involved in completion of the SCC or in
early completion. As a results, S will not be con-
tained in the log dependency graph, and the in-
duction statement holds if c is set to the counter
of the last cmp/3 fact for the SCC.

A.l. Proof of Theorem 3.2

Theorem 3.2, which states conditions for the exis-
tence of a homomorphism between a forest log and
an SLG tree, is proved by showing the correctness
of the algorithms reconstruct_tree (Fig. 9) and cre-
ate_children() (Fig. 10). Both the proof and the algo-
rithm create_children() use the definition of an SLG
resolvent (originally from [4]), which differs from res-
olution in Horn rules in order to take into account de-
lay literals in conditional answers.

Definition A.1 Let N be a node A:-D|Lq,..., Ly,
where n > 0. Let Ans = A’:-D’| be an answer whose
variables are disjoint from N. N is SLG resolvable
with Ans if 3i, 1 < i < n, such that L; and A’ are
unifiable with a most general unifier (mgu) 6. The SLG
resolvent of N and Ans on L; has the form:

(A.’—D|L]_7 ~-~7Li717 Li+17 ceey Ln>9

if D' is empty; otherwise the resolvent has the form:
(A.'-D7 Li|L1, ceey Lifl, Li+1, ceey Ln)e

Note that SLG resolution delays L; rather than prop-
agating the answer’s Delays D’. This is necessary, as
shown in [4], to ensure polynomial data complexity.?3

Theorem 3.2 Let P be a program, £ a finitely ter-
minating evaluation, L its log and T a completed tree
with root Subgoal:-|Subgoal in a forest of £; and as-
sume all rules in P whose head unifies with Subgoal
are distinguishable. Then reconstruct_tree(S) pro-
duces a graph, (NodeSet,EdgeSet), that is isomorphic
to H(T).

Assuming a fixed maximal size for terms in T and
P, then the cost of reconstruct_tree(S) is

O(size(T)log(size(T)) + size(P)).

Proof: We first show that (NodeSet,EdgeSet) is iso-

morphic to H(7), and then consider its cost.

reconstruct_tree(Subgoal) (Fig. 9) reconstructs
the tree for Subgoal in an iterative manner, starting
with the root Subgoal:-|Subgoal, adding nodes to be
expanded into InNodes, and representing the result-
ing graph edges in (NodeSet, EdgeSet). For the pur-
poses of this proof, a nearest tabled descendent of a
non-root node N is a node N p;1q4 such that N4 18
a descendent of IV and such that any intermediate de-
scendents of N that are ancestors of N4 (i.e., nodes
between N and N_p;q) were formed by PROGRAM
CLAUSE RESOLUTION. Note that these intermediate
nodes have selected literals that are not tabled.

The proof of isomorphism to #(7") is by induction
on the number of iterations Iter Num performed in
the while loop in reconstruct_tree(Subgoal) before
termination.

Base Case: Iter Num = 0. In this case NodeSet
contains the single node

Subgoal:-|Subgoal

and EdgeSet is empty, as no program clauses unify
with Subgoal. It is immediate that this tree is isomor-
phic to H(T).

Inductive Case. First note that in reconstruct_tree()
immediate children of the root are added to NodeSet

22The NEGATION SUCCESS operation is shorthand for a NEGA-
TION RETURN operation where the selected literal succeeds and is
resolved away.

231f the Delays sequence were propagated directly, then the De-
lays could effectively contain all derivations which could be expo-
nentially many in the worst case.

Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations 21

reconstruct_tree(Subgoal) /* Assumes a program P and forest F */
NodeSet = {Subgoal:-|Subgoal}; /* Subgoal:-|Subgoal is a root node: */

EdgeSet = (); InNodes = (;

For every clause H:-Body whose head resolves with Subgoal with mgu 7

InNodes = InNodes U {(Subgoal:-| Body)n}

EdgeSet = EdgeSet U {(Subgoal:-|Subgoal, (Subgoal:-| Body)n)}

While (InNodes # 0)

choose Node from InNodes; InNodes = InNodes \ {Node}; NodeSet = NodeSet U {Node};

create_children(Node,Subgoal);

Fig. 9. Top-level Algorithm to Perform H(F)

along with corresponding EdgeSet edges. Within
SLG, the children of a root node are created by res-
olution of program clauses whose heads unify with
Subgoal: the rule heads themselves need not be dis-
tinguishable, as the children can be constructed im-
mediately from P and Subgoal. (See Definition 3.3
which defines rules as distinguishable if their bodies
are distinguishable or empty.) Furthermore, it is im-
mediate from Fig. 9 that as all possible PROGRAM
CLAUSE RESOLUTION operations are performed, all
edges are added to E'dgeSet and all children are added
to NodeSet. These nodes and edges are also in H(7T)
due to condition 1(b) of Definition 3.2.

Next, assume that for any tree and program (Node-
Set,EdgeSer) is isomorphic to H(7) whenever the
number of iterations of the while loop in

reconstruct_tree(Subgoal)
is n-1, and consider the nt" iteration where
Node = Subgoalf:-Delay| Body

is a non-root node chosen from InNodes.

We consider the cases for Node, and show how they
are captured by create_children(Node,Subgoal) in
Fig. 10 %4,

1. Body is not empty. In this case, note that since
Node is not an answer, we do not have to con-
sider either the effects of SIMPLIFICATION or
ANSWER COMPLETION operations in producing
the children of Node.

There are several cases to consider.

24In this proof and in Fig. 10 variant atoms are treated as identical.

(a) The leftmost tabled literal in Body does not
exist. In this case, create_children(Node,
Subgoal) will create no children for Node.
Correspondingly, in Definition 3.2 it can be
seen that for any descendent Node’ of Node,
conditions 1(a)-1(c) will not apply, so that by
condition 1(d) H(Node’) = Node.

(b) The leftmost tabled literal, L, exists in Body
and is positive (Fig. 10, lines 5-15), where

Body = Bodyr.eft, L, BodyRright-

i. Consider first the case where Bodyr.f:
is empty so that the tabled literal L is
the leftmost literal in Body (lines 6-10 of
Fig. 10). In this case the fact that the rules
for Subgoal are distinguishable means
that the ANSWER RESOLUTION operations
that create children for Node are identifi-
able by calling all facts of the form

ar(n, L, Subgoal, Ctr)
or
dar(n, L, Subgoal, Ctr).

For each such fact create_children(N ode,
Subgoal) creates a child of the form

(Subgoal®:-Delay|Bodyrign)1
or

(Subgoald:-Delay U {L}|Bodyright)n

22 Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations

create_children(Node,Subgoal) /* InNodes,NodeSet,EdgeSet are external variables */
Let Node = H:-Delay|Body and H = Subgoalf /* Node is not a root node */
If Body is non-empty
If there is a leftmost tabled literal, L, in Body: let Body = Bodyreyt, L, Bodyright
5 If L is positive
If Bodyr.r: is empty /* L is the leftmost literal in Body, tabled or not */
For each ar(n, L, Subgoal, C) or dar(n, L, Subgoal, C)
Let Child be the SLG Resolvent of Node and Ln on L
InNodes = InNodes U {Child};
10 NodeSet = NodeSet U {Child}; EdgeSet = EdgeSet U {(Node, Child)};
Else if L is not the leftmost literal in Body
For each ar(n, L', Subgoal, C) or dar(n, L', Subgoal, C') s.t. L' unifies with L with mgu ¢
Let Child = (H:-Delay|L, Bodyright)¢ /* Reconstruct Child before answer resolution */
InNodes = InNodes U {Child};
15 NodeSet = NodeSet U {Child}; EdgeSet = EdgeSet U {(Node, Child)};
Else if L is negative, let L = notA
If L is the leftmost literal in Body /* tabled or not */
For each fact nr(A, Subgoal, C)
Let Child = (H:-Delay|Bodyright)
20 InNodes = InNodes U {Child};
NodeSet = NodeSet U {Child}; EdgeSet = EdgeSet U {(Node, Child)};
For each fact diy(A, Subgoal, C)
Let Child = (H:-Delay U {L}|Bodyright)
InNodes = InNodes U {Child};
25 NodeSet = NodeSet U {Child}; EdgeSet = EdgeSet U {(Node, Child)};
If there are no facts of the form nr(A,Subgoal,C) or dly(A,Subgoal,C)
EdgeSet = EdgeSet U {(Node, fail)};
Else if L is not the leftmost literal in Body
For each nr(A’, Subgoal, C) or dly(A’, Subgoal, C') s.t. A’ unifies with A with mgu ¢
30 Let Child = (H:-Delay|L, Bodyr;gnt)§ /* Reconstruct C'hild before answer resolution */
InNodes = InNodes U {Child};
NodeSet = NodeSet U {Child}; EdgeSet = EdgeSet U {(Node, Child)};
Else if Body is empty /* Node is an answer */
Let S be the set of facts {smpl_fail(Scaiied, 1, Subgoal, 8, Cntr) or
35 smpl_succ(Scatied, N, Subgoal, 0, Cntr) such that S.qieqn € Delays}
S = S U {smpl_fail(Scaited, Subgoal, 8, Cntr) or smpl_succ(Secalied, Subgoal, 8, Cntr)
such that not Scaiiean € Delays}
S =S U {ansc(0, Subgoal, Cntr)}
while (S # 0)
40 Let f € S be such that the counter of f is the minimal counter for all facts in S
If f = simpl_succ(Scaited, n, Subgoal, 8, Cntr) or f = simpl_succ(Seaited, 1, Subgoal, Cnir)
Child = H:-Delay \ {Scaitean}t|; NodeSet = NodeSet U {Child};
Else Child = fail
EdgeSet = EdgeSet U {(Node, Child)};
45 S=8\{f}

Fig. 10. Algorithm to create children of non-root nodes via the forest log

il.

Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations 23

respectively. These nodes will also be in
H(T) by condition 1(a) of Definition 3.2.

Next, consider the case where L is not the
leftmost literal in Body (lines 11-15 of
Fig. 10), so that create_children(Node,
Subgoal) creates the nearest tabled de-
scendents of Node as Node’s children. In
this case the fact that the rules for Subgoal
are distinguishable means that the near-
est tabled descendents can be identified by
calling all facts of the form

ar(n, L', Subgoal, C'tr)
or
dar(n, L', Subgoal, Ctr)

such that L’ unifies with L with substitu-
tion &. For each such fact create_children
(Node,Subgoal) creates a child of the
form

(Subgoal:-Delay|L, Bodyright)E.

Any intermediate nodes, whose leftmost
literal is not tabled (which are not an-
swer nodes) will be mapped to Node by
H(T) (condition 1(d) of Definition 3.2).
The newly created nodes will not be, by
condition 1(a) of Definition 3.2. Note that
this step does not perform the SLG reso-
lution as indicated by the ar/4 or dar/4
facts. This SLG resolution will be applied
to the newly created facts.

(c) The leftmost tabled literal in Body, L =

not A exists and is negative (lines 16-32 of

i.

Fig. 10).

L is the leftmost literal of Body (lines 17-
27 of Fig. 10). The fact that the rules for
Subgoal are distinguishable means that
the NEGATIVE SUCCESS (a NEGATIVE
RETURN where the selected literal suc-
ceeds, cf. Section 2) and DELAYING op-
erations that create children for Node are
identifiable by calling all facts of the form

nr(A, Subgoal, Ctr)

ii.

or
dly(A, Subgoal, Ctr)

For each such fact create_children(N ode,
Subgoal) creates a child of the form

(Subgoall:-Delay|Bodyrignt)
or
(Subgoal®:-Delay U {L}|Bodyrignt)

respectively.

So far this case parallels the case where L
is positive and leftmost. However, in the
case that there are no such nr/3 or dly/3
facts in the log, create_children(Node,
Subgoal) adds an edge to a node fail cor-
responding to a NEGATIVE FAILURE oper-
ation (i.e., a NEGATIVE RETURN operation
for a failed literal) on Node in T (lines 26-
27). Such edges and nodes are in H(7) by
condition 1(c) of Definition 3.2.

For the next case (lines 28-32 of Fig. 10)
L = not A is not the leftmost literal
in Body, so that create_children(Node,
Subgoal) creates the nearest tabled de-
scendent of Node in a manner that paral-
lels case (b)ii of this proof and lines 11-
15 of Fig. 10. The fact that the rules for
Subgoal are distinguishable means that
any nearest tabled descendent can be iden-
tified by calling all facts of the form

nr(Subgoalcalied, Subgoal, Ctr)
or

dly(Subgoal cqiieq, Subgoal, C'tr)
such that Subgoal.qeq unifies with A
with mgu £. For each of these facts,
lines 29-32 of create_children(Node,
Subgoal) creates children of the form

(Subgoall:-Delay|L, Bodyright)§

which are in H(7) by condition 1(a) of
Definition 3.2.

24

Terrance Swift / Forest Logging: A Trace-Based Analysis of Large Tabled Computations

2. Node = S56:-Delay|. In other words, Body

is empty so that Node is an answer (lines 33-
45 of Fig. 10). If Delay is empty, Node is
an unconditional answer and will have no chil-
dren. Otherwise if Delay is non-empty its chil-
dren (if any) will be produced by SIMPLIFICA-
TION and ANSWER COMPLETION. Note that all
of these operations are logged, and none of these
operations changes the bindings of S6. Since
all of the simplification log facts and ansc/3
facts contain .S, and S6, and the simplified lit-
erals as their arguments, the applicable opera-
tions can be identified (regardless of whether
the rules are distinguishable). The only remain-
ing issue is to properly order the operations,
which is done in a straightforward manner by

create_children(Node,Subgoal) (lines 39-45).
Each of these simplified answers or failure nodes
will be in H(7) by condition 1(c) of Defini-
tion 3.2.

In each of the above cases, each log fact for 7 is ac-
cessed in constant time as the terms in 7 are assumed
to have a fixed maximal size, while accessing all pro-
gram clauses that unify with S can be performed with
cost linear in the size of P, as terms in P are also as-
sumed to have a fixed maximal size. Some of these
facts may be sorted (line 40 of Fig. 10), and the sorting
adds a log factor to the complexity of the operation. As
aresult, the total cost of reconstruct_tree(Subgoal) is
O(size(T)log(size(T)) + size(P)). 1

