
A Divide and Conquer Approach for Parallel
Classification of OWL Ontologies

(submitted to special issue on Web Reasoning and Rule Systems)

Kejia Wu and Volker Haarslev

Department of Computer Science and Software Engineering
Concordia University, Montreal, Canada

Abstract. Description Logic (DL) describes knowledge using entities and rela-
tionships between them, and TBox classification is a core DL reasoning service.
Over more than two decades many research efforts have been devoted to optimiz-
ing TBox classification. Those classification optimization algorithms have shown
their pragmatic effectiveness for sequential processing. However, as concurrent
computing becomes widely available, new classification algorithms that are well
suited to parallelization need to be developed. This need is further supported by
the observation that most available Web Ontology Language (OWL) reasoners,
which are usually based on tableau reasoning, can only utilize a single processor.
Such an inadequacy often leads to frustrated users working in ontology devel-
opment, especially if their ontologies are complex and require long processing
times. In this paper we present a novel algorithm that uses a divide and conquer
strategy for parallelizing OWL TBox classification, a key reasoning task. We dis-
cuss some interesting properties of our algorithm, for example, its suitability for
distributed reasoning, and present an empirical study using a set of benchmark
ontologies, where a speedup of up to a factor of four has been observed when
using eight workers in parallel.

1 Introduction

Due to the semantic web, a multitude of OWL ontologies are emerging. Quite a few
ontologies are huge and contain hundreds of thousands of concepts. Although some
of these huge ontologies fit into one of OWL’s three tractable profiles, e.g., the well
known Snomed ontology is in the EL profile, there still exist a variety of other OWL
ontologies that make full use of OWL DL and require long processing times, even when
highly optimized OWL reasoners are employed. Moreover, although most of the huge
ontologies are currently restricted to one of the tractable profiles in order to ensure fast
processing, it is foreseeable that some of them will require an expressivity that is outside
of the tractable OWL profiles.

Almost all well-known reasoners employ a so-called top-search & bottom-search
algorithm to classify ontologies [19]. This algorithm makes use of told subsumption
relationships to prune a lot of costly subsumption tests. Concepts are incrementally in-
serted into a subsumption hierarchy at their most specific positions. This method works
efficiently in practical reasoning, and a number of variants proposed on the basis of the
original version provide optimizations to some extent [2, 9]. However, only in recent



years efforts appeared to investigate parallelization of top-search & bottom-search in
order to gain a more scalable performance [1].

The research presented in this paper is targeted to provide better OWL reasoning
scalability by making efficient use of modern hardware architectures such as multi-
processor/core computers. This becomes more important in the case of ontologies that
require long processing times although highly optimized OWL reasoners are already
used. We consider our research an important basis for the design of next-generation
OWL reasoners that can efficiently work in a parallel/concurrent or distributed context
using modern hardware. One of the major obstacles that needs to be addressed in the
design of corresponding algorithms and architectures is the overhead introduced by
concurrent computing and its impact on scalability.

Heavily shared data as well as related communication costs always indicate an in-
efficient performance in parallel environments. Canonical Description Logic (DL) rea-
soning algorithms, which form the basis of OWL reasoning, deal with a problem do-
main as a whole, which generally produces monolithic data and makes it hard to par-
allelize employed algorithms. In order to achieve effective parallelized DL reasoning
novel methods need to be developed that process data as independently as possible.

Traditional divide and conquer algorithms split problems into independent sub-
problems before solving them under the premise that not much communication among
the divisions is needed when independently solving the sub-problems, so shared data
is excluded to a great extent. Therefore, divide and conquer algorithms are in principle
suitable for concurrent computing, including shared-memory parallelization and non-
shared-memory distributed systems.

Furthermore, recently research on ontology partitioning has been proposed and in-
vestigated for dealing with monolithic ontologies. Some research results, e.g. ontology
modularization [10], can be used for decreasing the scale of an ontology-reasoning
problem. Then, reasoning over a set of sub-ontologies can be executed in parallel.
However, there is still a solution needed to reassemble sub-ontologies together. The
algorithms presented in this paper can also serve as a solution for this problem.

This article is a revised and extended version of [30]. In the remaining sections,
we present our divide and conquer algorithm, which uses a heuristic partitioning and a
merge-based classification scheme. We report on our conducted experiments and their
evaluation, and discuss related research.

2 Preliminaries

Our work is essentially about DL reasoning, TBox classification specifically, so some
background knowledge is presented in this section. For a more detailed background on
DLs, DL reasoning, and semantic web we refer to [3] and [13].

DL is used to represent knowledge. Concepts and roles are elements constructing
DL expressions. The former conceptualize knowledge domain instances, and the lat-
ter describe binary relations between domain instances. DL axioms are constructed by
associating the two essentials via a set of connectives, concept constructors and role
constructors. For example, the syntax for AL is defined as follows [3]:

2



C,D −→A | (* atomic concept *)
> | (* universal concept *)
⊥ | (* bottom concept *)
¬A | (* atomic negation *)
C uD | (* intersection *)
∀R.C | (* value restriction *)
∃R.> | (* limited existential quantification *)

In the productions, A corresponds to a concept name, C or D to either a compound
concept or a concept name, and R to a role name.

Generally, a DL language’s semantics is described by a model-theoretical interpre-
tation. In AL, such an interpretation, I = (∆I , ·I), consists of a non-empty set of
individuals (∆I) and a function (·I) such that:

CI ⊆ ∆I

RI ⊆ ∆I ×∆I

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C uD)I = CI ∩DI

(∃R.>)I = {x ∈ ∆I | ∃y(〈x, y〉 ∈ RI)}
(∀R.C)I = {x ∈ ∆I | ∀y(〈x, y〉 ∈ RI =⇒ y ∈ CI)}

An interpretation I satisfies an axiom C v D iff CI ⊆ DI . An axiom C ≡ D is
considered as an abbreviations for the set of axioms {C v D, D v C}. An assertion
C(x) is satisfied by I if xI ∈ CI , (xRy) if 〈xI , yI〉 ∈ RI , x .

= y if xI = yI , and
x 6 .= y if xI 6= yI . An overall introduction to DL syntax, semantics, notation, and
extensions can be found in the appendix of [3].

A set of reasoning tasks are executed on DL knowledge bases, such as satisfiability,
subsumption, and classification. Among them, TBox classification plays an important
role. TBox classification generates hierarchical taxonomies. A TBox classification al-
gorithm computes all subsumptions between concept names (A v?B) that are entailed
in a TBox and inserts concepts into a hierarchical structure. A result of classification
can be illustrated by a directed graph with> as the root and⊥ as the unique leaf, which
represent the most general concept and the most specific concept respectively. Figure 1
shows a TBox classification example. In the graph, each node subsumes its descendant
node(s), and all paths to a node from > contain its subsumer nodes. Therefore, all con-
cept subsumptions related information can be extracted from the classified taxonomy.

3



T : professor v teacher

book v publication

paper v publication

(a) The TBox given.

>

teacher

publication

professor

book paper

⊥
(b) The classified terminology hierarchy.

Fig. 1. An example on classification.

However, it is known that TBox classification can be a costly computation. The
naive brute-force classification method executes subsumption tests over all elements of
{〈Ai, Aj〉 | AIi ⊆ ∆I , AIj ⊆ ∆I , 0 ≤ i ≤ n, 0 ≤ j ≤ n}. Although the brute-force
method needs only n2 subsumption tests for a TBox of n concepts, it is generally very
expensive due to the costly subsumption testing. However, in Section 7.1 we briefly
report on an earlier experiment for ontologies where we parallelized this brute-force
scheme and could demonstrate excellent speedup factors.

A huge computing expense lies in concept subsumption tests, so the most prominent
work on classification optimization focuses on making use of the reflexive transitive clo-
sure of subsumptions in order to avoid costly subsumption tests—instead of checking
subsumption for every pair of concepts in a brute-force way, a large number of sub-
sumption relationships can be figured out by told subsumptions and non-subsumptions
directly, and the top-search & bottom-search algorithm is the corner stone for such an
optimization [19]. The top-search & bottom-search algorithm utilizes told subsumption
relationships to avoid costly subsumption tests. For example, given a TBox and a par-
tially classified terminology hierarchy shown by Figure 2, when searching for the most
specific parent concept of book, it is unnecessary to test whether book v? professor if
book 6v teacher is already known. Our work shows that this technique can be extended
to work in parallel.

3 A Parallelized Merge Classification Algorithm

In this section, we present an algorithm for classifying DL ontologies. Part of the al-
gorithm is based on standard top- and bottom-search techniques to incrementally con-
struct the classification hierarchy (e.g., see [2]). Due to the symmetry between top-down
(> search) and bottom-up (⊥ search) search, we only present the first one. In the
pseudo code, we use the following notational conventions: ∆i, ∆α, and ∆β designate
sub-domains that are divided from ∆; we consider a subsumption hierarchy as a partial
order over ∆, denoted as ≤, a subsumption relationship where C is subsumed by D
(C v D) is expressed by C ≤ D or by 〈C,D〉 ∈ ≤, and ≤i, ≤α, and ≤β are subsump-

4



T : professor v teacher

book v publication

paper v publication

(a) The TBox given.

>

teacher

publication

professor

paper

⊥
(b) The partially classified terminology hierarchy.

Fig. 2. An example on top- and bottom-search based classification.

tion hierarchies over ∆i, ∆α, and ∆β , respectively; in a subsumption hierarchy over
∆, C ≺ D designates C v D and there does not exist a named concept E such that
C ≤ E and E ≤ D; ≺i, ≺α and ≺β are similar notations defined over ∆i, ∆α, and
∆β , respectively.

Our merge-classification algorithm classifies a taxonomy by calculating its divided
sub-domains and then by merging the classified sub-taxonomies together. The algo-
rithm makes use of two facts: (i) If it holds that B ≤ A, then the subsumption rela-
tionships between B’s descendants and A’s ancestors are determined; (ii) if it is known
that B 6≤ A, the subsumption relationships between B’s descendants and A’s ancestors
are undetermined. The canonical DL classification algorithm, top-search & bottom-
search, is modified and integrated into the merge-classification. The algorithm consists
of two stages: divide and conquering, and combining. Algorithm 1 shows the main
part of our parallelized DL classification procedure. The keyword spawn indicates that
its following calculation must be executed in parallel, either creating a new thread in a
shared-memory context or generating a new process or session in a non-shared-memory
context. The keyword sync always follows spawn and suspends the current calculation
procedure until all calculations invoked by spawn have returned.

The domain∆ is divided into smaller partitions in the first stage. Then, classification
computations are executed over each sub-domain ∆i. A classified sub-terminology ≤i
is inferred over ∆i. The procedure classify is used by Algorithm 1 and is a general
reasoning function that calls Algorithm 2. It is not shown in this paper. This divide and
conquering operations can progress in parallel.

Classified sub-terminologies are to be merged in the combining stage. Told sub-
sumption relationships are utilized in the merging process. Algorithm 2 outlines the
master procedure, and the slave procedure is addressed by Algorithms 3, 4, 5, and 6.

3.1 Divide and Conquer Phase

The first task is to divide the universe, ∆, into sub-domains. Without loss of generality,
∆ only focuses on significant concepts, i.e., concept names or atomic concepts, that are

5



Algorithm 1: κ(∆i)

input : The sub-domain ∆i

output : The subsumption hierarchy classified over ∆i

1 begin
2 if divided enough?(∆i) then
3 return classify(∆i);
4 else
5 〈∆α,∆β〉 ← divide(∆i);
6 ≤α← spawn κ(∆α);
7 ≤β← κ(∆β);
8 sync;
9 return µ(≤α,≤β);

10 end if
11 end

Algorithm 2: µ(≤α,≤β)
input : The master subsumption hierarchy ≤α

The subsumption hierarchy ≤β to be merged into ≤α
output : The subsumption hierarchy resulting from merging ≤α over ≤β

1 begin
2 >α ← select-top(≤α);
3 >β ← select-top(≤β);
4 ⊥α ← select-bottom(≤α);
5 ⊥β ← select-bottom(≤β);
6 ≤α← > merge(>α,>β ,≤α,≤β);
7 ≤i← ⊥ merge(⊥α,⊥β ,≤α,≤β);
8 return ≤i;
9 end

normally declared explicitly in some ontology O, and intermediate concepts, i.e., non-
significant ones, only play a role in subsumption tests. Each sub-domain is classified
independently. The divide operation can be naively implemented as an even partition-
ing over∆, or by more sophisticated clustering techniques such as heuristic partitioning
that may result in a better performance, as presented in Section 5. The conquering op-
eration can be any standard DL classification method. We first present the most popular
classification methods, top-search (Algorithm 3) and bottom-search (omitted here).

The DL classification procedure determines the most specific super- and the most
general sub-concepts of each significant concept in ∆. The classified concept hierarchy
is a partial order, ≤, over ∆. > search recursively calculates a concept’s intermediate
predecessors, i.e., intermediate immediate ancestors, as a relation ≺i over ≤i.

3.2 Combining Phase

The independently classified sub-terminologies must be merged together in the com-
bining phase. The original top-search (Algorithm 3) (and bottom-search) have been

6



Algorithm 3: > search(C,D,≤i)
input : C: the new concept to be classified

D: the current concept with 〈D,>〉 ∈ ≤i
≤i: the subsumption hierarchy

output : The set of parents of C: {p | 〈C, p〉 ∈ ≤i}.
1 begin
2 mark visited(D);
3 green← ∅;
4 forall the d ∈ {d | 〈d,D〉 ∈≺i} do /* collect all children of D that subsume C */
5 if ≤?(C, d) then
6 green← green ∪ {d};
7 end if
8 end forall
9 box← ∅;

10 if green = ∅ then
11 box← {D};
12 else
13 forall the g ∈ green do
14 if ¬marked visited?(g) then
15 box← box ∪ > search(C, g,≤i) ; /* recursively test whether C is

subsumed by the descendants of g */
16 end if
17 end forall
18 end if
19 return box; /* return the parents of C */
20 end

modified to merge two sub-terminologies ≤α and ≤β . The basic idea is to iterate over
∆β and to use top-search (and bottom-search) to insert each element of ∆β into ≤α, as
shown in Algorithm 4.

However, this method does not make use of so-called told subsumption (and non-
subsumption) information contained in the merged sub-terminology ≤β . For example,
it is unnecessary to test ≤?(B2, A1) with sophisticated reasoning algorithms when we
know B2 ≤ B1 and B1 ≤ A1, given that A1 occurs in ∆α and B1, B2 occur in ∆β .

Therefore, we designed a novel algorithm in order to utilize the properties addressed
by Propositions 1 to 8. The calculation starts with top-merge (Algorithm 5), which uses
a modified top-search algorithm (Algorithm 6). This pair of procedures finds the most
specific subsumers in the master sub-terminology ≤α for every concept from the sub-
terminology ≤β that is being merged into ≤α.

Proposition 1. When merging sub-terminology ≤β into ≤α, if 〈B,A〉 ∈≺i is found
in top-search, 〈A,>〉 ∈≤α and 〈B,>〉 ∈≤β , then for ∀bj ∈ {b | 〈b, B〉 ∈≤β} and
∀ak ∈ {a | 〈A, a〉 ∈≤α} ∪ {A} it follows that bj ≤ ak.

Proof. Figure 3 shows the case, where {a1, . . . , am} is the set of parents of A and
{b1, . . . , bn} the set of children ofB. It is easy to see that bj ≤ ak due to the transitivity

7



Algorithm 4: > merge−(A,B,≤α,≤β)
input : A: the current concept of the master subsumption hierarchy, i.e. 〈A,>〉 ∈≤α

B: the new concept from the merged subsumption hierarchy, i.e. 〈B,>〉 ∈≤β
≤α: the master subsumption hierarchy
≤β : the subsumption hierarchy to be merged into ≤α

output : The merged subsumption hierarchy ≤α over ≤β .
1 begin
2 parents ← > search(B,A,≤α);
3 forall the a ∈ parents do
4 ≤α←≤α ∪〈B, a〉; /* insert B into ≤α */
5 forall the b ∈ {b | 〈b,B〉 ∈≺β} do /* insert children of B (in ≤β) below

parents of B (in ≤α) */
6 ≤α← > merge−(a, b,≤α,≤β);
7 end forall
8 end forall
9 return ≤α;

10 end

Algorithm 5: > merge(A,B,≤α,≤β)
input : A: the current concept of the master subsumption hierarchy, i.e. 〈A,>〉 ∈≤α

B: the new concept of the merged subsumption hierarchy, i.e. 〈B,>〉 ∈≤β
≤α: the master subsumption hierarchy
≤β : the subsumption hierarchy to be merged into ≤α

output : the merged subsumption hierarchy ≤α over ≤β
1 begin
2 parents ← > search∗(B,A,≤β ,≤α);
3 forall the a ∈ parents do
4 ≤α←≤α ∪〈B, a〉;
5 forall the b ∈ {b | 〈b,B〉 ∈≺β} do
6 ≤α← > merge(a, b,≤α,≤β);
7 end forall
8 end forall
9 return ≤α;

10 end

8



Algorithm 6: > search∗(C,D,≤β ,≤α)
input : C: the new concept to be inserted into ≤α, and 〈C,>〉 ∈ ≤β

D: the current concept, and 〈D,>〉 ∈ ≤α
≤β : the subsumption hierarchy to be merged into ≤α
≤α: the master subsumption hierarchy

output : The set of parents of C: {p | 〈C, p〉 ∈≤α}
1 begin
2 mark visited(D);
3 green← ∅; /* subsumers of C that are from ≤α */
4 red← ∅; /* non-subsumers of C that are children of D */
5 forall the d ∈ {d | 〈d,D〉 ∈≺α ∧ 〈d,>〉 6∈≤β} do
6 if ≤?(C, d) then
7 green← green ∪ {d};
8 else
9 red← red ∪ {d};

10 end if
11 end forall
12 box← ∅;
13 if green = ∅ then
14 if ≤?(C,D) then
15 box← {D};
16 else
17 red← {D};
18 end if
19 else
20 forall the g ∈ green do
21 if ¬marked visited?(g) then
22 box← box ∪ > search∗(C, g,≤β ,≤α);
23 end if
24 end forall
25 end if
26 forall the r ∈ red do
27 forall the c ∈ {c | 〈c, C〉 ∈≺i} do
28 ≤α← > merge(r, c,≤α,≤β);
29 end forall
30 end forall
31 return box;
32 end

9



A

B

. . .

. . .

...

...

...

...

a1

b1

am

bn

Fig. 3. 〈B,A〉 ∈≺i =⇒ bj v ak.

A

a1 am B

b1 bn

...

...
...

...

. . .

...

. . .
?

Fig. 4. 〈B,A〉 ∈≺i: bj v? ak.

of the subsumption relationship. From our premise we know that bj ≤ B, B ≤ A and
A ≤ ak, therefore it holds that bj ≤ ak for all j, k. �

Proposition 2. When merging sub-terminology ≤β into ≤α, if 〈B,A〉 ∈≺i is found in
top-search, 〈A,>〉 ∈≤α and 〈B,>〉 ∈≤β , then for ∀bj ∈ {b | 〈b, B〉 ∈≺β ∧ b 6= B}
and ∀ak ∈ {a | 〈a,A〉 ∈≺α ∧ aj 6= A} it is still necessary to calculate whether
bj ≤ ak.

Proof. Figure 4 shows the case, where {a1, . . . , am} = {a | 〈a,A〉 ∈≺α∧ a 6= A} and
{b1, . . . , bn} = {b | 〈b, B〉 ∈≺β∧ b 6= B}. We know that BI ⊆ AI or BI ∩ (¬A)I =
∅ and bIj ⊆ BI leads to bIj ∩ (¬A)I = ∅ but since (¬ak)I ⊇ (¬A)I it is unknown for
all j, k whether bIj ∩ (¬ak)I is always empty or always not empty. �

10



A

B

/\ 6≤

. . .

. . .

...

...

...

...

a1

b1

am

bn

?

Fig. 5. B 6≤ A : bi v? aj .

Proposition 3. When merging sub-terminology ≤β into ≤α, if B 6≤ A is found in top-
search, 〈A,>〉 ∈≤α and 〈B,>〉 ∈≤β , then for ∀bj ∈ {b | 〈b, B〉 ∈≤β ∧ b 6= B} and
∀ak ∈ {a | 〈a,A〉 ∈≤α} ∪ {A} it is necessary to calculate whether bj ≤ ak.

Proof. Figure 5 shows the case, where {b1, . . . , bn} = {b | 〈b, B〉 ∈≤β ∧ b 6= B} and
{a1, . . . , am} = {a | 〈a,A〉 ∈≤α}. We know that BI * AI or BI ∩ (¬A)I 6= ∅,
bIj ∩ (¬B)I = ∅, AI ∩ (¬ak)I = ∅. Although BI ∩ (¬A)I 6= ∅ it is unknown whether
bIj ∩ (¬ak)I is empty or not because bIj ⊆ BI and (¬A)I ⊇ (¬ak)I and thus neither
bj v ak nor bj 6v ak is enforced for all j, k. �

Proposition 4. When merging sub-terminology ≤β into ≤α, if B 6≤ A is found in top-
search, 〈A,>〉 ∈≤α and 〈B,>〉 ∈≤β , then for ∀bj ∈ {b | 〈B, b〉 ∈≤β} ∪ {B} and
∀ak ∈ {a | 〈a,A〉 ∈≤α} ∪ {A} it follows that bj 6≤ ak.

Proof. Figure 6 illustrates the case, where {a1, . . . , am} = {a | 〈a,A〉 ∈≤α} and
{b1, . . . , bn} = {b | 〈B, b〉 ∈≤β}. We prove the contrapositive: bj ≤ ak =⇒ B ≤ A.
This follows due to the transitivity of the subsumption relationship. From the premise
we know that B ≤ bj , bj ≤ ak, ak ≤ A; thus we have B ≤ A. �

Similarly, we present the following propositions for bottom-search. Due to the sym-
metry between top- and bottom-search the proofs for Propositions 5 to 8 are very similar
to the proofs of Propositions 1 to 4 and are omitted.

Proposition 5. When merging sub-terminology ≤β into ≤α, if 〈A,B〉 ∈≺i is found in
bottom-search, 〈⊥, A〉 ∈≤α and 〈⊥, B〉 ∈≤β , then for ∀bj ∈ {b | 〈B, b〉 ∈≤β} and
∀ak ∈ {a | 〈a,A〉 ∈≤α} ∪ {A} it follows that ak ≤ bj .

Proposition 6. When merging sub-terminology ≤β into ≤α, if 〈A,B〉 ∈≺i is found in
bottom-search, 〈⊥, A〉 ∈≤α and 〈⊥, B〉 ∈≤β , then for ∀bj ∈ {b | 〈B, b〉 ∈≺β ∧b 6=
B} and ∀ak ∈ {a | 〈A, a〉 ∈≺α ∧a 6= A} it is necessary to calculate whether ak ≤ bj .

11



A

B

...

...

a1

b1

am

bn

...

...

...

...

...

/\ 6≤ /\ 6≤/\6≤ /\ 6≤

Fig. 6. B 6≤ A =⇒ bi 6≤ aj .

Proposition 7. When merging sub-terminology ≤β into ≤α, if A 6≤ B is found in
bottom-search, 〈⊥, A〉 ∈≤α and 〈⊥, B〉 ∈≤β , then for ∀bj ∈ {b | 〈B, b〉 ∈≤β ∧b 6=
B} and ∀ak ∈ {a | 〈A, a〉 ∈≤α} ∪ {A} it is necessary to calculate whether ak ≤ bj .

Proposition 8. When merging sub-terminology ≤β into ≤α, if A 6≤ B is found in top-
search, 〈⊥, A〉 ∈≤α and 〈⊥, B〉 ∈≤β , then for ∀bj ∈ {b | 〈b, B〉 ∈≤β} ∪ {B} and
∀ak ∈ {a | 〈A, a〉 ∈≤α} ∪ {A} it follows that ak 6≤ bj .

When merging a concept B, 〈B,>〉 ∈ ≤β , the top-merge algorithm first finds for
B the most specific position in the master sub-terminology ≤α by means of top-down
search. When such a most specific super-concept is found, this concept and all its super-
concepts are naturally super-concepts of every sub-concept ofB in the sub-terminology
≤β , as is stated by Proposition 1. However, this newly found predecessor of B may not
be necessarily a predecessor of some descendant of B in ≤β . Therefore, the algorithm
continues to find the most specific positions for all sub-concepts of B in ≤β according
to Proposition 2. Algorithm 5 addresses this procedure.

Non-subsumption information can be told in the top-merge phase. Top-down search
employed by top-merge must do subsumption tests somehow. In a canonical top-search
procedure, as indicated by Algorithm 3, the branch search is stopped at this point.
However, the conclusion that a merged concept B, 〈B,>〉 ∈ ≤β , is not subsumed
by a concept A, 〈A,>〉 ∈ ≤α, does not rule out the possibility of bj ≤ A with
bj ∈ {b | 〈b, B〉 ∈≺β}, which is not required in traditional top-search and may be
abound in the top-merge procedure, and therefore must be followed by determining
whether bj ≤ A. Otherwise, the algorithm is incomplete. Proposition 3 presents this

12



T :

A6 v >
A7 v >
A5 v A6

A1 v A6

A2 v A5

A8 v A5

A4 v A5

A4 v A1

A3 v A7

A3 v A4

⊥ v A2

⊥ v A8

⊥ v A3

(a) The TBox given.

>

A6 A7

A5 A1

A2 A8 A4

A3

⊥

(b) The classified terminology hierarchy.

Fig. 7. An example ontology.

observation. For this reason, the original top-search algorithm must be adapted to the
new situation. Algorithm 6 is the updated version of the top-search procedure.

Algorithm 6 not only maintains told subsumption information by the set green , but
also propagates told non-subsumption information by the set red for further inference.1

As addressed by Proposition 3, when the position of a merged concept is determined,
the subsumption relationships between its successors and the red set are calculated.
Furthermore, the subsumption relationship for the concept C and D in Algorithm 6
must be explicitly calculated even when the set green is empty. In the original top-
search procedure (Algorithm 3), C ≺i D is implicitly derived if the set green is empty,
which does not hold in the modified top-search procedure (Algorithm 6) since it does
not always start from > anymore when searching for the most specific position of a
concept.

3.3 Example

We use a small example TBox to illustrate the algorithm further. Given an ontology
with a TBox defined by Figure 7(a), which only contains simple concept subsumption
axioms, Figure 7(b) shows the subsumption hierarchy.

Suppose that the ontology is clustered into two groups in the divide phase: ∆α =
{A2, A3, A5, A7} and ∆β = {A1, A4, A6, A8}. They can be classified independently,
and the corresponding subsumption hierarchies are shown in Figure 8.

1 Our implementation of Algorithm 6 treats subsumptions cycles as synonyms. For example, if
rat v mouse and mouse v rat , the two concepts are collapsed into one, rat/mouse . For
sake of conciseness we do not show these details in Algorithm 6.

13



>α

A5A7

A2A3

⊥α
(a) The subsumption hierarchy ≤α.

>β

A6

A1 A8

A4

⊥β
(b) The subsumption hierarchy ≤β .

Fig. 8. The subsumption hierarchy over divisions.

In the merge phase, the concepts from≤β are merged into≤α. For example, Figure
9 shows a possible computation path where A4 ≤ A5 is being determined.2 If we
assume a subsumption relationship between two concepts is proven when the parent
is added to the set box (see Line 15, Algorithm 6), Figure 10 shows the subsumption
hierarchy after A4 ≤ A5 has been determined.

4 Termination, Soundness, and Completeness

Lemma 1. The top-merge algorithm, Algorithm 5, always terminates.

Proof. During the process of merging two classified terminologies by using > merge
from >α and >β , either > merge or > search∗ is applied to the successors of one of
the concerned concepts.

First of all, there can not exist a subsumption cycle between a concerned concept
and its successors, because the involved concepts are collapsed and treated as synonyms
once such a cycle is detected. Therefore, without an infinite execution on testing a sub-
sumption cycle between a concerned concept and its successors, a limited number of
successors are explored, the search continues until⊥ is taken into account, and then the
algorithm terminates. Consequently, Algorithm > merge always terminates. �

Similarly, we can establish the following claims:

Lemma 2. The bottom-merge algorithm always terminates.

Theorem 1. Algorithm 1 always terminates.

With Lemma 1 and 2, it is easy to prove Theorem 1.

2 This process does not show a full calling order of computing A4 ≤ A5 for sake of brevity. For
instance, > merge(A7, A6,≤α,≤β) is not shown.

14



> merge(>α,>β,≤α,≤β)

> search∗(>β,>α,≤β,≤α)

> merge(A5, A6,≤α,≤β)

> search∗(A6, A5,≤β,≤α)

> merge(A5, A1,≤α,≤β)

> search∗(A1, A5,≤β,≤α)

> merge(A5, A4,≤α,≤β)

> search∗(A4, A5,≤β,≤α)

> merge(A2,⊥β,≤α,≤β)

> search∗(⊥β, A2,≤β,≤α)

...

{A2}

≤α←≤α ∪{⊥β ≤ A2}

{A5}

≤α←≤α ∪{A4 ≤ A5}

∅

≤α←≤α ∪ ∅

∅

≤α←≤α ∪ ∅

{>α}

Fig. 9. The computation path of determining A4 ≤i A5.

>αβ

A7 A5 A6

A3 A2 A1

A4

A8

⊥α ⊥β

Fig. 10. The subsumption hierarchy after A4 ≤ A5 has been determined.

15



Definition 1. Let S1 = (x0, x1, . . . , xm) and S2 = (y0, y1, . . . , yn) be two paths, and
the concatenation of S1 • S2 = (x0, x1, . . . , xm, y0, y1, . . . , yn). For the empty path λ
and a path S, it holds that S • λ = S, and λ • S = S.

Definition 2. In a classified terminology ≤, a concept C’s upper inheritance U(C) is
a path as follows:

U(C) =

{
λ C

.
= >,

U(D) • (D) C ≺ D,D 6 .= >
(1)

It is obvious that the following proposition hold:

Proposition 9. For any concept C in a classified terminology, there must exist at least
one upper inheritance U(C).

Similarly, we get the following symmetric claims:

Definition 3. In a classified terminology ≤, a concept C’s lower inheritance L(C) is
a path as follows:

L(C) =

{
λ C

.
= ⊥,

(D) • L(D) D ≺ C,D 6 .= ⊥
(2)

Proposition 10. For any concept C in a classified terminology, there must exist at least
one lower inheritance L(C).

Proposition 11. The subsumption checking procedure ≤? is correct, i.e., it holds that
O |= C v D ⇔ ≤?(C,D)→ true .

Lemma 3 (Soundness of top merge). When merging≤β into≤α, for ∀A : 〈A,>α〉 ∈≤α
and ∀B : 〈B,>β〉 ∈≤β , if the> merge algorithm starting from>α and>β infers that
B ≤ A, then O |= B v A.

Proof. This proof is based on Proposition 11. We prove this lemma by contradiction.
Let us assume that Algorithm 6 derives B ≤ A but O |= B 6v A.

When the > merge algorithm derives B ≤ A, there must exist L(A) and U(B)
such that, ∃A ∈ (A) • L(A) and ∃B ∈ U(B) • (B), and, as claimed in Propositions 9
and 10, the algorithm determines B ≺ A. This means that B ≤ A must be the result of
calling ≤?(B,A) at line 14 of Algorithm 6. This situation is shown as Figure 11.

In the process of determining B ≺ A all children Ai of A are tested whether they
subsume B and the calls of ≤?(B,Ai) must always have returned false , as shown in
line 6 of Algorithm 6 and in Figure 12. Therefore, B ≺ A is derived.

We already know ≤?(B,B) → true and ≤?(A,A) → true , ≤?(B,A) → true .
So, due to the correctness of ≤? and the transitivity of the subsumption relationship it
holds that O |= B v A, which contradicts our assumption. �

Similarly, the following corresponding claim can be established.

16



>α >β

⊥α ⊥β

...
...

...
...

...
...

A B

A B

Fig. 11. B ≤ A.

A

A

a1 ai B

B

...

...
...

...

. . .

...

...

Fig. 12. B ≤ A is derived.

17



A

A

A

B

B

B

...

...

...

...

Fig. 13. O |= B v A.

Lemma 4 (Soundness of bottom merge). When merging≤β into≤α, for ∀A : 〈⊥α, A〉 ∈≤α
and ∀B : 〈⊥β , B〉 ∈≤β , if the⊥ merge algorithm starting from⊥α and⊥β infers that
A ≤ B, then O |= A v B.

Following Lemma 3 and 4, as well as Theorem 1, the soundness of the merge algo-
rithm is established.

Theorem 2 (Soundness of merge algorithm). For a merged terminology ≤ it holds,
if 〈C,D〉 ∈≤, then O |= C v D.

Lemma 5 (Completeness of top merge). If O |= B v A, then for ∀A ⊆ ∆α and
∀B ⊆ ∆β , the top-merge algorithm infers B ≤ A, when it merges ≤β into ≤α starting
from >α and >β .

Proof. This proof is based on Proposition 11.
Let P (A) be the set of all paths from > to ⊥ that contain A, i.e. ∀U(A), L(A) :

{U(A) • L(A)} ⊆ P (A). P (A) 6= ∅ by Propositions 9 and 10. Similarly, P (B) 6= ∅ is
the set of all paths from> to⊥ that contain B. BecauseO |= B v A, P (A)∩P (B) 6=
∅, i.e. ∃U(A), L(A), U(B), L(B) : U(A) • L(A) = U(B) • L(B). Lemma 5 can
be proved by structural induction: If O |= B v A, then B ≤ A can be derived by
searching on U(A) • L(A) = U(B) • L(B) with Algorithm 6. The proof for the base
cases are trivial, so we just give the induction part.

Let A ≺ A, A ≺ A, B ≺ B, B ≺ B, and B ≺ A. That is to say, A ∈ U(A),
A ∈ L(A), B ∈ U(B), and B ∈ L(B), as is shown by Figure 13.

Since O |= B v A, we have ≤?(B,A) → true: Algorithm 6 puts A into green at
line 7. And then> search∗ is applied to B and every element of green , including A, as
is shown by line 21 of Algorithm 6. > search∗(B,A,≤β ,≤α) tests the subsumption
relationships between B and every child of A, including A, at line 6. This process
recursively continues to test B and A. At this point, all children of A do not subsume
B and thus are put into red, so green = ∅ and box ← {A}, as is shown by line 22 of
Algorithm 6 and Figure 14.

Now, Algorithm 6 derives≤?(B,A)→ true ,≤?(A,A)→ true , and≤?(B,B)→
true , it will be determined ≤?(B,A)→ true . �

18



A

a1 ai B

B

...

...
...

...

. . .

Fig. 14. B ≺ A is derived.

Correspondingly, the completeness of the bottom-merge algorithm is established by
Lemma 6.

Lemma 6 (Completeness of bottom merge). If O |= A v B, then for ∀A ⊆ ∆α and
∀B ⊆ ∆β , the bottom-merge algorithm infers A ≤ B, when it merges ≤β into ≤α
starting from ⊥α and ⊥β .

From Lemma 5 and 6, we can conclude that the merge algorithm is complete.

Theorem 3 (Completeness of merge algorithm). If O |= C v D, the merge algo-
rithm will infer that C ≤ D.

5 Partitioning

Partitioning is an important part of this algorithm. It is the main task in the dividing
phase. In contrast to simple problem domains such as sorting integers, where the merge
phase of a standard merge-sort does not require another sorting, DL ontologies might
entail numerous subsumption relationships among concepts. Building a terminology
with respect to the entailed subsumption hierarchy is the primary function of DL clas-
sification. We therefore assumed that some heuristic partitioning schemes that make
use of known subsumption relationships may improve reasoning efficiency by requir-
ing a smaller number of subsumption tests, and this assumption has been proved by our
experiments, which are described in Section 6.

So far, we have presented an ontology partitioning algorithm by using only told
subsumption relationships that are directly derived from concept definitions and axiom
declarations. Any concept that has at least one told super- and one sub-concept, can be
used to construct a told subsumption hierarchy. Although such a hierarchy is usually
incomplete and many entailed subsumptions are missing, it contains already known
subsumptions indicating the closeness between concepts w.r.t. subsumption. Such a raw
subsumption hierarchy can be represented as a directed graph with only one root, the
> concept. A heuristic partitioning method can be defined by traversing the graph in
a breadth-first way, starting from >, and collecting traversed concepts into partitions.
Algorithm 7 and 8 address this procedure.

19



Algorithm 7: cluster(G)
input : G: the told subsumption graph
output : R: the concept names partitions

1 begin
2 R← ∅;
3 visited ← ∅;
4 N ← get top children(>, G);
5 foreach n ∈ N do
6 P ← {n};
7 visited ← visited ∪ {n};
8 R← R ∪ {build partition(n, visited ,G,P)};
9 end foreach

10 return R;
11 end

Algorithm 8: build partition(n, visited ,G ,P)

input : n: an concept name
visited : a list recording visited concept names
G: the told subsumption graph
P : a concept names partition

output : R: a concept names partition
1 begin
2 R← ∅;
3 N ← get children(n, visited ,G,P);
4 foreach n′ ∈ N do
5 if n′ 6∈ visited then
6 P ← P ∪ {n′};
7 visited ← visited ∪ {n′};
8 build partition(n ′, visited ,G,P);
9 end if

10 end foreach
11 R← P ;
12 return R;
13 end

20



Algorithm 9: schedule merging(q)

input : q: the job queue
output : r: the updated job queue

1 begin
2 got ← false;
3 while ¬got ∧ size(q) > 0 do
4 bolt ← dequeue(q);
5 nut ← dequeue(q);
6 if ¬null?(bolt) ∧ ¬null?(nut) then
7 got ← true;
8 enqueue(q ,merge(bolt ,nut);
9 else if ¬null?(bolt) then

10 enqueue(q , bolt);
11 bolt ← null;
12 else if ¬null?(nut) then
13 enqueue(q ,nut);
14 nut ← null;
15 end if
16 end while
17 r ← q;
18 return r;
19 end

6 Evaluation

Our experimental results clearly show the potential of merge-classification. We could
achieve speedups up to a factor of 4 by using a maximum of 8 parallel workers, de-
pending on the particular benchmark ontology. This speedup is in the range of what we
expected and comparable to other reported approaches, e.g., the experiments reported
for the ELK reasoner [16, 17] also show speedups of up to a factor of 4 when using 8
workers, although a specialized polynomial procedure is used for EL+ reasoning that
seems to be more amenable to concurrent processing than standard tableau methods.

We have designed and implemented a concurrent version of the algorithm so far.
Our program3 is implemented on the basis of the well-known reasoner JFact,4 which
is open-source and implemented in Java. We modified JFact such that we can execute
a set of JFact reasoning kernels in parallel in order to perform the merge-classification
computation. We try to examine the effectiveness of the merge-classification algorithm
by adapting such a mature DL reasoner.

6.1 Experiment

A multi-processor computer, which has 4 octa-core processors and 128G memory in-
stalled, was employed to test the program. The Linux OS and 64-bit OpenJDK 6 were

3 http://github.com/kejia/mc
4 http://jfact.sourceforge.net

21



ontology expressivity concept count axiom count
adult mouse anatomy ALE+ 2753 9372
amphibian gross anatomy ALE+ 701 2626
c elegans phenotype ALEH+ 1935 6170
cereal plant trait ALEH 1051 3349
emap ALE 13731 27462
environmental entity logical definitions SH 1779 5803
envo ALEH+ 1231 2660
fly anatomy ALEI+ 6222 33162
human developmental anatomy ALEH 8341 33345
medaka anatomy development ALE 4361 9081
mpath ALEH+ 718 4315
nif-cell S 376 3492
sequence types and features SH 1952 6620
teleost anatomy ALER+ 3036 11827
zfa ALEH+ 2755 33024

Table 1. Metrics of the test cases.

employed in the tests. The JVM was allocated at least 16G memory initially, given that
at most 64G physical memory was accessible. Most of the test cases were chosen from
OWL Reasoner Evaluation Workshop 2012 (ORE 2012) data sets. Table 1 shows the
test cases’ metrics.

Each test case ontology was classified with the same setting except for an increased
number of workers. Each worker is mapped to an OS thread, as indicated by the Java
specification. Figures 15 and 16 show the test results.

In our initial implementation, we used an even-partitioning scheme. That is to say
concept names are randomly assigned to a set of partitions. For the majority of the
above-mentioned test cases we observed a small performance improvement below a
speedup factor of 1.4, for a few an improvement of up to 4, and for others only a de-
crease in performance. Much overhead was shown in these test cases.

As mentioned in Section 5, we assumed that a heuristic partitioning might promote
a better reasoning performance, e.g., a partitioning scheme considering subsumption
axioms. This idea is addressed by Algorithm 7 and 8.

Another issue that happens when partitions are merged in a shared-memory parallel
environment is racing. In the merge-classification case, each worker puts the classified
partition to a shared queue, and then picks two out of it to merge them. Workers race
with each other to get merging pairs. That is to say which and how many partitions
some worker gets is indeterminate. This may become the source of deadlocks or other
concurrency issues. We designed a schedule algorithm to constrain the race from such
concurrency issues. Algorithm 9 ensures that each worker starts merging if and only if
the worker has obtained two partitions.

We implemented Algorithms 7, 8, and 9, and tested our program. Our assumption
has been proved by the test: Heuristic partitioning may improve reasoning performance
where blind partitioning can not.

22



1 2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

3

3.5

4

4.5

threads

sp
ee

du
p

amphibian gross anatomy
emap

medaka anatomy development
adult mouse anatomy

fly anatomy
c elegans phenotype

human developmental anatomy

Fig. 15. The performance of parallelized merge-classification—I.

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

threads

sp
ee

du
p

cereal plant trait
environmental entity logical definitions

zfa
mpath
envo

nif-cell
sequence types and features

teleost anatomy

Fig. 16. The performance of parallelized merge-classification—II.

23



6.2 Discussion
Our experiment shows that with a heuristic divide scheme the merge-classification al-
gorithm can increase reasoning performance. However, such performance promotion
is not always tangible. In a few cases, the parallelized merge-classification merely de-
grades reasoning performance. The actual divide phase of our algorithm can influence
the performance by creating better or worse partitions.

A heuristic divide scheme may result in a better performance than a blind one.
According to our experience, when the division of the concepts from the domain is ba-
sically random, sometimes divisions contribute to promoting reasoning performance,
while sometimes they do not. A promising heuristic divide scheme seems to be in
grouping a family of concepts, which have potential subsumption relationships, into
the same partition. Evidently, due to the presence of non-obvious subsumptions, it is
hard to guess how to achieve such a good partitioning. We tried to make use of obvious
subsumptions in axioms to partition closely related concepts into the same group. The
tests demonstrate a clear performance improvement in a number of cases.

While in many cases merge-classification can improve reasoning performance, for
some test cases its practical effectiveness is not yet convincing. We are still investi-
gating the factors that influence the reasoning performance for these cases but cannot
give a clear answer yet. The cause may be the large number of general concept inclu-
sion (GCI) axioms found in some ontologies. Even with a more refined divide scheme,
those GCI axioms can cause inter-dependencies between partitions, and may cause in
the merge phase an increased number of subsumption tests. Also, the indeterminism of
the merging schedule, i.e., the unpredictable order of merging divides, needs to be ef-
fectively solved in the implementation, and racing conditions between merging workers
as well as the introduced overhead may decrease the performance. In addition, the lim-
ited performance is caused by the experimental environment: Compared with a single
chip architecture, the 4-chip-distribution of the 32 processors requires extra computa-
tional overhead, and the memory and thread management of JVM may decrease the
performance of our program.

7 Related Work

A key functionality of a DL reasoning system is TBox classification, computing all
entailed subsumption relationships among named concepts. The generic top-search &
bottom-search algorithm was introduced by [19] and extended by [2]. The algorithm is
used as the standard technique for incrementally creating subsumption hierarchies of
DL ontologies. [2] also presented some basic traversal optimizations. After that, a num-
ber of optimization techniques have been explored [26, 8, 9]. Most of the optimizations
are based on making use of the partial transitivity information in searching. However,
research on how to use concurrent computing for optimizing DL reasoning has started
only recently.

7.1 Brute-force Parallelized Classification Scheme
TBox classification calculates subsumptions relationships between concepts. That exe-
cutes subsumption tests one by one. Those subsumption tests can be processed indepen-

24



dently. One of our previous research approaches parallelizes subsumption tests during
classification, by which scalability can be gained [28].

The reasoning prototype implements a parallelizedALC TBox classifier. It can con-
currently classify an ALC terminology. Its parallelized classification service computes
subsumptions in a brutal way [2]. It is obvious that the algorithm is sound and complete
and in a sequential context has a quadratic time complexity for subsumption compu-
tation. In order to figure out a terminology hierarchy, the algorithm calculates the sub-
sumptions of all atomic concepts pairs. A subsumption relationship only depends on
the involved concepts pair, and does not have any connections with the computation
order. Therefore, the subsumptions can be computed in parallel, and the soundness and
completeness are retained in a concurrent context. This naive scheme could achieve an
impressive speedup factor of up to 18 when running up to 36 threads on a 16-core server
[28]. This speedup is mostly due to minimal interactions and data sharing between
threads independently performing subsumption tests and causing almost no overhead.

7.2 Other Research

The merge-classification algorithm is suitable for concurrent computation implemen-
tation, including both shared-memory parallelization and distributed systems. Several
concurrency-oriented DL reasoning schemes have been presented recently. [18] re-
ported on experiments with a parallel SHN reasoner. This reasoner could process dis-
junction and at-most cardinality restriction rules in parallel, as well as some primary
DL tableau optimization techniques. [1] presented the first algorithms on parallelizing
TBox classification using a shared global subsumption hierarchy, and the experimen-
tal results promise the feasibility of parallelized DL reasoning. [16, 17] reported on the
ELK reasoner, which can classify EL ontologies concurrently, and its speed in reason-
ing about EL+ ontologies is impressive. In [29] we explored parallelization of con-
junctive branches in tableau-based DL reasoning and achieved a moderate speedup due
to high overhead. The Konclude system5 can take advantage of multiple cores within a
shared memory environment and implements reasoning for SROIQV but it has not yet
been reported what inference services have been parallelized. In [21, 20] the idea of ap-
plying a constraint programming solver has been proposed. Besides the shared-memory
concurrent reasoning research mentioned above, non-shared-memory distributed con-
current reasoning has been investigated recently by [25, 22].

Merge-classification needs to divide ontologies. Ontology partitioning can be con-
sidered as a sort of clustering problem. These problems have been extensively investi-
gated in networks research, such as [6, 7, 31]. Algorithms adopting more complicated
heuristics in the area of ontology partitioning, have been presented in [5, 12, 10, 11, 14].

Our merge-classification approach employs the well-known divide and conquer
strategy. There is sufficient evidence showing that this type of algorithms is well suited
to be processed in parallel [27, 4, 15]. Some experimental work on parallelized merge
sort are reported in [24, 23].

5 http://www.konclude.com

25



8 Conclusion

The approach presented in this paper has been motivated by the observation that (i)
multi-processor/core hardware is becoming ubiquitously available but standard OWL
reasoners do not yet make use of these available resources; (ii) although most OWL
reasoners have been highly optimized and impressive speed improvements have been
reported for reasoning in the three tractable OWL profiles, there exist a multitude of
OWL ontologies that are outside of the three tractable profiles and require long pro-
cessing times even for highly optimized OWL reasoners. Recently, concurrent comput-
ing has emerged as a possible solution for achieving a better scalability in general and
especially for such difficult ontologies, and we consider the research presented in this
paper as an important step in designing adequate OWL reasoning architectures that are
based on concurrent computing.

One of the most important obstacles in successfully applying concurrent computing
is the management of overhead caused by concurrency. An important factor is that the
load introduced by using concurrent computing in DL reasoning is usually remarkable.
Concurrent algorithms that cause only a small overhead seem to be the key to success-
fully apply concurrent computing to DL reasoning.

Our merge-classification algorithm uses a divide and conquer scheme, which is
potentially suitable for low overhead concurrent computing since it rarely requires
communication among divisions. Although the empirical tests show that the merge-
classification algorithm does not always improve reasoning performance to a great ex-
tent, they let us be confident that further research is promising. For example, investigat-
ing what factors impact the effectiveness and efficiency of the merge-classification may
help us improve the performance of the algorithm further.

At present our work adopts a heuristic partitioning scheme at the divide phase. Dif-
ferent divide schemes may produce different reasoning performances. We are planning
to investigate better divide methods. Furthermore, our work has only researched the
performance of the concurrent merge-classification so far. How the number of division
impacts the reasoning performance in a single thread and a multiple threads setting
needs be investigated in more detail.

Acknowledgements

We are grateful to Ralf Möller at Hamburg University of Technology in giving us access
to their equipment that was used to conduct the presented evaluation.

References

1. Aslani, M., Haarslev, V.: Parallel TBox classification in description logics—first experimen-
tal results. In: Proceedings of the 2010 conference on ECAI 2010: 19th European Conference
on Artificial Intelligence. pp. 485–490 (2010)

2. Baader, F., Hollunder, B., Nebel, B., Profitlich, H.J., Franconi, E.: An empirical analysis
of optimization techniques for terminological representation systems. Applied Intelligence
4(2), 109–132 (1994)

26



3. Baader, F., et al.: The description logic handbook: theory, implementation, and applications.
Cambridge University Press (2003)

4. Cole, R.: Parallel merge sort. SIAM Journal on Computing 17(4), 770–785 (1988)
5. Doran, P., Tamma, V., Iannone, L.: Ontology module extraction for ontology reuse: an ontol-

ogy engineering perspective. In: Proceedings of the sixteenth ACM conference on Confer-
ence on information and knowledge management. pp. 61–70 (2007)

6. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clus-
ters in large spatial databases with noise. In: Proceedings of the Second International Con-
ference on Knowledge Discovery and Data Mining (1996)

7. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Pro-
ceedings of the National Academy of Sciences of the United States of America 99(12), 7821–
7826 (2002)

8. Glimm, B., Horrocks, I., Motik, B., Stoilos, G.: Optimising ontology classification. In: Pro-
ceedings of the 9th International Semantic Web Conference (ISWC 2010). LNCS, vol. 6496,
pp. 225–240. Springer Verlag (2010)

9. Glimm, B., Horrocks, I., Motik, B., Shearer, R., Stoilos, G.: A novel approach to ontology
classification. Web Semantics: Science, Services and Agents on the World Wide Web 14,
84–101 (2012)

10. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for modularity of on-
tologies. In: Proceedings International Joint Conference on Artificial Intelligence. pp. 298–
304 (2007)

11. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: Theory and
practice. Journal of Artificial Intelligence Research 31(1), 273–318 (2008)

12. Grau, B.C., Parsia, B., Sirin, E., Kalyanpur, A.: Modularizing OWL ontologies. In: K-CAP
2005 Workshop on Ontology Management (2005)

13. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of semantic web technologies. Chapman
& Hall/CRC (2009)

14. Hu, W., Qu, Y., Cheng, G.: Matching large ontologies: A divide-and-conquer approach. Data
& Knowledge Engineering 67(1), 140–160 (2008)

15. Jeon, M., Kim, D.: Parallel merge sort with load balancing. International Journal of Parallel
Programming 31(1), 21–33 (2003)

16. Kazakov, Y., Krötzsch, M., Simančı́k, F.: Concurrent classification of EL ontologies. In:
Proceedings of the 10th International Semantic Web Conference (2011)

17. Kazakov, Y., Krötzsch, M., Simančı́k, F.: The incredible ELK: From polynomial procedures
to efficient reasoning with EL ontologies (2013), submitted to a journal

18. Liebig, T., Müller, F.: Parallelizing tableaux-based description logic reasoning. In: Proceed-
ings of the 2007 OTM Confederated International Conference on the Move to Meaningful
Internet Systems-Volume Part II. pp. 1135–1144 (2007)

19. Lipkis, T.: A KL-ONE classifier. In: Proceedings of the 1981 KL-ONE Workshop. pp. 128–
145 (1982)

20. Meissner, A.: A simple parallel reasoning system for the ALC description logic. In: Com-
putational Collective Intelligence: Semantic Web, Social Networks and Multiagent Systems
(First International Conference, ICCCI 2009, Wroclaw, Poland, October 2009). pp. 413–424
(2009)

21. Meissner, A., Brzykcy, G.: A parallel deduction for description logics with ALC language.
Knowledge-Driven Computing 102, 149–164 (2008)

22. Mutharaju, R., Hitzler, P., Mateti, P.: DistEL: A distributed EL+ ontology classifier. In: Pro-
ceedings of The 9th International Workshop on Scalable Semantic Web Knowledge Base
Systems (2013)

27



23. Radenski, A.: Shared memory, message passing, and hybrid merge sorts for standalone and
clustered SMPs. In: The 2011 International Conference on Parallel and Distributed Process-
ing Techniques and Applications. vol. 11, pp. 367–373 (2011)

24. Rolfe, T.J.: A specimen of parallel programming: parallel merge sort implementation. ACM
Inroads 1(4), 72–79 (2010)

25. Schlicht, A., Stuckenschmidt, H.: Distributed resolution for ALC - first results. In: Proceed-
ings of the Workshop on Advancing Reasoning on the Web: Scalability and Commonsense
(2008)

26. Shearer, R., Horrocks, I., Motik, B.: Exploiting partial information in taxonomy construction.
In: Grau, B.G., Horrocks, I., Motik, B., Sattler, U. (eds.) Proceedings of the 2009 Interna-
tional Workshop on Description Logics. CEUR Workshop Proceedings, vol. 477. Oxford,
UK (July 27–30 2009)

27. Todd, S.: Algorithm and hardware for a merge sort using multiple processors. IBM Journal
of Research and Development 22(5), 509–517 (1978)

28. Wu, K., Haarslev, V.: A parallel reasoner for the description logic ALC. In: Proceedings of
the 2012 International Workshop on Description Logics (2012)

29. Wu, K., Haarslev, V.: Exploring parallelization of conjunctive branches in tableau-based de-
scription logic reasoning. In: Proceedings of the 2013 International Workshop on Description
Logics (2013)

30. Wu, K., Haarslev, V.: Parallel OWL reasoning: Merge classification. In: The Third Joint
International Semantic Technology Conference (2013)

31. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: SCAN: a structural clustering algorithm for
networks. In: Proceedings of the 13th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. pp. 824–833 (2007)

28


