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Abstract. The need to examine the behavior of different user groups is a fundamental requirement when building information
systems. In this paper, we present Ontology-based Decentralized Search (OBDS), a novel method to model the navigation
behavior of users equipped with different types of background knowledge. Ontology-based Decentralized Search combines
ontologies and decentralized search, an established method for navigation in social networks, to model navigation behavior
in information networks. The method uses ontologies as an explicit representation of background knowledge to inform the
navigation process and guide it towards navigation targets. By using different ontologies, users equipped with different types of
background knowledge can be represented. We demonstrate our method using four biomedical ontologies and their associated
Wikipedia articles. We compare our simulation results with base line approaches and with results obtained from a user study and
find that our method produces click paths that have properties similar to those originating from human navigators. The results
suggest that our method can be used to model human navigation behavior in systems that are based on information networks
such as Wikipedia.
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1. Introduction

One of the challenges in building information sys-
tems is the need to develop interfaces suited to a range
of different types of users. Different types of users,
such as novices, experts, generalists or specialists will,
in general, display considerably different knowledge
about a given domain. This specific knowledge in turn
influences their interactions with an information sys-
tem. Gaining insight into human navigation behavior
supports the construction of easy-to-use software and

*Corresponding author – markus.strohmaier@TUGraz.at

information systems that are ready to accommodate a
broad range of user types.

In this paper, we investigate ways of modeling nav-
igational behavior of human users in information net-
works. Humans navigating an information network
(such as Wikipedia) generally do not know the net-
work topology in its entirety. They are therefore not
always familiar with the global network structure but
navigate based on assumptions and local information
only. Experiments by Stanley Milgram and others [31]
[21] have shown that humans are very effective at find-
ing short paths based on local information in offline as
well as in online social networks.
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In this paper we present a novel method for simu-
lating human navigational click behavior in informa-
tion networks, using ontologies as background knowl-
edge and examine its suitability to model actual hu-
man navigation behavior. The method, which we call
Ontology-based Decentralized Search (OBDS), builds
on decentralized search [16], a well-established nav-
igation method in social networks which is based on
local information only. Decentralized search has been
successfully applied to navigation in information net-
works in previous research, where it has been used
to model the behavior of users and to produce simu-
lated click data [12]. OBDS uses decentralized search
with ontologies as background knowledge to model the
search process and to point an algorithmic searcher to-
wards the direction of the target.

This method is new in that it uses an explicit repre-
sentation of the background knowledge in the form of
an ontology. Research in psychology suggests that hu-
mans store concepts in their minds hierarchically [7].

Research questions: In this work, we will address the
following three research questions:

RQ1 Can ontologies contribute useful information
to modeling navigation in information networks? And
how does OBDS using real-world ontologies perform
in comparison to OBDS using randomly generated on-
tologies and random walks?

RQ2 Does Ontology-based Decentralized Search
(OBDS) produce valid results, i.e., are the simulated
navigation paths similar to those produced by human
navigation?

RQ3 When using OBDS, what ontology is best
suited to produce human-like navigation results?

To demonstrate our method, we use the information
network formed by a set of biomedical Wikipedia ar-
ticles and the connections (hyperlinks) between them.
We show that several different biomedical ontologies
can be used as background knowledge to inform navi-
gation simulations, much as humans use their acquired
knowledge for navigation.

Contributions: Our main contribution is the demon-
stration of the general suitability of existing real-world
ontologies to inform models of human navigation,
specifically decentralized search on information net-
works such as Wikipedia. To the best of our knowl-
edge, our work presents a novel method and a novel

application of ontologies. By comparing the naviga-
tional paths generated by our simulations with several
baseline approaches and with data obtained from a user
study, we show that our method yields results similar
to those produced by actual human users. The results
suggest that OBDS can be used to simulate human
navigational behavior in information networks, which
can be useful for addressing issues arising in the de-
velopment of systems that are based on networked in-
formation. These findings are relevant for researchers
interested in new applications for ontologies and for
researchers interested in modeling navigation in in-
formation networks using ontologies as background
knowledge.

The rest of this paper is structured as follows: In
Section 2 we place our work in the context of previ-
ous research and related work. In Section 3 we discuss
materials and methods, and we present the results in
Section 4. We end with a discussion.

2. Related work

In the context of this paper, the related areas can be
divided in three: navigation in social networks, naviga-
tion in information networks and ontologies.

2.1. Navigation in social networks

This paper particularly addresses navigation in so-
cial networks via decentralized search algorithms.
Fundamentally, decentralized search describes a way
of solving a pathfinding problem in a social network.
Starting from an arbitrary start node (i.e., a person)
within the network, the objective of decentralized
search is to find a way to a given target node. The
algorithm, however, does not possess global knowl-
edge of the network and can therefore only take deci-
sions based on local knowledge. The term decentral-
ized stems from the fact that the search proceeds by
forwarding the search problem from one node to an-
other, which, in a social network, involves a different
person taking the decisions at every node.

The idea of decentralized search, as used in our nav-
igation simulations, was made popular by Stanley Mil-
gram’s widely discussed small-world experiment [31]
[21] in the 1960s. In the experiment, participants in
Boston and Nebraska received a letter containing in-
formation about a target person (a Boston stock bro-
ker). They were then asked to forward the letter to one
of their acquaintances, to bring the letter closer to the
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target person. The resulting median chain length of six
intermediates for successful chains of letters coined
the term "six degrees of separation". By taking only
the limited knowledge of each participant into account
at each step, the search effectively constituted a form
of decentralized search. The result illustrated the so-
called small world phenomenon, as it seemed possi-
ble to connect two arbitrary persons across the United
States through a very small number of hops.

In 1998, Watts and Strogatz [33] characterized net-
works exhibiting small-world characteristics as ex-
hibiting a high clustering coefficient and a low charac-
teristic path length and demonstrated the actual exis-
tence of this type of small-world networks in a film ac-
tor collaboration network, the power grid of the west-
ern United States and the neural network of C. elegans,
a small roundworm.

In 2000, Jon Kleinberg proved that for the type of
small-world networks proposed by Watts and Strogatz
[14], no effective decentralized search algorithm could
exist that always found a path connecting two nodes
in subpolynomial time. However, Kleinberg presented
a more generalized version of the model for which he
then proved that a decentralized algorithm capable of
finding short paths existed.

Kleinberg later extended his model of decentralized
search to include hierarchies [15], where the term hi-
erarchy denotes a tree that includes all network nodes
(and may contain more nodes). He showed that when
the network nodes were embedded as the leaf nodes of
a hierarchy and links in a network were formed pro-
portional to distances in this hierarchy, the resulting
network was also efficiently searchable. To form an ef-
fectively searchable graph, nodes were connected with
a probability proportional to their distance in the tree,
i.e., the height of their closest common ancestor. A de-
centralized search algorithm with knowledge of the hi-
erarchy (i.e., the background knowledge) could then
efficiently find targets. In this paper, we use ontologies
as this type of background knowledge.

Miao et al. [20] have studied decentralized search
in collaboration networks. Collaboration networks dif-
fer from information or social networks in that the in-
formation flow in them is driven by tasks. This means
that the edges in the network are formed by collabo-
ration on tasks. In their study, the tasks were software
bugs. Developers who were assigned a bug they could
not eliminate themselves forwarded it to another de-
veloper who they believed could handle it. By estab-
lishing several forwards in a row, this workflow can be
viewed as a type of decentralized search, as all deci-

sions about the next hop were taken independently by
multiple participants.

Adamic and Adar [4] studied decentralized search
in the e-mail network of the HP labs and found that
decentralized search according to hierarchies based on
connectedness and office cubicle distance worked best.

Decentralized search is also used in peer-to-peer file
sharing protocols such as Gnutella or KaZaA. With a
low characteristic path length and a high cluster co-
efficient, the Gnutella network displayed small-world
characteristics in 2003 [18].

2.2. Navigation in information networks

In this paper, decentralized search, a navigation
model originally developed for social networks, is ap-
plied to information networks.

One of the most prominent models related to search
in information networks is information foraging [26].
Information foraging is based on foraging theory in
biology. In order to survive, animals have adopted
methods which maximize the energy gained from food
sources. In the theory of information foraging, search
in information networks is not guided by background
knowledge but by information scent, with each article
and link emanating a distinct scent, which is dependent
on the target of the search. For instance, when search-
ing for information on penguins, a link leading to an
article about Antarctica would provide more scent than
a link leading to an article about the Sahara desert.

In this paper, information networks are studied on
the example of Wikipedia. However, genuine naviga-
tion paths from Wikipedia are difficult to obtain, as
the goals of users are often hidden and not explic-
itly visible, and logs of click trails are hard to obtain.
With 60 − 70%, the fraction of teleports is further-
more significantly higher on Wikipedia than on gen-
eral web sites [8]. This might be due to the fact that
users visit Wikipedia to satisfy specific information de-
mands rather than to browse articles. However, there
exist valid reasons to navigate Wikipedia, which will
be detailed in the description of the navigation scenar-
ios in Section 3.5.

Due to the difficulty of obtaining Wikipedia nav-
igation paths, wiki games have been a popular re-
placement for Wikipedia navigation paths in recent re-
search. Wiki games, such as Wikispeedia1, Wiki Aata2

1www.wikispeedia.net
2www.wikiaata.com
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or Wiki Game3 allow users to play games on the infor-
mation network formed by the Wikipedia articles and
links between them. Click trails from wiki games have
enabled researchers to gain insight into navigational
behavior on Wikipedia. In 2009, West et al. [35] used
wiki game data to infer semantic distances between
concepts by studying game click paths. In 2012, West
and Leskovec [34] found that in wiki games, players
tend to navigate to hubs (articles with a large number
of outlinks) first, and subsequently home in on target
nodes.

In our own group, we have used decentralized
search (with non-ontological background knowledge)
in different contexts:

In 2011, Helic and Strohmaier compared the naviga-
bility of different tag hierarchy generation algorithms
on data from Bibsonomy, CiteULike, Delicious, Flickr
and LastFm [11]. The paper evaluated the suitability of
tag hierarchies for navigation on tagging networks and
proposed a novel tag hierarchy generation algorithm.

In 2012, Strohmaier, Helic et al. compared differ-
ent folksonomy induction algorithms through decen-
tralized search [29]. They showed that, based on evalu-
ation through navigation, clustering algorithms devel-
oped for social tagging systems performed better than
standard hierarchical clustering algorithms.

Helic et al. applied decentralized search to broad
and narrow folksonomies on data from Mendeley [10]
and found broad folksonomies better suited to support-
ing navigation.

Trattner et al [30] compared decentralized search
and human navigation behavior in information net-
works and showed that the simulation of decentralized
search yielded very similar results to actual human
navigation data on Wikipedia. In their work, Trattner et
al. investigated different types of hierarchies as back-
ground knowledge and found that decentralized search
based on a hierarchy generated from network features
such as in- and outdegree simulated human navigation
better than comparable hierarchies generated from ex-
ternal knowledge.

In ongoing research, Helic, Strohmaier et al. are
studying the influence of stochasticity and different
methods of selecting the next hop in decentralized
search [12].

The previous work did not tap into existing on-
tologies as background knowledge, but used other ap-
proaches (such as automated methods) for this pur-

3www.thewikigame.com

pose. This paper goes beyond previous research by ex-
tending the simulation framework with ontologies and
by applying Ontology-based Decentralized Search to
the case of Wikipedia and to concrete ontologies for
the biomedical domain.

2.3. Ontologies

Ontologies have been used in previous research to
facilitate navigation in digital libraries. Papazoglou
and Hoppenbrouwers [24] have used ontologies to re-
trieve related work when searching digital libraries.
The research of Rajapakse et al. [28] shows efforts
to navigate the digitally available literature related to
dengue fever. Villela Dantes et al. [32] have studied
the ontology-guided insertion of links into web pages.
In their work, they classified web pages according to
an ontology and subsequently inserted links to related
topics into web pages to facilitate navigation.

These research papers share the effort to use ontolo-
gies to aid navigation. The objective of this paper lies
in explaining and modeling user behavior by using on-
tologies as background knowledge. The ontologies are
hence not used to guide human users but to simulate
and possibly explain behavior.

This paper uses three ontologies from the biomed-
ical domain. Biomedical ontologies play an impor-
tant role in biomedical research [6] and are used for a
range of purposes. In the biomedical domain, ontolo-
gies have been adapted more frequently than in other
disciplines [23].

3. Materials and methods

3.1. Introductory example

To illustrate our work, let us introduce the following
example, depicted in Figure 1: Alice accompanied her
father to a physician, who diagnosed him with a cer-
tain cardiovascular disease. Back at home, Alice re-
alizes that she forgot the exact name of the condition.
However, she remembers that the disease was some-
how related to heart rhythm problems. Trying to re-
cover the exact name, she goes to Wikipedia; but since
she does not know the exact name of the target arti-
cle she cannot use the search function to jump to the
article directly. Alice instead starts from a (hypotheti-
cal) Wikipedia portal containing links to a number of
common diseases. She first chooses to click the portal
link leading to the article on Cardiovascular disease, as



Using ontologies to model human navigation behavior in information networks: A study based on Wikipedia 5

ICD-10 

D E 
I 

I10-I15 I30-I52 I60-I69 

I50 I51 

Hypertension 

Heart Failure 

Cardiovascular 

disease 

Vascular disease 

I63 I62 I61 I64 

Stroke 

I47 I48 I49 

Cardiac 

dysrythmia I47.1 

Supraventricular 

tachycardia 

E65-E68 

E66 

Obesity 

D10-D36 

D35 

D35.0 

Pheochromocytoma 

I51.6 

Portal 

ICD-10 relation 

Wikipedia mapping 

ICD-10 path 

(a) 

(b) 

(c) 

(d) 

(e) 

4 

4 

5 
1 

0 

(a) Background knowledge (ICD-10)

Cardiovascular disease

Portal

Pheochromocytoma

Vascular disease

Stroke Cardiac Dysrhytmia

Supraventricular 
tachycardia

Hypertension

Obesity

Heart Failure

Wikipedia link
ICD-10 path
shortest path

(a)

(b)

(c)

(d)

(e)

(b) Wikipedia graph

Fig. 1. Alice’s Wikipedia Navigation Scenario. Looking for a disease, Alice goes to Wikipedia and starts from a hypothetical portal containing
links to a number of common diseases. Alice then navigates her way through the Wikipedia network.
In the figure, we assume that Alice’s background knowledge is represented by ICD-10, a classification of diseases (see Section 3.2 for a detailed
description). Figure a) shows a part of ICD-10 and the corresponding Wikipedia articles. Figure b) shows a subgraph of the Wikipedia link
network. Alice’s path in the graph (red, dashed) is guided by ICD-10, which differs from the shortest path (green, solid). The numbers along the
ICD-10 path show the distance to the target, according to ICD-10.

this seems to be a good starting point. Next, she navi-
gates to the article on Vascular disease, then to Stroke,
clicks the link to Cardiac dysrythmia and finally arrives
at Supraventricular tachycardia, which she recognizes as
the disease the doctor had diagnosed her father with.

At each step, Alice is only aware of the links lead-
ing away from the current article. She is familiar with

some of the article titles, and is able to relate them
to one another through what we refer to as her back-
ground knowledge. She recognizes some of the links
and knows what their target article could likely be
about. Since Alice is only making use of the local ar-
ticle content and its outgoing links at each step, she
performs what is called decentralized search.
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(a) ICD-10 (b) MeSH (c) SNOMED CT

Fig. 2. Structure of the four top levels of the ontologies used in our research. The figure shows the structure for ICD-10, MeSH and SNOMED
CT. The root node is displayed in black and bold in the center of each plot. The figures show all ontology concepts up until a distance of four from
the root node. Color indicates distance, with red being close to the root and blue being farther away. SNOMED CT contains roughly 40, 000

nodes in the subgraph displayed, which is significantly more than ICD-10 (∼ 12, 000) and MeSH (∼ 10, 000).

To simulate Alice’s usage of Wikipedia, we first
mapped a subset of biomedical Wikipedia articles
to their corresponding ontology concepts in three
biomedical ontologies. Given these mappings, the sim-
ulation could then calculate distance information on
the ontology. For each potential outgoing link that Al-
ice could click, the simulation computed the shortest
path between the article behind that link and the target
article. This distance information was used as a proxy
measure to estimate the distance to the target article
in the Wikipedia network. The distance information
gained this way was not necessarily optimal or even
correct, but generally provided a good guess to guide
the navigation.

In this manner, the simulator was able to make an
educated guess about what link to follow, just as Al-
ice could roughly place the outgoing articles into cate-
gories.

In the rest of the Materials and Methods section, we
describe the ontologies used to inform the simulator
(Section 3.2), the Wikipedia articles and how we ob-
tained them (Section 3.3), our method of Ontology-
based Decentralized Search (Section 3.4), the naviga-
tion scenarios (Section 3.5), the user study (Section
3.6) and the simulator implementation (Section 3.7).

3.2. Biomedical ontologies

We used the following three ontologies and termi-
nologies (all from the biomedical domain) as back-
ground knowledge. With these ontologies, we were
able to i) extract articles from Wikipedia and ii) guide
the next-step selection in the simulator.

The International Classification of Diseases, 10th re-
vision (ICD-10) is a classification of diseases, signs
and symptoms first published in 1992 and maintained
by the World Health Organization (WHO). ICD-10 had
its origins in the classification of causes of deaths and
is presently used by over 100 countries to report mor-
tality statistics. It is also widely used for epidemiol-
ogy, health management as well as clinical purposes
and is available in 46 languages [1]. The version we
used contained 12,417 concepts. ICD-10 consists of
22 top-level nodes termed chapters and assigns a code
(or a range of codes) to every disease in its domain. In
our experiments, we used Wikipedia articles mapping
to concepts from all 22 chapters.

Medical Subject Headings (MeSH) is a controlled
vocabulary thesaurus for journal articles in the medi-
cal domain. MeSH is maintained by the U.S. National
Library of Medicine. The ontology forms a tree struc-
ture with 16 top-level concepts and contains 26,142
terms (dubbed descriptors) [2]. Descriptors are graph
leaves and attached to one or more tree nodes (which
are not descriptors). As such, the complete graph we
used contained 80,689 nodes. MeSH extends beyond
biomedical concepts and comprises terms from other
domains such as Geography, Technology or Publica-
tion Characteristics. In our experiments, 96% of the
Wikipedia articles mapped to the subgraph represented
by the Diseases concept, and the rest to the Psychiatry
and Psychology subgraph.
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Table 1
Characteristics of the data sets used for our work. The tables
display statistics about the examined ontologies as well as the set of
Wikipedia articles mapping to those articles.

ICD-10 MeSH SNOMED CT
Ontology concepts 12,417 80,689 295,482

top-level 22 16 19
relations 12,416 112,463 440,408

density 8.05×10−5 1.73×10−5 5.04×10−6

depth 4 14 16
relation is-a is-a, part-of is-a

Wikipedia articles 1,593
links 14,539

density 5.73×10−3

The Systematized Nomenclature of Medicine -
Clinical Terms (SNOMED CT) [27] is a clinical
healthcare terminology used in electronic health record
systems. The revision we used contained 295,482 con-
cepts, which made it by far the largest ontology in
our simulations. SNOMED CT consists of 19 top-
level concepts. In our experiments, 98% percent of the
Wikipedia articles mapped to the Clinical finding sub-
tree.

Table 1 displays statistics about the data sets used for
this paper. The row denoted density was calculated as

D =
|relations|

|concepts|(|concepts| − 1)
(1)

for the ontologies (which were regarded as undirected
graphs) and as

D =
|links|

|articles|(|articles| − 1)
(2)

for the Wikipedia article network, which formed a di-
rected graph. Figure 2 depicts the examined ontology
graphically for the first four hops from the root node.
SNOMED CT contains roughly 40, 000 nodes in the
subgraph displayed, which is significantly more than
ICD-10 (∼ 12, 000) and MeSH (∼ 10, 000). Still, over-
all SNOMED CT is less dense than the other ontolo-
gies.

3.3. Wikipedia articles

We used a dump of the English Wikipedia from De-
cember 2011 to extract articles from the biomedical
domain corresponding to ontology concepts. We then
mapped the articles to the ontologies by parsing the
articles’ info boxes.

In disease articles, the Infobox disease4 is
commonly used. It offers several options to reference
medical ontologies such as ICD-10 or MeSH (see Fig-
ure 3 for an example). We used template fields in the
Infobox disease as well as two other infobox
templates to map Wikipedia articles to their ontology
counterparts in ICD-10 and MeSH.

SNOMED CT is proprietary and as such not present
in Wikipedia info boxes. As a consequence, we could
not directly relate Wikipedia articles to the ontology
concepts. We therefore used semantic mappings from
BioPortal [36] to map Wikipedia articles to SNOMED
CT. We mapped a total of 1,593 Wikipedia articles
from both ICD-10 and MeSH to SNOMED CT with
this method.

3.4. Ontology-based Decentralized Search

3.4.1. Introduction
Decentralized search is a method of solving a

pathfinding problem in a network without a central
control unit. Starting from an arbitrary start node
within the network, the objective of decentralized
search is to find a way to a given target node. The
term decentralized stems from the fact that the search
proceeds by forwarding the search problem from one
node to the next, until the target is reached. In Stan-
ley Milgram’s small world experiment [31], decentral-
ized search was established through humans forward-
ing letters to acquaintances with the objective of reach-
ing an unfamiliar target person. Each human along the
chain of letters acted independently of all others and
thus made the search decentralized, i.e., acting with-
out a central control unit involved in the decisions at
every step. Further examples for decentralized search
include bug forwarding in a developer network, where

4http://en.wikipedia.org/wiki/Template:
Infobox_disease
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Fig. 3. Example for an infobox template used in disease articles on Wikipedia. Disease articles commonly make use of an Infobox disease
template, which offers fields for ontology codes. We used template fields in the Infoboxes to map Wikipedia articles to their ontology counterparts.

software bugs are assigned to a starting person, and
then forwarded to other developers until they are fixed
[20], or job recommendations in social networks [4].

In a social network, the decision of where to forward
the problem is generally based on the expected knowl-
edge and capability of that particular next node (per-
son). For our simulations, we assumed that all nodes
shared a common background knowledge expressed as
an ontology. This assumption made our algorithm less
"decentralized" in a certain sense because all the de-
cisions were now made by the same entity (our sim-
ulator). Just like in the original decentralized search
however, at each node the simulator could only ac-
cess information about that particular node’s local net-
work neighborhood. The background knowledge rep-
resented additional knowledge about the network nec-
essary to efficiently find a short path to the target.
When looking for an employee in a company for exam-
ple, this knowledge could represent the organizational
hierarchy - with the restriction that the search can only
be forwarded to acquainted employees, which would
for instance be the case with personal recommenda-
tions.

In the theory of network navigability, Jon Klein-
berg showed that networks that are formed according
to a background hierarchy (i.e., a tree) are efficiently
navigable [15], provided the search agent has access
to that background hierarchy during the search. This
method, called Hierarchical Decentralized Search, has

been successfully applied in previous research ([12],
[29]). This paper extends this application by using on-
tologies as the background knowledge.

3.4.2. Simulations
Based on Alice’s navigation example, we imple-

mented our navigation simulations based on decen-
tralized search. Recall that Alice did not remember
the exact name of her navigation target, but she could
roughly place it in a category. She then found her way
to this target using her own background knowledge.

To be able to represent this scenario in the computer
simulations, the title of the target article (but not its
position in the article network) was directly known to
the simulations. This modeled the same scenario - the
somewhat familiar article Alice was trying to reach.
The next link to click was determined by calculating
the distance from the current node to the target node
on the background knowledge. For instance, in the ex-
ample shown in Figure 1, if we assume the current po-
sition to be at the Stroke article there are two options:
clicking the link to Heart Failure or to Cardiac dysryth-
mia. The objective would be to select the one lead-
ing closer to the target article Supraventricular tachycar-
dia. While Alice decides this based on her background
knowledge, the simulations made use of an ontology
(e.g., ICD-10) and calculated the distances from each
of the linked concepts to the target article in the ontol-
ogy. In the example at hand, the distance was smaller
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for Cardiac dysrythmia, leading to a simulated click on
the link to this concept.

To avoid loops, the simulation explored each node in
the network only once. However, the simulation could
backtrack to the last visited nodes (up until the start-
ing portal, if necessary), just as Alice would use her
browser’s back button. This was used in case of dead
ends (articles with no unvisited outgoing links) or at
articles providing only links leading further away from
the target (according to the ontology information). At
any given point, the simulation could also jump back
to the starting portal directly, modeling a home button
in an information system.

3.4.3. Usage of ontologies
This use of existing ontologies represents a substan-

tial change in the motivation of the background knowl-
edge: As opposed to previous work in this area, the
background knowledge is now exogenous to the net-
work. What this implies is that the hierarchy is based
on knowledge independent of the network that the
agent navigates on. All ontologies used in the appli-
cation of Ontology-based Decentralized Search in this
paper play a key role for their corresponding domain in
their research fields. They are hence representative for
a good part of the knowledge in these domains. This
provides OBDS with a foundation to more accurately
represent the intuitions of human navigation behavior.

The use of ontologies and the associated semantic
information open up a range of new possibilities for
the application of the background knowledge:

– Filtering by relations and properties: Ontologies
are (in general) made up of different types of rela-
tions (such as is-a or part-of, or regulates), which
can be used to extract different varieties of back-
ground knowledge from one and the same ontol-
ogy. For example, a hierarchical version of the on-
tology could be extracted by following only the
is-a relations. Furthermore, ontologies may as-
sign properties to their concepts. A background
knowledge can hence also be restricted to ontol-
ogy concepts with a certain property. An ontology
could be filtered to contain only contain concepts
stemming from a single domain, such as geogra-
phy. This could then be compared with the nav-
igation behavior based on other filtered versions
of the ontology, such as politics or economics.

– Modeling different user groups: Ontologies can
also be used to model different types of users.
A good example for this is the case of ICD-10,
which provides a classification of diseases. In the

ontology, the depth of a disease (i.e., its distance
from the root node) corresponds to its specificity.
This could be used to model the knowledge of dif-
ferent hospital personnel. For instance, a medical
specialist could be modeled by the entire depth of
knowledge of one section of the ontology, and a
depth-limitation in the other sections. A layper-
son could be modeled by having a certain depth-
limitation in all areas. This could be effectively
used to simulate different user groups in medical
information systems, without having to carry out
actual human user studies. Analogously, different
groups of users could be represented by differ-
ent ontologies. To correctly model heterogeneous
user groups, such as a group consisting of doc-
tors, nurses and laypersons, each of the subgroups
needs to be modeled separately using several ap-
propriate ontologies or adapted version thereof.

– Inference: Ontologies permit inference on their
entities. For hierarchical relations this could mean
that subconcepts could be assigned the type of
their superconcepts (e.g., the perhaps unfamil-
iar Supraventricular tachycardia is a subconcept of
Heart Disease in ICD-10, which is more com-
monly known). In the case of the cut-off back-
ground knowledge, more specific ontology con-
cepts could then be substituted by their inferred
superconcepts and provide more information to
the navigation process than a pure random guess.

In the experiments conducted for this paper, Ontology-
based Decentralized Search was used with three dif-
ferent ontologies (ICD-10, MeSH and SNOMED CT)
that were not filtered. This meant that all concepts
and relation types present in the ontologies (and map-
ping to the data sets) were used as the background
knowledge. In terms of relation types, ICD-10 and
SNOMED CT consist of is-a relations. For MeSH,
which is more a controlled vocabulary than a proper
ontology, the relations are of the types is-a and part-of
and are both used without clear distinction. For this
paper, Ontology-based Decentralized Search ignored
any properties associated with the ontology concepts.

The results of the simulations were then compared
on the same information network, which meant that
the three ontologies effectively modeled different user
groups on the same set of data. While all three ontolo-
gies represent expert knowledge, they still serve differ-
ent purposes: ICD-10 is a disease classification widely
used by insurance companies, physicians and hospi-
tals. SNOMED CT is a terminology of clinical terms,
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Fig. 4. Starting portals used in navigation simulations. For ICD-10, MeSH and SNOMED CT we used a portal obtained by mapping navigation
bar articles from WebMD.com to Wikipedia articles (subfigure a).

and MeSH is a terminology for the indexing of journal
articles in the medical domain. We hence assume these
ontologies to be representative of expert knowledge in
their respective biomedical fields.

3.4.4. Limitations
Previous research on decentralized search has stud-

ied the stochasticity of human navigation behavior
[12]. As the aspiration for this work was not to improve
the navigation model but to examine the suitability of
ontologies to support navigation, this more complex
navigation model was beyond the scope of this article.

For this work, we assumed the ontologies to be static
representations of user knowledge. As the number of
tasks in the users study was limited to 15 and all tasks
were independent of each other, we assumed learning
to be negligible. In future efforts, we would also like
to include a learning component, such as users memo-
rizing preferred paths through the network or making
new associations while navigating.

The model used for this paper is also limited to a sin-
gle domain, and hence to a single ontology at a time.
Fulfilling multiple constraints at once is not possible
as of now. Future work could look into more extensive
domains that need to be covered by multiple ontolo-
gies.

3.5. Navigation scenarios

We studied two different search scenarios, both of
which started from a hypothetical Wikipedia portal.

Starting portal We started the navigation from a
hypothetical Wikipedia portal featuring a selection
of suitable articles: the 25 health conditions listed
in the main navigation toolbar of WebMD.com (see
Figure 4). We manually mapped these conditions to
Wikipedia articles from our dataset and used the arti-
cles as the outgoing links from our artificial portal. In a
way, the artificial portal thereby resembled the naviga-
tional structure of the WebMD front page - a popular
health information web site. Medical web sites, such
as WebMD are frequently used to obtain information
about diseases, or as a first information before consult-
ing a medical doctor [5].

Single-target search The first scenario was analo-
gous to Alice’s introductory example. This models the
scenario of having a vague concept in mind (but not
the exact term), or having a concept on the tip of one’s
tongue. The goal of single-target search is then to re-
discover this concept via navigation on the Wikipedia
article network.
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In single-target search, the simulation started at the
portal and proceeded to a single target article using
Ontology-based Decentralized Search.

Multiple-target search In the second scenario, we
studied Ontology-based Decentralized Search in the
context of exploratory search. In exploratory search,
users explore a space of resources rather than trying to
find one specific target [19]. The objective of multiple-
target search is therefore to gain an overview of a cer-
tain field of concepts. One example could be to esti-
mate a range of diseases associated with certain symp-
toms (such as "What diseases could show the symp-
toms of heart burn, fatigue and headaches?").

In the simulations for multiple-target search, the dif-
ference to single-target search was in the targets, which
consisted of target sets of two to fifteen articles (in-
stead of only a single one). The rest of the simula-
tion (starting portal, decentralized search, background
knowledge) was conducted in the same way as the
single-target search.

We used clusters of semantically similar Wikipedia
articles as our target sets and applied k-means clus-
tering to arrange similar articles into clusters based
on TF-IDF features (using scikit-learn [25]). We used
those resulting clusters containing two to fifteen arti-
cles in our simulations. Examples for clusters are given
in Table 2.

Maximum number of clicks For all evaluations, a
maximum number of 20 clicks for the single-target
scenario and 40 clicks for the multiple-target scenario
were assumed. While these limits are certainly vari-
able in the setting of navigation, the chosen numbers
represent a reasonable limit of potential clicks that a
user might undergo to find the target article on an infor-
mation network such as Wikipedia. Analysis of Wiki
games has revealed average path lengths of fewer than
seven clicks, with some games taking up to 30 clicks
[9] [35]. Longer paths might also skew the results, as
they are more likely a result of guesswork and not of
an exploitation of background knowledge.

3.6. User study

To evaluate our simulations, we carried out a user
study on Wikipedia navigation. Eight participants
without any particular background in medicine were
asked to navigate Wikipedia, modeling the scenario of
navigating to find diseases. All of them were gradu-
ate students in different fields (but not in medicine) at
Stanford University at the time of the user study.

With the OBDS approach, we assume that the on-
tology represents an expert with profound knowledge
of the entire domain. As such, we expect experts to
be able to be able to classify diseases to their approx-
imate position in the ontology, which is precisely why
the simulations have access to the entire ontologies as
background knowledge. As we conducted our study
with layperson users, however, we could only expect
them to be only familiar with a smaller set of diseases.

The study used the data set of ICD-10, SNOMED
CT and MeSH, containing 1,593 Wikipedia articles.
Naturally, a large share of these articles turned out to
be too specialized for participants not particularly fa-
miliar with the medical domain (with article names
such as Halitosis, Aniseikonia or Milroy’s disease, which
left users puzzled in a pilot study). In order for the on-
tologies to be compatible with the non-expert users,
we limited the target articles to 100 manually selected
and generally better known targets (such as Pneumo-
nia, Stomach cancer or Asthma), out of which we also
manually formed 20 clusters of four articles each.

The setup for the user study consisted of a server
containing the subset of Wikipedia with an interface
similar to Internet encyclopedia (see Figure 4). The in-
terface showed the articles used by the study, as well
as information about the current task. As in our sim-
ulations, backtracking (using the back button in the
browser) and jumping back to the portal by clicking a
home link were enabled at all times. Each step of the
users was logged.

We asked each of our participants to complete a to-
tal of 15 navigation tasks. A task consisted of finding a
given target node (or a set of target nodes) in the sub-
set of the Wikipedia network. As in the simulator, the
starting point for a task was always the portal, and par-
ticipants could only click on links to articles within the
data set. To deal with potential frustration, participants
were given the possibility to abort the current task if
they had not found the target(s) after half of the maxi-
mum number of steps (20 for single targets and 40 for
multiple targets).

3.7. Implementation

The experiments presented in this paper were con-
ducted on a decentralized search simulator. This sim-
ulator was an extension of previous work by Helic,
Strohmaier et al ([11], [29]) and implemented in
C++ based on the Stanford Network Analysis Project
framework [3]. It permitted the simulation of decen-
tralized search on a given network and used a provided
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Table 2
Examples for clusters of Wikipedia articles used in exploratory search. The table shows three examples of clusters used in our simulations.
We used TF-IDF features and k-means clustering to automatically group Wikipedia articles into semantically related groups of two to fifteen
articles.

Nausea-related Stomach-related Cough-related
Vomiting Linitis plastica Bronchitis
Nausea Stomach cancer Chronic bronchitis
Motion sickness Gastritis Acute bronchitis
Morning sickness Atrophic gastritis Cough
Drooling Ménétrier’s disease Sputum
Hyperemesis gravidarum Achlorhydria

Gastroparesis
Duodenal cancer
Gastric dumping syndrome
Stomach disease

background knowledge to calculate the distances. The
simulator was used to run a total of 1794 simulations
of decentralized search with two navigation scenarios.

4. Results

4.1. Evaluation metrics

Based on work by Krioukov and Papadopoulos [17]
we used success ratio and stretch to evaluate naviga-
tion paths.

In accordance with Strohmaier and Helic [12], we
define the success ratio s to be the fraction of target
nodes found and the stretch τ to be the average ratio of
found path lengths to shortest path lengths.

Let P be the set of target nodes and W be the set of
target nodes that were successfully navigated to by our
simulator. Then we have that the success ratio s is

s =
|W |
|P |

. (3)

Thus, the success ratio measures the extent to which
the simulator is successful in finding targets, e.g., a
success ratio of 0.9 states that 90% of the targets were
found. Furthermore, let l(t) be the length of the short-
est path from the portal to the target node t and let
h(t) be the length of the path to the target found by the
agent. The stretch τ is then defined as

τ =
1

|W |
∑
t∈W

h(t)

l(t)
. (4)

Stretch measures the efficiency of search. For example,
a stretch of 1.2 states that the paths an agent was able
to find are - on average - 20% longer than the shortest
paths for these targets. As in work by Helic, Trattner
et al ([11], [30]), we report success ratio and stretch
split by path length of the underlying node pairs. These
metrics give us a means of analyzing what paths were
found by the simulator and how much longer than the
shortest paths they were.

We further extend these metrics with the accumu-
lated success ratio as, which we define as the fraction
of nodes found up until a certain number n of steps.
Let

as(n) =
|Wn|
|P |

, (5)

whereWn is the set of target nodes reached by the sim-
ulation in up to n steps.

For all our evaluations, we assumed a maximum
number of 20 clicks for the single-target scenario and
40 clicks for the multiple-target scenario.

4.2. Comparison with random baselines and optimal
solutions

We established comparisons with random and opti-
mal solutions by including a random walk, randomly
generated ontologies and a shortest-path solution.

Random Walk The random walk consisted of follow-
ing a random link (or tracking back) at each step, not
taking already visited nodes or potential targets among
the neighboring nodes into account. The comparison
with the random walk showed us how much more in-
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formation the OBDS approach provided to the naviga-
tion in comparison to a completely random behavior.

Randomly generated Ontologies For this compari-
son, we constructed a randomly generated ontology
counterpart to each ontology used in our simulations.
To this end, we used the number of nodes and edges as
input for the configuration model approach of generat-
ing a random graph with the same number of nodes and
edges [22]. As the resulting graph was not necessar-
ily connected, we subsequently randomly connected
all graph components and then removed the number
of additional edges created in this process from other
parts of the resulting graph without deconnecting it.

This comparison showed us how much informa-
tion the OBDS approach gained by taking the struc-
ture of the ontologies into account (but not yet the
correct mappings). Furthermore, evaluating with ran-
domly generated ontologies took the structured search
behavior of decentralized search into account: De-
centralized search, in our implementation, did not re-
explore already visited nodes, could backtrack and al-
ways recognized links leading to a target node among
the current node’s neighbors. This gave this method a
distinct advantage over the pure random walk.

Shortest-path solution Finally, for the comparison
with the optimal approach, we computed a shortest-
path solution. In the single-target scenario, this meant
that we always used the shortest possible path in the
graph for connecting the portal to the target node. For
the multiple-target scenario, an exact solution would
have required solving an instance of the traveling-
salesman problem, which is computationally expen-
sive. To circumvent this issue, we approximated the
perfect solution with a nearest-neighbor approach that
always took the shortest possible path to the nearest
neighbor. This allowed us to compare to the (approx-
imately) optimal solution. It is important to note that
this was only possible with global knowledge of the
graph topology, which users do not posses in a decen-
tralized search scenario.

4.3. Evaluation

To compare the performance of OBDS with differ-
ent ontologies as background knowledge, we evaluated
multiple ontologies on the same set of Wikipedia ar-
ticles. This allowed us to inspect the ontologies side
by side, facilitating comparison. Figure 5 (left column)
displays the results for OBDS using ICD-10, MeSH
and SNOMED CT.

Figure 5 shows that the success ratio for OBDS with
ICD-10, MeSH and SNOMED CT was well above
both the random walk and OBDS with the randomly
generated ontologies. When comparing the biomedi-
cal ontologies, the results show that OBDS with ICD-
10 performed best, followed by MeSH and SNOMED
CT for the success ratio. Cochran’s Q test showed sta-
tistically significant differences for the success ratios
(p < 0.01). Post-hoc McNemar tests (with Bonferroni
correction) showed that ICD-10 and MeSH were sig-
nificantly better than SNOMED CT, that the biomed-
ical ontologies were better than the random baselines
and that OBDS with the randomly generated ontolo-
gies was better than the random walk (all significant at
p < 0.01).

For the stretch, ICD-10 lead to the best results fol-
lowed by SNOMED CT, which in turn fared slightly
better than MeSH (all differences statistically sig-
nificant by Friedman tests with Post-hoc Wilcoxon
signed-rank tests with Bonferroni correction, all for
p < 0.01).

For the accumulated success ratio, ICD-10 and
MeSH informed the navigation significantly better
than SNOMED CT. In addition, ICD-10 was better
than MeSH up until close to the maximum number
of steps. OBDS with the biomedical ontologies per-
formed better than with randomly generated ontolo-
gies, which in turn were better than the random walk
(all differences statistically significant by Friedman
tests with Post-hoc Wilcoxon signed-rank tests with
Bonferroni correction, all for p < 0.05, all tested at
N = 5, 10, 20, 40).

One explanation for the variations in the perfor-
mance for ICD-10, MeSH and SNOMED CT could
be the different popularity of the ontologies. As the
most widely used statistical classification system in
the world, ICD-10 evidently has the highest influ-
ence on Wikipedia editing behavior. Not only do most
disease articles reference their corresponding ICD-10
code, but also disease categories are arranged based on
the ICD-10 model. This could explain why ICD-10 is
slightly better suited to navigate the encyclopedia’s ar-
ticle network in these evaluations. Many disease arti-
cles on Wikipedia also reference MeSH, making the
same arguments apply for it as well. While both MeSH
and ICD-10 are available freely online, SNOMED CT
is not available in all countries and perhaps less-known
in the Wikipedia community. SNOMED CT is also not
referenced in the infobox templates of disease articles,
making it perhaps a poorer candidate to inform the
navigation.
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Fig. 5. Success ratio, stretch and accumulated success ratio for ICD-10/MeSH/SNOMED CT and the user study. The first column shows
the results for ICD-10, MeSH and SNOMED CT, the second column the results for the user study. The rows show success ratio and stretch (both
with overall values in parentheses) and accumulated success ratio, respectively. The legends in the first row are valid for the entire columns. The
plots include the computer-generated random baselines (dashed and dotted) as well as the optimal solution. Note that the stretch plots do not
include the random baselines, as this measure can only be usefully applied to compare simulations with a similar number of found paths. The
figures show that the results produced by Ontology-based Decentralized Search with biomedical ontologies are noticeably better than the results
for randomly generated ontologies. The figures also show that the results of Ontology-based Decentralized Search on a limited data set are in the
range of the results produced by human participants.
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Fig. 6. Path lengths produced by the user study and the simulator. The figures show the resulting path lengths for the single-target (a) and
multiple-target (b) search scenarios. Navigation was limited to 20 and 40 steps, respectively, hence the high number of paths for these lengths
(i.e., not all targets were found). The path distributions for the random walk and the randomly generated ontologies were left out for reasons of
clarity.

4.4. User study

For the user study, we evaluated the results of human
navigators on a set of 100 manually selected targets
and 20 manually selected clusters. We then compared
the performance of OBDS, the computer-generated
random baselines and the optimal solution on the same
targets. Note that the subset of targets was a maximum
distance of three hops away from the portal. The eval-
uations hence do not include any data points for longer
shortest paths.

4.4.1. Success Ratio, Stretch and Accumulated
Success Ratio

Figure 5 (right column) shows that the success ratio
for the user study was fairly close to the simulator. For
the single-target scenario, the overall success ratio was
92% for the user study and ranged from 79% to 91%
for OBDS supported by the three biomedical ontolo-
gies. Cochran’s Q test showed statistically significant
differences (p < 0.01). Post-hoc McNemar tests (with
Bonferroni correction) showed that statistically signif-
icant differences exist from all groups to OBDS with
the randomly generated ontologies, as well as from the
latter to the random walk. This showed that, as for the
evaluation of ICD-10, MeSH and SNOMED CT on
the unrestricted target set, OBDS with these ontolo-
gies outperforms random approaches. The user study
was significantly different only to the random base-
lines (p < 0.01), but not to the biomedical ontologies

or to the optimal solution (which might be due to the
the users finding almost all targets in the study).

For the single-target stretch, with an overall stretch
of 1.74 the user study performed slightly better than
the simulator, which displayed stretches between 1.78
and 1.84. A Friedman test showed that groups were
significantly different (p < 0.01). Post-hoc Wilcoxon
signed-rank tests (with Bonferroni correction) showed
a significant difference of the user study and SNOMED
CT (p < 0.05) but no statistically significant differ-
ences between the user study and ICD-10 or MeSH.

For the multiple-target scenario, the accumulated
success ratio showed that the user study fell within or
just below the range of OBDS with one of the three
biomedical ontologies. A Friedman test showed that
statistically significant differences existed between the
groups (p < 0.01), tested for N = 5, 10, 20, 40.

For post-hoc Wilcoxon signed-rank tests with Bon-
ferroni correction, results varied over the tested val-
ues of N . The random walk was significantly differ-
ent to all other groups at all values of N (p < 0.01).
The user study was significantly different only to the
random walk (for all N ) and to the optimal solution
(for all N except N = 5), all at p < 0.01. This sug-
gests that the users found near optimal paths for the
first part of their click trails. It is worth noting that after
20 steps, the users in our study did not find any more
targets. This coincides with the point from where on
users were given the possibility to abort a search task
if they could not find the target.
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Table 3
Kullback-Leibler divergence for the path length distributions produced by the simulator and the user study. The table shows the KL
divergence from the user study to the ontologies and the optimal and random solutions. This metric measures the number of additional bits
required to encode the original distribution, if another distribution is used in its place. The Randomly Generated Ontology column was computed
using an average over the three randomly generated ontologies considered. The table shows that the user study was more similar to the ontologies
than to the base lines for the single-target scenario. The results closest to the user study are displayed in bold.

User Study ICD-10 MeSH SNOMED CT Optimal Randomly
Generated
Ontology

Random Walk

single-target 0.12 0.08 0.18 0.46 0.97 2.56
multiple-target 1.01 0.74 0.84 1.63 0.55 1.29

4.4.2. Path lengths
To obtain qualitative insight into the navigation pro-

cess, we compared the resulting distribution of path
lengths produced by both the user study and the sim-
ulations. This distribution can be seen in Figure 6. We
then computed the Kullback-Leibler (KL) divergence
from the user study distribution to the other distribu-
tions. The Kullback-Leibler divergence measures the
number of additional bits needed to encode the path
length distribution, if the other distribution is used in
place of the original (user study) path length distri-
bution. The resulting values can be seen in Table 3.
For the single-target search scenario, it is clearly vis-
ible that only OBDS with biomedical ontologies pro-
duced path length distributions close to the user study:
All three ontology path length distributions had a very
small KL divergence (0.08 - 0.18 bits) to the user
study. This means that, as far as produced path lengths
are considered, it appears justifiable to replace human
navigation data with data produced by OBDS and a fit-
ting ontology. The same cannot be asserted about ran-
domly generated ontologies (nor the random walk or
the optimal solution), which cannot be easily taken in
lieu of the biomedical ontologies and yield similar re-
sults.

For the multiple-target search scenario, these claims
cannot be made this clearly. However, this might be
due to the path length distribution for the multiple-
target scenario being rather sparse, which meant that
a single path accounted for five percent of the path
lengths (which is also reflected in Figure 6 b).

4.4.3. Further evaluation
In addition to the path length distributions, we ana-

lyzed further aspects of the user study in comparison
with OBDS (see Table 4).

First, we looked into the found targets and the first
click after the portal. To compare these, we arranged
the nodes into vectors and computed cosine similari-
ties.

For the found targets, all three ontologies displayed
high cosine similarity values. This reflects the results
from Figure 5, and is caused by high success ratios
for the limited target set used in our user study which
leads to the majority of the vectors containing ones
at the same positions. As discussed in the examina-
tion of the success ratios, the user study differed sta-
tistically significantly from the random walk in both
single and multiple-target search and in addition from
the randomly generated ontologies in the single-target
case (all p < 0.01).

For the first hops (i.e., the very first click in the
search), the clicks were distributed rather evenly. A
uniformly random distribution would see each link
clicked 3.7% of times. Our results showed distribu-
tions ranging from 1 to 17% and were thus fairly
evenly distributed, explaining the values of the cosine
similarity being in the same range for all groups. For
the single-target scenario, ICD-10 displayed the most
similar values to the user study in the single-target sce-
nario, where it was also close to the optimal solution.
This suggests that the participants were able to select
the best first hop in most cases. In the multiple-target
scenario, the user study was less similar to the other
groups.

In addition to calculating similarities, we also in-
spected the average per-step probability of back-
tracking or clicking the home button. Statistical tests
were conducted with Friedman tests with post-hoc
Wilcoxon signed-rank tests with Bonferroni correc-
tion.

Both the simulation and the users had access to a
back button (leading to the previously visited page)
and a home button (leading back to the portal) at all
times. As it turned out, the simulations used the home
button only immediately after having found a target in
the multiple-target search scenario. In all other cases,
the best strategy given by our simulation constraints
was backtracking. The user study showed different
behavior from the simulator in several aspects: For
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Table 4
Details of the user study and the compared data sets. The table displays statistics about the user study and the ontologies. The most similar
values to the user study are displayed in bold face. For the first three measures, we viewed the information about found targets and first hops as a
vector of values, for which we calculated the angle to the vector containing the information for the user study (i.e., the cosine similarity). For the
random walk, we averaged over 1000 random walks for each portal-target pair. The last two measures display the average per step usage of the
back and home buttons for the different scenarios. In summary, the results confirm that what has appeared somewhat apparent from the success
ratios and the stretch, i.e., that ICD-10 and MeSH displayed the most similar behavior to the user study. The randomly generated ontology
column was computed using an average over the three randomly generated ontologies considered. The number of clicks ranged from 195 to
2000 for the single-target scenario (user study: 485) and from 111 to 800 fro the multiple-target scenario (user study: 419).

User ICD-10 MeSH SNOMED Optimal Random Random
Study CT Ontology Walk

Found targets Single 1.00 0.93 0.95 0.89 0.95 0.78 0.72
(Cosine Similiarity) Multiple 1.00 0.94 0.94 0.91 0.95 0.90 0.67

First Hops Single 1.00 0.89 0.85 0.69 0.88 0.77 0.80
(Cosine Similiarity) Multiple 1.00 0.64 0.62 0.56 0.68 0.64 0.71
Back Button Uses Single 0.09 0.13 0.11 0.13 0.00 0.26 0.07
(average per step) Multiple 0.27 0.17 0.18 0.18 0.01 0.21 0.09

Home Button Uses Single 0.02 0.00 0.00 0.00 0.00 0.01 0.00
(average per step) Multiple 0.01 0.03 0.02 0.03 0.00 0.05 0.00

single-target search, users backtracked less frequently
(9% of clicks were back button clicks, versus 11-13%
for the simulations, significant at the p < 0.05 level)
but used the home button in 2% of clicks, versus never
(0%) for OBDS with the biomedical ontologies (sig-
nificant at p < 0.01).

For the multiple-target search, users backtracked
more frequently (27% versus 17-18% for the simulator
and used the home button less frequently (1% versus
2-3%). However, this was not statistically significant,
possibly due to the small sample size.

In conclusion, backtracking appeared to be the most
widely applied strategy for navigating out of dead ends
and backtrack from less promising areas of the net-
work.

5. Discussion

In this work, we studied simulated user naviga-
tion behavior via decentralized search. We intro-
duced Ontology-based Decentralized Search (OBDS),
a novel navigation simulation method based on decen-
tralized search which uses ontologies as background
knowledge. We showed that our method can be suc-
cessfully applied to navigation in information net-
works, and demonstrated that it can be applied on
Wikipedia when supported by biomedical ontologies.

In the following, we want to focus our discussion on
the research questions raised in this work:

RQ1 Can ontologies contribute useful information
to modeling navigation in information networks? And
how does OBDS using real-world ontologies perform
in comparison to OBDS with randomly generated on-
tologies and random walks?

We found that ontologies can indeed inform naviga-
tion in information networks. OBDS with medical on-
tologies as background knowledge was able to outper-
form the random baseline approaches significantly.

RQ2 Does Ontology-based Decentralized Search
(OBDS) produce valid results, i.e., are the simulated
navigation paths similar to those produced by human
navigation?

We addressed this question by comparing proper-
ties of the simulated navigation paths with properties
produced by humans in a study. We found that the
click paths produced by OBDS matched success ra-
tios, stretches and accumulated success ratios of hu-
man paths better than pure random walks and OBDS
with randomly generated ontologies. Furthermore, the
resulting path length distribution of the user study was
best matched by OBDS with biomedical ontologies.

RQ3 When using OBDS, what ontology is bested
suited to produce human-like navigation results?

From our results, it seems that ICD-10 and MeSH
seem to perform best. However, the overall differences
between the ontologies were not very strong, and it is
subject of ongoing research to further identify differ-
ences in the performance of OBDS with different on-
tologies.
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5.1. Further comments

We’ve limited our work to ontologies and Wikipedia
articles from the biomedical domain in this paper. In
this domain, ontologies have been adapted more fre-
quently than in other disciplines [23], play an impor-
tant role in biomedical research [6] and are used for
a range of purposes. Without this frequent use, the re-
sults might be different in other domains. Another im-
portant aspect was the ready availability of infobox
templates on Wikipedia articles, which facilitated the
mappings to the ontologies. However, the principles of
our method apply for other domains as well.

Influence of ICD-10 The International Classification
of Diseases (ICD-10) has found widespread use and
probably influences and inspires Wikipedia editors. On
Wikipedia, disease articles are almost always indexed
by ICD-10 as the first entry in the article infoboxes.
Furthermore, the category system for the disease arti-
cles of the English Wikipedia is organized according
to ICD-10. These two facts and the wide use of ICD-
10 have quite possibly also influenced the link creation
behavior on the encyclopedia as well as the general
knowledge of the test participants. This might be an
explanation of why ICD-10 seems to be best suited to
model human navigation behavior in our case study.

User study In comparison to the simulator’s perfor-
mance, participants in the user study performed better
for single-target search and worse for multiple-target
search. This is also influenced by the fact that users
aborted 30% of their multiple-target navigation tasks
before having found all the targets, while the simula-
tions ran for whole number of possible steps.

Building user models By using different ontologies
as background knowledge, our results could help re-
searchers and engineers build and evaluate user inter-
faces with different user types. The ontologies com-
pared in the results were rather similar and mostly
shared the same domain. In future work, it will be in-
teresting to compare ontologies that do not cover the
entire domain, modeling specialist users, or combining
ontologies to form a more complete coverage of the
domain. Another idea might be to prune the ontologies
at a certain depth, modeling broad generalist knowl-
edge that does not extend beyond a certain depth.

Action selection The simulations in the form we pre-
sented followed a deterministic greedy action selection
model, in that it always selected the most profitable
link according to the background knowledge. Related

research has shown that users might be better mod-
eled using epsilon-greedy action selection mechanisms
with dynamically changing epsilons [12]. In follow-
up research, our work could be extended with stochas-
tic action selection mechanism such as epsilon-greedy.
This would also lead to another potentially crucial as-
pect of the present simulations, namely the need to
evaluate games multiple times with potentially vary-
ing results. One could expect that these adaptations
would help to finetune and validate any future attempts
at modeling human navigation. However, we leave this
task to future research.

5.2. Future work

The user study we presented was limited in that it
was restricted to a subset of target nodes because of the
requirement that the target be familiar to participants
without a medical background. Since the simulation
results for these targets were very close to the results
of the participants, it can be hypothesized that the user
behavior for the whole set of targets is likewise similar.
It is up to future research to show more details of the
comparison of human users and decentralized search.

Another aspect was the limitation of the user study
to a subset of the target articles. The user study
tried to approximate non-medical students with expert
biomedical ontologies. While this worked to a certain
extent, it will be interesting to see further user studies
with medical experts and compare their results on the
entire data. Since the user study was limited to eight
participants, conducting a similar study with a larger
number of users could reveal more interesting results,
especially for the multiple-target scenario.

The chosen portal, based on WebMD.com, undoubt-
edly influenced the navigation results. It is up to future
work to compare different portals and shed a light on
possible differences.

The idea to navigate to one single predefined tar-
get might seem somewhat artificial in the case of user
behavior concerning explorative tasks. However, one
idea to improve on this might be to calculate the TF-
IDF features of the target node beforehand and subse-
quently navigate until a page (or a number of pages)
similar enough to the TF-IDF features has been found
(which does not need to be the predefined target page).
This could model the case of users exploring areas of
the network.

Other potential research questions might include the
limitation of visible links to links in the upper part of
Wikipedia articles and comparing the results on non-



Using ontologies to model human navigation behavior in information networks: A study based on Wikipedia 19

English editions of the encyclopedia. Past research
[13] has already compared different methods of ex-
tracting background knowledge from the actual net-
work used for navigation. These background knowl-
edges were based on network features such as central-
ity or degree. It would be interesting to directly com-
pare these extracted background knowledges with on-
tologies and analyze the differences.

6. Conclusions

In this work, we have presented a novel, ontology-
based method (Ontology-Based Decentralized Search)
for simulating human navigation in information net-
works such as Wikipedia. Our results provide tech-
nical answers to several questions regarding the use
of ontologies in decentralized search: We have not
only presented a method to integrate ontological back-
ground knowledge into decentralized search, but also
found that ontologies can serve as efficient back-
ground knowledge. With appropriate ontologies and
Wikipedia link networks, our simulations using OBDS
(i) found targets more efficiently than two baseline ap-
proaches (random walks or randomly generated on-
tologies) and (ii) produced navigational paths that were
more similar to actual human navigational paths than
to baseline approaches. While our human study was
limited in terms of - for example - size, the results re-
ported in this paper are encouraging in several ways.
First, our method opens up ways to explore the effects
of assuming different kinds of background knowledge
of users in a navigation task. For example, swapping
different kinds of ontologies in future work would al-
low us to explore their impact on the efficiency of de-
centralized search in information networks. Second,
our results can be seen as additional corroboration that
ontologies indeed capture useful knowledge about a
domain. In some of our experiments, OBDS with med-
ical ontologies as background knowledge was able to
outperform baseline approaches significantly.

Summarizing, our findings are relevant for re-
searchers interested in new applications for ontologies
or interested in modeling navigation in information
networks using ontologies as background knowledge.
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