
An OWL ontology library representing

judicial interpretations

Marcello Cecia* and Aldo Gangemib,c
a CIRSFID, University of Bologna, Via Galliera 3, 40141 Bologna, Italy
b ISTC-CNR, Via S. Martino della Battaglia 44, 00185 Rome, Italy
c LIPN, Université Paris 13, Sorbonne-Cité-CNRS, Paris, France

Abstract. The article introduces a formal model of legal knowledge that relies on the metadata contained in judicial
documents, and JudO, a judicial ontology library that represents the interpretations performed by a judge when conducting
legal reasoning towards the adjudication of a case. For the purposes of this application, judicial interpretation is intended in the
restricted sense of the acts of judicial subsumption performed by a judge when considering a material instance (a token in
Searle’s terminology), and assigning it to an abstract category (type). JudO is centred on a core ontology featuring some
judicial ontology patterns, which take advantage of constructs introduced by OWL2, in order to provide appropriate legal
semantics, while retaining a strong connection to source documents (i.e. fragments of legal texts). The final goal of the
framework is to detect and model of jurisprudence-related information directly from the text, and to perform shallow reasoning
on the resulting knowledge base. JudO also constitutes the basis for the application of argumentation patterns through
reasoning on a set of rules, which represent the grounding of judicial interpretations in deontic and defeasible logics.

Keywords: legal knowledge modeling, OWL2, ontology design patterns, case-based legal reasoning, judicial interpretation

«I see, these books are probably law books, and it

is an essential part of the justice dispensed here that

you should be condemned not only in innocence but

also in ignorance».

- Franz Kafka, The Trial.

1. Representing the Judicial Framework

Precedents (or case law) are core elements of legal

knowledge worldwide: by settling conflicts and

sanctioning illegal behaviours, judicial activity

enforces law provisions within national borders,

therefore supporting the validity of laws as well as

the sovereignty of the government that issued them.

Moreover, precedents are a fundamental source for

* Corresponding author. E-mail: marcello.ceci@gmail.com

legal interpretation, to the point that the exercise of

jurisdiction can influence the scope of the same

norms it has to apply, both in common law and civil

law systems – although to different extents.

Capturing the semantics of human-created texts to

be processed by machines is not a linear process. In

order to provide a comprehensive representation of

the contents of a document, it is necessary to adopt

multiple perspectives, and to account for different

aspects and granularity of representation. Legal

documents require special attention when

representing their semantics, as they do not typically

express factual knowledge, but they rather codify an

order of an authority that can be translated by means

of logical operators, but whose syntax is not fixed.

Unlike a generic text, where the intended meaning of

the combination of its signs is either common

knowledge or is explained by the author,

interpretation of legal documents is a different

matter. The language used is important by itself, its

conventional meaning being codified by the legal

system. However, it is commonly accepted that

assigning a meaning to legal dispositions is not

straightforward: there are gray areas in the

interpretation of legal (“open-textured”) concepts,

and the effects of legal acts are susceptible to change

in time, either depending on a change of the legal text

itself, or on external influences (i.e. of other norms,

or judgements). The AI & Law research community

has gathered significant results on this topic since the

1980s, with different approaches: legal case-based

reasoning [2,11], ontology-based systems [34], and

formal argumentation [24,26,43].

This papers covers part of a research (see [13])

whose aim is to define a Semantic Web framework

for precedent modeling, by using knowledge

extracted from text, metadata, and rules [5], while

maintaining a strong text-to-knowledge morphism, in

order to fill the gap between legal document and its

semantics [37]. The input to the framework includes

metadata associated with judicial concepts, and an

ontology library representing the structure of case

law.

The research relies on the previous efforts of the

community in the field of legal knowledge

representation [34] and rule interchange for

applications in the legal domain [26]. The issue of

implementing logics to represent judicial

interpretation has already been faced e.g. in [9,22],

albeit only for the purposes of sample cases. The aim

of the research is to apply legal theories to a set of

real legal documents, possibly defining OWL axioms

in a Judicial Ontology Library (JudO) that provides a

semantically expressive representation, and a solid

ground for a (future) argumentation system that

applies a defeasible subset of predicate logics. The

JudO ontology library will be the cornerstone for a

semantic tool that is able to deepen, enrich, and

reason on the XML mark-up of precedents (i.e. the

metadata used for annotating case-law), and supports

legal reasoning in the large.

Some new features in the more recent version of

OWL (OWL2, see [52]) unlock useful reasoning

features for legal knowledge, especially if combined

with defeasible rules. The main task is thus to

formalize legal concepts and argumentation patterns

contained in a judgement, with the following

requirement: to check, validate and reuse the

discourse of a judge - and the argumentation he

produces - as expressed by judicial text. In order to

achieve this, four different models that make use of

standard languages from the Semantic Web layer

cake (Figure 1) have been used:

a. A document metadata structure, modeling the

main parts of a judgement, and creating a bridge

between a text and its semantic annotations of

legal concepts;

b. A legal core ontology, modeling abstract legal

concepts and institutions contained in a rule of

law [16];

c. A legal domain ontology, modeling the main

legal concepts in a specific domain concerned

by case-law (e.g. contracts, e-commerce

services, tort law, etc.);

d. An argumentation system [15], modeling the

structure of argumentation (arguments,

counterarguments, premises, conclusions,

rebuttals, proof standards, argument schemes,

etc.).

The present paper introduces the issues related

with the core and domain ontologies – points b. and

c. – which have been designed to organize the

metadata annotating the text of judicial decisions, and

to infer relevant knowledge about precedents. The

metadata structure is obtained from the Akoma Ntoso

standard (see 3.1.), while multiple solutions are being

tested for building argumentation out of the ontology

library: an application of the ontology library to the

Carneades Argumentation System is described in

[15], while future research will focus on applications

on Drools (see [41]) and SPINdle (see [42]).

The paper is structured as follows: section 2

presents the requirements and the methods for the

design of the ontology library; section 3 describes

Fig. 1. Tim Berners Lee's Semantic Web layer cake, adapted to

the legal domain in [46].

how the ontology library is built, and how it manages

knowledge related to judicial interpretation. In

section 4, the method is exemplified with reference

to a sample of Italian case law. Section 5 presents an

evaluation of the ontology, discussing related work in

either legal ontology or legal reasoning fields, and

some issues of the proposed solution.

2. Tasks and applications

The research described in the present paper aims at

applying state-of-the-art techniques in ontology

design and DL reasoning to knowledge from legal

documents, stressing OWL2 axiomatization

capabilities in order to provide an expressive

representation of judicial documents, and a solid

ground for an argumentation system using a

defeasible subset of predicate logics.

Modeling judicial knowledge involves the

representation of situations where strict deductive

logic is not sufficient to reproduce the legal reasoning

as performed by a judge. In particular, defeasible

logics [27] seem needed to represent the legal rules

underlying judicial reasoning. For example, many

norms concerning contracts are not mandatory: they

could be overruled by a different legal discipline

through specific agreements between the parties. The

problem of representing defeasible rules, in fact, is a

core problem in legal knowledge representation.

Moreover, argumentation theories (including the

dialogue model of adjudication by [43], and

argumentation schemes by [25]) introduce tools that

are fundamental to perform effective reasoning on

legal issues. This perspective adopts a procedural

view on argumentation, which is necessary in order

to properly represent those processes in an argument

graph.

However, not all reasoning on judicial knowledge

needs defeasible rules and argumentation; therefore,

we can safely apply classical deductive reasoning to

a substantial subset. For example, the fact that most

legal concepts do not admit both necessary and

sufficient conditions, is often regarded as a limitation

for a classical representation of legal concepts.

However, it is common practice in domain ontologies

to introduce mostly necessary conditions, which

participate in reasoning, although providing less

inferences. In addition, some relevant domain

concepts in law can be designed with class axioms

instead of rules, so providing an explicit account of

domain-level classical reasoning. The

Relevant_Ex<rulename> classes in JudO,

under which all instances relevant to a specific law

are automatically classified (see 3.3.1.), is an

example of such design choice.

The target of the ontologies presented in this paper

is that subset of legal knowledge, in order to enrich

the metadata annotating a legal document by

performing deductive reasoning on a knowledge

base, and thus preparing it for additional reasoning

performed by tools based on deontic defeasible logics

and argumentation schemes.

Following the requirement schema for legal

ontologies that has been proposed in [19], the JudO

ontology library is supposed to satisfy the following

functional, domain, application requirements.

Functional ones include:

- Text-to-knowledge morphism: the aim is to

design the knowledge that can be extracted from

a (textual) judicial decision, or a fragment of it,

as a module in an ontology library, so that each

module constitutes a particular morphism of the

legal meaning expressed by that text [38]. This

means that the ontology should be easily

extended with entities extracted from text,

therefore it should contain as many constraints

as needed for judicial reasoning, without over

constraining with unneeded axioms (i.e.

uncertain sufficient conditions, unsure

disjointness, etc.);

- Distinction between document layers: the

ontologies must clearly distinguish between the

legal text (the medium and expression), its

meaning (the legal concepts and rules contained

in the text), and the entities referred by the text.

In principle, different (and even inconsistent)

legal meanings can be expressed by a same legal

text. Achieving distinction between document

layers involves the identification of frames from

different layers (see [20,22] for examples of

layered, frame-oriented ontology design in law):

* Social frames, concerning the effects of the

legal text in the social world (extra-legal

perspective);

* Procedural frames, concerning the effects

of the legal text in the identification of

different steps in a legal proceeding;

* Substantial frames, concerning the effects of

the legal text in the application of laws.

- Shallow reasoning on judicial knowledge: the

ontologies must enable reasoning on material

circumstances, legal concepts and judicial

interpretations contained in precedents. In order

to achieve this, JudO has to:

* Identify the acts which have legal force,

distinguishing them on the basis of their

strength (this has been achieved, for

example, by distinguishing between “weak

links” created by contracts and “strong

links” created by judicial interpretation,

which may overrule the first);

* Create a conceptual frame bound together

by the acts with legal force. JudO is based

on the notion of qualifying legal expression

(see section 3.2.1.), whose function is to

create links between legal concepts under a

same hat. It is a sort of framing: in modeling

those links, we need in fact a relation

between the qualification (the legal act) and

the qualified elements1. In practice, these

links do not contribute to uniquely

characterizing a legal object (because

several – and possibly inconsistent –

qualifications may involve the same object),

but rather constitute a net of relations that

provide the bread and butter of judicial

interpretation. In the legal domain, relations

seem to be more important than categories22.

- Querying: being able to perform complex

querying, e.g. by using SPARQL-DL [50], on

qualified parts of a judgement text. For example,

performing queries that encode a question such

as: “retrieve all the judgements in the last year,

with a dissenting opinion, in the e-commerce

field, and where the main argument of the

decision is the application of Consumer Law,

art. 122”;

- Supporting text summarization: detecting

relevant parts of a judicial text by reasoning on

semantic annotations jointly with judicial

ontologies;

- Modularity: JudO should define modules that

axiomatize concepts common to as many

domain ontologies as possible, which in turn

should be automatically imported depending on

the domain and task at hand;

- Supporting case-based reasoning: performing

legal case-based reasoning by using the

ontology reasoner in combination with a set of

rules, and a rule engine (see [15]). Frame-based

1 This is in line with the Descriptions and Situations framework, as used in e.g. [22,20].
2 For example, signing a contract clause at the end of the page it is contained in could be considered as a specific signing of the clause in a

judgement A, while not so in a judgement B. With JudO, we do not intend to determine which interpretation is more accurate, but rather to
annotate both of them, together with the contextual information about the different judgements.

3 See [13] for an implementation of the ontology library into the Carneades Argumentation System.

judicial qualification is particularly appropriate

to this requirement.

Judicial ontologies are intended to create an

environment where the knowledge extracted from the

decision text can be processed and managed, and

reasoning on the judicial interpretation grounding the

decision is made possible. Reasoning intends to

satisfy the following domain requirements3 (also

known as competency questions, see [28]):

- Finding relevant precedents that are not

explicitly cited in the decision. In order to

achieve that, JudO should model entities such

as:

* laws cited;

* legal figures evoked;

* factors present in the material

circumstances;

- Validating adjudications of a judge about the

claims brought forward by the parties in a real

legal case on the basis of applicable rules,

accepted evidence, and interpretation. To

perform that, the ontology needs to:

* reproduce the semantics of legal

consequences brought forward by legal

rules;

* be able to automatically infer its application.

Such inference can then be compared to the

outcome of the real legal case (classified in the

ontology as an instance of the Adjudication

class).

- Suggesting legal rules, precedents, or

circumstances that might lead to a different

adjudication of the claim. In order to achieve

this:

* the legal concepts c1…n applied by a

judgement j (acj
1) must contain information

(coming from other precedents) about their

other known applications acj
2…m. In this way,

once a legal concept ci is evoked, we can

compare each application acj
i to other

judgements, which could be inconsistent

with acj
1;

* the galaxy of connections between the

pieces of knowledge in the ontology can be

based on either crisp or fuzzy categories,

since a main requirement is to let them

emerge indirect connections between

concepts. Certainly, in order to take the most

advantages from this assumption, we may

need to add fuzzy reasoning to JudO OWL

axioms (cf. [7,8]).

The structure of the ontology library also aims at

integrating the representation of legal concepts at

different layers of legal interpretation, as when

considering concepts in laws together with concepts

in legal principles.

Practical applications of the ontology library

include:

- Compliance checking of contract drafts, e.g.

by using a plugin to a word processor that

employs NLP techniques to recognize sentences

and clauses that could be relevant under e.g.

consumer law;

- Juridical analysis tools for legal professionals,

enriching case-law collections by semantically

relating and grouping precedents for lawyers to

browse, making the precedent extraction

process for legal cases easier and more

effective;

- Judgement management tools for courts and

tribunals, useful to evaluate and optimize

judgements (e.g. integrated into a word

processor to assist judges while writing

judgements, so avoiding grounds for appeals

due to missing elements in the decision's

groundings);

- Impact analysis tools for legislators, providing

a list of (common or uncommon) judicial

interpretations for a given law, in order to take

them into account when modifying that law;

- Tools representing formalized legal doctrine
and case law, where legal experts could rely on

a social platform to share their views and

interpretations on a law or a precedent, e.g. by

using a graphical interface and a formal

argumentation structure instead of plain text.

3. Ontology Design

The approach adopted by the present research is

based on a multi-layer paradigm, where a legal

resource is managed in separate levels that are linked

to each other, and organized in order to allow

multiple annotation, interpretation, and classification

with representation redundancy. The syntactical

approach is based on the following schema:

- Text annotation in XML: the Akoma Ntoso

standard [4,51] grants proper mark-up of the

structure of judgements and citations;

- Metadata annotation: the Akoma Ntoso

metadata block captures not only the metadata

concerning the lifecycle of the document (e.g.

workflow of the trial, formal steps, jurisdiction,

level of judgements), but also the legal

qualification of relevant parts of the decision,

such as the minority report or the dissenting

opinion;

- Ontology annotation: external OWL

definitions linked to the XML document are

used;

- Rules: unfortunately OWL, even with the

functionalities of version 2.0, is unable to

represent complex and defeasible legal

arguments. It is therefore necessary to extend

the model with rule modeling for argumentation

representation.

The JudO ontology (is designed in two modules

(see also [16]):

- A Core Ontology describing the constituents of

a precedent in terms of general concepts,

through an extension to the LKIF-Core legal

ontology;

- a Domain Ontology representing the concepts

and the rules expressed by the Italian Codice del

Consumo (Consumer Code) and in artt.

(articles) 1241 and 1242 of the Italian Civil

Code, as well as all relevant knowledge

extracted from a set of Italian judgements

containing interpretation of private agreements

in the light of those laws.

Our design method is based on a middle-out

methodology: bottom-up for capturing and modeling

legal domain ontologies, and top-down for modeling

core ontology classes and argumentation theory

components. Middle-out methodology is

implemented here by using pattern-based design

[6,19] with Ontology Design Patterns either extracted

from judicial text or reused from the core ontology,

and matched according to requirements.

In order to manage the content of judgements, it is

necessary to introduce particular structures to

represent the instantiation of legal figures, such as

judicial interpretations, which involve:

- acts of interpretation, which take into

consideration a fact and apply a legal rule (legal

status) to it;

- interpretations of a legal text (since a same

phrasing may give rise to alternative

interpretation acts, depending on the meaning

given to the words).

The abstract categories of qualifying expressions

(see 3.2.1.) are aimed at capturing this layered stack

of interpretations, while keeping an open approach in

order to maximize the results of the reasoning, since

in the legal field even remote, apparently

counterintuitive inferences may be decisive.

Evaluation has been performed on a sample set of

Italian case law including 27 decisions of different

grade (Tribunal, Court of Appeal, Cassation Court)

concerning the legal field of oppressive clauses in

Consumer Contracts. The matter is specifically

disciplined in the Italian “Codice del Consumo”

(Consumer Code), as well as in many non-Italian

legal systems, so that an extension of this research to

foreign decisions (and laws) can be envisaged.

Contract law is an interesting field because the

(either automatic or manual) markup of contract parts

allows the highlight of single clauses and their

comparison to general rules as well as to case law

concerning the matter. These possibilities can be used

to introduce a semi-automatic compliance check of a

contract draft. The domain considered is also

interesting as it involves situations where strictly

deductive logic is not sufficient to represent the legal

reasoning as performed by a judge. In particular,

defeasible logics [27] seem needed to represent the

legal rules underlying judicial reasoning. For

example, many norms concerning contracts are not

mandatory: they could be overruled by a different

legal discipline through specific agreements between

the parties. The problem of representing defeasible

rules, in fact, is a core problem in legal knowledge

representation. Exploring how OWL2 could help

designing the background for applying defeasible

logic is therefore an important goal of the present

research. See sections 4 and 5 for a presentation of

the results achieved by the judicial framework.

3.1. Judgement Structure

“Judgement” in Akoma Ntoso [4] is a particular

type of document modeled to detect the relevant parts

of a precedent (Figure 2): a header for capturing the

main information such as parties, court, neutral

citation, document identification number; a body for

representing the main part of the judgement,

including the decision; a conclusion for detecting the

signatures.

The body part is divided into four main blocks:

introduction, where usually (especially in common

law decisions) the story of a trial is introduced;

background, dedicated to the description of the facts;

motivation, where the judge introduces the arguments

4 http://codexml.cirsfid.unibo.it/ontologies/judging_contracts_core.owl.

supporting his decision; decision, where the final

outcome is given by the judge.

This partition allows detecting facts and factors

from the background: in the motivation part,

arguments and counterarguments are detected, while

in the decision part lies the conclusion of the legal

argumentation process. Those qualified fragments of

text should be annotated by legal experts with the

help of a special editor (e.g. Norma-Editor, presented

in [36]) that is handy to create links between text,

metadata and ontology classes.

3.2. Core Ontology

The judicial core ontology4 (Figure 3) introduces

the main concepts in that legal domain, defining the

Fig. 2. Judgement structure in Akoma Ntoso.

Fig. 3. Core Ontology's specification of LKIF-Core. The central

column defines categories already present in LKIF-Core, whose

further classification is not contained in the graph.

classes that include entities extracted from judicial

decisions. Core ontologies are domain-generic and

not modeled upon a specific legal subject, however

being the legal domain too large and heterogeneous,

the model presented here is conceived to represent

interactions in Civil Law, especially as far as

contracts, laws and judicial decisions are concerned.

For other domains, e.g. public contracts,

administrative law, tort law, etc. adaptations are

needed.

3.2.1. Qualifying Legal Expressions

The backbone of the JudO Core Ontology is

constituted by three classes: Qualifying_

Legal_Expression, Qualification, and

Qualified.

Qualifying_Legal_Expression includes

legal expressions that ascribe a legal status to a

person or an object. For example:

- x is a citizen;

- x is an intellectual work;

- x is a technical invention.

The Qualification class includes legal acts

(e.g. contractual agreements, judgements) that

produce qualifying legal expressions. In the

examples above, the acts producing the sentences “x

is a citizen”, “x is an intellectu al work”, and “x is a

technical invention” are qualifications. Consider that

5 http://www.ontologydesignpatterns.org/cp/owl/semiotics.owl

legal acts are typically speech acts (cf. [3]) that

influence the behavior of people and institutions by

means of the performative or normative value of the

meaning expressed in those acts (semiotics.owl5 is an

ontology design pattern formalizing speech acts in

OWL, cf. also [19] for an application to legal

ontologies) . The modeling of qualifying legal

expressions also takes into consideration Searle’s

theory of constitutive acts and distinction between

fact-tokens and fact-types (see [48]).

The Qualified class includes anything that is

object of a qualification. In the examples, both “x”

(e.g. a material circumstance i.e. a legal fact), and its

types (e.g. citizen, intellectual work, technical

invention) are qualified elements, because a

qualification tells us something about x, but at the

same time it provides an example of citizen,

intellectual work, or technical invention). In formal

ontology, this means that qualifications provide both

instantiation and exemplification [31]. In cognitive

science, this means that qualifications introduce both

a categorization, and a prototype [45].

Since the main object to be represented in JudO is

the normative/judicial qualification brought forward

by performative utterances (contractual agreements,

legal rules and –most important– judicial

interpretations), the classes presented above

constitute the nucleus of the judicial core ontology.

considers

applied_by considered_by

applies

judged_as

Contractual_Agreement
Judicial_Interpretation

Legal_Rule
Adjudication

Material_Circumstance
Legal_Status

Judicial_Claim

Legal_Status
Legal_Consequence
Judicial_Outcome

Fig. 4. Interaction between qualifications, tokens and types.

The three classes are represented in an ontology

design pattern [19], which specializes a part of the

Description and Situations pattern [18,20]:

qualifications are a subclass of descriptions

(expressed by qualified legal expressions) that

characterize qualified elements (either at the instance

and type levels), and that can describe relevant legal

situations when legal performatives and norms are

applied to the social world.

From the design viewpoint, the qualification

design pattern (Figure 4), defines two further object

properties: considers and applies (with their

inverse properties considered_by and

applied_by respectively). The first one,

considers, represents the relations between

qualifications and instance-level qualified elements

(e.g. a judicial interpretation considers a material

circumstance). The second property (applies)

represents relations between qualifications and type-

level qualified elements (e.g. a judicial interpretation

applies a legal consequence to categorize and

exemplify a material circumstance).

Considering that qualifications are also expressed

by qualifying legal expressions, they are designed as

a reification of a ternary relation that in first-order

logic would be represented e.g. as qualifi es(exp,

obj, type), with QualifiedLegalExpression(exp),

QualifiedInstance(obj), and QualifiedType(type).

The Descriptions and Situations framework provides

a vocabulary to the well-known n-ary reification

pattern, enabling also to model both entities and

concepts in the same first-order model. The

availability of punning in OWL2 helps managing this

meta-level flavor (see [21] for a detailed analysis of

design alternatives with n-ary relation reification and

the Descriptions and Situations patterns).

The qualification pattern can be used for different

scenarios, e.g.:

- A Contractual_Agreement considers

a Material_Circumstance and

applies a Legal_Status;

- A Judicial_Interpretation

considers a Material_Circumstance

and applies a Legal_Status;

- A Legal_Rule considers a

Legal_Status and applies a

Legal_Consequence;

- An Adjudication considers a

Judicial_Claim and applies a

Judicial_Outcome.

3.2.2. Construction of the Qualifying

Expression class in LKIF-Core

LKIF-Core (See [29]) is an established legal

ontology, and we want to be compatible to it. In this

section we explain some of the measures taken to

obtain this compatibility. We also reuse some of its

classes and properties in JudO when the concepts

represented in LKIF fulfill JudO requirements.

JudO’s Qualifying_Legal_Expression

class (Figure 5) is aligned to the union of the

lkif:Legal_Expression (Figure 6) and

lkif:Qualification (Figure 7), enhanced by

the specialization of the lkif:qualifies

property into considers (modeled as a superclass

of the LKIF-Core properties evaluates,

allows, disallows) and applies.

Fig. 5. Visualization of the Qualifying Legal Expression class.

Fig. 6. Visualization of the Legal_Expression class.

The Qualifying_Legal_Expression class

represents dispositions, which in the sample case are

the three legal expressions used in contract law-

related judicial decisions:

Contractual_Agreement, Legal_Rule and

Judgement.

As a superclass of lkif:Legal_Expression

(Figure 6), instances of

Qualifying_Legal_Expression contain

information related to their original speech act: their

semantics binds with externalization, the legal power

and agents in order to ensure the representation of all

aspects that may come into play when facing a legal

issue (legitimacy of the legislative body/court/legal

party, characteristics of the corresponding legal

document, identity/characteristics of people/bodies

involved, etc.). Their main properties are medium

and attitude (see below for a specification of

the Medium, Attitude and Agent classes). As a

superclass of lkif:Qualification (Figure 7),

Qualifying_Legal_Expression instances

contain the information related to the effects they

have in the legal world: the legal categories /

obligations / effects they create, modify or repeal.

The lkif:Qualification and

lkif:Qualified classes (the latter representing

both qualifying –type-level– and qualified things –

instance-level) are linked only by a single property

(lkif:qualifies/lkif:qualified_by),

but in order to represent this conceptualization, the

object property lkif:qualifies has been

aligned as a super property of two JudO properties:

considers and applies, representing

respectively the object (instance-level) and the

destination (type-level) of the qualification.

3.2.3. Qualified Expressions

The considers and applies properties range

on the lkif:Qualified class (Figure 8) , whose

subclasses include now

lkif:Normatively_Qualified, and

JudO:Judicially_Qualified.

Normatively_Qualified expressions

include instances of Material_Circumstance,

Legal_Status and Legal_Consequence.

They represent the expressions that can be directly

bound to a Norm: while

Material_Circumstance represents any fact

or act that is taken into consideration by the Norm,

Legal_Status represents an institutional fact (i.e.

fulfillment of contract, oppressive clause, contract

breach) that is normally considered_by a

Legal_Rule and applied_by a

Contractual_Agreement or a Judgement.

Please note that the link between a

Contractual_Agreement and the

Legal_Status it applies is a weak link until a

Judicial_Interpretation has confirmed (or

denied) it. Finally, Legal_Consequence

represents the sanction provided by the law in the

presence of some Legal_Status or

Material_Circumstance. It covers all cases

when the Legal_Rule considers some

Normatively_Qualified expression, but does

not simply allows, disallows or evaluates

it.

Fig. 8. Visualization of the Qualified class.

Fig. 7. Visualization of the Qualification class.

Judicially_Qualified expressions include

Judicial_Claim, Judicial_Outcome and

all elements taken into consideration during a legal

proceeding (i.e. Contractual_Agreeement,

but also Legal_Rule, expecially in Cassation

Court and Costitutional Court sentences).

Judicial_Claim is the claim of the legal

proceeding. It is considered_by an

Adjudication, the answer of the judge to the

claim (subclass of

Qualification>Judgement). The content of

the answer (rebuttal/acceptation of the claim or any

other possible outcome foreseen by the law) is

represented by the Judicial_Outcome class,

applied_by the Adjudication. So the

representation is the following: a

Judicial_Claim is considered_by an

Adjudication that applies a

Judicial_Outcome.

Judicially_Qualified expressions include

Judicial_Claim, Judicial_Outcome and

all elements taken into consideration during a legal

proceeding (i.e. Contractual_Agreeement,

but also Legal_Rule, expecially in Cassation

Court and Costitutional Court sentences).

Judicial_Claim is the claim of the legal

proceeding. It is considered_by an

Adjudication, the answer of the judge to the

claim (subclass of

judo:Judgement<lkif:Qualification).

The content of the answer (rebuttal/acceptation of the

claim or any other possible outcome foreseen by the

law) is represented by the Judicial_Outcome

class, applied_by the Adjudication. The

resulting representation is that a Judicial_Claim

is considered_by an Adjudication that

applies a Judicial_Outcome (Figure 9).

3.2.4. The judged_as Property Chain

The aspects taken into consideration during a legal

proceeding are included in the

Judicially_Qualified class as long as they

are actually considered_by some

Judicial_Interpretation. For example, a

Contractual_Agreement can be

considered_by some

Judicial_Interpretation that applies

some Legal_Status t o it (e.g. the agreement can

be oppressive, inefficacious, can represent an

arbitration clause, can be specifically signed by both

parties). In these cases, an OWL2 property chain

directly links a Contractual_Agreement to the

Legal_Status judicially applied to it. This

property, called judO:judged_as, enriches the

judicial qualification ontology design pattern

presented above. See 3.4.1. for a description of this

feature and of its usage in the present researchMedia,

Propositional Attitudes and Agents

Some LKIF-Core properties and classes represent

the context of an Expression.

The Medium cla ss identifies the support, through

which a proposition is expressed. In JudO, the

medium property has not been used to represent the

material support of an Expression, but rather its

Fig. 9. Visualization of the adjudication class and of its semantic connections.

genus (its textual source : Contract, Precedent,

Cod e).

The lkif:Propositional_Attitude class

has been used as a superclass of Jurisdiction,

Law_Declaration and Agreement, in order

representing the enabling powers behind a

judo:Judgement, a judo:Legal_Rule or a

judo:Contractual_Agreement respectively.

On the contrary, in order to represent the authors of a

qualifying legal expression, a generic lkif:Agent

(or any other agentive class in common ontologies

like DOLCE) is sufficient. The knowledge about

agents and attitudes is important in some judicial

Fig. 11 – semantic relations between represented knowledge. The dashed line “Through qualified class” means that

the connection from legal statuses to legal rules is ensured through a qualified class (see 3.3.1.).

Fig. 10. The Core Ontology graph. Boxes represent classes. Continuous arrows represent either the bears, attitude

or considers properties. Dashed lines represent the applies property.

cases, e.g. if a claim is based on the lack of

contractual power by one of the parties, or on the

identity/characteristics of a party, or on the lack of

force by some law or other regulation – which can in

turn depend on the lack of legitimacy of one of its

authors. The modeling of roles (already present in

LKIF, DOLCE, and other ontologies) is needed in

representing critical factors of particular precedents.

3.2.5. Modularity of the Core Ontology

JudO is currently oriented to the representation of

elements involved in civil-law cases regarding

contract law. Nevertheless, JudO provides general –

and relatively open – categories for judicial activity

in general, and can be considered as a core to be

extended with categorization from other branches of

6 https://code.google.com/p/judo/#!

law, since the basic concepts introduced here may

come into play also in judgements concerning

different subjects.

Figure 9 repre sents the classes and properties of

the core ontology. Figure 10 shows the same

information, but allows to better understand the

connection between the classes of the ontology.

3.3. Domain Ontology

Following JudO, the metadata taken from judicial

documents are represented in the Domain Ontology6.

The modeling was carried out manually by an expert

in the legal subject, which actually represents the

only viable choice in the legal domain, albeit giving

rise to important bottleneck issues (see below 5.3.1.).

Fig. 13. Visualization of the expression class, highlighting the subclasses of Contractual_Agreement introduced by the

legal rules.

Fig. 12. Stated property assertion

of a Legal Rule instance.

Also, building a legal domain ontology is similar to

writing a piece of legal doctrine, thus it should be

manually achieved in such a way as to maintain a

reference to the author of the model, following an

open approach (i.e. allowing different modelling of

the same concept by different authors).

3.3.1. Modelling of laws

The laws involved in the domain are represented

into the ontology in a quite complex fashion, in order

to allow full expressivity of their deontic powers.

First of all, they are represented as instances of the

Legal_Rule class, whose only stated property is to

apply the Legal_Consequence indicated in the

head of the legal rule (Figure 12). A reasoner can

infer knowledge about the legal rule, linking it

(through the considers property) to the material

circumstances that fall under the scope of that norm.

Legal rules are also represented through anonymous

subclasses of the Normatively_Qualified

class (Figure 13), according to the template

Relevant_Ex<rulename> (ex is the latin

proposition for indicating a source). An axiom stating

the requirements for an instance to be relevant under

the legal rule is included in the description of the

class, as well as an equivalence linking each of its

instances to the legal rule, through the property

considered_by (Figure 14). Please notice that in

the example (which concerns consumer contracts)

these anonymous classes are classified under the

Contractual_Agreement class: that is,

because the effect of the legal rule in this context is

to enrich the definition of

Contractual_Agreement, adding subdivisions

that depend on the legal framework created by the

legal rules of the domain.

3.3.2. Modeling of contracts

A contract is a composition of one or more

Contractual_Agreements (a Contract for

the whole, multiple Contract_Clauses for its

parts, an example being provided in Figure 15), each

of which represents an obligation arising from the

contract. All components of the contract share the

same Attitude (the “meeting of minds” between

the Agents) and Medium (the kind of support in

which the expression is contained. A

Contractual_Agreement normally

considers some Material_Circumstance

and applies some Legal_Status to it.

In the actual model, the material circumstances

considered by the contractual agreement were not

included, because the legal effects of the clause have

no relevance when capturing the sheer interpretation

instances these agreement undergo: it would rather

become useful when delving deeper into specific

interpretations, capturing tiny factors that led to that

interpretation.

3.3.3. Modelling of judicial decisions

The instances of the Judgement class include an

instance identifying the case as a whole (the

precedent) and several others identifying its parts: at

least an Adjudication, and one or more

Judicial_Interpretations (Figure 16).

They share a common attitude (a

Jurisdiction power) a Precedent medium

and some agents (claimant, defendant, and court). An

Adjudication contains the

Judicial_Outcome of the Judicial_Claim.

Fig. 14. Axiom for the classification of

Contractual Agreements under the legal

rule Art. 1341 comma 2.

Fig. 16. Description and property assertions of the judicial

interpretation.

Fig. 15. Description and property assertions of the contract

clause's content.

(it considers the claim and applies the

outcome), while a Judicial_Interpretation

considers a Material_Circumstance and

applies one or more Legal_Status (and zero

or more Precedents) to it. The precedents cited by

the judge in the decision are added directly to the

interpretation instance: the reasoner is then capable

of distinguishing between legal statuses and

precedents, the latter being searchable in queries and

other information retrieval applications. Rules

expressed by precedents (i.e., if a clause is signed

through a recall at the end of the document, it is

specifically signed) can be modeled in the same way

as legal rules.

3.3.4. Reasoning on the knowledge base

The consistency of the Knowledge Base was

checked with the Hermit 1.3.67 reasoner. This tool

was built to extract data from the OWL ontology, but

could also be used to check if the ontology gives a

unique and correct answer to some formalized

question (i.e. asking about the validity of some proof,

or about the qualification of factual events under

legal principles). When a

Contractual_Agreement (the expression

brought by a Contract_Clause) is

considered_by some

Judicial_Interpretation, the ontology

gathers all relevant information on the documents

involved: contract parties, judicial actors, legal status

applied to the agreement (eventually in comparison

to the one suggested by the contract/judicial parties),

the rules of law which are relevant to the legal status,

the final adjudication of the claim, the part played in

it by the interpreted agreement, and so on.

The most immediate application of this

semantically enriched knowledge base consists in

performing advanced querying on precedents, but

more can be achieved by combining different

Judicial_Interpretations with knowledge

coming from the contract and the applicable law. The

ontology reasoner is in fact capable of predicting – to

some extent – the outcome of the judge (i.e.

predicting that a clause will be judged as

valid/invalid) and to run inferences about the

agreement (for example, as interpreted, the clause in

the example of Figure 17 is relevant for the legal rule

contained in article 1342 comma 2 of Italian Civil

Code, and inefficacious in the light of the same

norm).

7 http://hermit-reasoner.com/.

This inferred knowledge is important for two

reasons: a. by predicting the judge’s final statement

on the clause (even if not the one on the claim), this

knowledge represents a deontic check on the legal

consequences the judge takes from its interpretation;

b. it gives a fundamental element for an

argumentation system to support the explanation of

the adjudication of the claim. The argumentation

system, in fact, will be able to use the (stated and

inferred) elements of the decision’s groundings to

support and explain the Adjudication contained

in the last part of the judgement.

3.4. OWL2 Constructs Used

OWL2 (see [52]) is one of the latest standard for

the Semantic Web, and is relevant to any project

willing to contribute to the huge network of data that

is being built on the Web (a large part of which is now

called “Web of Data”). An objective of the present

research is to explore how OWL2 could help

designing the background for the application of

defeasible logic: OWL, in fact, is not designed for

managing defeasibility directly, being only able to

capture the static factual and legal knowledge to be

reused in the rule layer; nevertheless, the gap between

ontology and rules is often underestimated, and the

benefits coming from OWL2 have not yet been

considered in detail. For this reason, well aware of

the limitations of OWL2 in representing defeasible

logics, one aim of the present research is to

investigate how far OWL2 can be used in order to

Fig. 17. Inferred knowledge on the Contractual

Agreement instance.

improve performance, computability, and

management of classes in a defeasible logic context.

OWL2 introduces several features to the original

Web Ontology Language, some of which allow a

richer representation of knowledge, especially when

dealing with properties and datatypes. Some of these

would be useful, but also lead to a great increase of

complexity in the models: for example, in order to

exploit disjointness between properties, it would be

necessary to create as many properties as possible

statuses, which in turn would greatly affect the

intricacy and readability of the ontology. On the

contrary, some of these new constructs concerning

properties deserve attention because they could

enhance expressivity without affecting (or even

reducing) the complexity of the model built so far.

OWL functional syntax will be used in examples

throughout the paper.

3.4.1. Property Chains

The OWL2 construct ObjectPropertyChain

used within a SubObjectPropertyOf axiom

allows a property to be defined as the composition of

several properties as in Figure 18. Such axioms are

known as complex role inclusions in SROIQ. JudO

relies on one particular property chain useful in the

judicial domain. The property chain:

considered_by o applies

SubObjectPropertyOf judged_as

is represented in Figure 19, and is used in two

different ways – in interpretations, as in the figure,

and in rule applications – to create a direct

interpretational link between a material circumstance

and a legal status.

When a Judicial_Interpretation

considers a Material_Circumstance and

applies a Legal_Status, the judged_as

property chain comes into play and creates a direct

link between the circumstance and its status, that link

being distinguished from the indirect one introduced

by the contract (represented by the property applies).

Reasoners will therefore treat these two links

accordingly.

On the other hand, the legal rule axiom works

through an “anonymous qualified class” (see 3.3.1.)

which links all relevant expressions to the legal rule

instance through the considered_by property,

and the legal rule applies a legal consequence. The

judged_as property chain unifies the two

properties (from a qualified expression to a law, and

from a law to a legal consequence) and brings their

semantics to the surface by creating a direct property

linking the contract clause to its status (judged_as

Inefficacy).

A better use of the OWL2 property chains could

lead to an ever more direct and complete solution,

mainly by removing the need for the anonymous

subclass in order to identify the clause instances

considered_by the relevant law. In the current

version of the ontology, in fact, the property chain

judged_as connects a material instance (i.e.

contract clause) to a legal status or legal consequence

(i.e. oppressive, inefficacious) via a

judicial interpretation. With the open world

approach, this creates a sprawling of judged_as

chains being applied to the metadata. All of these

inferences are correct; nevertheless, they greatly

increase the number of triples in the ontology. In

order for the ontology to manage a big knowledge

base and to perform deep reasoning on it, it is

therefore necessary to prune chain-based inferences

in order to retain only those that are interesting for the

task at hand. Since pruning would eliminate semantic

content actually existing in legal documents, it has to

be performed depending on the task of the rules

application.

judged_as
considered_by

Fact

Judicial

Interpretation
Legal Status

applies

Fig. 19. The property chain judged_as.

HasBrother

Person A

Person B Person C

HasUncle

HasParent

Fig. 18. An example of property chain.

3.4.2. Negative object properties

A negative object property assertion such as:

NegativeObjectPropertyAssertion(O

P a b)

states that the individual a1 is not connected by

the object property OP to the individual a2. E.g.

given an ontology including the following axiom:

NegativeObjectPropertyAssertion(h

asSon Peter Meg)

the ontology becomes inconsistent if it is extended

with the following assertion:

ObjectPropertyAssertion(hasSon

Peter Meg)
Negative object property assertions are useful to

avoid complicated workarounds for negating

assertions. For example, the legal status

NotSpecificallySigned and more constructs

are needed in OWL1 in order to represent the

statement that a certain status is not

SpecificallySigned, e.g.:

EquivalentClasses(SpecificallySig

ned?

ObjectOneOf(NotSpecificallySigned

SpecificallySigned))

DifferentIndividuals(Specifically

Signed NotSpecificallySigned)

ObjectPropertyAssertion(applies

ContractA NotSpecificallySigned)

but in OWL2 the following construct is sufficient:

NegativeObjectPropertyAssertion(a

pplies ContractA

SpecificallySigned)

3.4.3. Keys

A HasKey axiom states that each named instance

of a class is uniquely identified by a set of data or

object properties assertions - that is, if two named

instances of the class coincide on values for each of

key properties, then those two individuals are the

same. This feature is useful for identifying the unique

elements in a judicial claim, e.g. the parties, the

contract, the norm, and the decision itself.

3.4.4. Annotation properties

OWL1 allows extra-logical annotations to be

added to ontology entities, but does not allow

annotation of axioms. OWL2 allows annotations on

ontologies, entities, anonymous individuals, axioms,

and annotations themselves.

This feature is used in the judicial ontology library

to provide a full-fledged information structure about

the author of each piece of the model (i.e., who

modeled a certain axiom, which legal text it refers to,

and who/when/how was the original legal text

created). Moreover, it is possible to give domains

(AnnotationPropertyDomain) and ranges

(AnnotationPropertyRange) to annotation properties,

as well as organize them in hierarchies

(SubAnnotationPropertyOf). These special axioms

have no formal meaning in OWL2 direct semantics,

but carry the standard RDF semantics in RDF-based

semantics, via the mapping to RDF vocabulary.

3.4.5. N-ary datatypes

In OWL it is not possible to represent relationships

between values for one object, e.g., to represent that

a square is a rectangle whose length equals its width.

N-ary datatype support was not added to OWL2

because it was unclear what support should be added.

However, OWL2 includes all syntactic constructs

needed for implementing n-ary datatypes. The Data

Range Extension: Linear Equations note proposes an

extension to OWL2 for defining data ranges in terms

of linear (in)equations with rational coefficients. This

kind of equations is of high importance in the process

of identifying individuals to classify under a legal

ontology framework on the basis of a quantitative

evaluation of the relationship between several

factors.

Fig. 20. The list of legal statuses classified

as oppressive.

3.4.6. Property qualified cardinality

restrictions

While OWL1 allows for restrictions on the number

of instances of a property (i.e. for defining persons

that have at least three children) it does not provide

means to constrain object or data cardinality

(qualified cardinality restrictions, i.e. for specifying

the class of persons that have at least three children

who are girls). In OWL2 both qualified and

unqualified cardinality restrictions are possible

through the constructs: ObjectMinCardinality,

ObjectMaxCardinality, and ObjectExactCardinality

(respectively DataMinCardinality,

DataMaxCardinality, and DataExactCardinality).

These restrictions, together with n-ary datatypes, are

fundamental to enrich the ontology with elements

ensuring automatic classifications of qualified

properties (e.g the minimum income needed for a

claim to be classified under a certain category).

4. An Example of judgement modeling

JudO domain applciation is explained here through

a simple example of data insertion and knowledge

management. The following is a description of the

case to be modeled:

In the decision given by the 1st section of the Court

of Piacenza on July 9th, 20098, concerning

contractual obligations between two small

enterprises (“New Edge sas” and “Fotovillage srl”,

from now on α and β), the judge had to decide

whether clause 12 of α/β contract, concerning the

competent judge (Milan instead of Piacenza) could

be applied. The judge cites art. 1341 comma 2 of

Italian Civil Code that says: “a general and

unilateral clause concerning competence derogation

is invalid unless specifically signed”. In the contract

signed by the parties there is a distinct box for a

“specific signing” where all the clauses of the

contract are recalled (by their number). The judge,

with the support of precedents (he cites 9 Cassation

Court sentences) interprets the “specific signing” as

not being fulfilled through a generic recall of all the

clauses, and therefore declares clause 12 of α/β

contract invalid and inefficacious. The claim of

inefficacy of clause 12, brought forward by α, is thus

accepted, undercutting the claim of a lack of

competence by the judge of Piacenza, brought

forward by β, which is rejected.

8 Sent. N. 507 del 9 Luglio 2009, Tribunale di Piacenza, giudice dott. Morlini.

In order to represent the knowledge contained in

the judgement text, three documents have to be

modelled: Art. 1341 comma 2 of Italian Civil Code,

the contract between the two enterprises α and β, and

the decision by the Court of Piacenza.

4.1. Modelling of the law

The following is the law disposition involved in

the judicial decision:

Article 1341 comma 2 of Italian Civil Code:

Clauses concerning arbitration, competence

derogation, unilateral contract withdrawal, and

limitations to: exceptions, liability, responsibility,

and towards third parties, are inefficacious unless

they are specifically signed by writing.

The disposition is represented as a Qualifying

Legal Expression (Legal_Rule) called

“art1341Co2” (with a Code medium, a

Law_Declaration attitude and a Parliament

as agent) and the qualified class

Relevant_ExArt1341co2. As seen in 3.3.1, a

Legal_Rule considers a (combination of)

Legal_Status(es) and applies a

Legal_Consequence (or a deontic operator).

Therefore any individual which has the

characteristics required by the law is

considered_by the Legal_Rule, which in

turn allows/disallows/evaluates or

applies some Legal_Consequence to it. In

the example of figure 15, each

Contractual_Agreement which applies

“General”, “Unilateral”, “NotSpecificallySigned”

and an Oppressive_Status (Figure 20) will be

considered_by “art1341Co2”, which in turn

applies the Legal_Consequence of

“invalidityExArt1341co2”. The individuals

“competentJudge” and “notSpecificallySigned” are

thus created as Legal_Statuses that can be

Fig. 21. Stated property assertions for

the sample agreement.

considered_by a Legal_Rule and

applied_by a Contractual_Agreement,

and the individual “invalidityExArt1341co2” is

created as a Legal_Consequence applied_by

the Legal_Rule “art1341Co2”.

4.2. Modelling of the contract clause

The Contract_Clause “α/βClause12” (Figure

21) is created and linked to a

Contractual_Agreement which applies the

Legal_Statuses of “General”, “Unilateral” and

“CompetenceDerogation”. This is done because there

is no argue between the parties about whether clause

12 concerns a competence derogation. However, as

explained before, this kind of link is a weak one,

considering that contractual parties have no power to

force a legal status into a contract, and that assigning

a contractual agreement to the legal figure it evokes

is the main activity brought forward by judicial

interpretation in the contracts field. For this reason,

the property applies related to a Legal_Status

is weak when its domain is a

Contractual_Agreement, and prone to be

overridden by a contrasting application performed by

a Judicial_Interpretation.

4.3. Modelling of the judicial interpretation

The Judgement instance is created, as well as its

components (single interpretation instances,

adjudication, etc.). Among them, the

“tribPiacenzaI_Int1”

Judicial_Interpretation is created (Figure

22): it conside rs the

Contractual_Agreement contained in

“α/βClause12”, and applies the

“notSpecificallySigned” Legal_Status. The

instance contains also a reference to the precedent

Fig. 22. Stated property assertions of

the sample judicial interpretation.

Fig. 23. The graph showing the model of the sample case. The general classes of fig. 11 have been substituted with the sample

instances. The properties (arrows) connect the same classes of the core ontology.

(Cass.1317/1998), which represent a semantically-

searchable information on the interpretation instance.

Figure 23 shows all the elements created for the

various classes, and the relations among them.

4.4. Reasoning on the knowledge base

 In the example, when all the relevant knowledge

is represented into the ontology, the reasoner is

capable of inferring that “The agreement contained in

clause 12 of the α/β contract is invalid ex article 1341

comma 2” (Figure 24). As already explained, this

result is reached through a subclass of the

Contractual_Agreement and Qualified

classes, defined by an axiom representing the rule of

law. Clauses that fulfill the axiom are automatically

classified in that class, and thus considered_by

the proper law. At this point, the judged_as

property chain links the clause to the legal

consequence through the legal rule (clause is

considered_by the law which applies a legal

consequence, then the clause is judged_as the

legal rule). The judged_as property gives the

clause its final (efficacy/inefficacy) status under that

law. Figure 25 explains the whole process as a list of

axioms verified by the ontology reasoner.

5. Evaluation of the ontology library

The ontology library, in its sample taken from real

judicial decisions, met the following requirements:

- Text-to-knowledge morphism: the ontology

can correctly classify all instances representing

fragments of text. The connection to the Akoma

Ntoso markup language ensures the

identification and management of those

fragments of text and of the legal concepts they

contain.

- Distinction between document layers: The

qualifying expression class constitutes the main

expressive element, introducing an n-ary

relation that ignites the reasoning engine. Its

instances can refer to the same text fragment,

yet represent different (and potentially

inconsistent) interpretations of that text.

Fig. 25. Explanation for the sample agreement being inefficacious.

Fig. 24. Inferred Description and property assertions of the

contract clause's content.

Moreover, the LKIF-Core's Medium class

allows to represent different manifestations of

the same expression;

- Shallow reasoning on judgement's

semantics: the Domain Ontology can perform

reasoning on the relevance of a material

circumstance under a certain law. The property

chain judged_as and the axioms for law

relevance and legal consequence application

allow the reasoner to complete the framework,

also with the purpose of easening the effort

needed to model all knowledge contained in the

ontology. These axioms could also be used to

support tools that automatically complete

partially-modeled documents;

- Querying: the considers/applies properties

allow complex querying on the knowledge base,

and the judged_as shortcuts provide semantic

sugar in this perspective. Querying on temporal

parameters is not yet possible due to limits in

LKIF-Core language: solutions for this are

being achieved through emerging standards for

rules such as LegalRuleML.

- Modularity: the layered (core/domain)

structure of the ontology library renders domain

ontologies independent between each other -

and yet consistent, through their compliance to

the core ontology template.

- Supporting text summarization: the ontology

library supports the identification of

dispositions and decision’s groundings inside a

judicial decision.

- Supporting case-based reasoning: An

argumentation system has been built on a lite

version of the ontology library. The axioms

concerning law relevancy and law application

were removed from the ontology and moved to

the rules layer, in order to have them applied not

only on the ontology library's knowledge base,

but also on the new knowledge derived from the

application of the rules. Results of this can be

found in [14].

Computability was not an issue in the last ontology

library version (<5 seconds reasoning time on a Intel

i5@3.30 Ghz), while the Carneades reasoner was

moderately encumbered by the application of the

rules to the ontology (8-15 seconds in the example

described in Chapter 4). This could be improved by

optimizing the reasoner and/or with a further

refinement of the ontology (and rules) structure.

5.1. Related Work

The framework presented in this paper relies on

previous efforts of the community in the field of legal

knowledge representation [10] and rule interchange

for applications in the legal domain [26]. The issue of

implementing logics to represent judicial

interpretation has already been faced in [9,22], albeit

only for the purposes of a sample case.

The methods applied for the construction of the

core legal ontology are similar to those used for [12],

an online repository of legal knowledge to provide

answers to issues related to legal procedures. The

main difference between the two approaches is that

the latter relies on application of NLP techniques to

user-generated questions in order to return the correct

answer. The judicial ontology, instead, extracts

information from official legal documents (laws,

decisions, legal doctrine), whose content

classification requires the intervention of a legal

expert. Furthermore, the ontology in [12] focuses on

legal procedure, while the present ontology concerns

mainly the legal operations carried out by the judge

in a decision, mainly judicial interpretations seen as

subsumption of material facts or circumstances under

abstract legal categories.

The project presented in [47] focuses on a lower

layer of the Semantic Web, concerning document

structure and data interchange between different legal

documents. For the same purposes, the present

project relies on Akoma Ntoso (see 3.1.). Besides its

being foucused on administrative procedures, the

project in [47] shows a rather interesting view on the

procedural aspects of legal phenomena, which is

something this ontology does not achieve, being this

task demanded to an argumentation layer placed on

top of the ontology layer.

[17] shows an automatic construction of an

ontology concerning the language of a legislative

text. The project is focused on the linguistic aspects,

in particular on the use of NLP techniques to

normalize and formalize the text in a set of concepts

organized in an ontology. The ontology is built

around DOLCE-based Core Legal Ontology [22] and

LRI-Core, which makes it likely to be aligned with

the ontology presented in this paper. The ontology in

[17], in fact, ensures a close relation with the legal

text, even though it does not includes axioms that

enable shallow reasoning on specific legal

phenomena.

The ontology in [49] is very interesting for the

orientation towards NLP, the solid basis on

metaphysics, and in that it allows shallow reasoning

on a set of simple legal sentences. It is built around

the NM ontology ([49] contains a comparison to LRI-

Core), and relies on agents to bridge the legal text

with the syntax. The approach is very interesting, yet

the focus on agents somewhat overcomplicates the

reasoning on complex legal concepts such as that of

judicial interpretation. Detecting advanced concepts

in legal documents requires in fact a highly complex

semantic structure, which prevents the reasoning on

a large scale of document contents (for a general

account on how to model complex legal concepts for

automatic detection see [39]). Moreover, as already

noted, modelling the dynamics of legal procedure

requires a proper implementation of argumentation

theory.

5.2. A bridge towards judicial argumentation

The argumentation system described in [14,15]

allows combining the features of the DL-based

ontology with non-monotonic logics such as

Defeasible Logics. In particular, Carneades is based

on Walton’s theory [25] and also gives account for

most of Prakken’s consideration on the subject [43]

including argumentation schemes and burden of

proof. The Carneades application succeeded in

performing the tasks of finding relevant precedents,

validating the adjudications and suggesting legal

rules, precedents, circumstances that could bring to a

different adjudication of the claim.

Many projects tried to represent case-law during

the nineties, most of which are related to the work of

Prof. Kevin Ashley such as [2]. Their main focus is

similar to the one of the present research: capturing

the elements that contribute to the decision of the

judge. The approach was, however, based on

concepts rather than on the legal documents

themselves. They were meant to teach legal

argumentation in law classes. No account for the

metadata of the original text was given, and there was

no ontology underlying the argumentation trees that

reconstruct the judge’s reasoning. Rather than

representing a single judicial decision, the approach

presented in this paper allows instead to connect

knowledge coming from different decisions and to

highlight similarities and differences between them,

not only on the basis of factors, dimensions or values,

but also on the basis of the efficacy of the legal

documents involved (under criteria of time,

hierarchy, and others). Of course, templatizing legal

documents is a very complex task (see next section,

3.5.1.): the intention, in any case, is not to provide a

complete NLP tool but to create an interface through

which a legal expert can easily identify the legal

concepts evoked by single words, and combinations

of them, in legal documents.

Deontic defeasible logic systems, such as those

presented in [27,30,35] constitute indeed a powerful

tool for reasoning on legal concepts. Most of them are

explicitly built to import RDF triples, which means

that they can perform reasoning on knowledge bases

contained in ontologies such as the one presented in

this paper. These projects are therefore placed at an

upper layer than the one discussed here: the ontology,

in the perspective of the present research, should

focus on the document semantics and basic relations,

in order to perform shallow reasoning oriented

mostly to data completion, enhanced by the open

world assumption. Over a such-built knowledge base,

rule systems based on advanced logic dialects (such

as those presented in the cited works) could perform

complex reasoning with tools such as SPINdle (see

[32]) by importing only the set of triples that best

suits their syntactic needs. This may be preferable to

approaches that try to extend DL to perform

defeasible reasoning such as [1]: JudO shows that it

is possible to perform shallow reasoning while

staying within OWL2, and in order to perform an

efficient reasoning on legal concepts it is not

sufficient to implement defeasible reasoning, being

also necessary to rely on argumentation schemes [53]

 The same considerations apply to the approach in

[33], which interestingly provides a simple and

intuitive way to encode default knowledge on top of

terminological KBs: such a reasoning system does

not reach the complexity needed to manage legal

concepts (for which deontic defeasible logics are

required, with an account for argumentation

schemes). This means that a distinct layer is needed

in order to perform deep reasoning on the KB: being

this the situation, it is better to stay within the

achieved standard of OWL2 when performing basic

reasoning on KB.

In this perspective, the idea of deriving a closed-

world subset of an OWL2 KB as presented in [44]

seems an optimal enhancement of the present

ontology, and will in fact be explored, always

keeping in mind, though, that introducing negation-

as-failure in OWL2 is not sufficient to grant the

ontology layer the expressivity required for

performing argumentation tasks.

5.3. Issues

5.3.1. The knowledge acquisition bottleneck

The modelling of the sample ontology library and

the extraction of knowledge from the case law sample

was carried out manually by a graduated jurist. Also

the qualified fragment of text under the Akoma Ntoso

standard are supposed to be annotated by legal

experts: at the present time, manual data insertion

seems the only viable choice in the legal domain. In

fact, automatic information retrieval and machine

learning techniques do not yet ensure a sufficient

level of accuracy, even if some progress in the field

has been made (for example in applying NLP

techniques to recognize law modifications as in [37]).

The manual markup of judicial decisions,

however, doesn't seem to be sustainable in the long

time. For an efficient management of the knowledge

acquisition phase, a combination of tools supporting

an authored translation of text into semantics should

limit the effects of this (still) unavoidable bottleneck.

Special editor tools (e.g. Norma-Editor) could enable

an easy linking between text, metadata and ontology

classes, while the more complex ontology constructs

(i.e. the "considers/applies" constructs) could be

managed by an editor plug-in. In this perspective,

stronger constraints could be added to the legal core

ontology in order to allow these plugin to

automatically complete a part of the classification

work, leaving to the user the duties of checking and

completing the model drafted by the machine.

Fig. 26. Explanation of a sample contract clause being not inefficacious because of an exception.

Fig. 27. Explanation for Relevancy being inferred as a subclass of Inefficacious.

5.3.2. Representing exceptions

A critical issue in representing the decision's

content is represented by exceptions to legal rules.

How to model a situation when a material

circumstance applies all the legal statuses required by

the legal rule, but nevertheless does not fall under that

legal rule's legal consequence because it follows

some additional rule which defeats the first one? As

it should be clear, that issue has no straight solution

inside DL, such as OWL-DL logics: introducing

some negative condition for the rule to apply (in the

form if (not (exception))), the open-world

assumption OWL relies on would requires to

explicitly state for each case that no exception

applies. This would hinder the reasoning capabilities

of the ontology library explained so far. A solution to

this problem could rely on the modelling of the

exceptional case as a subclass of the normal case, (see

Figure 26). In this way, only the instances that are

relevant under the law are eligible to be an exception

to the application of that law.

 This solution has the advantage of allowing

reasoning on exceptions without the need to rely on

rules. The backside is that the classification of the

circumstance as "exceptional" is added to the

classification of inefficacy, not substituted to it

(Figures 27 and 28). Again, this issue takes origin

from the open world assumption, and cannot be easily

avoided while remaining inside OWL-DL: whenever

the reasoner is prevented to link a circumstance to a

legal consequence, asking him to check that no

exception exists, the reasoner will be incapable of

inferring anything unless all information concerning

the exceptions is explicitly stated in the ontology.

This issue represents the main reason why a

complete syntactic modelling of legal rules is not

feasible inside the ontology library, requiring instead

a rule system (such as LKIF-Rules [23], Clojure, or

LegalRuleML [40]) to be fully implemented.

Nevertheless, the so-built ontology library represents

the ideal background for such a rule system.

6. Conclusions

The ontology library presented in this article is the

pivot of an innovative approach to case-law

management, filling the gap between text, metadata,

ontology representation and rules modeling, with the

goal of detecting the information available in the text

to be enhanced in legal reasoning through an

argumentation theory. This approach allows to

directly annotate the text with peculiar metadata

defined in core, domain and argument ontologies.

OWL2 is used to get as close as possible to the rules,

in order to exploit the computational characteristics

of description logics. On the other hand, the ontology

framework has a weakness in the management of

exceptions. It is thus necessary to devolve this kind

of reasoning features to different logics, e.g.

defeasible logics such as that presented in [27], with

added support for argumentation schemes.

References

[1] G. Antoniou, N. Dimaresis and G. Governatori, A Modal

and Deontic Fegeasible Reasoning System for Modelling
Policies and Multi-Agent Systems, Expert Systems With

Applications 36,2 (2009), pp. 4125-4134.

[2] K. D. Ashley, Ontological requirements for analogical,
teleological, and hypothetical legal reasoning, in:

Proceedings of the 12th International Conference on

Artificial Intelligence and Law, New York, 2009.
[3] J. L. Austin, How to do Things with Words, Second

Edition, Oxford University Press, Oxford, 1975.

[4] G. Barabucci, L. Cervone, M. Palmirani, S. Peroni and F.
Vitali, Multi-layer Markup and Ontological Structures in

Akoma Ntoso, In : P. Casanovas, U. Pagallo, G. Sartor
and G. Ajani, eds., AI Approaches to the Complexity of

Legal Systems. Complex Systems, the Semantic Web,

Ontologies, Argumentation, and Dialogue, Springer,
2010, pp. 133-149.

[5] T. Bench-Capon and T. F. Gordon, Isomorphism and

argumentation, in: Proceedings of the 12th International

Fig. 28. Stated and inferred property assertions

on the exceptional contractual agreement.

Conference on Artificial Intelligence and Law, ACM,

2009, pp. 11-20.

[6] E. Blomqvist, A. Gangemi and V. Presutti, Experiments
in Pattern-based Ontology Design, in Proceedings of

KCAP09, Los Angeles, ACM Press, 2009.

[7] F. Bobillo and U. Straccia, An OWL ontology for fuzzy
OWL 2, in J. Rauch, Z.W. Ras, P. Berka and T. Elomaa,

ads. Foundations of intelligent systems. Springer Berlin

Heidelberg, 2009. 151-160.
[8] F. Bobillo, M. Delgado and J. Gómez-Romero,

DeLorean: A Reasoner for Fuzzy OWL 2, Expert Systems

with Applications 39.1 (2012), pp. 258-272.
[9] G. Boella, G. Governatori, A. Rotolo and L. van der

Torre, A Logical Understanding of Legal Interpretation,

KR, 2010.
[10] A. Boer, R. Winkels and F. Vitali, Metalex XML and the

Legal Knowledge Interchange Format, in: P. Casanovas,

G. Sartor, N. Casellas and R. Rubino, eds., Computable
Models of the Law, Heidelberg, Springer, 2008, pp. 21-

41.

[11] S. Brüninghaus and K. D. Ashley, Generating legal
arguments and predictions from case texts, in ICAIL

2005, New York, 2005.

[12] P. Casanovas, M. Poblet, N. Casellas, J. Contreras, V. R.
Benjamins and M. Blasquez, Supporting newly-appointed

judges: A legal knowledge management case study,
Journal of Knowledge Management, 2005, pp. 7-27.

[13] M. Ceci, Interpreting Judgements Using Knowledge

Representation Methods and Computational Models of
Argument, Ph. D dissertation, 2013, available at:

http://amsdottorato.cib.unibo.it/6106/1/Marcello_Ceci_t

esi.pdf
[14] M. Ceci, Representing Judicial Argumentation in the

Semantic Web, in: Proceedings of JURIX 2013, Springer,

under publication.
[15] M. Ceci and T. F. Gordon, Browsing case law: An

application of the Carneades Argumentation System, in

Proceedings of the RuleML2012@ECAI Challenge, vol.
874, 2012, pp. 79-95.

[16] M. Ceci and M. Palmirani, "Ontology Framework for

Judgement Modelling," in AI Approaches to the
Complexity of Legal Systems. Models and Ethical

Challenges for Legal Systems, Legal language and Legal

Ontologies, Argumentation and Software Agents, LNCS
vol. 7639, Berlin, Springer, 2012, pp. 116-130.

[17] S. Despres and S. Szulman, Construction of a Legal

Ontology from a European Community Legislative text,
in Legal Knowledge and Information Systems. Jurix

2004: The Seventeenth Annual Conference, Amsterdam,

2004.
[18] A. Gangemi, Ontology Design Patterns for Semantic Web

Content, in International Semantic Web Conference

2005, pp. 262-276

[19] A. Gangemi, Design Patterns for Legal Ontology

Construction, in: Trends in legal Knowledge. The

Semantic Web and the Regulation of Electronic Social
Systems, European Press Academic Publishing, 2007, pp.

171-191.

[20] A.Gangemi, Norms and plans as unification criteria for
social collectives, in Journal of Autonomous Agents and

Multi-Agent Systems 16(3), 2008

[21] A. Gangemi, Super-duper Schema: an OWL2+RIF DnS
Pattern, in V. Chaudry, ed., Proceedings of DeepKR

Challenge Workshop at KCAP11.

[22] A. Gangemi, M. T. Sagri and D. Tiscornia, A
Constructive Framework for Legal Ontologies, in R.

Benjamins, J. Breuker, P. Casanovas and A. Gangemi,

eds., Legal Ontologies and the Semantic Web, Springer,

2005.
[23] T. F. Gordon, Construting Legal Arguments with Rules in

the Legal Knowledge Interchange Format, in Computable

Models of the Law: Languages, dialogues, games,
ontologies, Springer, Heidelberg, 2008, pp. 162-184.

[24] T. F. Gordon and D. Walton, The Carneades

Argumentation Framework: using presumptions and
exceptions to model critical questions, in Proceedings of

the First International Conference on Computational

models of Argument (COMMA 06), Amsterdam, IOS
Press, 2006.

[25] T. F. Gordon and D. Walton, Legal Reasoning with

Argumentation Schemes, in Proceedings of the Twelfth
International Conference on Artificial Intelligence and

Law, New York, ACM Press, 2009, pp. 137-146.

[26] T. F. Gordon, G. Governatori and A. Rotolo, Rules and
Norms: Requirements for Rule Interchange Languages in

the Legal Domain, in Rule Interchange and Applications,

International Symposium, RuleML 2009, Berlin,
Springer, 2009, pp. 282-296.

[27] G. Governatori and A. Rotolo, Defeasible Logic: Agency,

Intention and Obligation, in Deontic Logic in Computer
Science, Springer, 2004.

[28] M. Gruninger and M. Fox, The role of competency
questions in enterprise engineering, in Proceedings of the

IFIP WG5.7 Workshop on Benchmarking Theory and

Practice, Trondheim, Norway, 1994
[29] R. Hoekstra, J. Breuker, M. Di Bello and A. Boer, LKIF

Core: Principled Ontology Development for the Legal

Domain, Law, Ontology and the Semantic Web, 2009, pp.
21-52.

[30] E. Kontopoulos, N. Bassiliades, G. Governatori and G.

Antoniou, A Modal defeasible Reasoner of Deontic Logic
for the Semantic Web, International Journal on Semantc

Web adn Information Systems, 2011, pp. 18-43.

[31] W. Kusnierczyk, Nontological Engineering, in:
International Conference on Formal Ontology in

Information Systems (FOIS 2006), Springer, 2006.

[32] H. P. Lam and G. Governatori, The Making of SPINdle,
in RuleML 2009, LNCS 5858, Berlin, Springer, 2009, pp.

315-322.

[33] D. T. Minh, T. Eiter and T. Krennwallner, Realizing
Default Logic over Description Logic Knowledge Bases,

in Proceeding of the ECSQARU, 2009.

[34] L. Mommers, Ontologies in the Legal Domain, in: Theory
and Applications of Ontology: Philosophical

Perspectives, Springer, 2010, pp. 265-276.

[35] D. Nute, Norms, Priorities, and Defeasible Logic, in
Norms, Logics and Information Systems, IOS Press,

1998, pp. 201-218.

[36] M. Palmirani and F. Benigni, Norma-system: A legal

information system for managing time, in Proceedings of

the V Legislative XML Workshop, 2007, pp. 205-224.

[37] M. Palmirani and R. Brighi, Model Regularity of Legal
Language in Active Modifications, LNCS, pp. 54-73,

2010.

[38] M. Palmirani, G. Contissa and R. Rubino, Fill the Gap in
the legal Knowledge Modelling, in Proceedings of

RuleML 2009, LNCS 5858, Berlin, Springer, 2009, pp.

305-314.
[39] M. Palmirani, M. Ceci, D. Radicioni and A. Mazzei,

FrameNet model of the suspension of norms, in The 13th

International Conference on Artificial Intelligence and
Law, Proceedings of the Conference, Pittsburgh, 2011.

http://amsdottorato.cib.unibo.it/6106/1/Marcello_Ceci_tesi.pdf
http://amsdottorato.cib.unibo.it/6106/1/Marcello_Ceci_tesi.pdf

[40] M. Palmirani, G. Governatori, A. Rotolo, S. Tabet, H.

Boley and A. Paschke, LegalRuleML: XML-Based Rules

and Norms, in RuleML 2011, pp. 298-312.
[41] M. Palmirani, T. Ognibene and L. Cervone, Legal rules,

text, and ontologies over time, in Proceedings of the

RuleML@ ECAI 6th International Rule Challenge,
Montpellier, 2012.

[42] M. Palmirani, L. Cervone, O. Bujor and M. Chiappetta,

RAWE: An Editor for Rule Markup of Legal Texts, in
RuleML 2013

[43] H. Prakken, Formalizing Ordinary legal Disputes: a Case

Study, in AI&Law, 2008, pp. 333-359.
[44] Y. Ren, J. Z. Pan and Y. Zhao, Closed World Reasoning

for OWL2 with NBox, Tsinghua Science & Technology,

pp. 692-701, 2010.
[45] E. Rosch, Prototype Classification and Logical

Classification: The Two Systems, in E.K. Scholnick, ed.,

New Trends in Conceptual Representation: Challenges to
Piaget’s Theory?, Lawrence Erlbaum Associates,

Hillsdale, 1983, pp. 73–86.

[46] G. Sartor, Legal Concepts as Inferential Nodes and
Ontological Categories, Artificial Intelligence and Law,

pp. 217-251, 2009.

[47] I. Savvas and N. Bassiliades, A Process-Oriented
Ontology-Based Knowledge Management System for

Facilitating Operational Procedures in Public
Administration, in Expert Systems with Applications,

2009, pp. 4467-4478.

[48] J. R. Searle, Speech Acts: an Essay in the Philosophy of
Language, Cambridge University Press, 1969.

[49] J. Shaheed, A. Yip and J. Cunningham, A Top-Level

Language-Biased Legal Ontology, in LOAIT, Bologna,
2005.

[50] E. Sirin and B. Parsia, SPARQL-DL: SPARQL Query for

OWL-DL, in 3rd OWL Experiences and Directions
Workshop, 2007.

[51] F. Vitali, Akoma Ntoso Release Notes, 2011 [Online].

[52] W3C Consortium, "OWL 2 Web Ontology Language
Overview," 11 December 2012. [Online]. Available:

www.w3.org/TR/2012/REC-owl2-overview-20121211/.

[53] D. Walton, C. Reed and F. Macagno, Argumentation
Schemes, Cambridge University Press, Cambridge, 2008.

