Undefined 1 (2013) 1-26
10S Press

Data Access over Large Semi-Structured

Databases

A Generic Approach Towards Rule-Based Systems

Editor(s): Name Surname, University, Country
Solicited review(s): Name Surname, University, Country
Open review(s): Name Surname, University, Country

Bruno Paiva Lima da Silva?, Jean-Frangois Baget® and Madalina Croitoru *
& University of Montpellier 2, 2 Place Eugene Bataillon, 34095 Montpellier Cedex 5, France

E-mail: {bplsilva,croitoru} @ lirmm.fr

b INRIA, 2004 Route des Lucioles, 06902 Sophia-Antipolis, France

E-mail: baget@lirmm.fr

Abstract. Ontology-Based Data Access is a problem aiming at answering conjunctive queries over facts enriched by ontological
information. There are today two manners of encoding such ontological content: Description Logics and rule-bases languages.
The emergence of very large knowledge bases, often with unstructured information has provided an additional challenge to the
problem. In this work, we will study the elementary operations needed in order to set up the storage and querying foundations
of a rule-based reasoning system. The study of different storage solutions have led us to develop ALASKA, a generic and logic-
based architecture regrouping different storage methods and enabling one to write reasoning programs generically. This paper
features the design and construction of such architecture, and the use of it in order to verify the efficiency of storage methods for
the key operations for RBDA, storage on disk and entailment computing.

Keywords: Ontology-Based Data Access, Knowledge Representation

1. Introduction

Knowledge Representation (KR) is one of the ba-
sic issues in Artificial Intelligence (Al) research. In or-
der to create applications that are capable of intelligent
reasoning, human knowledge about an application do-
main has to be encoded in a way that can be handled
by a problem-solving computing process. Represent-
ing knowledge inside the machine has proved to be a
non-trivial task. The main difficulty is to have a way to
constrain and to make explicit the intended conceptual
models of a KR formalism, in order to facilitate large-
scale knowledge integration and to limit the possibility
of stating something that is reasonable for the system

*Corresponding author. E-mail: croitoru@lirmm.fr.

but not reasonable in the real world [16].

In this paper we are interested in a particular subset
of positive, existential fragment of First Order Logic
(FOL) expressed using a rule-based language [11].
This language can be encoded in several manners and
the encoding will impact the efficiency of storage and
querying mechanisms of the language. Despite the im-
portance of the task, a throughout analysis of how the
language encoding affects storage and querying is non
existing in the literature.

The problem addressed in this paper is the ONTOLOGY-

BASED DATA ACCESS (OBDA) problem. The prob-
lem consists in, given a knowledge base containing
facts and ontological data, and a conjunctive query, to

0000-0000/13/$00.00 (©) 2013 — IOS Press and the authors. All rights reserved

2 Data Access over Large Semi-Structured Databases

determine whether there is an answer to the conjunc-
tive query in the knowledge base. There are currently
two distinct manners to represent ontological data: de-
scription logics languages and rule-based languages.

OBDA

Description

Rules Logics

Fig. 1. Approaches for the OBDA problem.

The contribution of this paper is the integra-
tion of different implementation approaches un-
der the same framework unified by the means of
a common logical vision, under a generic architec-
ture (ALASKA) that communicates to different stor-
age systems through an unified language and to use
such generic software architecture to provide practical
means for enabling the storage and querying of large
knowledge bases on disk avoiding out of memory lim-
itations.

1.1. Paper Structure

The paper is organized as follows. Section 2 presents
the problems and the motivation of the paper. Section
3 describes the ALASKA platform and the systems in-
tegrated within it for experimental work. Section 4 il-
lustrates how ALASKA works through the means of
an example. Section 5 features the use of ALASKA to
investigate storage efficiency of different stores, while
Section 6 features the use of ALASKA for querying
purposes. Section 7 closes the paper with a discussion
about future work on querying large knowledge bases
using constraint satisfaction techniques.

1.2. Problem overview

The RULE-BASED DATA ACCESS (RBDA) problem,
derived from ONTOLOGY-BASED DATA ACCESS [22]
knows today an interest in knowledge systems allow-
ing for expressive inferences. In its basic form, its in-
put consists in a set of facts, an ontology and a con-
junctive query, and the problem consists of finding if
answers to the query can be deduced from the facts,
eventually using inferences allowed by the ontology.

This deduction mechanism could either be done (1)
previous to query answering by fact saturation using
the ontology (forward chaining) or (2) by rewriting the
query according to the ontology and finding a match of
the rewritten query in the facts (backwards chaining).

Let us consider a knowledge base I’ that consists of
a set of logical atoms, a set of rules R written in some
(first-order logic) language, and a conjunctive query
. The RBDA problem stated in reference to the clas-
sical forward chaining scheme is the following: “Can
we find an answer to @) in a database F” that is built
from F' by adding atoms that can be logically deduced
from F' and R?”

Since forward chaining schemes can unreasonably
increase the size of the database (and thus cannot
be relied upon when considering very large knowl-
edge bases), some algorithms use a backward chain-
ing scheme (or query rewriting) for query answering.
In that case, the set of rules R (and sometimes the
database itself F', leading to a complexity increase) is
used to build from Q a rewritten query Q' (that is often
a disjunction of conjunctive queries), such that there
exists an answer to @ in F’ if and only if there exists
an answer to Q' in F.

There are today two major approaches in order to
represent an ontology for the OBDA problem. The first
one are the Description Logics. Description Logics
are families of languages used for defining concepts.
Based upon constructors, the expressivity of the lan-
guages comes from the combination of these construc-
tors. Description Logics allow today for very large
expressivity. However, such expressivity is responsi-
ble for exponential blow-up when answering conjunc-
tive queries. In order to be able to answer conjunc-
tive queries, people have defined and studied "lite" de-
scription logics, which are less expressive but in which
conjunctive query answering is decidable (e.g. EL([3])
and DL-Lite [13] families).

The second method is to represent the ontology via
inference rules. Recent works consider the Datalog™
[11] language to encode a generalization of Datalog
that allows for existentially quantified variables in the
head of the rules. Such capacity is also responsible for
undecidability when answering conjunctive queries.
Works have focused on identifying and developing al-
gorithms for particular fragments of Datalog™ that are
decidable [12,8]. For this reason we will focus on this

Data Access over Large Semi-Structured Databases 3

problem in this work.

While above work focuses on logical properties of
the investigated languages, existing approaches em-
ploy a less principled approach when implementing
such frameworks. It is well known [2,14] that encod-
ing such languages can be equivalently done using (hy-
per)graphs or relational databases. However, none of
the existing systems make this possibility of different
encodings explicit. The choice of the appropriate en-
coding is left to the knowledge engineer and it proves
to be a crafty task.

2. Context
2.1. Fundamental Notions

2.1.1. Facts

Syntax The syntax of the logical language we use is
the following: we consider constants but no other func-
tional symbols. In order to represent a knowledge base,
a vocabulary has to be defined. A vocabulary W is
composed of a set of predicates P and a set of con-
stants C'. Constants are tokens that identify the individ-
uals in the knowledge base, while predicates represent
relations between such individuals. We also consider
X, a set of variables in the knowledge base.

Definition 2.1 (Vocabulary) Let C be a set of con-
stants and P a set of predicates. A vocabulary is a pair
W = (P, C) and arity is a function from P to N. For
all p € P, arity(p) = i means that the predicate p has
arity 1.

We will also consider an infinite set X of variables,
disjoint from P and C. Hence, an atom on W is of
form p(t1,...,tx), where p is a predicate of arity k in
W and the ¢; are constants in W or variables. A term
is an element of C' U X. For a given atom A, we
note terms(A), csts(A) and vars(A) respectively the
terms, constants and variables occurring in A.

Definition 2.2 (Fact) A fact is a finite, but possibly
empty, set of atoms on a vocabulary. For a given fact
F, we note atoms(F') the atoms occurring in F.

Example Let us consider a vocabulary W = (P, C).
P = {man,woman}, C' = {Bob, Alice} and arity =
{(man,1),(woman,1)}. man(Bob) and woman(Alice)
are two distinct atoms on W, and F' = {man(Bob),
woman(Alice)} is a fact on W.

Semantics

Definition 2.3 (Interpretation) Ler W = (P,C) be
a vocabulary. An interpretation of W is a pair I =
(A,.1) where A is the domain of the interpretation,

and ! a function where: ¥ cin C, ¢! € A and ¥ p in
P, pI C Aarity(p).

An interpretation is non empty and can be possibly
infinite.

Definition 2.4 (Model) Let F' be a fact on W, and 1
= (A, 1) be an interpretation of W. We say that I is a
model of F' iff there exists an application v : terms(F')
— A (called a justification of F in I) such that:

- V¢ €ests(F), v(c) = c! and
— YV p(ty,...tx) € atoms(F), (v(ty),...,v(tx)) € pl.

Definition 2.5 (Fact to logical formula) Let I’ be a
fact. &(F) is the logical formula that corresponds to
the conjunction of atoms in F. And ®(F) corresponds
to the existential closure of ¢(F).

Example Let us consider a fact F' = {person(z),
name(z, Bob), age(z,25)}.

- ¢(F) =person(z) Aname(x, Bob) A age(z, 25).
- ®(F) =3z person(x) A name(z, Bob) A age(x, 25).

Property 2.1 (Model equivalence) Let F' be a fact
and I be an interpretation of W. Then I is a model of
Fiff I is a model (in the FOL sense) of ®(F).

Definition 2.6 (Entailment) Ler ' and G be two
facts, F entails G if every model of F' is also a model
of G. The entailment relation is then noted F' = G.

Computing

Definition 2.7 (Homomorphism) Let F and F' be
facts. Let o: terms(F) — terms(F") be a substitu-
tion, i.e. a mapping that preserves constants (if c € C,
then o(c) = c). We then note o(F') the fact obtained
from F by substituting each term t of F by o(t). Then
o is a homomorphism from F to F' iff the set of atoms

ino(F)CF'.

Example Let F' = {man(x1)} and F' = {man(Bob),
woman(Alice)}. Let o : terms(F) — terms(F")
be a substitution such that o (1) = Bob. Then o is a
homomorphism from F to F’ since the atoms in o (F')
are {man(Bob)} and the atoms in F” are {rman(bob),
woman(Alice)}.

Property 2.2 (Entailment) Let F' and QQ be facts.
E Q iff there exists 11 an homomorphism from @ to F.

4 Data Access over Large Semi-Structured Databases

Complexity The entailment problem is a NP-Complete
problem. However, there exist polynomial cases of the
problem, such as when () has a tree structure. See
[14,17] for polynomial subclasses.

2.1.2. Rules

Syntax Rules are objects used to express that some
new information can be inferred from another informa-
tion. Rules are built upon two different facts, and such
facts correspond to the two different parts of a rule,
called head and body. Once the body of a rule can be
deduced from a fact, then the information in the head
should also be considered when accessing information.

Definition 2.8 (Rule) Let H and B be facts. A rule is
a pair R = (H, B) of facts where H is called the head
of the rule and B is called the body of the rule. A rule
is commonly noted B — H.

Semantics

Definition 2.9 (Rule model) Let W be a vocabulary,
I an interpretation on W, and R a rule on W. We say
that I is a model of R iff for every justification Vg of
B in I there exists a justification Vi of H in I such
that Vt € vars(B) Nwvars(H), Vg(t) = Vi (t).

Definition 2.10 (Rule to logical formula) Letr R =
(H, B) be a rule. Let by, be the variables from B, and
h: be the variables from H that are not in B, the logi-
cal formula corresponding to R is the following: ®(R)
= Vb, (¢(B) = 3he ¢(H)).

Example Let us consider a rule R = {person(x),
person(y), sibling(z,y)} — {person(z), parent(x, z),
parent(y, z)}. ®(R) =V, y(person(z) A person(y)

A sibling(x,y) — 3z person(z) N parent(x,z) A
parent(y, z)).

Property 2.3 (Model equivalence) Let R be a rule
and I be an interpretation of W. Then I is a model of
R iff I is a model (in the FOL sense) of ®(R).

Definition 2.11 (Knowledge base) Let W be a vo-
cabulary. A knowledge base (KB) is a pair K = (F,R)
where F is a fact on W and R is a set of rules on W

Definition 2.12 (KB model) Letr K = (F,R) be a
knowledge base and I be an interpretation. I is a
model of K iff I is a model of F' and also a model of
every rule R; in R.

Definition 2.13 (Entailment) Let K be a knowledge
base and Q) be a fact. K entails Q iff all models of K
are also models of Q).

Algorithm 1: Rule-Deduction
Input: K a knowledge base, () a fact
Output: TRUE if all the models of K are also models of Q

The RULE-BASED DATA ACCESS is defined as the
following:

Definition 2.14 (Logical representation) Let K =
(F,R) be a knowledge base. ®(K) = (®(F),®((R)))
is the logical representation of K. ®(F) is the logical
formula of F' and ®(R) = U, cr ®(7).

Property 2.4 (Model equivalence) Ler K be a knowl-
edge base and I be an interpretation. Then I is a model
of K iff I is a model (in the FOL sense) of ®(K).

In other words, given a knowledge base K and a
conjunctive query (), the RBDA problem consists in
answering if @ can be deduced from K, denoted K |=
Q.

Algorithms Rule application can be performed of
two different methods, called FORWARD CHAINING
and BACKWARDS CHAINING.

Forward chaining

Definition 2.15 (Applicable rule) Let R = (H, B) be
a rule and F be a fact. R is applicable to F if there ex-
ists an homomorphism 11 : B — F. In this case, the ap-
plication of R to F according to I is a fact o F, R, 1)
= FuTIsefe(H).

Please note the use of I1°%/¢ instead of II. II°%/¢ is
an application that converts existential variables into
fresh ones at the moment of joining new information
with the initial fact. Such process is important in order
to avoid unnecessary specializations. A derivation is
the result of a finite sequence of rules application.

Definition 2.16 (Derivation) Ler I’ be a fact. F' is a
derivation of F' iff there exists a finite sequence of facts
F = Fy, ..., F, = F' (called the derivation sequence)
such that for every i there exists R and 11 such that F;;
= Oé(Fi,h R, H)

Definition 2.17 (Saturation) Let F' be a fact and R
be a set of rules. Igr(F) = {Il:Br — F} is the set
of homomorphisms of the body of applicable rules to
F.a(F,R) = F Uenyr nsafe(HR) is the result of
the application of all those rules. The saturation of a
fact is the process of applying rules from the initial fact
until no more new information can be added to the fact
via rule application. Let the initial fact Fy = F, and F;
= a(F;_1, R), a fact is saturated when F; = F; ;1.

Data Access over Large Semi-Structured Databases 5

Theorem 2.1 (Equivalence) Let K = (F,R) be a
knowledge base and Q) be a fact. The following asser-
tions are all equivalent:

S KEQ
— there exists a derivation F' ... F' such that F' |=

Q
— there exists ann € N such that F,,, R = Q

Backwards chaining As opposed to forward chain-
ing which enriches the facts with the rule application,
the backwards chaining rewrites the initial query in a
union of several new queries. The decomposition is
obtained by applying rules on the query, i.e. by seeing
which rule could have generated the query and from
which fact. All possibilities are kept and further de-
composed until the initial set of facts is reached or
all possibilities are examined. The backwards chaining
approach does not enrich the facts but works on the

query.

One of the motivations of the ALASKA features is
the big addition of facts due to forward chaining rule
application. This is the reason why in this work we do
not focus on backwards chaining. In the following we
will simply define what a backwards chaining decom-
position is and then the reader is invited to further con-
sult works cited below on backwards chaining.

Definition 2.18 (Backwards chaining) Let) be a
fact and R a set of rules. We denote B(Q, R) = {Q;
IVF, (F,R) E Qiff 3Q; € B(Q, R) such that F =

ife

The work of [23], corrected by [9], and adapted to
First Order Logic in [7] provides such a rewriting.

Complexity and decidability The complexity of RBDA
may vary according to the set of rules present in the
ontology. When there are no rules in the ontology, the
problem is then equivalent to homomorphism compu-
tation, which is a NP-complete problem.

In the presence of rules, the problem is undecid-
able. Both the forward chaining and backwards chain-
ing mechanisms are not certain of halting. This is easy
to verify through the means of very simple examples.

Forward chaining Let K = (F,R) be a knowledge
base, F' = person(Bob), and R = {{person(x)} —
{parent(y,x), person(y)}}.

Let Q = {parent(x, Tom)} be a fact. Asking a for-
ward chaining mechanism if () can be deduced from

K may eventually never stop. The mechanism will
first verify if) can be deduced from F/, if there is an
x having Tom as parent in F. As it is not the case,
rules will be applied and F' will be enriched into F”
= {person(Bob),parent(py, Bob),person(p1)}. The
mechanism will then verify if Q) can be deduced from
F’. As it is still not the case, it will once again apply
rules and enrich F” into F”. And it will do it infinitely
as in this case, no answer will be ever found to the

query.

Backwards chaining Let K = (F,R) be a knowl-
edge base, and R = {{p(x, 1).0(y. 2)} = {p(w,2)}}.

Let Q = {p(a,b)} be a fact. Asking a backwards
chaining mechanism if () can be deduced from K may
also eventually never stop. The mechanism will first
verify if {p(a,b)} can be deduced from F. If that is
the case, the mechanism will stop. Otherwise, it will
rewrite the initial query () into a new query Q1 =
{p(a,x0),p(x0,b)}. Q is deduced from K if @1 is de-
duced from K. If (Q; can not be deduced from F,
the mechanism will rewrite the query again, for exam-
ple with Q2 = {p(a, zo),p(xo, x1),p(x1,b)}. Such se-
quence of rewritings may never end. Any finite rewrit-
ing corresponds to a finite sequence, for example, of
length k of form {p(a, o) ... p(xk, b)}. The facts could
always contain a sequence of length k£ + 1.

Works [6] have identified classes of rules in which
the RBDA problem is decidable. One of those is the
class of Range-Restricted rules. Such class does only
contain rules in which no existential variable is present
in the head of the rule, in other words, when no new
variable is created upon rule application. They are part
of the Finite Expansion Set class, a class in which the
saturation process is finite. Another classes of rules in
which the problem is decidable are the FUS (Finite
Unification Sets) and BTS (Bounded Treewidth Sets)
classes. The rules of BTS class have the particularity of
generating and infinite fact with an arborescent struc-
ture, while the ones in FUS have the particularity of
generating a finite sequence of query rewritings. See
[25] for further details. Those classes will appear once
again in the next section, where a comparison between
RBDA and other languages will be established.

2.2. Problem Evolution
Derived from the ONTOLOGY-BASED DATA AcC-

CESS problem, RBDA knows today a totally renewed
interest due to the recent evolutions in the KR and

6 Data Access over Large Semi-Structured Databases

in the Information Technology (IT) field in general.
Information sources have became larger and larger,
reaching sizes that one can not load entirely in a
system’s main memory. Information has also became
more and more semi-structured [1], which leads to a
different challenge according to the manner one in-
tends to query a knowledge base. Such emergence of
semi-structured knowledge bases has led to the emer-
gence of non-relational database models that fit best
such kind of information structure.

2.2.1. Large KBs

It is very difficult not to see in the current context
the continuous growth of the size of datasets. Big-
Data popularity has now became important, not only
in the industrial scope but also in the academic scope.
Domains such as social networks and Semantic Web
are responsible for the emergence and treatment of
a very large quantity of data. It is sometimes diffi-
cult to quantify the sizes of certain of those knowl-
edge bases. In academia, projects such as DBPedia !,
UniProt 2 and GeoNames 3 are well known for hav-
ing very large amount of information. A consequence
of such increase in the size of the data sources is also
the emergence of the XLDB acronym, for eXtremely
Large Databases, in order to replace/complete the for-
mer VLDB one (for Very Large Databases).

In the whole document, we consider as large, every
knowledge base that can not be entirely loaded in main
memory when an application is run. Our work will fo-
cus only in knowledge bases stored on disk and acces-
sible via reading and writing interfaces.

2.2.2. Semi-structured

Semi-structured data is data that is not raw data, nei-
ther data structured according to well defined schema.
In [1], several types of semi-structured data are de-
scribed. Most of the large data sources cited above con-
tain a large amount of semi-structured data, known for
their evolutive or undetermined schema. Are also part
of semi-structured data the data in which it is impos-
sible (or at least very hard) to dissociate the schema
from the data itself.

This kind of data is currently very widely spread
inside Open Data, Linked Data [10] and data min-
ing fields, where the integration of heterogeneous data

Thttp://dbpedia.org
2http://www.uniprot.org/
3http://www.geonames.org/

sources is often needed. Classical relational databases
have already shown limited efficiency when dealing
with those kind of data. The emergence of databases
based upon different data models introduces a new in-
terest in verifying whether those new databases are
most suited for semi-structured data than the classic
(relational) one.

2.2.3. NoSQL

The idea of NoSQL was born around 1996 when
Carlo Strozzi, unhappy with the performances of re-
lational databases has started developing a database
management system that would be based upon the re-
lational model of Codd, but in which the querying
would not be performed via an SQL interface (hence
the NoSQL name). This project was finally a failure,
and, when it was discontinued, Strozzi stated that the
performance issues he blamed on the databases at that
time was not related to the querying interface itself,
but rather to Codd’s relational model [15].

A few years later, several databases appeared using
different data models. The NoSQL movement is con-
sidered today as the regroupment of many database
management systems using a data model other than
Codd’s relational model. Because of that, the question
of the use of SQL as querying interface is not even
major anymore, as some of those management sys-
tems does not feature a SQL interface, and other fea-
ture it along with another querying mechanism. In the
list of the most known elements of NoSQL, one will
find the column-oriented databases, document-based
databases, XML databases and graph databases.

2.3. Novelty and motivation

After having defined the technical characteristics
and challenges of the problem, we are able to set as a
goal to obtain a system that would be able to perform
conjunctive queries over knowledge bases of any size
and of any structure. Those knowledge bases could
be stored in main memory but the case we intend to
focus on is when the knowledge base is located in a
secondary device. In order to reach that goal, we will
first study the approaches and methods that already ex-
ist for storing and querying information. The study of
those systems will be based on their ability to answer
the following questions:

1. - Can it be used for representing a knowledge
base in our formalism?
2. - Can it be used for computing entailment?

Data Access over Large Semi-Structured Databases 7

3. - Can it be used for computing entailment with
rule application?

Figure 2 summarizes the capacities of each ap-
proach.

- KB Rep. FlE=Q F,REQ Sec. Mem.
Prolog Yes Native Native No
CoGITaNT Yes Native Native No
Rel. Databases Yes Native (SQL) Not native Yes
Triple Stores Yes Native (SPARQL) Not native Yes
Graph Databases Yes Not native Not native Yes

Fig. 2. Table comparing the features of the studied methods.

Prolog and CoGITaNT are the only systems previ-
ously described that integrate a native support of rules.
Unfortunately, both systems require the load of the
whole knowledge base in main memory prior to ex-
ecuting reasoning processes (a characteristic that we
agreed to avoid once we focus on studying the ef-
ficiency of reasoning activity of systems/algorithms
when dealing with very large amount of data). For
those reasons, we will not consider both systems for
the future.

On the other hand, relational databases are widely
known for their ability of managing information stored
in secondary memory. They also feature a native SQL
interface which is able to perform conjunctive queries
over the facts. Rules are not natively featured but can
be introduced upon it. An interesting subject of study
will be the efficiency of the SQL interface when per-
forming queries over semi-structured data. As query-
ing a relational database is not restricted to SQL,
we will also be able to write a custom algorithm for
computing homomorphisms and verify its efficiency
against the SQL interface. Those aspects will be cov-
ered and detailed later on in this paper.

The case of triples stores is similar to the one of rela-
tional databases. Most implementations of those stores
feature a native SPARQL interface in order to perform
conjunctive queries. Graph databases however do not
always feature a native querying interface and in those
cases writing a querying algorithm is required in order
to perform conjunctive queries over the data. Graph
homomorphism algorithms have already been used be-
fore on data stored in main memory. The focus of this
work will then be to check their efficiency when deal-
ing with data stored on disk.

Based on these conclusions, we propose a software
platform that will first serve as a testing suite for all the
systems that were not discarded after this first analy-
sis. Our work will focus in transforming and translat-
ing information in order to have a common data lan-
guage which is compatible to the formalism presented
in Section 2.1 and shared by all the connected storage
systems. To this end, in the long term, we aim creating
a multi-layered architecture featuring an abstract layer
composed of classes and interfaces that would act as a
physical representation of the positive subset of First
Order Logic we work with. Such layer would ensure
the equivalence between the operations on the data no
matter which is the data model of the storage system
that holds the information.

3. ALASKA
3.1. Introduction to ALASKA

As explained in Section 2.3, different approaches
have led to different methods to implement software
systems able to perform conjunctive query answering
over a knowledge base. Such approaches being with,
or without, the presence of an ontology to enrich such
knowledge base. Although the description of the prob-
lem itself has remained the same, several new factors
have altered its current nature and, consequently, the
manner to proceed in order to address it. In the list
of the main factors that have led to this situation, the
emergence of very large and unstructured knowledge
bases. Setting the threshold that defines what is a very
large knowledge base may be a tricky task. We have
defined by "very large" a knowledge base containing
an amount of information that cannot be entirely stored
in one single machine main memory at any part of the
process. We tend to consider large knowledge bases
containing information going from approximatively
10 million triples up to 1 billion triples (and more...).
This list of factors also features the emergence of dif-
ferent database management systems using different
data models than the traditional relational one (See the
NoSQL movement in Section 2.2.3).

As previously mentioned, such factors have led the
existing methods to fail, or at least to become obso-
lete due to inefficiency. Although the idea of having a
working software suite to allow users to perform con-
junctive queries over knowledge bases stored in sec-
ondary memory is not new, there is still no tool able

8 Data Access over Large Semi-Structured Databases

to give a more in-depth analysis of the previous fail-
ures while, at the same time, integrate and test the lat-
est algorithms and storage technologies. The lack of
such a tool has has led us to study how to proceed
in order to develop a tool that would enable a bet-
ter study of the RBDA problem. The study has be-
came the starting point of ALASKA [18], a project
that would enable users to store pieces of information
in predefined encodings directly into secondary mem-
ory, without having to perform any manual manipu-
lations. ALASKA, an acronym for an "Abstract and
Logic-based Architecture for Storage and Knowledge
bases Analysis" would realize such task of translat-
ing information from one encoding to another in a to-
tally transparent manner for the user, using First Order
Logic as intermediary language. Once the information
is stored, ALASKA would also work as a querying
interface, allowing one to query the stored informa-
tion using queries presented in different querying lan-
guages.

Although efficient storage and querying is the aim
of the work that has resulted in the birth of ALASKA,
it is also fundamental to state that its functionalities
and features should not be limited to the study of
RBDA. The ability of using logical representations in-
ternally and having an easy and simple connection to
the stores on disk could directly enhance performances
of other studies in the KR field. Some applications,
such as rule application and record linkage studies or
any other application requiring logical operations over
large amounts of data may benefit from the features of
ALASKA.

In order to adapt to the different types of applica-
tions aiming to manage or manipulate large amount of
information, ALASKA will not only feature a range of
options of storage methods an user can choose, but also
arange of readers and parsers, able to transform differ-
ent types of data as input into its internal logical rep-
resentation before being stored on disk. By doing this,
ALASKA can be considered a software enabling users
and programmers to store and manage their informa-
tion into different aspects without having to reach and
manipulate the data itself.

The choice of using JAVA as language for the plat-
form is based on several aspects. Even if the fact of
being run inside a virtual machine (VM) makes code
execution less efficient, JAVA has become more and
more popular and is today the best choice when one

wants to easily integrate libraries and other pieces of
code into another project (such as ALASKA does).
Also, a lot of storage systems are currently written
in JAVA, either come with a JAVA client API. In this
trade-off where a wide investigation of existing stor-
age systems (integrating many relevant systems) is op-
posed to a in-depth one (enhancing the efficiency of
ALASKA in certain circumstances), we have favored
the wide choice. This choice is also motivated by the
priority of our research group to have a fully func-
tional system able to compare and address heteroge-
neous sources, and not necessarily to create the fastest
system for RBDA.

3.2. Foundations of ALASKA

The ALASKA core (data structures and functions)
is written independently of any language used by stor-
age systems it will access. The advantage of using a
subset of First Order Logic to maintain this generic-
ity is to be able to access and retrieve data stored in
any system by the means of a logically sound common
data structure. Local encodings will be transformed
and translated into any other representation language
at any time. The operations that have to be imple-
mented are the following: (1) retrieve all the terms of
a fact, (2) retrieve all the atoms of a fact, (3) add a
new atom to a fact, (4) verify if a given atom is already
present in the facts.

Basically, the abstract layer of ALASKA is a logical
layer. Storage systems are used to store data that can
be seen as sets of logical atoms of form p(t1, .. ., tx).
Wrappers are used to encode this atom according to
the storage system paradigm. For instance, this atom
will be encoded as the line (¢1,...,%) in the table p
in a relational database, and as a directed hyperedge
labeled p whose incident nodes are the ones encoding
respectively ¢1,...,%; in a graph-based storage sys-
tem.

Whatever this storage system, ALASKA only reads
and writes atoms or sets of atoms. It is thus en-
tirely possible, for instance, to read the RDF triples
(s,p,0) stored in Jena (they will be seen as atoms
pred(s,p,0)), and write them in a SQL database,
where they will be stored as lines (s, 0) in the table p.

This abstract layer is not only used to read and write
in an uniform manner into various storage systems, but
also to process queries. A conjunctive query can also

Data Access over Large Semi-Structured Databases 9

be seen a set of atoms. ALASKA is able to transform
them into, for example, SQL or SPARQL queries, to
benefit from the native querying mechanism of spe-
cific storage systems. Moreover, a generic backtrack-
ing algorithm has been designed, that allows to process
these queries on any of these storage systems. This
backtrack relies upon elementary queries, that check
whether or not a grounded atom is stored in the system,
or enumerate all atoms that specialize a given one. This
backtrack does not incorporate powerful optimizations
and pruning features, since it is designed to process
simple queries. For more difficult queries, a constraint
solver, based upon Choco [21], relies upon the same
elementary queries (this constraint solver is currently
under evaluation).

Though ALASKA is designed as a generic platform
for RBDA (Rule-Based Data Access), it does not yet
integrate any ontological reasoning features. We have
designed this platform to be fully compatible with ex-
istential rules (also known as Datalog+/-) [11]. These
rules are powerful enough to encode the semantics of
RDF(S), or "lite" description logics families such as
DL-Lite or £L families. There is an ongoing work aim-
ing to integrate such families in ALASKA.

The platform architecture is multi-layered. Figure 3
represents its class diagram, highlighting the different
layers.

Application KRR
layer (1) operations

< inter|face > < interface > < inter face >

Ab IFact IAtom M ITerm ‘
stract
layer (2) ; " 4 4

// : \\ ’ Predicate H Atom M Term ‘
AN

Il
RDB
Connectors

GDB

TS
Connectors

Translation
Connectors

layer (3)

Data
layer (4)

Fig. 3. Class diagram representing the software architecture.

The first layer is (1) the application layer. Pro-
grams in this layer use data structures and call methods
defined in the (2) abstract layer. Under the abstract
layer, the (3) translation layer contains pieces of code
in which logical expressions are translated into the
languages of several storage systems. Those systems,
when connected to the rest of the architecture, com-

pose the (4) data layer. Performing higher level KRR
operations within this architecture consists of writing
programs and functions that use exclusively the for-
malism defined in the abstract layer. Once this is done,
every program becomes compatible to any storage sys-
tem connected to architecture.

3.3. Storage systems

By having several different stores connected to
ALASKA, one of our main contributions of the soft-
ware is to help make explicit different storage sys-
tem choices for the knowledge engineer in charge
of manipulating the data. More precisely, ALASKA
can encode a knowledge base expressed in the positive
existential subset of first order logic in different data
structures (graphs, relational databases, 3Stores etc.).
This allows for the transparent performance compari-
son of different storage systems.

The performance comparison is done according to
the (1) storage time relative to the size of knowledge
bases and (2) query time to a representative set of
queries. On a generic level the storage time need is due
to forward chaining rule mechanism when fast inser-
tion of new atoms generated is needed in an applica-
tion (described in [5]). We also needed to interact with
a server of ABES, the French Higher Education Bibli-
ographic Agency, for retrieving their RDF(S) data. The
server answer set is limited to a given size. When re-
trieving extra information we needed to know how fast
we could insert incoming data into the storage system.
Second, the query time is also important. The chosen
queries used for this study are due to their expressive-
ness and structure. Please note that this does not affect
the fact that we are in a semi-structured data scenario.
Indeed, the nature of ABES bibliographical data with
many information missing is fully semi-structured.
The generic querying allowing for comparison is done
across storage using a generic backtrack algorithm to
implement the backtracking algorithm for subsump-
tion. ALASKA also allows for direct querying using
native data structure engines (SQL, SPARQL).

In this work, we have given the priority to the
integration of embeddable storage systems within
ALASKA. By embeddable, we mean that the storage
system core is packed and is distributed inside the main
application using the store. This kind of system is op-
posed to the stores featuring the client-server architec-
ture, where the client connects to the server through a

10 Data Access over Large Semi-Structured Databases

port and asks for the server to perform the operations it
wants, while the server takes care of the physical man-
agement of the data requested. Client-server stores is
the most appropriated choice when one is interested in
deploying the content of the database to several clients
or throughout a network. Very often, an embeddable
system is a simple solution for an application in need
of simple and direct access (non-secured very often) to
the data. In this case, the system features an API with
the functions needed to manage the data directly with-
out calling a third-party server.

In some cases it may happen that a store is de-
ployed as a client-server architecture, but both client
and server are located on the same host. In this case,
no network communication is needed. Such solution
may bring an efficiency loss when interacting with the
storage system. This is the case for instance when one
executes multiple operations that can not be regrouped
over a database via a JDBC driver. The communica-
tion with the driver, then with the server before having
access to the information is responsible for slowdowns
when executing the program.

Next section will feature short descriptions of the
current embeddable stores that were connected to
ALASKA and were also used for the experimental as-
pects of this paper, featured in Sections 5.2 and 6.2.
This list is not final. Others systems were also con-
nected and tested but are not part of the work in this pa-
per. Also, there are also other stores in which the writ-
ing of a connector is needed in order to use it within
ALASKA. The stores featured in this work are the fol-
lowing:

— Relational databases: Sqlite
— Graph databases: Neo4J, DEX
— Triples stores: Jena TDB

3.3.1. Relational databases
?SQLite

Sqlite SQLite* is the embedded relational database
used within ALASKA. It is a very lightweight re-
lational database management system written in C.
SQLite is ACID-compliant, which means that it sup-
ports transactions natively. and implements most of the

SQL standard. The fact that it is an embedded store
has made SQLite be very popular in the world of mo-
bile and desktop applications. Plenty of different pro-
grams embed SQLite and use it for internal storage of
data and options (cf. Mozilla Firefox). This way, it dif-
fers itself from the "larger" relational database man-
agement systems, which are deployed on servers and
are very widely known for their use on business and
industrial applications (MySQL, Oracle, etc.). It was
possible to connect SQLite to ALASKA thanks to the
existence of a JDBC driver for SQLite. Such driver was
not provided by the SQLite developers themselves but
by a third-party project.

3.3.2. Graph databases
The following graph databases have been used
within ALASKA:

Neo4j

the graph database

Neo4J Neo4J? is a graph database, and is by far the
most popular graph database at the moment, at least in
the industrial world. Started as a small project, Neo4]J
has seen its popularity being multiplied by a huge fac-
tor in the recent years. It is now distributed under two
distinct versions: Neo Technologies offers now a com-
mercial version of the database along with support,
while the former open source version of the database
is still available via a "Community" version still main-
tained by the core developers of Neo and using the help
of a large community of developers that have embraced
the Neo4j project. It is fully implemented in JAVA. It
is an embedded store but it is absolutely possible to de-
ploy the store on a server dedicated to store data and
handle queries from distinct users. The internal struc-
ture of Neo4j is based on the Property Graph model. It
is also ACID-compliant, which means that it ensures
the properties defined by Codd for relational databases
(Atomicity Consistency Isolation Durability), that en-
sures the reliability of data transactions. For that, it
features a fully transactional persistence engine that
secure transactions and data manipulation throughout
time.

*dex

“http://www.sqlite.org/

Shttp://www.neodj.org/

Data Access over Large Semi-Structured Databases 11

DEX DEX® is a graph database management sys-
tem written in Java and C++. It was originated by
the research carried out at the DAMA-UPC research
group in Barcelona. Since 2010 is maintained, up-
graded and distributed by Sparsity Technologies. DEX
is licensed under a proprietary license of Sparsity
Technologies, but is free for academic use. It is an-
other graph database that has been seeing a strong suc-
cess both in academia and business world. DEX inter-
nal model of a graph is fully compatible with the Prop-
erty Graph. The internal representation of a graph in
DEX is very particular, as the graph is often partitioned
according to the graph structure, and also because of
the fact that information such as nodes and edges iden-
tifiers are regrouped and encoded into large bitmaps.
The major strength of DEX is the ability of having very
fast reading and writing operators at lower level able to
manipulate those large bitmaps with great efficiency.
At higher level, the system features all the operations
needed in order to enable the user to manage a graph
stored by DEX as any Property Graph. Unlike Neo4J,
DEX is not ACID-compliant.

3.3.3. Triples stores
The following triples stores have been used within
ALASKA:

A’?E‘?J‘fi:&"
“Yjena

Jena Jena’ is a Semantic Web framework for Java.
It provides an API to read data from RDF content, to
manage it, query it and then to write such content in
different formats. The project also provides an inter-
nal embedded Triple Store, which is called TDB. This
is the part of the framework we will be connecting to
ALASKA and thus comparing it to the other kind of
stores already connected to the platform. Other fea-
tures of the framework such as parsing and output will
not be used in ALASKA for now. This is due to one
of the major drawbacks of the Jena framework which
is that it keeps an internal representation of the work-
bench as an abstract model in main memory. Which
means for instance that parsing a very large knowledge
base located on disk could make the machine where
the parser is located to run out of memory very fast.
More details on those issues will be related on Section

Shttp://www.sparsity-technologies.com/dex
7http://jena.sourceforge.net/

5.2. Jena is an Open Source project, started by HP and
now maintained by the Apache Foundation.

3.4. ALASKA operations

As previously mentioned in Section 3, the genericity
of ALASKA relies directly on the use of the generic
methods specified in the abstract layer of the platform.
Writing programs, such as the backtracking algorithm
presented, that have no communication with the store
except using those methods ensure that the program
is automatically compatible to any store integrated to
ALASKA. Along with the addAtom function, that
stores an atom to disk and has been already presented
in the last section, this section will list and detail the
principal functions of that abstract layer with respect
to RBDA.

A short explanation with an example of how does
each of those functions is translated in each type of
storage system will also be given, as it differs from one
data model to another. The SQL statements given be-
low assume that the information has been stored to the
database with the storage procedure detailed in 5.1.1,
where all the column names are known (col; to col y).
Also, one should note that the triples store used within
ALASKA, Jena TDB, does provide internal functions
for triples search and filtering, thus making the use of
SPARQL statements for reading the knowledge base
not necessary.

3.4.1. Retrieving all the atoms with a given predicate

Retrieving all the atoms with a given predicate is
one of the functions that might be useful to a higher-
level application using ALASKA. In this example, we
show how to retrieve all the atoms with the p predicate
in different systems.

— In a graph database, the procedure of obtaining
all the atoms with a given predicate starts with
the search for all the predicate nodes with such
predicate. The function then asks the database
whether there is a node in the database with
the following information in its key-value table:
{type:predicate, label: p}. The function does not
return any atom if no predicates nodes are found.
If there is a match, however, the function first
reads the arity information of the predicate node.
We assume that the verification that the arities are
respected for all atoms in the knowledge base. For
each positive result, the program searches for all
the terms connected to the predicate node, from

12 Data Access over Large Semi-Structured Databases

1 to the arity of p. Atom objects, as defined in
ALASKA are created with the searches result.
The complexity of the operation is O(n,), n, be-
ing the number of predicate nodes of label p, for
a graph database without edge type indexing, and
O(n) otherwise, n being the size of the knowl-
edge base.

— In a relational database, obtaining all the atoms

with a certain predicate is made througha SELECT

statement. One should notice that such statement
is very straight-forward if the table is stored with
one table per predicate in the knowledge base.
The SQL statements are the following:

SELECT * FROM p (for the first algorithm pre-
sented).

SELECT * FROM tuples WHERE col,, = p (for
the second one).

In both cases, the result needs to be fetched and
returned as terms in ALASKA model. In the first
case, the rows returned will be read, and for each
term, the vars table will have to be accessed in
order to check if a returned term is variable or not.
Same thing for the second case, where the infor-
mation will be obtained by checking the prefix of
the term.

The complexity of the operation in a database
with an index on predicates is O(m), m being the
number of tuples in table p, O(n) otherwise.

3.4.2. Listing the terms connected to a given term
with a given predicate

Listing the terms connected to a given term requires,
besides a term, a predicate and two terms positions to
be passed as input. The first term position indicates the
position of the given term in the atom, while the sec-
ond one indicates which term of the atom in the knowl-
edge base to return. There is always the possibility of
returning the whole atom, however this is not our aim.
This function corresponds to the enumerate function
previously presented in Section 3. As example, we will
show how to retrieve all the terms connected to a, the
second term of the atom, via the p predicate that are at
first position in the atom. The function focus in the po-
sition of the term to retrieve and thus does not consider
the arity of the predicate (of course, the requested po-
sition must be lower or equal to the arity of the predi-
cate). In the case that p is a binary predicate, the func-
tion returns all the X such that p(X,a) exist in the
knowledge base. If for instance, p is a predicate of ar-

ity 4, it would return all the X such that p(X,a,?,?)
is in the knowledge base.

— In a graph database, the listing of all the X terms
connected to a via the p predicate, at first position
of the atom is computed by the following pro-
gram. It first selects the term node correspond-
ing to the a term. If it is found, the program will
now check if there is an edge of label 2 between
the selected node and a predicate node with label
p. For all results, the program will search for the
term connected to the predicate node by an edge
of label 1. The label will be memorized, inserted
into a Term object as defined by ALASKA, and
pushed to a collection. The list of candidates is
then returned by the program.

The complexity of the operation in a graph
database is O(|a,]), a, being the size of the
neighbourhood of a.

— In arelational database, finding such a list of can-
didates is made through a SELECT statement
where one element of the row is instantiated, and
only one is wanted in return. In order to find all
the X for the p(X, a) atom, the SQL statements
are the following (according to the manner the
knowledge base is stored in the database):
SELECT coly FROM p WHERE col; ="a’ (for
the first algorithm presented).

SELECT col; FROM tuples WHERE col,, = p
AND coly =’c : a’ (for the second one).

The result also needs to be fetched and returned
as terms in ALASKA model, and the procedure is
done exactly as for the previous operation.

The complexity of the operation in a database
with an index on predicates is O(m), m being the
number of tuples in table p, O(n) otherwise.

3.4.3. Verifying the existence of a given atom

Verifying the existence of a given atom corresponds
to the other elementary operation of the backtracking
algorithm for computing homomorphisms presented in
3. This function is also referred as the check function.
We will use the atom p(a, b, ¢) as example, where a, b
and c are constants.

— In a graph database, the procedure of verifying
if p(a,b,c) starts with the search for the pred-
icate node. The function first asks the database
whether there is a node in the database with
the following information in its key-value table:
{type:predicate, label: p, arity: 3}. For each pos-

Data Access over Large Semi-Structured Databases 13

itive result (as there can be more than one), the
program will now check if all the nodes corre-
sponding to the terms are correctly connected
to this predicate node. In the case of the atom
p(a, b, c), the program asks the database if there
is a node of type term and label a connected to
the predicate node, and if such edge has its la-
bel 1. If that is not the case, the predicate node is
discarded and the program tests another predicate
node. If yes, the program verifies the b and c term
nodes. If the edges between all the terms nodes
and the predicate node are correct, the atom is
found and the program returns a positive answer.
If no positive match is found for all the predicates
nodes tested, the atom was not found and the pro-
gram returns a negative answer. The complexity
of the operation in a database without an index on
the predicate is O(ny).

— In a relational database, the verification of an
atom is made through a SELECT statement
where all the elements of the query are instanti-
ated. For the p(a, b, ¢) atom, the SQL statements
are the following (according to the manner the
knowledge base is stored in the database):
SELECT * FROM p WHERE col; = ’a’ AND
coly =’b" AND colz =’¢’ (for the first algorithm
presented).

SELECT * FROM tuples WHERE col,, = p AND
coly =’c : @’ AND coly =’¢c : b AND col3 =
"¢ : ¢’ (for the second one).

In both cases, there is no need to fetch and read
the results obtained. Executing the SQL operation
will return an iterator, and the answer of whether
the atom is found or not can be given by verifying
if the iterator is empty or not.

The complexity of the operation in a database
with an index on predicates is O(m), m being the
number of tuples in table p, O(n) otherwise.

4. Illustrating Example

The translations detailed above will now be ex-
plained through the means of an example. In this ex-
ample, we will use a knowledge base represented by
an image. Such knowledge base contains a fact and
no ontology. The fact corresponds to the information
contained in the image. This information will first be
extracted (manually) from the image and represented
as a text. From the text, a knowledge base will be cre-

ated, and the information of the text will then be trans-
formed into logics. Once the logical expression of the
fact is obtained, it will be then transformed in order to
be stored in any of the storage methods supported by
ALASKA.

Fig. 4. Example: Scene cut from Tintin movie, featuring Tintin and
the Duponts.

Figure 4 is the image selected for the examples. It
presents a scene from the latest Tintin movie. The in-
formation we have extracted from the image is the fol-
lowing:

The picture features three men. Two of them are
twins. Both of them are wearing a suit. Both suits are
black. One of the twins is holding and reading a news-
paper. The other man is also reading the newspaper.
He wears a blue shirt.

From this paragraph, we will manually create the
knowledge bases for the example. Two different knowl-
edge bases, K7 and K5 will be created: one featuring
only predicates of arity 2, and the other one without
any restriction in the arities of predicates.

For K, the predicates of the example are: type,
twins, wears, reads, holds, color, all of arity 2. The
variables of the example are m1, m2 and m3 for the
three men, sl and s2 to represent the suits, and s3
for the shirt. n will represent the newspaper. Colors
and object types are represented as constants: Black,
Blue, Man, Suit, Shirt, Newspaper.

For K, the predicates (with their arities) of the ex-
ample are: man (1), suit (1), shirt (1), newspaper
(1), twins (2), wears (2), reads (2), holds (2), color
(2). The variables of the example are: m1, m2 and m3
for the three men. s1 and s2 represent the suits, s3 the

14 Data Access over Large Semi-Structured Databases

shirt and n will represent the newspaper. Now, only the
colors are represented by constants, Black and Blue.

Figure 5 summarizes the vocabularies of both knowl-
edge bases:

K
Predicates (6) Variables (6) Constants (5)
type ml Black
color m?2 Blue
twins m3 Man
wears sl Swit
reads s2 Newspaper
holds s3
n
K>
Predicates (11) Variables (7) Constants (2)
man (1) ml Black
suit (1) m2 Blue
hat (1) m3
shirt (1) sl
newspaper (1) s2
same-as (2) s3
twins (2) n
wears (2)
reads (2)
holds (2)
color (2)

Fig. 5. Listing of the K1 and K> vocabularies.

The logical expression of the fact in K is:

Iml,m2,m3, sl, s2,s3,n (type(sl, Suit) A type(s2, Suit)

A type(s3, Shirt) A type(hl, Hat) A type(h2, Hat)
Atype(ml, Man) A type(m2, Man) A type(m3,Man)

A type(n, Newspaper) A twins(ml, m2) Awears(ml, sl)

Awears(ml, hl) ANwears(m2, s2) Awears(m2, h2)
A wears(m3, s3) A reads(m2,n) A reads(m3,n) A
holds(m2,n) A color(sl, Black) A color(s2, Black)
A color(s3, Blue)

While the logical expression of the fact in K is:

Im1, m2,m3, s1,s2, s3,n (man(ml) A man(m2)
A man(m3) A suit(sl) A suit(s2) A shirt(s3) A
newspaper(n) A twins(ml,m2) A wears(ml, sl)
Awears(ml, hl) Awears(m2, s2) Awears(m2, h2)
A wears(m3, s3) A reads(m2,n) A reads(m3,n) A
holds(m2,n) A color(sl, Black) A color(s2, Black)
A color(s3, Blue)

ALASKA is now able to store such information in
any storage system connected. The transformations
used within ALASKA are explained in Section 5.1. In
the case of a relational database, different schemas are

possible as the user has to choose if he wants to have
one table per predicate, or one single table (when it is
possible), and also how to keep track of which terms
are variables or not. In this example, the atoms of K3
will all be stored in one single table, as K; only fea-
tures predicates of arity 2, and the terms will be re-
named according to the fact that they are constants or
variables. K5 will be stored in a database with one ta-
ble per predicate, with an extra table containing the
list of variables in the knowledge base. One should not
forget that the schema definition and the tuples inser-
tion is still independent of the chosen RDBMS.

triples
colp coly cola
type visl c:Suit
type v:s2 c:Suit
type v:s3 c:Shirt
type v:ml c:Man
type v:m2 c:Man
type v:m3 c:Man
type v:in c:Newspaper
twins | v:ml v:m2
wears | v:ml visl
wears | v:m2 v:s2
wears | v:m3 v:s3
reads | v:m2 vin
reads | v:m3 v:in
holds | v:m2 vin
color visl c:Black
color v:is2 c:Black
color v:s3 c:Blue

Fig. 6. Storing K1 in the relational database.

Figures 6 and 7 show how K and K5 will be stored
in a relational database. The storage process is detailed
in Section 5.1.

In the case of graph databases, the transformation is
not unique and straight-forward as it is for relational
databases, it depends on the data model of the cho-
sen store. As seen previously, in this work we will
only focus on the graph databases using the Property
Graph model. For K, which has only predicates of
arity 2, the transformation is straight-forward by rep-
resenting the terms of the knowledge base by nodes
and the atoms of the logical formula by edges be-
tween the nodes of the terms of each atom. Ko will
need, however, a different transformation as it contains
predicates with an arity different than 2. In this case,

Data Access over Large Semi-Structured Databases 15

man suit
coly shirt newspaper
colq
ml 1 coly coly
m2 s s3 n
s2
m3
wears
- reads
twins colq coly
coli colo
coly | cola ml sl ~ o
ml m2 m2 s2 m3 N
m3 s3
vars
coly
color ml
colq cola holds m2
sl Black coly | cola m3
s2 Black m2 n sl
s3 Blue s2
s3
n

Fig. 7. Storing K in the relational database.

ALASKA will use the transformation that represent
the atoms predicates by nodes, connecting each term
node to its predicate node and precising the position of
such term in the atom.

Fig. 8. Storing K1 in a graph database using the Property Graph
Model.

Figures 8 and 9 illustrate K; and K5 properly en-
coded in the Property Graph model, using the two
distinct transformations, ready for storage in a graph
database.

ml twins

L color , Black , color | L_color_, Bluc

cE—0—Pp

Fig. 9. Storing K> in a graph database using the Property Graph
Model.

5. Storage
5.1. Knowledge base storage

In this section, we explain how a knowledge base
is stored in each of the storage systems connected to
ALASKA.

5.1.1. Relational databases

Storing facts in a relational database needs to be
performed in two distinct steps. First, the relational
database schema has to be defined according to the vo-
cabulary of the knowledge base. The information con-
cerning the individuals in the knowledge base can only
be inserted once this is done. According to the arities
of the predicates given in the vocabulary, there are two
distinct manners to build the schema of the relational
database: in the classic case, one relation is created
for each predicate in the vocabulary. The second case
occurs only when all the predicates in the vocabulary
share the same arity (cf. RDF [19]). In this case, it is
possible to define one single relation and to include the
whole knowledge content in this relation. Such encod-
ing is very similar to the ones used for Triples Stores

[20].

One should not forget that there are no variables in
a relational database. Indeed, variables are frozen into
fresh constants before being inserted into a table. In
order not to lose such information upon storing a fact,
two alternatives exist: in the first method, a prefix is
added to the label of every term of the database. A
term ¢ would then be renamed to c:t if it is a constant
or v:t if it is a variable. In the second case, no changes
are made to the label of the terms, but an extra unary
relation, R, is created. Tuples containing the label
of the variables in the database would then be added

16 Data Access over Large Semi-Structured Databases

to the relation. Both alternatives have advantages and
drawbacks: the first one does not alter the schema of
the database in any case, but does rename every sin-
gle term in it. On the other hand the second one does
not rename any term of the database but does add a
relation to the database schema. By adding a new ta-
ble containing the variables information, a SELECT
call is then needed to answer whether a term is a con-
stant or variable in the second case, while it can be
directly answered by reading the term’s label if the
first method is used. For that reason, the first method
will be preferred to the second one for our experimen-
tal processes. However, both solutions are available in
ALASKA and the platform does leave the choice of
use to the user, according to what he seems more ap-
propriate.

Four different manners for storing a knowledge base
in a relational database are possible, combining the
two different options to keep track of the variables and
the two different options according to the number of
tables in the database. Below, we will present the al-
gorithms of two of those four manners, in a way that
every technical option is covered.

Algorithm 3: KB to Relational Database algorithm

Input: K a knowledge base
OQutput: a boolean value
1 begin
2 create table vars (coly);
foreach Atoma in A do
p —— a.predicate;
if fexists table with label p then
L n e p.arity;

create table p (coly,..,coly);

e

foreach Termt in a.termsdo
L ift is a variable then insert into vars (t);

L N

10 insertinto p (t1,...,.tn);

11 return true;
1z end

Algorithms 5.1.1, 5.1.1 are used when storing a fact
in a relational database. In the first algorithm, one ta-
ble is created in the database for each predicate in the
knowledge base, while the second one is only for cases
when all the predicates share the same arity. Also, in
the first algorithm, an extra table named vars with a
single column is created at the beginning in order to
store variables. That does not happen in the second, as
the system keeps track of the variables by renaming
the terms inside the tables before insertion.

The relational database management system used
within ALASKA is SQLite. Versions 3.0 or higher of

Algorithm 4: KB to Relational Database algorithm (v2)
Input: K a knowledge base,n the arity of all predicates of K
Qutput: a boolean value

1 begin
create table tuples [L‘ulp,n:uh AAAAA coly,); foreach Atoma in A do
foreach Termt in a.terms do
ift is a variable then t + vit;
else t ¢ c:t;

insertinto tuples (a.predicate.ty,...t);

2
a
4
5
6
7 return true;
8

end

the RDBMS use a separate B+tree per table and a B-
tree per index in the database. One can see that the
algorithms defined above does not define any particu-
lar index and also does not define any primary or for-
eign keys. Indeed, the behaviour of ALASKA is not to
make any supposition about the data that it is given for
storage/management. Based on this idea, indexing the
knowledge base in order to ensure a better efficiency
upon reading stage would require to index all the ta-
bles by all its attributes, which would have a signifi-
cant additional cost in space. As for tables, the fact that
they do not have a primary key suggests that the in-
formation is stored in the B+tree using the rowid, an
identifier for each row of a table kept by the system. A
B+tree is a variant of the B-tree in which the sequen-
tial access has been improved by the use of pointers
between leaves nodes of the tree.

5.1.2. Graph databases

Storing a knowledge base into a Property Graph-
based database can also be done in two different man-
ners, and as for relational database, the two manners
differ according to the arities of the predicates in the
knowledge base. In the first case, when all the predi-
cates in the knowledge base are of arity 2, the transfor-
mation is straight-forward, with a node for each term,
and an edge for each atom, connecting the nodes corre-
sponding to the terms position in the atom. In the sec-
ond case, it is needed to encode the bipartite graph with
different nodes for terms and predicates corresponding
to the knowledge base fact. The bipartite graph, being
only composed of binary relations, is then easily stored
to the database.

In both cases, we have chosen to have limited use of
the key-value tables associated to the terms and edges
of the graph. For terms, the term label and the infor-
mation of whether it is a variable or not is stored in the
table. In the case of edges, the label is the only infor-
mation stored in the table.

Data Access over Large Semi-Structured Databases 17

Algorithm 5: KB to Property Graph algorithm
Input: K a knowledge base
Output: a boolean value

1 begin

2 g «— empty graph;

3 foreach Atoma in A do

4 if exists node with label a.terms|0].label then

5 L head +— node.id;

6 else

7 create new node with id newld;

8 newld.put(label,a.terms[0].label);

9 newld.put(variable,a.terms[0].isVariable);
10 head «— newld;

1 if exists node with label a.terms[1].label then

12 L tail «— node.id;

13 else

14 create new node with id newld;

15 newld.putilabel,a.terms[1].label);

16 newld.put(variable,a.terms[1].isVariable);
17 tail «— newld;

18 create new edge with id edgeld from head to tail;

| edgeld.put{label,a.predicate);

19 return true;
20 end

Fig. 10. KB to Property Graph algorithm

Algorithm 10 displays the algorithm for storing a
fact in a graph database for the first case, when all the
predicates are binary. Algorithm 5.1.2 displays the ver-
sion for storing any knowledge base into a property
graph-based database.

Algorithm 6: KB to Property Graph algorithm (v2)
Input: K a knowledge base
Output: a boolean value

1 begin
g +— empty graph;

2
3 foreach Atom a in A do

1 create new node with id predId;

5 predld.put(label,a.predicate);

6 predld.put(arity,a.predicate.arity);
7 predld.put(type,predicate);

8

9

foreach Termt in a.terms do
if exists node with label t.label then

10 L nodeld «— node.id;
1 else
12 create new node with id newld;
13 newld.put(label,t.label);
14 newld.put(variable t.isVariable);
15 newld.put(type, term);
16 nodeld «— newld;
17 create new edge with id edgeld from nodeld to predld;

edgeld.put(label,pos);

18 return true;
19 end

In the first one, the graph creation process is very
simple. For each atom of the fact, the algorithm creates
an edge from the node corresponding to the first term
of the atom to the node corresponding to the second
one. The algorithm verifies first if both nodes already
exist in the graph. If that is not the case, such nodes are
created prior to the edge creation.

In the second case, the graph representing the
knowledge base will feature two types of nodes: terms

and predicates. For each atom of the fact, a new pred-
icate node will be created. Then, for each term of the
atom, an edge from the node corresponding to the term
to the newly created predicate node is created. The la-
bel of such node corresponds to the position of the term
in the atom. Once again, terms nodes are verified prior
to the edge creation and created if needed. In this case,
the arity of the predicate is introduced in the key-value
table of each predicate node.

Two graph databases are currently used within
ALASKA, Neo4J and DEX. Neo4]J storage model is
basically build upon pointers and linked lists. Every
node has an ID in Neo4J, and the database provides a
simple mapping from IDs to nodes. An edge is inter-
nally represented as a linked list, containing the IDs
of the starting and ending nodes (as every edge in the
graph database is binary), and the relationship type of
the edge (which corresponds to our predicates). The
list contains then 5 pointers: a pointer to the previous
edge leading from the start node, a pointer to the next
edge leading from the start node, a pointer to the pre-
vious edge leading to the end node, a pointer to the
next edge leading to the end node, and a pointer to the
first pair (key,value) in the key-value table of the edge.
This table is implemented through a double-linked list.
Searching for a node or an edge in Neo4j is done by
a search algorithm that navigates through the pointers
to find the requested information. As other databases,
Neo4] supports external indices, such as B-trees and
text-based indices for edges. Adding those indices to
the core of the database has not been the priority of the
developers, however.

As for DEX, the internal storage of a graph is the
following. The graph is split into a combination of
links and bitmaps. Every object in the graph (node or
edge) has an unique ID in the database. The key-value
table of nodes and edges is represented via attributes
and values. A link is an internal data structure in DEX
that is the combination of a map with multiple bitmaps.
It ensures a bidirectional association between values
and the IDs. Given a value, the link allows for exam-
ple obtaining a bitmap containing the IDs of all ob-
jects containing such value. A graph in DEX features a
bitmap that indexes nodes and edges by their type. As
all attributes in the key-value stores must be declared
prior to added to the graph, those are also indexed via
a link structure. Two more links are used in order to
index the incoming and outgoing edges of each node.
No details on the efficiency of the bitmap compression

18 Data Access over Large Semi-Structured Databases

and decompression have been given by the DEX de-
veloping staff.

5.1.3. Triples Stores

Storing a knowledge base in a triples store is very
similar to performing it in a property graph-based
database, as both only support binary relations na-
tively. As for graph databases, a different encoding
must be introduced in order to store knowledge bases
with predicates with arities bigger than 2. No major
differences should be highlighted, excepted from the
fact that as terms are only designed by URIs in a triples
stores, the information of the arity of a predicate must
be entered to the store by the means of a new triple
containing the arity of a given predicate.

Algorithm 5.1.3 displays how a knowledge base
with no restrictions on the arities of the predicates is
stored in a triple store.

Algorithm 7: KB to Triples Store algorithm
Input: K a knowledge base
Output: a boolean value

1 begin
g ¢— empty store;
foreach Atom a in A do
foreach Term t in a.terms do
pos «— the position of tin a;
L create new triple (t, alaska:pos, a.predicate);

create new triple (a.predicate, alaska: arity, a.predicate.arity);

return true;

2
3
4
5
6
7
8
9 end

The triples store used within ALASKA is Jena TDB.
A TDB database corresponds to a single folder on disk.
The database is composed of a table for nodes, indexes
on the triples, and a table for prefixes. The table of
nodes stores all the RDF terms in the database. As each
RDF term is internally represented by an ID, the node
table provides two mappings in order to easily obtain
the ID from a node, or a node from an ID. Such map-
pings are particularly helpful on storage and query-
ing processes. The triples of the database are indexed
by subject, property and objects. Each of these indices
contains all the information about all the triples. If this
may be helpful when processing queries, this is also
the cause of a certain redundancy on the data stored on
disk, using more disk space than other stores. Indices
and mappings are implemented with a custom imple-
mentation of the B+tree. Such implementation is very
similar to relational databases, with the advantage of
having a native index on terms and atoms.

5.2. Experimental Work

Storing information on disk may come into play in
two different steps of RBDA. The first is when one has
to load a knowledge base and decides to store it locally
in a particular system. The second is when a rule ap-
plication process is launched and the process generates
brand new information to be added to the current fact.
While in the first case speed is not that relevant, as it
could be considered a pre-processing step and often is
only needed once, it is crucial for the second. In this
section we present in detail our experimental work on
storage efficiency.

5.2.1. Workflow

Let us consider the workflow used by ALASKA in
order to store new facts. The fact will first be parsed
in the application layer (1) into the set of atoms cor-
responding to its logical formula, as defined in the ab-
stract layer (2). Then, from this set, a connector located
in layer (3) translates the fact into a specific represen-
tation language in (4). The set of atoms obtained from
the fact will be translated into different data models.

In this workflow, the RDF file is given as input to
the Input Manager in the application (layer 1). Infor-
mation is then forwarded according to the selected out-
put system. The fact from file is first transformed in
an IFact object (layer 2). It is then translated (layer
3) to the language of the system of choice (graph, re-
lational database, or triple store) before being stored
onto disk (layer 4). This workflow is visualised in Fig-
ure 11 where a RDF file is stored into different storage
systems.

|
l RDF File M Input Manager M RDF Parser ‘

IFact Manager

Layer (1)

Layer (2)

TFact to RDB
Translation

TFact to Triples
Translation

IFact to Graph

Translation Layer (3)

Layer (4)

Fig. 11. Workflow for storing a knowledge base in RDF using
ALASKA.

5.2.2. Input Data

In order to perform our experimental work, knowl-
edge bases had to be selected for our protocol. The
knowledge base we have used has been introduced

Data Access over Large Semi-Structured Databases 19

by the SP2B project [24]. The SP2B project supplies
a generator that creates arbitrarily large knowledge
bases maintaining a similar structure to the original
DBLP?® knowledge base, which they have studied. The
argument of the project members for choosing DBLP
is that it reflects the social network character of the
Semantic Web, where many small pieces of informa-
tion are put together, creating a global network of data.
The generated knowledge bases are in RDF format
(N-TRIPLES format), although our testing protocol
within the ALASKA platform uses logical expressions
as input to the system. Using those generated knowl-
edge bases then require an initial translation from RDF
into first order logic expressions. The use of the SP2B
knowledge bases is relevant to this work since:

— logical knowledge bases are not easily available
throughout the web.

— this kind of knowledge bases seem to be very
similar to all the emergent knowledge bases that
have appeared with Social Networks and the Se-
mantic Web, in which it would be highly recom-
mended to perform RBDA.

5.2.3. Challenges

Storing large knowledge bases using a straight-
forward implementation of the testing protocol has
highlighted different issues. We have distinguished
three different issues that have appeared during the
tests: (1) memory consumption at parsing level, (2) use
of transactions, and (3) garbage collecting time.

Memory consumption at parsing level depends di-
rectly of the parsing method chosen. A few experi-
ences have shown that some parsers/methods use more
memory resources than others while accessing the in-
formation of a knowledge base and transforming it into
logic. We have initially chosen the Jena framework
parsing functions in order to parse RDF content, but
we have identified that it loads almost the whole input
file in memory at reading step. We have thus replaced
the RDF parser to a different one, which works only
with N-Triples encoded RDF files, that does not store
the facts in main memory but feeds them one at a time
to the ALASKA.

Garbage collecting (GC) issues have also appeared
as soon as preliminary tests were performed. Several
times, storing not very large knowledge bases resulted

8http://www.informatik.uni-trier.de/ ley/db/

in a GC overhead limit exception thrown by the Java
Virtual Machine. The exception indicates that at least
98% of the running time of a program is consumed by
garbage collecting.

Managing transactions also became necessary in
order to reduce the loss of efficiency obtained in the
preliminary tests. As we work with different storage
methods, their transaction management systems also
differ. While it is needed to manage transactions man-
ually in certain systems, transactions are enabled by
default in others, thus needing to be explicitly handled
in order to obtain success. Tests have shown that trying
to store all the atoms of a knowledge base at once in
a single transaction was effective up to a certain point,
and inefficient beyond this point as the transaction con-
tent is kept in memory until the transaction is commit-
ted or discarded. In order to avoid too much memory
consumption, we have decided to run multiple transac-
tions while storing a large knowledge base on disk.

In order to address both transaction and garbage
collection issues, a buffer of atoms was set up. The
buffer is filled with freshly parsed atoms at parsing
level. At the beginning, the buffer is full and then ev-
ery parsed atom is pushed into the buffer before being
stored. Once the buffer is full, parsing is interrupted
and the atoms in the buffer are sent to the storage sys-
tem for being stored. Once all atoms are stored, instead
of cleaning the buffer by destroying all the objects, the
first atom of the buffer is moved from the buffer into
a stack of atoms to be recycled. Different stacks are
created for each arity of predicates. In order to replace
this atom, a new atom is only created if there is no
atom to be recycled from the stack of the arity of the
parsed atom. If there is an atom to be recycled, then
it is then put back in the buffer, with its predicate and
terms changed by attribute setters. The buffer is then
filled once again, until it is full and the atoms in it are
sent to storage system.

5.2.4. Contribution

In order to store large knowledge bases on disk us-
ing a single machine, preventing the issues described
above, we have implemented the storage algorithm of
Figure 5.2.4. The algorithm is run by an InputManager
class within ALASKA that handles all the storage calls
from users.

Algorithm 5.2.4 illustrates the manner the Input
Manager handles a stream of atoms received as input.
Other parameters passed as input are the fact where

20 Data Access over Large Semi-Structured Databases

Algorithm 8: Input Manager storage method
Input: S a stream of atoms,f an IFact,bSize an integer
Output: a boolean value

1 begin

2 buffer «— an empty array of size bSize;

3 counter «—0;

1 foreach Atom a in S do

5 if counter =bSize then

6 f.addAtoms(buffer,null);

7 counter «— 0;

8 buffer[counter] = a;

9 counter++;

10 f.addAtoms(buffer,counter); return true;

1 end

the stream of atoms must be stored, and an integer
representing the size of the buffer of atoms that will
be instantiated. The buffer along with a counter are
created at the beginning of the procedure. The pro-
cedure is very simple, as it puts the atoms of the
stream in the buffer until its capacity is reached. The
buffer, full of atoms is then sent to the storage sys-
tem that manages the fact f. This is made through the
addAtoms method, implemented in each store con-
nected to ALASKA.

The solution of using a buffer has been chosen af-
ter solutions storing atoms one-by-one has shown to be
very inefficient, and all-at-once solutions would load
the whole transaction content in memory, going be-
yond the limit of memory usage for such process.

5.2.5. Results

As previously mentioned, the SP2B project supplies
a generator that creates knowledge bases with a cer-
tain parametrised quantity of triples maintaining a sim-
ilar structure to the original DBLP knowledge base.
The generator was used to create knowledge bases of
increasing sizes (5 million triples, 20, 40, 75 and re-
spectively 100). Each of the knowledge bases has been
stored in Jena, DEX, SQLite and Neo4J. In Figure 12
we show the time for storing the knowledge bases and
their respective sizes on disk.

The user can see that the behaviour of Jena is worse
than the other storage systems. Let us also note that
DEX behaves much better than Neo4J and this is due
to the fact that ACID transactions are not required for
DEX (while being respected by Neo4J). Second, the
size of storage is also available to the user. One can see,
for instance, that the size of the knowledge base stored
in DEX and Neo4] is well under the size of initial RDF
file. However, the size of the file stored in Jena is big-
ger than the one stored in SQLite and bigger than the
initial size of the RDF file.

104 Stores

15 *

Time (s)

20 30 40 50 60 70 80 90 100
Size (Millions of triples)

—— Jena TDB —— DEX —— Sqlite —— Neo4J

Fig. 12. Storage time and KB sizes in different systems

Size of the stored knowledge bases
System 5M 20M 40M 75M 100M
DEX 55 Mb 214.2 Mb 421.7 Mb 785.1 Mb 1.0 Gb
Neo4] 157.4 Mb 629.5 Mb 1.2Gb 2.3Gb 3.1Gb
Sgqlite 767.4 Mb 2.9Gb 6.0 Gb 11.6 Gb 15.5Gb
Jena TDB 1.1 Gb 3.9 Gb 7.5Gb 13.9 Gb 18.1 Gb
RDEF File 533.2Mb 2.1 Gb 4.2 Gb 7.8 Gb 10.4 Gb

Fig. 13. Storage time and KB sizes in different systems

The storage tests were performed on a dedicated
server with the following characteristics: 64-bit Quad-
core AMD Opteron 8384 with 512 Kb of cache size
and 64 Gb of RAM. Please note that this second server
is shared between multiple processes, therefore the
tests will only use part of all this computing power. The
memory size of the JAVA Virtual Machines created for
executing the testing processes was of 4Gb.

6. Querying

Before performing any querying activity, we also
need to define the purpose of using ALASKA as a
querying interface instead of using any native solution.
We have agreed that ALASKA would help us to de-
fine which are the most efficient solution for query-
ing a large knowledge base, by comparing systems and
querying engines when answering conjunctive queries.
Two different factors come into play when performing
the queries: memory consumption and execution time.
In the test we will present, we are only considering ex-
ecution time to define efficiency. We acknowledge the
fact that memory consumption is certainly important,
especially when performing complex queries over very
large bases stored in secondary memory, but we do not
consider this aspect in our tests. Please note that this is
configurable and possible to control within ALASKA.
The reason is twofold. First handling memory con-
sumption for each system (and optimizing it) is not
part of our comparing tests (or of the generic function-

Data Access over Large Semi-Structured Databases 21

ality offered by ALASKA). Second, intuitively, com-
paring a generic algorithm over different storage sys-
tems (and thus calling the elementary operations of
each) should not lead to important differences between
the systems at hand.

The generic backtrack algorithm used in ALASKA
takes a query and for each term explores the candi-
date answers in the KB. The backtrack is due to the
fact that the terms have to be correctly included in
the right atoms (i.e. by the right predicates). The algo-
rithm relies on the state of the “level" and “goingUp"
variables in order to proceed to the exploration of the
knowledge base. The algorithm starts by ordering the
terms of the query. The algorithm does not require any
particular order to work properly, but ordering strate-
gies can enhance the efficiency of the algorithm. In the
tests performed, our ordering was very simple: it con-
sisted in sorting the terms list by letting the constant
terms ahead of the variable terms. Inside the constant
and variable parts of the list, the terms are ordered as
they appear in the query. More elaborate orderings can
be implemented as it relies on a custom function for
ordering terms. level corresponds to the index of the
term the algorithm is trying to match, while goingUp
indicates if the algorithm continues its exploration, has
reached a dead end or has found a match for all the
terms. In the later case, a successful answer to the
query has been found.

Algorithm 2: Backtrack algorithm

Input: A conjunctive query Q, and a fact F
Output: lists all the answers of Q in F

1 begin

2 Q order(Q);

3 level «—0;

4 goingUp «— false;

5 ifH = ¢ then

@ L answerFound(Q);

7 else

a while level # 0 do

9 iflevel =|Q| then

10 answerFound(Q);

1 goinglp «— true;

12 else currentTerm = Q|level];
13 if goingUp then

14 if otherCandidatescurrentTerm,F) then
15 goingUp «-— false;
16 level + level + 1;

17 else level « level - 1;

18 else

19 if findCandidates(currentTerm,F) then
20 L level + level + 1;
21 else
22 goingUp = true;
23 level «— level - 1;

24 end

6.1. Abstract Procedures

As the mechanism of the algorithm is quite sim-
ple, its efficiency is then very tightly linked to the
efficiency of the sub-functions findCandidates and
otherCandidates. findCandidates is called once
the algorithm goes a level below and has to search all
the terms in the knowledge base that can be a match
for a given term of the query. The second one is called
every time the algorithm goes back up to a level pre-
viously visited, modifying the current matching of a
term to a different candidate, and going back down to
search for new answers. If there are not any new can-
didates for such term of the query, the function then
returns false, and the algorithm goes back up again.
The algorithm stops once there are no candidates left
for the first term of the query, which means that there
is nothing left to explore.

Considering that the otherCandidates function
only modifies a value of the matchings set currently
built, and that all the matching candidates for a given

term are previously computed using the findCandidates

function, the otherCandidates function has a very
small impact to the time and memory usage of the al-
gorithm. Technically, it only consists of moving for-
ward an iterator, thus the efficiency of the algorithm re-
lies mainly on the efficiency of the findCandidates
function. We will explain in the following how this
function can be quite costly in certain cases.

Indeed the number of calls to its sub-functions
(enumerate and check) depends on the number of
times a term appears in the query. enumerate and
check may be considered as the elementary operations
of the backtrack algorithm. When called, enumerate
returns a list containing all the terms in the knowl-
edge base that has exactly for neighbours the match-
ings of the neighbours of a given term of the query.
While the check function asks the system managing
the knowledge base whether a given atom can be found
in the base or not. The number of calls to the check
function depends directly on the quantity of results
returned by the calls to the enumerate function. As
the enumerate function computes the potential candi-
dates for a match, the check function verifies if a given
candidate has to be maintained or discarded as a can-
didate. The number of calls to both functions generally
increases as the size of the knowledge base also grows.

It is very important to state that during the execu-
tion of the backtracking algorithm the entire commu-

22 Data Access over Large Semi-Structured Databases

nication between the algorithm and the storage sys-
tem in which the knowledge base is stored is per-
formed through the enumerate and check function
calls. No external communication between them is al-
lowed, and that is what maintains the complete gener-
icity of the algorithm. It is then mandatory to imple-
ment both functions in every system one wants to inte-
grate to ALASKA. Querying the knowledge base with
the generic algorithm is impossible if such implemen-
tation is not performed. Those are however not the only
functions required for every storage system integrated
to the platform. The enumerate and check functions
require knowing from a knowledge base whether a
term exists in the base or not, whether a predicate ex-
ists in the base or not, and whether two given terms
belong to an atom with a given predicate or not. These
are what we call the consulting, or reading functions
required by ALASKA. Along with the writing func-
tions needed to store a knowledge base, these func-
tions compose the core functions that ALASKA needs
to manage a knowledge base stored in a given storage
system. More details about those functions are given
in Section 3.4.

For each query, according to its structure and the
degree of the terms of the query, the number of calls
to enumerate and check will differ. As the efficiency
of the algorithm relies on the efficiency of those two
functions, we have added intermediary timers in order
to enable ALASKA to measure the time the algorithm
spends in each of those calls. This way, one performing
a query is not only allowed to retrieve the total time
of the execution of a query, but also how much of that
time was spent enumerating candidates or retrieving
atoms in the knowledge base.

6.2. Experimental Work

Performing queries is at the heart of the RBDA
problem. It is needed when no ontological content is
present to enrich facts, and also present in both meth-
ods of rule application we have explained in Section
2.1. Unlike storage, querying efficiency does not rely
only on the storage systems, but in a triplet com-
posed of storage systems, querying method and also
the queries chosen. After a first battery of tests, in
which neat conclusions were difficult to obtain, we
have focused in the adaptation of our problem into a
CSP problem and the integration of a CSP solving pro-
gram in order to address conjunctive query answering.

In this section we present in detail our experimental
work on querying.

6.2.1. Workflow

Querying tests within our architecture takes place as
indicated in Figure 14. Queries entered in ALASKA
are processed and handled by the generic algorithms
present in ALASKA, or translated to different query-
ing languages according to the user’s choice. As dis-
cussed in 2.3 and seen in the picture, a fact stored in a
property graph-based database can only be queried in
ALASKA using a generic querying algorithm. In ad-
dition to the backtracking algorithm described in Sec-
tion 6, a CSP solving algorithm was also designed for
answering conjunctive queries. More details about this
solution are given in Section 7. Facts stored in a rela-
tional database can of course still be queried via the
native SQL interface of the database, and fact stored
in a triples store can also be queried using the native
SPARQL interface of the store.

Abstract
Architecture

Backtracking
Algorithm

CSP Solver @ — SQL

Q — SPARQL

F stored in
Graph DB

F stored in

F stored in
Triple Store lati

DB

Fig. 14. ALASKA storage and querying workflow.

6.2.2. Results

We have tested all the systems previously listed in
Section 3.3 with the generic backtracking algorithm
detailed in Section 6 as well as the native query en-
gines when available for each system. The knowledge
bases used for the tests were generated using the same
data generator already used for the storage tests. The
queries used for the tests are the following:

1. type (X,Article)
Returns all the elements which are of type article.

2. creator (X, PaulErdoes) A creator(X,Y)
Returns the persons and the papers that were written with
Paul Erdoes.

3. type (X,Article) A journal (X, Journall-1940)
AN creator (X,Y)

Data Access over Large Semi-Structured Databases 23

Returns the creators of all the elements that are articles and
were published in Journal 1 (1940).

4. type (X,Article) A creator (X, PaulErdoes)
Returns all the articles created by Paul Erdoes.

80 A

60 | o |

Time (ms)

I I
10 20 30 40 50 60 70 80 90 100
Size (Thousand of triples)
——Jena(BT) ——DEX(BT) —— Sqlite(BT)
—=— Neo4J(BT) —— Sqlite(SQL)

Fig. 15. Querying efficiency results for query 1.

Q

60 - *

Time (ms)

Size (Thousand of triples)
—<—Jena(BT) —<— DEX(BT)
—— Neo4J(BT) —— Sqlite(SQL)

Fig. 16. Querying efficiency results for query 2.

400 T

300 - 2 *

Time (ms)
ho
S
S
T
|

I
10 20 30 40 50 60 70 80 90 100
Size (Thousand of triples)
——Jena(BT) —— DEX(BT)
— Neo4J(BT) —— Sqlite(SQL)

Fig. 17. Querying efficiency results for query 3.
The queries in the set were slightly inspired from the

queries featured in the SP2B project [24]. However,
the queries featured in the paper were designed with

Q4

300 | -

200 - b

Time (ms)

10 20 30 40 50 60 70 80 90 100
Size (Thousand of triples)
——Jena(BT) —— DEX(BT)
—— Neo4J(BT) —— Sqlite(SQL)

Fig. 18. Querying efficiency results for query 4.

the purpose of covering all the features of the SPARQL
query language, which is not our goal here. As we only
deal with conjunctive queries, we have removed and
also modified some queries in the set in order to have a
set of queries that would be relevant for our purposes.
We also state that such queries could have been exe-
cuted in real-use case such as querying for articles and
their properties in a bibliography management system
such as DBLP. The queries were executed over knowl-
edge bases of 5, 25, 50, 75, and 100 thousand triples.

The results presented above have shown the be-
haviour of the different storage systems integrated to
ALASKA against a set of queries manually input. We
notice that systems behave differently against different
queries. This is due to the fact that each query differs
from the others according to its structure, number of
calls to the elementary operations (enumerate,check)
and number of answers in the knowledge base.

We observe in the results that Jena TDB has shown
to be efficient in all cases. For the only query it has
not been the fastest system to answer, its response time
was still very close from the fastest ones. We note that
the querying efficiency of Jena TDB is linked to the
efficiency of the index structures the system automat-
ically builds at storage. Improving its querying effi-
ciency by increasing the disk usage might be a good
solution for an use case in which disk usage is not a
constraint.

We also observe that independently of the internal
data structure, both graph databases have almost the
same efficiency for all the queries. Using a SQL en-
gine has shown to be less efficient than using a back-
tracking algorithm for Q2. In this query, the number of
answers is fixed, as no new papers from Paul Erdoes
appear after a certain time. As the backtracking algo-

24 Data Access over Large Semi-Structured Databases

rithm over a graph database explores the neighbour-
hood of the Paul Erdoes term, the answering time of
the query in this case will remain constant even on a
larger knowledge base. On the other hand, the SQL en-
gine has to join the creator table with itself, and as the
size of the table grows fast, the answering time of the
engine for this query also grows. Using a backtracking
algorithm has however shown to be less efficient for
the other queries.

We have seen that a backtracking algorithm can be
a good solution on instances in which a join algo-
rithm does not perform well. However, the behaviour
of the backtracking algorithm we have implemented
on knowledge bases under a million triples has raised
the question on how to optimize this backtracking al-
gorithm. As using an SQL engine has shown to be
efficient enough for simple queries, we look forward
optimizing the backtracking algorithm for complex
queries.

7. Discussion and Future Work

This section is structured as follows:

— In Section 7.1 we give an overview of the work
presented and discuss the current limitations of
ALASKA.

— Sections 7.2 and 7.3 provide pointers to current
and future work. We discuss two lines of improve-
ments and namely the optimizing of the back-
tracking algorithm using Constraint Satisfaction
techniques and indexing issues.

7.1. Conclusion

In this paper, we have presented ALASKA, the soft-
ware architecture we have designed and we have used
to study the efficiency of existing storage systems for
the elementary operations of conjunctive query an-
swering. As previously stated, the ALASKA frame-
work allows to build the first layer of an ambitious re-
search aim, a generic platform for RULE-BASED DATA
ACCESS. This first layer concerned the storage and
querying operations that such generic platform must
use during the reasoning process.

One current limitation is the lack of comparison
with SPARQL. While this is an immediate next step,

more importantly we also need improve the backtrack-
ing algorithm in order to deal with larger datasets and
make our work competitive with respect to Linked and
Open Data projects. This opens the way to two main
future work directions: large scale optimization and in-
dexing. We discuss the two in the remainder of the pa-

per.

7.2. Constraint Satisfaction Programming

Optimizing the backtracking algorithm can be done
in two different manners. First, in a technical point
of view, it is possible to verify whether internal data
structures used by the algorithm are adequate and offer
a good complexity for the operations required by the
program. Also, there are today libraries that propose
new and optimized implementations of the native data
structures in JAVA. Second, at algorithmic level, sev-
eral proposals for optimizing the backtracking algo-
rithm are available in the literature [4]. Most of those
have been studied in the constraint domain.

Instead of implementing all the available algorith-
mic optimizations, we have rather preferred to adapt
our problem into a constraint satisfaction problem. The
reason of this choice is twofold. First, in an algorithmic
point of view, is that most of these existing optimiza-
tions are already available in the CSP solvers. Sec-
ond, the integration of a CSP solver within ALASKA,
added to a well written adaptation of our data access
problem to a constraint satisfaction problem would en-
sure that the updates and optimizations to the solver
program would make our instances of the problem
benefit of such updates without having to change our
implementation.

A constraint satisfaction problem is a triple (X, D, C),
where X is a set of variables, D is a domain of values,
and C'is a set of constraints. Every constraint ¢ € C'
is in turn a pair (¢, R) where t is a n-tuple of variables
and R is an n-ary relation on D. An evaluation of the
variables is a function from the set of variables to the
domain of values, v : X — D. An evaluation v satisfies
a constraint ((x1,...,2,), R)if (v(x1),...,v(x,)) €
R. A solution is an evaluation that satisfies all con-
straints.

In order to integrate a CSP solver within ALASKA,
we have chosen the Choco [21] solver. The fact that
it has a complete documentation available on the web
and that it is written in JAVA have guided our choice.
Finally, for our problem, which can be considered par-

Data Access over Large Semi-Structured Databases 25

ticular in the CSP domain, the availability of the de-
velopers of Choco have helped confirming our choice.
We have defined two different manners to adapt our
problem into a CSP problem. The first manner con-
cerns knowledge bases that can be entirely loaded in
main memory. It has been later modified and extended
to large knowledge bases, which is the second manner
we have defined.

7.2.1. Simple transformation to CSP

Transforming the entailment problem into a CSP
problem is quite simple when the knowledge base one
wants to deduce a fact from is small enough to be en-
tirely loaded in main memory. The procedure of trans-
formation is the following:

— The network is composed of variables and con-
straints between the variables. Each variable has
a domain. The domain of a variable contains the
possible values for that variable. In the represen-
tation of our problem, the variables of the network
correspond to the terms of the query @), while the
constraints will feature the list of tuples that sat-
isfy the given constraint. Each constraint corre-
sponds to an atom of Q).

— No information about the values in the variables’
domains is known at start. Hence, all the variables
are instantiated with all the available integer val-
ues. (It is always possible to filter the domain of
a variable manually during the solver execution,
but it is impossible to add a value to the domain.)

— Constraints are added to the network once all the
variables have been defined. One constraint is cre-
ated for each atom of (). For each constraint, the
variables connected to this new constraint are all
the variables corresponding to the terms of the
atom the constraint represents. The list of autho-
rized tuples for this constraint is then read in the
knowledge base. Such proceeding can not be used
when dealing with a larger knowledge base, as
computing all the authorized tuples may lead the
computer to run out of memory.

— The solver can now be run once the variables and
constraints have been properly instantiated.

Note that as the Choco library only manipulates in-
teger values, each term in the knowledge base has to be
represented by an integer. Key-value stores will then

be used by the system to retrieve a term by its integer
identifier and vice-versa. Filling such key-value stores
depends on the size of the knowledge base. In the case
of a small knowledge base, it can be done as a prepro-
cessing step prior to creating the network.

7.2.2. Transformation with large KBs

As previously mentioned, some things presented in
the previous section changed, and the problem receives
an additional difficulty when dealing with large knowl-
edge bases. One of the important changes is that it be-
comes forbidden to perform any operation having its
complexity depending on the size of the knowledge
base. This is the reason why a different transformation
of our problem into a CSP problem had to be designed,
since it is now needed to be able to indicate that a vari-
able, at instantiation time, contains all the possible val-
ues in the knowledge base without having to compute
them all.

The method chosen to address this problem came
with the technical limitations of the Choco library it-
self. Indeed, Choco maintains the information con-
cerning the variables’ domains in memory, and keeps
track of the evolution of those values for the eventu-
ality of backtracking during the solver execution. The
fact of keeping track of all this information in mem-
ory introduces a physical limit to the size of a domain.
According to our preliminary tests with Choco, the
limit of values in the domain of a variable in Choco
is around 35000 values. As we have not found any
mature idea on how to bypass such technical con-
straint, we will remain under such technical limit for
this work.

One should not forget that this number of 35000 val-
ues in a domain does not mean that we will be limited
to knowledge bases with 35000 terms or less (as such
size of knowledge base fits perfectly in main memory)
but rather that it will restrain every term of the query
(each variable in the network) to explore only 35000
terms of the knowledge base during the execution of
the solver. Indeed, the knowledge base size forbids us
to precompute all the lists of authorized tuples for each
constraint in the network. Such procedure will now be
performing at solving stage, and only in certain condi-
tions, in order to avoid performing too many reading
operations in the knowledge base.

In this case, instead of having the key-values stores
shared between all the variables of the network, each

26 Data Access over Large Semi-Structured Databases

variable will have its own key-values tables. The val-
ues in this tables will be affected at runtime, and, this, a
term in the knowledge base may have two different in-
teger identifiers in two different variables. It will be the
task of the propagation function inside the constraints
to maintain the coherence between terms and the in-
teger identifiers of such terms in all the variables con-
nected to a constraint. The procedure of transforming
a conjunctive query over a large knowledge base in a
CSP problem is the following:

— To begin with, the terms of the knowledge base
will not be read prior to the solver execution, ex-
cepted the constant terms in the query. This is due
to the fact that a constant term in the query can
only be matched to the same constant in the facts.
Looking for the constants in the knowledge base
may save time in the case one of them does not
exist in the knowledge base. For each constant
in the query, its matching in the knowledge base
will be given the first integer value in the domain
of the variable. A constraint of equality is linked
to the variable, to indicate that this is the unique
possible value for the variable.

— Once this is done, all the variables of the network
corresponding to the non-constant terms of the
query are initialized, with a domain going from 1
to 35000. This is performed without reading the
knowledge base. The constraints are then created
and attached to the variables. As for the variables,
they will also be created but no knowledge base
information will be read at this time. The only in-
formation they will carry upon initialization are
the predicate of the corresponding atom and an
integer value that will serve as a threshold for trig-
gering a propagation sequence.

— The solver is ready to be run once all the variables
and constraints of the network are properly cre-
ated and "instantiated". In this version, as no in-
formation from the knowledge base was read into
the network, the solver will not find any answer
to the query when launched.

— Finding an answer to the query will only be pos-
sible through a propagation mechanism, that will
enable the solver to filter the domains of the vari-
ables. The propagation is a function located in the
constraint class that indicates to the solver how to
proceed for finding answers. The behaviour of the

propagation method we have implemented is to
consult the knowledge base for retrieving infor-
mation once the size of the domain of a variable
attached to the constraint is lower than the thresh-
old value set for this constraint. The bigger this
value, the bigger are the chances for triggering the
propagation. As the domains of all the variables
of the network are not filtered at launch (and con-
sequently higher than any threshold), this solution
only covers conjunctive queries with at least one
constant for now. The presence of the constant
in the query ensures that at least one propagation
call is performed, as the size of the domain of the
variable is reduced to 1 at launch. This is a tem-
porary solution that will be upgraded later with
the use of more efficient indexation techniques.

— The knowledge base is read once the propagation
function of a constraint of the network is trig-
gered. The authorized tuples for this constraint
will be computed then added to constraint infor-
mation. This will filter the domains of the vari-
ables connected to the constraint. The efficiency
of this solution comes from the fact that the prop-
agation function does not read the whole knowl-
edge base, but only looks for the neighbourhood
of certain terms. This is due to the enumerate
function, already used in the generic backtracking
algorithm and described in Section 3.4.

— Filtering the domain of the variables connected to
a constraint should trigger the propagation func-
tion in another constraint, until all the lists of au-
thorized tuples needed are computed. Once this
happens, the solver can find the answers of the
query in the knowledge base. If the propagation
sequence stops before all the constraints have
their list of tuples computed, this means that all
the previous propagations have not filtered the re-
maining domains enough to reach the threshold
value.

Despite the fact that the propagation mechanism for
answering conjunctive queries using a constraint satis-
faction solver when the knowledge base is very large
has been successfully implemented, we have not suc-
ceeded in adding it to the list of querying methods in
our testing protocols. The reason for this comes to the
fact of the CSP solver not knowing how to proceed
once the propagation sequence stops. The larger the
knowledge base, more are the number of terms in the

Data Access over Large Semi-Structured Databases 27

domain of each variable, making the threshold value
more difficult to reach. Of course, it is always possi-
ble to increase such value manually prior to the solver
execution, however not only it is impossible to know
in advance which value to choose, but it also increases
the amount of information read from the knowledge
base and loaded in memory by the network. Another
strategy for this cases is to pause the solver and to fil-
ter manually the domains of the variables of a given
constraint, according to information of the knowledge
base. If one has information about the frequency of
predicates or some index on the knowledge base, he
could use it in order to help the solver once his prop-
agation sequence does not help it anymore to filter the
domain of the variables in the network. Such ideas will
be discussed in Section 7.3.

7.3. Indexing

As previously stated in Section 7, the propagation
strategy of the CSP when dealing with large knowl-
edge bases is the following: reading the knowledge
base in order to look for a specific information only
happens once a variable in the network has its domain
size under a certain threshold. This value is set initially
and can easily be modified. Once the size of the do-
main of a variable gets under the threshold, then the
code contained inside the constraint classes calls the
enumerate method, which filters the domain of the
neighbouring variables.

Such strategy has a major known drawbacks, which
is the fact that the solver does not have an idea on how
to proceed when there is no propagation to execute.
This happens for example when launching the solver,
as all the domains of the variables are full at that mo-
ment. For this reason we have been restricted to per-
forming queries containing at least one constant term.
This reduces the domain of the variable of the constant
term to a single value, which is lower than any thresh-
old value set, and launches the propagation.

However, if one wants to avoid the solver to be stuck
during its execution or to handle queries with no boot-
strap (no constant terms in the query), a better solu-
tion would need to be designed. The major idea in or-
der to have this solved would be to add indexing fea-
tures to the CSP solver, enabling it to read an index or
some knowledge base statistics about terms or predi-
cates once the propagation sequence is not enough for
finding an answer.

References

[1] S. Abiteboul. Semi-structured data. In Encyclopedia of
Database Systems, pages 2599-2601. 2009.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[3] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope.
In International Joint Conference on Artificial Intelligence (1J-
CAI), pages 364-369, 2005.

[4] J.-F. Baget. ReprAl'senter des connaissances et raisonner avec
des hypergraphes : de la projection Aq la dAlrivation sous
contraintes. PhD thesis, 2001.

[5] J.-F. Baget, M. Croitoru, and B. P. L. da Silva. Alaska for
ontology based data access. In ESWC (Satellite Events), pages
157-161, 2013.

[6] J.-F. Baget, M. Leclere, and M.-L. Mugnier. Walking the de-
cidability line for rules with existential variables. In Interna-
tional Conference on Principles of Knowledge Representation
and Reasoning (KR), 2010.

[7] J.-F. Baget, M. Leclere, M.-L. Mugnier, and E. Salvat. On rules
with existential variables: Walking the decidability line. Artif.
Intell., 175(9-10):1620-1654, 2011.

[8] J.-F. Baget, M.-L. Mugnier, S. Rudolph, and M. Thomazo.
Walking the complexity lines for generalized guarded existen-
tial rules. In T. Walsh, editor, Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-2011),
pages 712-717. ICAI/ AAAIL, 2011.

[9] J.-F. Baget and E. Salvat. Rules dependencies in backward
chaining of conceptual graphs rules. In International Confer-
ence on Conceptual Structures (ICCS), pages 102-116, 2006.

[10] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story
so far. Int. J. Semantic Web Inf. Syst., 5(3):1-22, 2009.

[11] A. Cali, G. Gottlob, and T. Lukasiewicz. A general datalog-
based framework for tractable query answering over ontolo-
gies. In Proceedings of the Twenty-Eigth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Sys-
tems, pages 77-86. ACM, 2009.

[12] A.Cali, G. Gottlob, T. Lukasiewicz, B. Marnette, and A. Pieris.
Datalog+/-: A family of logical knowledge representation and
query languages for new applications. In LICS, pages 228-242,
2010.

[13] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. Tractable reasoning and efficient query answering in
description logics: The DL-Lite family. J. Autom. Reasoning,
39(3):385-429, 2007.

[14] M. Chein and M.-L. Mugnier. Graph-based Knowledge Repre-
sentation: Computational Foundations of Conceptual Graphs.
Advanced Information and Knowledge Processing. Springer,
2009.

[15] E. F. Codd. A relational model of data for large shared data
banks. Commun. ACM, 13(6):377-387, 1970.

[16] M. Croitoru. Conceptual Graphs at Work: Efficient Reasoning
and Applications. PhD thesis, University of Aberdeen, 2006.

[17] M. Croitoru and E. Compatangelo. A tree decomposition algo-
rithm for conceptual graph projection. In Tenth International
Conference on Principles of Knowledge Representation and
Reasoning, pages 271-276. AAAI Press, 2006.

[18] B. P. L. da Silva, J.-F. Baget, and M. Croitoru. A generic
platform for ontological query answering. In SGAI Interna-
tional Conference on Artificial Intelligence (AI-2012), pages
151-164, 2012.

28 Data Access over Large Semi-Structured Databases

[19] P. Hayes, editor. RDF Semantics. W3C Recommendation.
W3C, 2004. http://www.w3.org/TR/rdf-mt/.

[20] A. Hertel, J. Broekstra, and H. Stuckenschmidt. Rdf storage
and retrieval systems. In Handbook on Ontologies, pages 489—
508. Springer, 2009.

[21] N. Jussien, G. Rochart, X. Lorca, et al. Choco: an open source
java constraint programming library. In CPAIOR’08 Workshop
on Open-Source Software for Integer and Contraint Program-
ming (OSSICP’08), pages 1-10, 2008.

[22] M. Lenzerini. Data integration: A theoretical perspective. In
21st ACM SIGACT-SIGMOD-SIGART Symposium on Princi-

ples of Database Systems (PODS), pages 233-246, 2002.

[23] E. Salvat and M.-L. Mugnier. Sound and complete forward and
backward chaining of graph rules. In International Conference
on Conceptual Structures (ICCS), pages 248-262, 1996.

[24] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. Sp2bench:
A sparql performance benchmark. CoRR, abs/0806.4627,
2008.

[25] M. Thomazo. Ontology based query answering with existen-
tial rules. In Proceedings of the 23rnd International Joint Con-
ference on Artificial Intelligence (IJCAI-13), 2013.

