
Semantic Web 0 (2013) 1 1
IOS Press

ActiveRaUL: Automatically Generated Web
Interfaces for Creating RDF Data
Anila Sahar Butt a,b, Armin Haller b,∗, Shepherd Liu b, Lexing Xie a

a Australian National University
Canberra, Australia
E-mail: firstname.lastname@anu.edu.au
b CSIRO Computational Informatics
Canberra, Australia
E-mail: firstname.lastname@csiro.au

Abstract. The amount of automatically generated machine-readable data on the Web has significantly increased in recent years.
This is in part due to the advent of Linked Data and its publishing tools that allowed the mapping of relational data to RDF.
However, the amount of semantic Web data is still many orders of magnitude smaller than the World-Wide-Web, and this limits
semantic Web applications. One of the barriers for semantic Web novices to create machine-readable data is the lack of easy-to-
use Web publishing tools that separate the schema modelling from the data creation. In this article we present ActiveRaUL, a
Web form-based user interface that particularly supports users inexperienced in semantic Web technologies in creating RDF data.
These Web form-based user interfaces in ActiveRaUL can be automatically generated from any arbitrary input ontology through
a process described in this article. We map the graph-structured input ontology to a tree-structured Web form while still allowing
the user to create RDF data typed according to the input ontology. We validate our approach of automatically generating Web
interfaces from an ontology in a user study based on use cases developed by the W3C Semantic Sensor Network (SSN) Incubator
group. We test the effectiveness, efficiency and the satisfaction of users in creating RDF data based on the SSN ontology with
ActiveRaUL generated user interfaces compared to a state-of-the-art ontology editing tool.

Keywords: Semantic Web application, Form-based User Interface, Widget ontology, Read/Write Linked Data application

1. Introduction

The continuous growth of the Linked Data Web
brings us closer to the original vision of the seman-
tic Web - as an interconnected network of machine-
readable resources. One of the reasons for the growth
of Linked Data has been the significant progress on
developing ontologies that can be used to define data
in a variety of domains, for example, GO [22] in
bioinformatics, FOAF [8] and the schema.org initia-
tive in Web engineering or the Sensor Network Ontol-
ogy (SSN) [10] in the Internet-of-Things. The tools of
choice for creating quality-assured ontology instances
(the so-called ABox) are still ontology editors such as

*Corresponding author. E-mail: armin.haller@csiro.au.

Protégé [18]. However, creating the ABox in an on-
tology editor requires some degree of understanding
of RDF(s) and OWL since the user has to define to
which class an individual belongs to and what are the
permissible relationships between individuals. Further,
as ontology editors do not separate the schema edit-
ing from the data editing, users can, for example, in-
advertently make changes to the classes and relations
in the ontology (the so-called TBox) while creating
data. Addressing this issue, some Web publishing tools
on top of Wikis, Microblogs or Content Management
systems have been developed (e.g. the work discussed
in [16], [7], [19] and [11]) that allow a user to ex-
clusively create ontology instances. However, they are
mostly developed for a specific domain (i.e. specific
ontologies) and often do not strictly follow OWL se-

1570-0844/13/$27.50 c© 2013 – IOS Press and the authors. All rights reserved

2 Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data

mantics and consequently allow the creation of a logi-
cally inconsistent ABox.

Due to the shortage of efficient tools for creat-
ing data instances, manually created, quality-assured,
crowd-sourced semantic Web datasets are still largely
missing. Drawing a parallel to data creation on the
traditional Web, most of which happens through Web
forms, an analogous method to create data is needed
on the semantic Web. An abundance of tools exist to
support developers in creating such Web forms operat-
ing on a relational database scheme. Many of them also
support the Model-View-Controller (MVC) [20] pat-
tern where a developer can generate scaffolding code
(Web forms) that can be used to create, read, update
and delete database entries based on the initial schema.
To create such a Web form-based tool that operates
based on an ontological schema, a number of chal-
lenges have to be addressed:

– Web form data is encoded in a key/value pair
model that is not directly compatible to the triple
model of RDF. Therefore, a data binding mecha-
nism is needed that binds the user input in Web
form elements to an RDF model.

– Whereas a Web form based on a relational table
has a fixed set of input fields based on the number
of table columns, the RDF model is graph based
with potential cycles. Further, RDF(s) properties
are propagated from multiple superclasses (in-
cluding inheritance cycles) and the types of prop-
erties for a class are not constrained by the def-
inition (Open World assumption). Consequently,
methods are required to decide on the properties
to be displayed in a Web form for a given RDF
node.

– In contrast to the relational model where tuples
are bound to a relation (table), class membership
for individuals in RDF(s) is not constrained for a
class. Thus, individuals that have been created as
a type of a specific class need to be made available
for reuse within a different class instance creation
process.

– Beyond the standard datatypes in the relational
model that can be easily mapped to different form
input elements (e.g. String/Integer to text boxes,
Boolean to radio buttons, etc.), the OWL model
supports object properties that link individuals to
other individuals via URIs. Object properties can
also span multiple nodes in an RDF graph, form-
ing a property path, i.e. they can refer to a class
that is linked to another class through more than

one property. To aid users in the creation of ob-
ject properties who are unaware of the ontology
model, methods have to be established to identify
and link to existing individuals and to enable the
creation of new individuals in the process of cre-
ating the object property.

In previous work [14,13], we developed a Web form
ontology, the RDFa User Interface Language (RaUL)1

and a method to use RDFa, a syntactic format that al-
lows machine-readable data to be easily integrated into
HTML Web pages, for binding data in traditional Web
form elements to concepts and relations in an RDF
graph (i.e. ontologies). We developed ActiveRaUL, a
Web service that operates on an RDF template RaUL
ontology model that describes the structure and data
model of a Web form. ActiveRaUL implements a read-
write Linked Data architecture that manages the map-
ping of a Web form record to an RDF graph, its field
names to RDF property types and the user input value
to instances of RDF properties. Although the function-
ality previously implemented in ActiveRaUL solves
the data binding problem of Web form records to an
RDF graph and enables a user to create RDF data (on-
tology instances) for a given ontology in a Web form,
it still requires expertise in defining the Web form tem-
plate in RDF according to the RaUL ontology. In this
article we present extensions to ActiveRaUL that al-
low the automatic generation of Web form-based user
interfaces from arbitrary input ontologies. Addressing
the challenges above, our main contributions are:

– a method to generate a concept graph for each
concept in the input ontology that accommodates
the different types of implementation models in
RDFS/OWL for a relation,

– and a mapping procedure for the different types
of property paths in the concept graph to different
widget elements in a generated Web form.

We argue that the resulting Web form-based user in-
terfaces are easier-to-use for a semantic Web novice
to create RDF data, and result in more accurate on-
tology instances than creating them through traditional
ontology engineering tools. We validate our approach
in a user study comparing our system with a state-
of-the-art ontology modelling tool. The remainder of
this article is structured as follows. First, we discuss
systems related to ActiveRaUL in Section 2. We then
present a motivating example in Section 3 that we are

1See http://purl.org/NET/raul#

Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data 3

using throughout the article to describe our Web form
generation process. Section 4 gives a brief introduc-
tion into the architecture of ActiveRaUL and its exe-
cution semantics. We introduce the notion of a concept
graph and outline how we use this intermediary con-
cept graph in our mapping procedure in Section 5 . In
Section 6 we describe the process of constructing the
concept graph from the input ontology. In Section 7
we define the mapping from the concept graph to a
RaUL Web form model and we outline how the result-
ing model is displayed in HTML Web forms. In Sec-
tion 8 we report on the results of our user study, fol-
lowed by a conclusion and a discussion on future work
in Section 9.

2. Related Work

Many mature ontology editors such as Protégé [18],
TopBraid 2, SWOOP3, the Neon toolkit [12] etc. ex-
ist that offer ways to create individuals based on one
or many ontologies. Some of these editors have Web-
based version that can be used to allow ordinary Web
users to hand-craft ontology instances. However, what
they have in common is that a user requires at least
a basic understanding of the RDF/OWL semantics to
create correct individuals according to a given ontol-
ogy. We have compared ActiveRaUL to WebProtégé,
the Web version of the state-of-the-art ontology editor
Protégé, in our user study.

There are other tools that support the user specifi-
cally in the creation of a knowledge base without the
need of knowing RDF/OWL. An early tool that sup-
ports the creation of individuals is SEAL [17]. Al-
though it offers a templating mechanism for a specific
ontology, it lacks in providing a domain independent
solution for automatic interface creation and data bind-
ing that we are presenting in this article. Secondly, as
the tool is based on F-Logic and the Ontobroker, it
does not support the current semantic Web standards
such as RDF and OWL.

The RDF instance creator (RIC) [15] lets a user cre-
ate ontology instances in simple Web forms. Whilst
RIC facilitates the users to create individuals without
the need to understand RDF/OWL, it supports only
simple OWL features (distinguishing between object
and data type properties), but ignores all types of OWL

2See http://www.topquadrant.com/
products/TB_Composer.html

3See http://code.google.com/p/swoop/

property restrictions and does not offer a convenient
way of handling object properties.

OntoWiki [2] is another system that is targeted to-
wards ontology instance level editing, but as a Wiki
platform it is more of an annotation tool than a tool
to create ontology instances according to an input on-
tology. A newer version of OntoWiki also includes a
visual query builder for easier data access [21]. Ac-
tiveRaUL in contrast to Wiki-based systems does not
only separate the ontology schema editing from the in-
stance level editing, but it also uses the schema for the
instance level editing system’s interface generation to
enforce better data quality.

In Callimachus [6] developers can modify sample
XHTML+RDFa templates to define new classes and
their relationships with nested and composite classes.
While it facilitates Web 3.0 developers to easily create
Web applications based on an ontology, the developer
needs to manually define the template and the resulting
Web applications do not fully comply with OWL se-
mantics, do not support global cardinality constraints
(owl:FunctionalProperty and owl:InverseFunctional-
Property) and logical characteristics of properties
(owl:TransitiveProperty and owl:SymmetricProperty).
As a consequence instances generated through these
forms may be logically inconsistent to the ontology
they are modelled after.

LESS [3] enables users to create templates with
SPARQL and apply them to existing RDF documents
(e.g., FOAF files) to generate user-friendly HTML
pages (e.g., online business cards) which will be per-
sisted in the backend database. The semantic informa-
tion will, however, be lost due to the lack of proper
annotation strategies.

RDFa2 [4] assists users in generating (X)HTML+RDFa
pages from existing RDF documents, but at the time
of writing it does not support the persistence of RDF
triples.

Summarising, the schema editing for RDF/OWL has
drastically improved in recent years and tools such as
Protégé [18] and TopBraid have reached a level of ma-
turity that is comparably to relational database schema
modelling. However, tools specifically supporting the
data modelling such as Callimachus, LESS or On-
toWiki [2] still require the user to first define templates
based on the schema given by an ontology, before RDF
data can be created. In ActiveRaUL these templates
are automatically generated through a process that is
described in this article.

4 Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data

Fig. 1. Example Person Ontology

3. Motivating Example

We introduce a motivating example ontology that
we will use to illustrate the workings of the Web form
generation algorithm in ActiveRaUL. Our example is
motivated by FOAF [8], the Friend-of-a-friend vocab-
ulary, an ontology to describe persons, their activities
and their relations to other people and objects.

However, we have designed a small “Person” ontol-
ogy (see Fig. 1) that includes some more complex re-
lations that FOAF does not provide to showcase the
following:

1. OWL property restrictions e.g. owl:inverseOf
(i.e. worksFor and hasEmployee), owl:Transitive-
Property (i.e. supervises) and owl:Functional-
Property (i.e. playRole or gender)

2. Complex relations among concepts that include
cycles and multiple relations among the same
concepts e.g. the relationship between Persons,
Roles and Organizations.

3. The implementation of multiple types of mod-
elling that are supported in RDFS/OWL to ex-
press the same logical relation. For example the
relation, “A person works for an organization”
represents a relationship of a person and an or-
ganization. The schema model of this relation-
ship (shown on top in Fig. 2) can be implemented
in a formal language such as OWL in two ways
as shown in (a) & (b) in Fig. 2. In (a) the RDF-
S/OWL model explicitly defines a “Person” as
the domain and an “Organization” as the range
for the property “workFor”. In (b) the RDF-
S/OWL model uses a class restriction in the form

Fig. 2. Schema Model and two RDFS/OWL modelling types (a) &
(b)

of a subClassOf or equivalentClass of a Person
class on the property workFor such that only in-
stances of the Organization class can appear as a
range for this property.
ActiveRaUL supports both modelling types, the
domain range restriction (a) and the single range
existential restriction (b).

4. The ActiveRaUL system

The ActiveRaUL system consists of two main com-
ponents, (1) the ActiveRaUL Web service (2) and the
RaUL JavaScript library.

Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data 5

Fig. 3. Architecture of ActiveRaUL

4.1. The ActiveRaUL Web service

The ActiveRaUL Web service implementation (see
Fig. 3) follows the Model-View-Controller (MVC)
pattern [20].

Model The definition of a Web form based on an on-
tology constitutes the model part of the ActiveRaUL
system. We developed one such ontology, the RDFa
User Interface Language (RaUL)4. Web forms can be
handcrafted by a developer according to the RaUL on-
tology as described previously in [14] or they can be
created automatically as described in this article in
Sec. 6 and 7. A Web form model based on the RaUL
ontology consists of two parts:

I. Widget elements describing the structure of a
Web form. A Web form model is made up of
one or many widget elements that act as a di-
rect point of user interaction and provide access
to the triples of the referenced RDF graph (data
model). Fig. 4 depicts a high-level overview of
the RaUL ontology including a set of classes that
define different types of widget elements, such as
Textboxes, Radiobuttons, Listboxes etc. All wid-
get elements are a subclass of the Widget class
inheriting its standard properties, a label, name
etc. The Widget class also defines a value prop-
erty that is used to associate triples in the data
model to a widget element. Widget elements can
be grouped together on a Web form with sev-

4See http://purl.org/NET/raul\#

eral types of RaUL containers, i.e. a WidgetCon-
tainer, a Group or a DynamicGroup. The order-
ing of the widget elements in one of these con-
tainers is defined with an RDF collection.

II. A Data model defining the structure of the ex-
changed data as RDF statements which are ref-
erenced from the widget elements via a data
binding mechanism. Thus, the referenced RDF
graph gives meaning to the data used in the
widget elements by uniquely referencing con-
cepts and properties in Web ontologies. The
actual binding of the widget elements to the
underlying RDF data is realised via reifica-
tion. It has to be noted that we use reifica-
tion only as a data binding mechanism which is
particularly needed for maintaining the seman-
tics in the (X)HTML+RDFa rendering. In the
RDF database in the backend we store the rei-
fied triple and the reification triples, making it
easy to use SPARQL without the need to de-
fine complicated queries over the reified triple.
Reification is used for the data binding as fol-
lows: the rdf:subject triple references the
URI assigned to the RDF instance graph by
the ActiveRaUL service after submission. The
rdf:predicate triple is a reference to the
URI of a property in a Web ontology, and the
rdf:object triple is a reference to the value
that can be edited by the form control the reified
triple is referenced from. Empty rdf:object
fields serve as place-holders and are filled at run-

6 Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data

Fig. 4. The RaUL form model

time by the RaUL JavaScript client library with
the user input.

View The view in MVC is the part that the user inter-
acts with. ActiveRaUL supports different view repre-
sentations including RDF/XML, RDF/JSON, RDF/N3
and (X)HTML+RDFa. However, only (X)HTML+RDFa
will involve a rendering of the model as a Web form.
Since the mapping of the model to (X)HTML+RDFa
depends on the underlying form model, a Generic-
ViewProcessor Java interface is provided that de-
fines method signatures that have to be implemented
for a particular form model. We provide an implemen-
tation of this interface in the ActiveRaULProcessor,
that performs a view generation based on the RaUL
vocabulary.

Controller The ActiveRaUL RESTful Web service
implements a controller that is responsible for cre-
ating, retrieving, updating and deleting Web forms
and their referenced data. ActiveRaUL supports dif-
ferent data representations such as RDF/XML, RD-
F/JSON, RDF/N3 and (X)HTML+RDFa. It uses the
HTTP Accept header to determine what kind of rep-
resentation will be sent back to the client. The con-
troller also implements the functionality to automat-
ically generate a Web form if the input file is a do-
main ontology (see “RaUL Graph Generation” box in

Fig. 3). In Table 1 we summarise all supported HTTP
resources, describe their functionality and specify their
return values. We omit error handling in this table for
brevity. In a nutshell, errors are handled by returning
an appropriate HTTP status code.

In this table we distinguish between “Deployment
endpoints” and “Usage endpoints”.

Deployment endpoints The first three endpoints in
Table 1 describe the RESTful interfaces that can be
used to deploy a Web form. All three endpoints, af-
ter execution, will assign a URI to the newly de-
ployed Web form resources and return the URI in the
Location header of the HTTP response, for exam-
ple, /public/forms/person. We refer to these
identifiers as formid in Table 1. For the deployment of
Web forms, we handle duplicate names by appending
unique numbers, e.g., person1. For Endpoint I the
payload is required to be a RaUL RDF form model.
This endpoint can be used to deploy a handcrafted
RaUL Web form file with ActiveRaUL and store it in
the RDF triple store. For Endpoint II & III the payload
can be any arbitrary RDF ontology file. These end-
points will use the RaUL graph generation library (see
Fig. 3) to automatically generate a RaUL RDF form
model from the input ontology file using the process
described in this article. Endpoint II will create a Web

Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data 7

Table 1
ActiveRaUL RESTful service resource design

Request Server Action Response
Nr Resource Parameters Method Data

Deployment
I /forms POST RaUL RDF model,

defining the form struc-
ture (in JSON, XML or
N3)

creates a new form 201 (Created);
Location header of
new form

II /forms POST arbitrary RDF ontology creates a new form 201 (Created);
Location header of
new form

III /forms ?conceptid={id} POST arbitrary RDF ontology creates a new form for
the given concept

201 (Created);
Location header of
new form

IV /forms GET arbitrary RDF ontology retrieves all concepts in
the submitted ontology

200 (Ok); List of all
concepts in ontology
and rdfs:comment for
each

Usage
V /forms /{formid} GET retrieves the form iden-

tified by {formid}
200 (Ok); desired rep-
resentation as defined
in the Accept header

VI /forms /{formid} PUT RDF triples of updated
form

updates the form identi-
fied by {formid}

200 (Ok)

VII /forms /{formid} POST RDF triples containing
submission data

creates new form data 201 (Created);
Location header of
new form data

VIII /forms /{formid} DELETE deletes the from identi-
fied by {formid}

204 (No Content)

IX /forms /{formid}?instance={query} GET retrieves instances
matching the query
string for the
{formid}

200 (Ok); desired rep-
resentation as defined
in the Accept header

X /forms /{formid}/{dataid} GET retrieves the form
{formId} and its
data identified by
{dataid}

200 (Ok); desired rep-
resentation as defined
in the Accept header

XI /forms /{formid}/{dataid} PUT RDF triples of form and
form data

updates the data identi-
fied by {dataid}

200 (Ok)

XII /forms /{formid}/{dataid} DELETE deletes the form
data identified by
{dataid}

204 (No Content)

form for an entire ontology whereas Endpoint III will
create a Web form for a given concept and its associ-
ated concepts in an ontology. For all but a few small
ontologies Endpoint III should be used as it produces
a much more succinct Web form. In order to retrieve
a conceptid to be used with Endpoint III ActiveR-
aUL offers a helper endpoint Endpoint IV that retrieves
a list of all concepts in a given ontology including the
rdfs:comment for each concept.

Usage endpoints The interfaces summarised under
“Usage" describe operations that can be performed on
deployed RaUL form models at runtime. Typically, the
access to these endpoints will be over a Web browser.

For the data submitted for a Web form, the ActiveR-
aUL service dynamically assigns a URI, such as the
/public/forms/person/101. We refer to these
identifiers as dataid in Table 1.

For example, if the Web form resource URI /public-
/forms/person created via the deployment end-
points above is accessed in a browser, a GET request
with the Accept header set to text/html is is-
sued which will result in ActiveRaUL returning the
Web form in (X)HTML+RDFa as defined in End-
point V. When a user fills out this Web form and sub-
mits it through the RaUL JavaScript client library (see
Sect. 4.2), the (X)HTML+RDFa form will be parsed
and the object triples updated with the user input data.
The resulting RDF/XML is send to Endpoint VII in or-
der to create an instance graph for a specific formid.
After submission, the ActiveRaUL service will pro-
cess the request, insert the data in the RDF triple
store and send the HTTP Location header back to
the client. This uniquely identified data can then be
accessed independently of the form model by send-

8 Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data

ing a GET request with the Accept header set to
application/rdf+xml to Endpoint X. It can also
be accessed together with the form model by using
the same endpoint, but with the Accept header set to
text/html.

Endpoint IX can be used to retrieve all existing in-
stances for a given formid matching a query string.
This endpoint is used in the generated RaUL Web
forms to create links in widget elements to existing
Linked Data through ActiveRaUL (See Section 7.2).

4.2. RaUL JavaScript client library

The ActiveRaUL Web service can be invoked by
any REST client, including, of course, Web browsers.
However, for HTTP requests beyond the GET and
POST requests supported by HTML forms in Web
browsers, for example, to submit an arbitrary ontology
file or for submitting data through an already gener-
ated RaUL Web form, our RaUL JavaScript library is
required on the client.

The library uses the rdfQuery5 library as an RDFa
parser and jQuery for handling and querying the
(X)HTML DOM tree after submission of a Web form.
It creates an RDF graph (including the user input) from
the DOM tree of the Web form and sends the result-
ing RDF/XML to the invocation URL via the HTTP
method defined in the form model.

5. Preliminaries

To model a Web form for a concept in the input on-
tology, we extract a concept graph from the ontology
before we map it to a Web form. In the following we
define a concept graph and its qualities.

5.1. Defining a concept graph

The input to the Web form generation method is
an ontology with a graph-structured data model cor-
responding to RDF which describes resources in the
form of graph nodes and their relations to other nodes.
Let R = I ∪ B ∪ L (IRIs, Blank nodes, and Literals)
be the set of RDF resources.

Definition 1 (RDF Graph) A directed graph G =
< U,E > where U is a finite set of labeled nodes, E is
a finite set of directed labeled edges and U ⊂ R and E

5See http://code.google.com/p/rdfquery/

Fig. 5. Property Paths in Semantic Associations

⊂ R. An edge p in G is a 3-tuple (ui, p, uj) where p ∈
E and ui, uj ∈ U. ∀ (ui, p, ,uj) ui is source(p) and uj
is target(p). For all nodes u ∈ U, let δ +(u) be the in-
degree denoting the number of distinct edges for which
u is the source(p) and let δ −(u) be the out-degree de-
noting the number of distinct edges for which u is the
target(p).

Definition 2 (Semantic Association) A directed
path

ν um
π between two nodes is a sequence (ν, p0i

,u0i), (u0i , p1j ,u1j),...,(um−1k , pml
,uml

), for i, j, k,
l, m ≥ 0, for which ν is the concept node and um is
the last node. The length of the semantic association l
(
ν um
π) is the maximum number of consecutive con-

nected edges involved in the sequence.

Semantic associations exhibit multiple distinct prop-
erty paths based on the structure of the property se-
quence, and the position of the source concept and the
target concept. We distinguish several types of prop-
erty paths that commonly occur in a semantic associ-
ation of a concept graph in regards to their mapping
to Web forms. The property paths we distinguish are
shown in Figure 5.

– Single-length property path (Psl) We refer to a
single-length property path as shown in Fig. 5(a)
when a resource ν is linked to another concept ui
through property p, the length of the path is 1 and
ui is not equal to source(p).

l (
ν ui
π) = 1 , ui = I , δ −(ui) = 0

– Datatype property paths (Pdt) A single length
property path where ui is a literal, as shown in
Fig. 5(b).

ui = L

Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data 9

– Multi-length property path (Pml) refer to a
ν ui
π where a concept ν is linked to another

concept ui through more than one property. In
Fig. 5(c) ν is linked to uj through p1, uj is then
linked to ui through p2.

l (
ν ui
π) ≥ 2

ui = (I ∪ L) , uj = (I)

δ −(ui) = 0

– Branched property path (Pbr) a resource ν is
linked to two or more different concepts through
different properties as shown in Fig. 5(d).

l (
ν uj

π) ≥ 1, l (
ν um
π) ≥ 1

uj = (I ∪ L) , um = (I ∪ L)

δ −(ν) ≥ 2 , p1 6= p2

– Multi-range property path (Pmr) A property
path in a semantic association where for the prop-
erty p the source(p) is a single node ν but tar-
get(p) are u1,u2, .., un and u1 6= u2 6= ... 6= un for
some n ≥ 2 as shown in Fig. 5(e).

|target(p)| > |source(p)|

– Cyclic property path (Pcy) A semantic associa-
tion where one of the concepts or the nodes ap-
pears more than once in the path, as shown in
Fig. 5(f)(g)(h).

l (
ν ui
π) ≥ 1

ui = ν , uj = (I ∪ B)

Definition 3 (Sub-association) A semantic associ-
ation

ν ui
π is a sub-association of an other associa-

tion
ν uj

π (i.e. subAssociation(
ν ui
π ,

ν uj

π)),
if and only if all the nodes of

ν ui
π are also the nodes

of
ν uj

π , i.e.

U(
ν ui
π) ⊆ U(

ν uj

π)

Since all the nodes of
ν ui
π are a subset of the nodes

of
ν uj

π we can infer the relationships among nodes of
ν ui
π from the association

ν uj

π .

Definition 4 (Concept graph) A directed rooted
graph G′ = < U ′, E′, ν > , denoted by CG(ν), is an
RDF graph where ν ∈ U ′ is the root - concept node -
for the graph. For all other nodes ui ∈ U ′ there exists
a semantic association

ν ui
π of length l between ν and

ui.

5.2. Using the concept graph

The process of generating a Web form from a given
schema graph G including a set of concept nodes ν ∈U
representing the input ontology involves the following
steps as shown in Fig. 6:

1. Constructing the concept graph from an ontol-
ogy: All related properties of a concept node are
extracted from the domain ontology to construct
the concept graph for ν such that CG(ν) * G.

2. Mapping the concept graph to RaUL Web Forms:

– Association set extraction: For CG(ν) first an
association set π(ν) is identified composed of
only distinct semantic associations for ν such
that,

∀ ν ui
π , ∀

ν uj

π ∈ π(ν):
subAssociation(

ν ui
π ,

ν uj

π) =
false where ui 6= uj

– Mapping the association set to RaUL Web
forms: The mapping µ : π(ν) → RaUL is
defined, such that each path

ν u
π is mapped

to one or more valid RaUL widget elements.
Once the mapping for all semantic associa-
tions is defined, a complete RaUL model for
CG(ν) is returned. This model in turn can be
rendered in HTML using ActiveRaUL which
implements functionality to map the RaUL
model µ to corresponding HTML elements of
a Web form.

In the following sections we describe the individual
steps in this process in more detail.

6. Constructing the concept graph from an
ontology

The first step to generate a form for a concept node
of an arbitrary ontology is to construct a concept graph
CG(ν) from the RDF graph (ontology)G. A brief algo-
rithm for the concept graph construction is presented
in Algorithm 1. The algorithm corresponds to the func-
tion that is implemented for Endpoint III in Table 1.
For the concept graph of the whole ontology this algo-
rithm is called repeatedly for each concept node.

To construct a concept graph for the concept node
ν from G, we first create a trivial graph CG0(ν) com-
posed of vertex ν. CGn(ν) represents a graph where

10 Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data

Fig. 6. A concept graph mapping to RaUL to Web Form

Algorithm 1. Concept graph Construction
Require: RDF Graph G(U,E), Node ν ∈ G
Ensure: Set CG0(ν)← ν /* CG0(ν) is initial concept graph for

node ν */
Set n← 0 /* n is length of the association */

1: do
2: n = n +1;
3: Construct the concept graph CGn(ν) ← CGn−1(ν) ; /* a

concept graph for node ν where the maximum length of associ-
ations in the graph is n */

4: for all ui ∈ CGn−1(ν) where δ +(ui) = 0 and

l (
ν ui
π) = n-1 do

5: CGn(ν)← CGn(ν)
⋃ j≤δ+(ui′)
j=1 (ui, p(i+1)j , u(i+1)j);

6: end for;
7: while CGn(ν) != CGn−1(ν)
8: return CGn(ν)

the maximum length of the semantic associations in
the graph is n. After initializing the concept graph, a
breadth first graph traversal approach is used to select
all related concepts of ν from G . The length of the
semantic association is increased by one (line 2) and a
graph is constructed that has all the semantic associa-
tions for node ν whose length is ≤ n (line 3). For all
such nodes ui ∈CGn(ν) where the out-degree is 0 and
the length of the semantic association for ν is n, we
select the associated properties and corresponding as-
sociated concepts of ui from G and add it to the graph
CGn(ν) (line 4-6). While the newly constructed graph
CGn(ν) is not similar to the graph CGn−1(ν), step
(1-6) is repeated. Otherwise, all semantic associations
for the concept node ν have already been constructed,
therefore a complete concept graph is returned (line 8).

For a concept ui, pi+1 is the immediate prop-
erty and ui+1 is the immediate associated concept of
ui through the property pi+1. Therefore, the pattern
(ui, pi+1, ui+1) represents the two concepts ui and
ui+1 of the domain ontology that are attached through
property pi+1. The procedure of selecting the property
relation (ui, pi+1, ui+1) from RDF Graph G at line 5
in Algorithm 1 depends on the RDFS/OWL imple-
mentation model of the relation in G . Here, we de-

tail four different models that are the most commonly
used for modeling a relationship of classes/concepts
and that we are considering in ActiveRaUL to extract
a property relationship in the concept graph construc-
tion algorithm.

Fig. 7. (a) Domain range restriction

Mapping domain range restrictions to semantic asso-
ciations: For domain range restrictions, the source
and the target are explicitly defined for a property us-
ing the rdfs:domain and rdfs:range properties of RDFS
as shown in Fig. 7.

Since a property can have multiple domains and/or
multiple ranges it is difficult to determine for a specific
domain and property which range concepts are rele-
vant. Thus, our current implementation creates a se-
mantic association for ui through property pi for each
range concept.

Fig. 8. (b) Single range existential restriction

Mapping single range existential restrictions to se-
mantic associations: For each concept ui the asso-
ciated property pi+1 and concept ui+1 are defined as
a necessary restriction (i.e. rdfs:subClassOf), or neces-
sary and sufficient restriction (i.e. owl:equivalentClass)
on ui as shown in Fig. 8. For a single range existential
restriction a property pi+1 can have values only from
one concept ui+1 (i.e. pi+1 has a single target con-

Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data 11

cept). The restriction implies on the property pi+1 such
that it can have all values or some values from the con-
cept ui+1. These single range existential restrictions
are defined in OWL with the owl:Restriction concept
and its properties such as owl:onProperty, owl:all-
ValuesFrom or owl:someValuesFrom.

To extract the related properties and concepts (range)
of a concept ui from the modeling, we select tar-
get(owl:onProperty) as associated property (i.e. pi+1)
and target(owl:allValuesFrom | owl:someValuesFrom
| owl:maxCardinality | owl:minCardinality | owl:cardinality)
as associated concept (i.e ui+1 as a range for pi+1)
for ui. The target for the properties owl:allValuesFrom
and owl:someValuesFrom is a concept. However, the
targets of cardinality restrictions are only the integers
defining the cardinality for the property (i.e. miss-
ing the range of property). For such properties where
the range is not defined, we declare owl:Thing as a
range for object properties and xsd:String as range for
datatype properties.

Fig. 9. (c) Multiple ranges existential restriction

Mapping multiple ranges existential restrictions to
semantic associations: This type of mapping is in-
troduced for relationships where each concept ui is
associated to more than one other concept u(i+1)j

through the same property pi+1. In other words, prop-
erty pi+1 has multiple target concepts. This type of re-
striction is modelled in OWL similarly to the single
range existential restriction with the only difference
that target(owl:allValuesFrom) and target(owl:some-
ValuesFrom) is a blank node of type owl:Collection.
The owl:Collection is composed of an rdf:list where
each rdf:list element is a concept or another list mod-
eled through rdf:first and rdf:rest properties, as shown
in Fig. 9.

For a multiple ranges existential restriction of a con-
cept ui, a target(owl:onProperty) is selected as the as-
sociated property pi+1 and all target(rdf:first) values
of the recursive rdf:list are considered as the possible
associated concepts of ui through property pi+1.

Fig. 10. (d) Multiple properties existential restriction

Mapping multiple properties existential restrictions
to semantic associations: In a multiple properties
existential restriction a concept ui is defined as an
equivalent class of a restriction that involves more than
one property as shown in Fig. 10. A multiple prop-
erty restriction is a collection and within this collection
each property is defined as a restriction similar to sin-
gle and multiple ranges existential restrictions as de-
scribe above. Therefore, in this model a single restric-
tion describes many related properties and correspond-
ing concepts.

For all such concepts whose relationships with other
concepts are defined using this model, for each mem-
ber of the collection we select target(owl:onProperty)
as a property and the associated concept (i.e. range)
from target(owl:allValuesFrom | owl:someValuesFrom
| owl:maxCardinality | owl:minCardinality | owl:cardinality)
. Therefore, the number of semantic associations
(property pi+1 - concept ui+1) for a given concept ui is
equal to the number of members in the owl:Collection.

7. Mapping the concept graph to RaUL Web
Forms

The mapping of the concept graph to RaUL and
then to Web forms has to particularly address the chal-
lenges identified in the introduction of the mismatch
between the graph nature of the input ontology and
the tree structure of Web forms and consequently the
tree structure the RaUL RDF Web form model is em-
ulating. To address this challenge, a pre-processing is
required before we map a concept graph to a RaUL
graph. In this pre-processing step, the semantic asso-
ciations for a concept graph are modified to match the
tree structure of the RaUL Web form model and redun-
dant associations are eliminated.

Algorithm 2 defines the overall procedure for gen-
erating a RaUL graph from a concept graph. The al-
gorithm takes a concept graph CGn(ν) and a concept

12 Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data

node ν as an input and returns a RaUL graph. A seman-
tic association set π(ν) is extracted for CGn(ν) (line
1) by following the procedure described in Sec. 7.1.
Next, a RaUL widget container RaULwC is created
for the concept node ν (line 2). Then a function
SA_RaUL_Mapping (described in Sec. 7.3) is called
that takes as input the association set π(ν) and the
created RaUL WidgetContainer RaULwC and recur-
sively builds a RaUL graph in RaULwC by adding
mappings for each property and its corresponding con-
cepts as defined in in Sec. 7.2).

Algorithm 2. RaUL Graph
Require: CGn(ν), concept node ν
Ensure: Setπ(ν)← { } /* The association set for concept graph

CGn(ν) */
Set RaULwC ← empty /* WidgetContainer for ν */

1: π(ν) ← getSemanticAssociations(CGn(ν) , ν) /* Algo-
rithm 3 */

2: RaULwC ← RaULcn /* A RaUL Widget container with a
text box that will hold all associations for this concept node */

3: SA_RaUL_Mapping (π(r), r, RaULml) /* Algorithm 4 */
4: return RaULwC

In the following sections we describe the individual
steps of this algorithm in more detail.

7.1. Association set extraction

The process of extracting an association set is shown
in Algorithm 3. The algorithm takes a concept graph
CGn(ν) and concept node ν as input and returns an
association set π(ν). For each association

ν u
π in

CGn(ν) we first determine if it is a base property path,
i.e. a property path that has a defined mapping in Ac-
tiveRaUL, or a cyclic property path. Cyclic property
path do not have a defined mapping in ActiveRaUL
and are first converted to one of the base property
paths.

Cyclic paths, caused by owl:inverseOf proper-
ties or cyclic structures of concept relationships, are
converted to the base property paths by removing the
edge that introduces the cycle in the path (referred as
reverse edge). More formally, if there exist any two
nodes ui and uj (ui 6= uj) in an association, for which
besides a direct path between ui and uj there exists
an edge p ∈ E(

ν u
π) such that (uj , p, ui), then p is

removed from the association
ν u
π (line 2-5). Since

the relationship between nodes connected by reverse
edges can be inferred from the rest of the semantic as-
sociations using the reasoner used in the implementa-
tion of ActiveRaUL, the removal of these reverse edges

does not result in any loss of information about the
concept relationships.

However, cycles caused by owl:Transitive-
Properties are not inferable from the rest of the as-
sociations in the semantic association set. Such cyclic
paths are implicitly broken during the mapping of a
semantic association to a RaUL graph by mapping a
transitive property to a single length property path.

Once the cycles are removed for the association,
candidacy of the association to the association set is
checked in a second step (line 6-11). By default every
association of the concept graph is a candidate associ-
ation. If an association

ν u
π is a sub-association of any

association
ν u′

π of the association set (line 7), then
association

ν u
π can be inferred from an existing asso-

ciation
ν u′

π of the association set. Therefore,
ν u
π is

not a candidate association (line 8). If any association
ν u′

π of the association set is a sub-association of the
association

ν u
π (line 9), then the association

ν u′

π can
be inferred from the new association

ν u
π . Therefore,

we remove association
ν u′

π from the association set
(line 10), and association

ν u
π will remain a candidate

association. After candidacy check, if the association
is still a candidate association then it is added to the as-
sociation set, otherwise we skip the association. Once
the whole process is completed for every association
in the concept graph, an association set is returned.

Algorithm 3. Semantic Association Set Extraction
Require: CGn(ν), Node ν of CGn(ν)
Ensure: Setπ(ν)← { } /* The association set for concept graph

CGn(ν) */
Set candidate← true /* candidate is boolean variable

*/
1: for each ν uπ ∈ CGn(ν) do
2: for all ui & uj ∈ U(

ν u
π) do

3: if
ui uj
π ∩ ∃ p = { p | (uj , p , ui) ∩ p ∈ E(

ν u
π)} do

4:
ν u
π =

ν u
π − p

5: end for;

6: for each ν u
′

π ∈π(ν) do

7: if subAssociation(
ν u
π ,

ν u′
π) do

8: candidate← false;

9: else if subAssociation(
ν u′
π ,

ν u
π) do

10: π(ν) =π(ν) − ν u′
π

11: end for;
12: if candidate == true do
13: π(ν) =π(ν) ∪ ν uπ
14: else skip

ν u
π /*

ν u
π is not a candidate SA */

15: end for;
16: returnπ(ν)

Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data 13

Example: Applying the association set extraction
process on our motivating example, we first need to
identify a semantic association set π(Person) for the
Concept Graph CG(Person). Table 2 shows all pos-
sible semantic associations and corresponding prop-
erty paths involved in each semantic association for
the CG(Person). π(Person) will contain only the can-
didate associations selected from all possible semantic
associations for the CG(Person) after removing avoid-
able cycles.

During the process of extracting the association set
for the concept “Person”, all cycles in the association
other than the ones caused by owl:Transitive-
Property are detected and removed. Next, the
candidate associations are identified and only can-
didate associations become part of the association
set π(Person). Starting with SA-1, all associations
in Table 2 are checked one by one. Though SA-1
has a cyclic path for which source(supervises) =
target(supervises) = Person, it is not removed be-
cause of the transitive property (i.e supervises). Next, a
sub-association check is made for SA-1. At the time of
adding the first association (i.e. SA-1) the association
set is empty and SA-1 is not a sub-association or any
association in π(Person), so it is added to π(Person).
SA-2, SA-3 and SA-4 are associations with no

cyclic paths. Also neither of these associations is a sub-
associations of another association in the association
set, nor is any association of the association set a sub-
association of these associations. Therefore these asso-
ciations are added toπ(Person) without removing any
edge or skipping any association.
SA-5 involves a cyclic property path be-

cause of the relationship (Organization, locatedIn,
City). The edge (or property) that causes the cycle
in this semantic association is removed which results
in SA-5 to be a multi-length property path. Neither
SA-5 nor any association from the association set are
sub-associations of each other so SA-5 is added to
π(Person).
SA-6 does not involve any cyclic property path but

it is a sub-association of SA-5 (i.e. relationships of
SA-6 can be inferred from SA-5) therefore, it is not
a candidate association and we skip this association
from π(Person).

Summarising, we have a final association set that is:

π(Person) = { (Person, supervises, Person) ,
(Person, address, String) , (Person, gender,

Gender) , ((Person, publication, Publication),
(Publication, publisher, Publisher), (Publication,

year, Int)) ,((Person, playRole, Role), (Role,
definedBy, Organization), (Organization,

locatedIn, City)) }

7.2. Mapping the association set to RaUL Web forms

The semantic association set for a concept node is
mapped to a Web Form that is used to create new in-
stances or update existing instances for the concept
node. The concept node relationships with other con-
cepts can be implemented by creating new or by using
existing instances of the related concepts to the con-
cept node. To use or update the existing instance, the
Web elements for object properties have a Lookup
Existing link. A user can search the existing in-
stances from the RaUL repository by clicking the link.
Every multi-length property path, multi-range prop-
erty path and single length property path (other than
datatype property path) have a Lookup Existing
link on the Web form as shown in example Fig. 21.

The decisions on how to map the semantic associa-
tions in the concept graph to RaUL and then to Web
forms are made on the basis of (1) the position of a
node in a property path and (2) the type of the property
path involved in a semantic association. In the follow-
ing we first describe the mapping of the nodes to RaUL
depending on their position in the semantic association
followed by a description of the different property path
mappings. For each mapping a diagram (see Fig. 12-
20) presents (1) the type of the property path based
on its position in a semantic association (left side of
the diagram) (2) the corresponding RaUL graph (cen-
ter part of the diagram) (3) the Web form field/s cor-
responding to each RaUL graph (right part of the di-
agram). The mapping to the HTML Web form fields
represents the third step in our mapping process as de-
scribed in Fig. 6. The solid lines in a diagram show
the property, the RaUL construct and the form field un-
der consideration in the respective mapping, whereas
the dashed lines present related concepts in semantic
associations for which a mapping is already defined
in a previous RaUL mapping. Every diagram also in-
cludes a mapping for the respective property path type
from our motivating example Person ontology (indi-
cated with solid fills in the diagram).

Single Node to RaUL Mapping (RaULsn): The
mapping for any single node u of a property path
other than the last node is presented in Fig. 11. Ev-
ery single node u is mapped to a widget element of
type raul:Textbox. For the raul:Textbox a

14 Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data

Table 2
Semantic Associations for Person

Semantic Associations Property Paths Involved

SA-1 Person supervises−−−−−−−−→ Person Cyclic property path

SA-2 Person address−−−−−→ String Datatype property path

SA-3 Person gender−−−−−→ Gender Single-length property path

SA-4
Person publication−−−−−−−−→ Publication

{
publisher−−−−−−−→ Publisher
year−−−→ Int

Multi-length property path,
Branched property path,
Single-length property path

SA-5
Person playRole−−−−−−→ Role definedBy−−−−−−−−→ Organization


locatedIn−−−−−−−→ City
hasEmployee−−−−−−−−−−→ Person

Multi-length property path,
Branched property path,
Single-length property path,
Cyclic property path

SA-6 Person worksFor−−−−−−−→ Organization locatedIn−−−−−−−→ City Multi-length property path

Fig. 11. RaULsn: Single Node to RaUL mapping

raul:label property is defined with its value set
to the label of node u. The raul:range of the
raul:Textbox is set to u and the value of the
rdf:predicate of the reified triple is set to rdfs:label.
This information encodes the data binding and de-
fines that data submitted through this textbox is an
instance of type u and it becomes the object value
for the rdfs:label predicate. The RaUL graph resulting
from this mapping encodes that a node u appears as a
textbox with a label u on the Web form.

Example: An example single node in our Person on-
tology is the Publication class. The Publication node
will be mapped to a textbox according to the RaULsn
described above. The object values in the RaULsn
graph for raul:label and raul:range are Pub-
lication and URIPublication respectively. The corre-
sponding Web form element is a textbox with a label
as shown in the right part of Fig. 11.

Concept Node to RaUL Mapping (RaULcn): The
concept node ν (i.e. the first node) of a property path is
mapped to a raul:Textbox according to the map-
ping defined in RaULsn. Additionally, for the con-

cept node, a container is required that encodes the re-
lationship of ν to all its related properties and con-
cepts. Therefore, a raul:WidgetContainer is created
that references the widget elements that are created
for related properties and concepts of ν (see Fig. 12).
The first member of this collection rdf:_1 is always
set to the URI of the raul:Textbox of ν, while
rdf:_2, ... , rdf:_n are mapped depending on the type
of the target(p) as shown in later mappings. For the
raul:WidgetContainer a raul:range prop-
erty is defined that is set to ν. This information
encodes the data binding and defines that the do-
main of all members of the WidgetContainer
collection is ν. In the mapping to a Web form the
raul:WidgetContainer becomes a <div> con-
tainer.

Example: In our motivating example a Web form
is to be generated for the Person class of the Per-
son ontology. Therefore, the Person is the concept
node and thus mapped according to RaULcn. A
raul:WidgetContainer holds the raul:Textbox
that was created for the Person class as described

Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data 15

Fig. 12. RaULcn: Concept Node to RaUL mapping

by mapping RaULsn through a membership prop-
erty rdf:_1. The textbox has the object value of
the raul:label property set to Person and the ob-
ject value of the raul:range set to URIPerson.
All the associations for the Person node are linked
to the raul:WidgetContainer through member-
ship properties (i.e. rdf:_2, rdf:_3 etc.). In a corre-
sponding Web form, the textbox for the concept node
always appears as the first textbox on the Web form as
shown in Fig. 12.

Last Node to RaUL Mapping (RaULln): Every
last node u1 in a semantic association, i.e. every
node where there exists no source(p) for u1, and
its target(p1) are mapped to a raul:Textbox for
which the raul:label is set to u1 as shown in
Fig. 13. The rdf:predicate value is set to the URI of p1
and the raul:range value for the raul:Textbox
is u1. Consequently, values submitted through this
textbox are instances of class u1 and are linked to the
instance of source(p1) through property p1.

Example: The City is a last node of the π(Person)
class (denoted as SA-5 in Tab. 2). Therefore, accord-
ing to its type, the City node is mapped to a textbox
as defined in RaULln and described above. The ob-
ject values in the RaULln graph for raul:label,
raul:range and rdf:predicate are locatedIn,
URICity and URIlocatedIn, respectively. This RaUL
graph encodes that for this node a textbox appears on
the Web form with a label locatedIn. Values submit-
ted through this textbox are instances of City and are
linked to the instance of source(locatedIn), i.e. Orga-
nization through the property locatedIn.

Single-length property path to RaUL Mapping (RaULsl):
The mapping for the Single-length property path is al-
ready largely covered by the RaULsn and RaULln
mapping. In a single-length property path the source(p1)
can either be the concept node or any single node,

but the target(p1) is always a last node. To map the
relation of p1 and u1 to the source(p1), RaULln is
set as a value of the membership property of the
raul:WidgetContainer (i.e. rdf:_2) that holds
the mapping for source(p1) as shown in Fig. 14. A spe-
cial case of single-length property is the datatype prop-
erty path with the only difference that the raul:range
value is an xsd datatype corresponding to the datatype
value for the property p1.

Example: The address property in our Person on-
tology is a single-length property for which tar-
get(address) is a literal. To map the property ad-
dress and String Literal a RaULln graph is gener-
ated as described above. The object values in the
RaULln graph for raul:label, raul:range
and rdf:predicate are address, xsd:String and
URIaddress respectively. To encode its relationship
with the target(address), i.e. Person, the RaULln cre-
ated above is set as a value of the membership prop-
erty of the raul:WidgetContainer (i.e. rdf:_2)
of the Person. This single-length property path appears
on the Web form as a textbox with its label set to ad-
dress as shown on the right side of Fig. 14. The val-
ues submitted through this textbox are literals of type
string which are linked to the corresponding instances
of source(address), i.e. Person through its address
property.

Multi-length property path to RaUL Mapping (RaULml):
In a multi-length property path, shown in Fig. 15,
the source(p2) is linked to another concept (i.e. u1)
through more than one property (i.e. p2 and p1). To
express this relation, RaUL offers the raul:Group
container class. In the mapping of a multi-length prop-
erty path to RaUL, the length of the property path de-
termines the type of mapping. Two different views are
adopted, one for a property path of length l = 2 and one
for a property path of l > 2. A raul:level property
is set for the raul:Group class to track the levels

16 Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data

Fig. 13. RaULln: Last node to RaUL mapping

Fig. 14. RaULsl: Single-length property path to RaUL mapping

Fig. 15. RaULml1 : Multi-length property path to RaUL mapping

within the multi-length property path. The two differ-
ent mappings based on the length are shown in Fig. 15
and Fig. 16.

If the length l of the property path is 2 then the
group level for p2 is 1. In this case a raul:Group
is referenced from the source(p2) through a mem-
bership property in the container class of source(p2).
For the raul:Group the raul:range property is
set to u2. A raul:list property is defined for the

raul:Group with an RDF list as the object value.
The list holds the RaUL mappings for the other proper-
ties and concepts of target(p2) (i.e. u2, p1 and u1). The
two concepts in this list, u2 and u1 are mapped accord-
ing to the mappings above, u3 as a single node and u2
connected through property p1 to u1 as a single-length
property path and linked to the raul:Group through
a membership property of the RDF list shown with the
dashed lines in Fig. 15.

Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data 17

In the mapping to a Web form each raul:Group
is mapped to a fieldset with a legend showing the prop-
erty u2 and the referenced concept u2 as shown in the
right side of Fig. 15. This fieldset indicates that within
this box a new resource of type u2 is created that is
linked to u3 via property u2. All widget elements en-
closed by this fieldset are defining properties for the
instance of u2.

Example: An example multi-length property path in
the Person ontology which is part of the semantic as-
sociation SA-4 is the property path (Person, publi-
cation, Publication). It is mapped to the RaULml
graph as shown in Fig. 15. For the RaULml graph the
raul:label, raul:range and rdf:predicate
are set to publication,URIpublication and URIpublication
respectively. The raul:list object value is an
rdf:list which refers to a Publication as the single
node (RaULsn) and to the relation (publisher, Pub-
lisher) as the RaULsl. This raul:Group is refer-
enced from the Person container through a member-
ship relation. On the Web form, the raul:Group ap-
pears as a fieldset within the Person container, with a
legend publication, Publication. This fieldset contains
two textboxes one for the Publication as a single node
and the other for the publisher property as the single
length property mapping.

For multi-length property paths where the length
of the property path is greater than 2 (as shown in
Fig. 16), the raul:Group is referenced from the
source(p3) through a membership property in the con-
tainer class of source(p3) and the raul:level for
this group is ’2’. The raul:range property for the
raul:Group is set to u3. u3 is the first node to map
for this path, therefore, u3 is mapped to RaULsn and
linked to the raul:Group through a membership
property of the RDF list of the group. For p2, as it is
part of a multi-length property path of length 2, it is
mapped according to RaULml1 in a recursive process
and linked to the raul:Group through a member-
ship property as shown in Fig. 16.

The mapping of the RaUL graph to the Web form is
similar to the one for the multi-length property path of
length 2, but a button within the fieldset is created (see
right side of Fig. 16) that opens a pop-up that displays
a Web form similar to the one shown in Fig. 15 that
allows the user to create instances of u2 that are linked
to u3 through the property p2.

Example: An example multi-length property path
in our Person ontology where the length of path is
greater than 2 is the SA-5. The raul:Group of the
RaULml2 is referenced from the source(playRole)
i.e. Person through a membership property and the
raul:level for this group is set to ’2’. For the
RaULml2 graph the raul:label, raul:range
and rdf:predicate are set to playRole, URIRole
and URIplayRole respectively. The raul:list is
set to an rdf:list which refers to a RaULsn graph
for Role as single node and a RaULml1 for rela-
tion (definedBy, Organization). On the Web form, the
raul:Group appears as a fieldset, inside the Person
container and textbox, with a legend playRole, Role.
This fieldset contains a textbox for the Role and a but-
ton to add an instance of Organization that plays this
role. This instance of an Organization can be created
via anotherRaULml generated Web form that appears
in a pop-up window when clicking on the button.

Multi-range property path RaUL Mapping (RaULmr)
: For a multi-range property path the property p
is mapped to a raul:Textbox similar to a last
node to RaUL mapping with the raul:label set
to the label of p and the rdf:predicate is set
to the URI of p. However, the raul:range is not
a single concept URI, but since p can have multiple
ranges, the range is set to a raul:Listbox URI.
For this list the raul:list property is set to a list of
raul:ListItems, where the raul:value of ev-
ery raul:Listitem is one of the types of target(p).
As shown on the right side of Fig. 17, in a Web form
target(p) is mapped to a textbox that allows a user to
add object values for the property p followed by a list-
box, where u1, u3 are the list items, that lets the user
select the type of object values from the list. Once the
value for the field is submitted, the property ’selected’
is set to ’true’ for the selected raul:Listitem.

Example: In the example ontology, the range of the
publication property is a Publication. Since the con-
cept Publication has two sub-concepts Conference and
Journal, publication is a property for Conference and
Journal as well. Consequently, publication is modelled
as a multi-range property path. A RaULmr graph is
referenced from the raul:WidgetContainer of
the Person concept through a membership property.
In the RaULln graph raul:label is set to publi-
cation and the object value for rdf:predicate is
URIpublication. The raul:listbox of theRaULmr
contains three raul:ListItems. The raul:value
for the list items are set to Publication, Conference and

18 Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data

Fig. 16. RaULml2 : Multi-length property path to RaUL mapping

Fig. 17. RaULmr : Multi-range property path to RaUL mapping

Journal. On a Web form, the RaULmr for publication
appears as a textbox followed by a listbox. A user en-
ters the value for a publication in textbox and selects
the type of publication from listbox.

Branched property RaUL Mapping (RaULbr): In a
branched property path, as shown in Fig. 18, there ex-
ists more than one semantic association for a concept
u so that u = source(p1) = source(p2) . The prop-
erties p1 and p2 are mapped separately according to
the type of property paths and linked to the parent con-
tainer, i.e. a raul:WidgetContainer if u is the
concept node or a raul:Group if u is a single node
on a multi-length property path, through a membership
property of the RDF list. An example mapping for the
branched properties is shown in Fig. 18 for two single-
length associations of a single concept. In this case p1,
u1 and p2, u2 each are mapped according to RaULsl
and added to the container of u. In a Web form the
two or more properties for u are displayed as separate
textboxes within a fieldset.

Example: An example branched property path shown
in the figure is part of SA-4 where the (Publication,
publisher, Publisher) and (Publication, year, Int) are
mapped to the RaULbr graph. The association (Publi-
cation, publisher, Publisher) is mapped as a RaULln
and is referenced from a container of the Publication.
Since, Publication has another association i.e. (Publi-
cation, year, Int), therefore it is mapped according to
the property path (for this example a last node on sin-
gle length property path) and referred from the same
widget container of the Publication. On the Web form,
both nodes appear as a textbox within the fieldset for
the Publication.

Axiom instances to RaUL Mapping (RaULai): The
RaULai graph shown in Fig. 19 is created for a prop-
erty p where the range of the property has defined
instances in the ontology. The RaULai graph is re-
ferred through a membership property in the container
class of source(p). The RaULai maps the property
and the instances that can be value for that property in

Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data 19

Fig. 18. RaULbr : Branched property path to RaUL Mapping

Fig. 19. RaULai: Axiom instances to RaUL Mapping

a raul:Listbox. For the listbox the raul:list
property is set to a list of raul:ListItems, where
raul:value of the list items refers to the instances
defined in the ontology. As shown in Fig. 19, target(p)
is mapped to a listbox, where l1 and l2 are the list
items.

Example: Example axiom instances as shown in
Fig. 19 are the semantic associations in SA-3 where
the property gender has two instances defined in
the ontology, Male and Female. The instances of
the source(gender) can have any one of these two
instances as a object value for the property gen-
der. A RaULai graph is referenced from the wid-
get container of the Person (i.e. source(gender)) con-
cept through a membership property. In the RaULai
graph raul:label is set to gender and the ob-
ject value for rdf:predicate is URIgender. The
raul:listbox of theRaULai contains two raul:List-
Items. The raul:value for the list items are set
to Male and Female. On the generated Web form, the
RaULai appears as a listbox within the fieldset of the
Person. A user can select the defined value for the gen-
der from a listbox.

Non-functional property RaUL Mapping (RaULnfp):
A non-functional property p can have more than one
object value for a single instance of source(p). The two
type of mappings for such properties which depend
upon the type of property path the participates in are
shown in Fig. 20.

If the non-functional property is part of a single-
length property it is mapped to a textbox and the
raul:multiple property is set to true. This RaUL
property causes the textbox to include a plus button to
its side on the Web form. With this plus button a user
can create multiple instances of the same relation.

If the non-functional property is part of a multi-
length property where the relationship between mul-
tiple concepts for a given concept node are defined
through a RaUL container class (see Fig. 15), a
raul:DynamicGroup (a special type of a raul:-
WidgetContainer) instance is created instead of
a raul:Group. This raul:DynamicGroup itself
can hold multiple raul:Groups as shown in Fig. 20.
The raul:DynamicGroup causes the whole group
of widget elements to be enclosed by a plus button on
the mapping to a Web form. With this plus button an-
other set of instances of the entire group can be created

20 Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data

Fig. 20. (RaULnfp): Non functional property to RaUL Mapping

on the Web form, i.e. all widget elements within the
group are replicated by the RaUL JavaScript library.

Example: In our example ontology, some properties
are defined as non-functional e.g. publication and su-
pervises. For single-length property paths, e.g. super-
vises, theRaULnfp mapping adds a raul:multiple
property with the object value true to the supervises
property which is mapped according to RaULln.
For multi-length property paths, e.g. publication, the
RaULnfp mapping creates a raul:DynamicGroup
that references the publication property that was cre-
ated through the RaULml mapping via a membership
property in the dynamic group. The raul:Widget-
Container for the Person class that originally re-
ferred to RaULml now refers to the RaULnfp.

7.3. RaUL Mapping procedure

Algorithm 4 describes the process of how the prop-
erty path mappings defined above are combined to
create a complete RaUL Web form graph. The map-
ping process for each property path encompasses three
steps (1) A RaUL mapping RaULpattern correspond-
ing to the type of the property path is created; (2) the
RaUL mapping created in step 1 is added to the RaUL
WidgetContainer RaULwC that is an input of this
algorithm and; (3) a triple (URIRaULwC

, rdf_n,
URIRaULpattern) is created where RaULwC is the
URI of a WidgetContainer RaULwC that holds the
different RaUL mappings through an RDF member-
ship property and URIRaULpattern is the URI of the
RaULpattern linking the newly created RaULpattern

to the corresponding RaULwC . Since, for every con-
tainer the first member rdf_1 is always the main con-
cept of the semantic association, n in rdf_n is the
number of semantic association plus 1.

Since, we look for all associations of node ν at (line
1), we are implementing RaUL mappings for all prop-
erty paths p for which ν is source(p). To implement
other patterns, for each association in the semantic set
the first property of the association (i.e. p), the first re-
lated concept of ν (i.e. r) and all the base property
paths ′bpp′ are extracted (line 3-4).

The bpp is matched to the corresponding case of
the switch statement (line 5). If bpp matches to Pai
then a RaULai graph is created for (line 7). For
a non-functional property p a triple (URIRaULai

,
raul:multiple, true) is linked usingRaULai URI
(i.e. URIRaULai

) (line 9) and RaULai is added to the
raul:WidgetContainer RaULwC with a triple
defining the container membership (line 11).

If it matches to Pml (i.e. a multi-length property
path) then a RaULml is created (line 13). If p is a
non-functional property then we create a RaULnfp,
and add this to RaULml. To link the RaULnfp to
RaULml a triple is added to the combined graph (line
14-17). Once the mapping for RaULml is completed,
a triple defining the container membership ofRaULml
to RaULwC is created (line 18). To map next prop-
erties and concept to RaUL mapping, p and r are re-
moved from the semantic association and the rest of
the association comes up to an association set for r
(line 19). The SA_RaUL_Mapping algorithm is called

Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data 21

Algorithm 4. Semantic Association to RaUL Mapping (SA_RaUL_Mapping)
Require: SA setπ(ν) , Node ν , WidgetContainer RaULwC
Ensure: Set URIwc← source(RaULwC .rdf : list) /* URI of the list of a widgetContainer that holds different raul mappings through

rdf membership property */
Set p← null /* property for which ν is a domain concept */
Set r← null /* target(p) /
Set bpp← null /* base property pattern for p */

1: for each ν uπ ∈π(ν) do
2: p← p′ = { p′ | source(p′) = ν }
3: r← target(p)
4: bpp← BasePropertyPattern(p)
5: Switch bpp do
6: case Pai :
7: p and r→ RaULai
8: if p ≡ Pnfp
9: RaULai = RaULai∪ (URIRaULai

, raul:multiple , true)
10: end if
11: RaULwC = RaULwC ∪ (URIwc , rdf_n , URIRaULai

) ∪ RaULai
12: case Pml :
13: p and r→ RaULml
14: if p ≡ Pnfp
15: create a RaULnfp
16: RaULml = RaULnfp∪ (URIRaULnfp

, rdf:_1 , URIRaULml
) ∪ RaULml

17: end if
18: RaULwC = RaULwC ∪ (URIwc , rdf_n , URIRaULml

) ∪ RaULml
19: π(r) =

ν u
π − (ν, p)

20: SA_RaUL_Mapping(π(r), r, RaULml)
21: case Pmr :
22: p and r→ RaULmr
23: if p ≡ Pnfp
24: RaULmrl = RaULmr∪ (URIRaULmr , raul:multiple , true)
25: end if
26: RaULwC = RaULwC ∪ (URIwc , rdf_n , URIRaULmr) ∪ RaULmr
27: default :
28: p and r→ RaULln
29: if p ≡ Pnfp
30: RaULln = RaULln∪ (URIRaULln

, raul:multiple , true)
31: end if
32: RaULwC = RaULwC ∪ (URIwc , rdf_n , URIRaULln

) ∪ RaULln
33: end for;

in a recursive way to map the association set of r (line
20).

If bpp matches to Pmr (i.e. a multi-range prop-
erty path) then RaULmr is created (line 22). For
a non-functional property p a triple (URIRaULmr

,
raul:multiple, true) is linked using RaULmr
URI (i.e. URIRaULmr

) (line 24) and RaULmr is
added to the raul:WidgetContainer RaULwC
with a triple defining the container membership (line
25).

For other bpp’s (that includes single-length prop-
erty paths and datatype property paths) a default case
is implemented. RaULln is created (line 28). For
a non-functional property p a triple (URIRaULln

,
raul:multiple, true) is linked usingRaULln URI

(i.e. URIRaULln
) (line 30) andRaULln is added to the

raul:WidgetContainer RaULwC with a triple
defining the container membership (line 32). The im-
plementation for the mapping of the branched prop-
erty path is implicit in this algorithm, since all prop-
erty paths p for which ν is source(p) are already con-
sidered.

Example: For the association set π(Person) µ :
CG(Person) → RaUL is defined for each association
according to the mappings proposed in Section 7.2 as
shown in Fig. 22. Each node in the RaUL graph repre-
sents a RaUL mapping for the corresponding property
and concept pair, and each directed edge represents
the membership property with which different RaUL
mappings are connected with each other. All the nodes

22 Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data

Fig. 22. RaUL graph for the concept graph CG(Person)

with outgoing edges are RaUL containers (appear with
bold lines) that hold other containers or textboxes.

Once all the associations of the association set
are mapped, the concept graph CG(Person) to RaUL
graph mapping is completed. The RaUL graph is ren-
dered in HTML as follows. Each container node (ex-
cept RaULnfp) is mapped to a fieldset and a
textbox, and eachRaULsl is mapped to a textbox.
RaULnfp is mapped to a plus button along with the
fieldset of the member container (i.e. RaULml). For
the RaUL graph extracted above the rendered Web
form in HTML is shown in the screenshot in Fig. 21
which we have annotated with red boxes indicating the
extracted semantic association set.

8. Evaluation

We carried out an empirical user study to evalu-
ate our hypothesis that ActiveRaUL is: more effec-
tive, more efficient and more usable for someone with
no prior knowledge of RDF/OWL to create and main-
tain logical consistent ontology instances, than tradi-
tional knowledge engineering methods. We compared
ActiveRaUL to the widely used state-of-the-art Web
ontology editing tool, WebProtégé [23]. WebProtégé
also offers a plugin for form-based editing6. However,
similar to other related works such as Callimachus [6],
Web form templates have to be manually created re-
quiring in-depth knowledge of RDF(s)/OWL. In this
evaluation we aim to validate our hypothesis that the
automatic generation of a Web form template from an
arbitrary ontology yields in a User interface that is eas-

6See http://protegewiki.stanford.edu/wiki/
PropertyFormPortlet

ier to use than any other state-of-the-art User interfaces
that does not need a customization based on the input
ontology. Consequently, we can compare ActiveRaUL
only with tools that automatically generate a User In-
terface from an ontology without any need of config-
uring templates manually. For our user study we used
WebProtégé rather than Protégé, the desktop version,
for the following reasons: (1) similarly to ActiveRaUL,
it is Web-based and runs in any browser; (2) it stores all
data centrally, and thus users have distributed access
to the same individuals, making the user study more
realistic to real-world scenarios in terms of searching
for existing individuals; and, (3) it uses a frame-based
logic for properties that was also used in a previous
version of Protégé that treats rdfs:range as con-
straints when creating properties (i.e. by default it dis-
plays to the user only the individuals of a type that is in
the subsumption hierarchy of the rdfs:range of the
property relation while still allowing the user to select
individuals from any class).

8.1. Participant Demographics

We recruited twelve participants for our user study,
including undergraduate and postgraduate students of
computer science at the Australian National Univer-
sity and staff in the Information Engineering Labora-
tory of CSIRO. We asked the participants to rate their:
(1) computer literacy, (2) knowledge of the Semantic
Web, (3) knowledge of the SSN ontology, and (4) ex-
perience with WebProtégé on a five-point Likert Scale
with anchors from “Novice” to “Expert”. None of the
participants have ever used ActiveRaUL before. All
participants rated their computer literacy as “Expert”.
Although we had preferred to include participants in
the study who did not have a computer science back-
ground, we found that for understanding WebProtégé,
participants needed to have at least a rudimentary un-
derstanding of object-oriented design to understand the
difference between classes, properties and instances of
each. Based on the participants’ self-assessments, we
separated the users into two groups: semantics expe-
rienced users and semantics inexperienced users. We
would expect that for a more usable system, the us-
ability measures will be high within both user groups.
However, if a semantics inexperienced user is able to
comprehend our system more easily, then we would
expect to see less significant differences between the
usability measures in accomplishing the test cases in
ActiveRaUL by the semantics experienced user group

Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data 23

Fig. 21. Web Form for the concept graph CG(Person)

and semantics inexperienced user group compared to
in WebProtégé.

8.2. Test Case Specification

For our study, we had to define test cases based on
an existing ontology that fulfills several requirements:
(1) to test as many data modelling features as possi-
ble the ontology needs to be sufficiently complex, in-
cluding a subsumption hierarchy, datatype and object
properties, OWL property restrictions and the import
of ontologies; (2) it should model a domain familiar
enough for a non-domain expert to easily understand;
and, (3) there should exist some gold standard ontol-
ogy instances to compare the ontology instances cre-
ated in the user study to.

We found the Sensor Network Ontology (SSN) [10],
developed by the W3C Semantic Sensor Network In-
cubator group, to best fulfill these requirements. A
demonstration deployment of ActiveRaUL set up for
the user study already pre-loading the SSN ontology
and automatically creating the Web-forms is avail-

able at: http://www.activeraul.org/demo/
arbitraryOntology.html The SSN describes
the capabilities of sensors, their measurement pro-
cesses and the resultant observations. In particular, in
contrast to many other Web ontologies (like FOAF,
SIOC, PROV-O), SSN is based on an upper-level on-
tology, inheriting some of its complex OWL property
restrictions. It also describes a domain that is relatively
easy to comprehend by non-domain experts. Further,
the SSN working group has published a number of use
cases with example ontology instances on their project
wiki [1] that we could use as our gold standard. In
particular, we used the university deployment exam-
ple from the wiki, because: (1) it includes program-
ming examples in RDF/XML; and (2) it is based on the
core SSN ontology without any extension (some of the
other examples use extensions). Based on the univer-
sity deployment example we designed three test cases,
each with a number of tasks. The three test cases are in-
creasing in complexity and include the ontology engi-
neering tasks listed in table 8.2. The last column shows

24 Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data

Individual Tasks Tested Properties Schema complexity Triples
Test
Case 1

Create individuals and re-
lations

owl:TransitiveProperty,
owl:NonFunctionalProperty

single-length property
path

5

Test
Case 2

Create individuals and re-
lations, link individuals to
existing individuals using
Search

owl:NonFunctionalProperty,
owl:InverseOf,
owl:TransitiveProperty

multi-length property
path, cyclic graph
structure

6

Test
Case 3

Create individuals and re-
lations, update individuals
by adding relations

owl:FunctionalProperty,
owl:NonFunctionalProperty,
owl:InverseOf,
rdfs:DatatypeProperty

branched multi-length
property path

15

Table 3
Test Cases complexity

the number of triples that are supposed to be created in
each test case if all tasks are successfully completed.

8.3. User study test metrics

To effectively measure the usability of our system
for creating and maintaining ontology instances, we
consider the usability measures as defined by ISO
9241-11, in particular:

– Effectiveness: The ability of the user to complete
the task using the system and the quality of the
output of those tasks.

– Efficiency: The level of resources consumed in
performing the tasks.

– Satisfaction: A user’s subjective reactions using
the system.

8.3.1. Effectiveness
We consider two metrics for measuring the effec-

tiveness of the tools tested for our user study, task suc-
cess and task accuracy.

Task Success measures how effectively users are able
to complete a given set of tasks. A task is successfully
completed if, and only if, a user enters all the values
correctly and within the given time. We combined the
success with the time-on-task metric, setting a time-
out figure for each test case (i.e. 5 min for Test Case
1, 10 min for Test Case 2, and 15 min for Test Case
3). Consequently, we scored the task success based on
the number of correct triples a participant managed to
model in the given time. To measure the accuracy/-
correctness we compared the ontology instances cre-
ated by the participants in the study with the gold stan-
dard instances defined in the SSN working group. We
scored each triple that was created by the participant
in either of the two systems as “Correct” or “Incorrec-
t/Missing”.

8.3.2. Efficiency
For the efficiency of the system we measured the

time-on-task. This metric is related to the efficiency of
the system and captures the amount of time spent in
completing a test case. As mentioned, we introduced a
time limit which may distort our average time numbers
(by decreasing our standard deviation). The time limit
was introduced to accommodate participants who may
get frustrated with the system and would then conse-
quently not follow through with the task.

8.3.3. Satisfaction
After completion of the three test cases in both sys-

tems, we asked the participants to rate their subjective
reactions on the usability of the systems based on the
widely-used System Usability Scale (SUS) [9]. SUS is
a highly robust and versatile tool for usability testing
and has proven to yield reliable results across differ-
ent sample sizes [5]. It is particularly suitable for our
user study as we are primarily testing the functional
differences between the two systems and how they in-
fluence the user experience, as opposed to interface de-
sign issues that are the focus of some other types of
usability scales. We asked the users to rate their ex-
perience on a five-point Likert scale with anchors for
“Strongly Agree" and “Strongly Disagree" as required
by the SUS methodology.

8.4. Procedure

We started each user study with an introduction to
RDF, RDFS, Ontologies and the SSN ontology. We
varied the length and detail of this introduction based
on a participants prior knowledge in semantic Web
technologies. However, every participant had strictly
the same training in WebProtégé and ActiveRaUL. Be-
fore we started the user study we presented each par-

Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data 25

ticipant with a sample test case similar to the three
test cases we were later testing in the user study.
We gave each participant step-by-step instructions on
how to complete the sample test case in both sys-
tems. Each participant had access to hand-outs with
the step-by-step instructions for the sample test case
for both tools which they could consult with during
the test cases. We asked each participant to perform
the same three test cases on both systems. The start-
ing order of the tool was varied between test cases
and between participants to balance out any bias from
familiarity with the test case. The only difference in
the test case description between the two systems was
that we included the property hierarchy when asking
the participants to create a property in WebProtégé.
This was to overcome the lack of a search functional-
ity for properties in WebProtégé which makes it very
hard for participants not familiar with the SSN on-
tology to find a specific property in the tree structure
(e.g. the ssn:hasValue property is a sub-property
of DUL:hasRegion). After the completion of a test
case in both tools we provided the participants with
feedback to highlight any errors the participants made
in order to avoid repeated mistakes in the subsequent
test case.

8.5. Results

In this section we present the detailed results of our
user study, where we aim to prove our hypothesis that
ActiveRaUL is indeed easier, more effective and more
efficient to use than the state-of-the-art ontology edit-
ing tools for the creation of RDF data. These results are
based on the performance and feedback of twelve par-
ticipants: five of which, based on their self-assessment,
were categorised into the semantics experienced user
group, and seven categorised into the semantics inex-
perienced user group.

Accuracy/Correctness: Table 4 shows the average
number of correct triples for each test case for both
tools. The table displays the results for all participants
and for each of the two user groups - the semantic ex-
perienced users and the semantics inexperienced users.
Table 5 shows the overall accuracy over the three test
cases which shows that the participants clearly per-
formed better in ActiveRaUL, managing to create 91%
correct triples compared to 82% in WebProtégé. Only
one participant created less correct triples in ActiveR-
aUL than in WebProtégé, which was only due to him
inadvertently pressing the “Close" button instead of

the “Fill In" button after successfully entering the val-
ues in on of the pop-up windows. The most com-
mon mistake in WebProtégé was that users chose the
wrong type for an individual while creating a rela-
tion; while the most common mistake in ActiveRaUL
was that users filled the search box for individuals in-
stead of the label box. In both tools the experienced
user group performed better, although the difference
was less than 10% for both tools for both systems. For
ActiveRaUL, the accuracy of the participants was al-
ready very high in the first test case, even though no
participant has ever used the system before. This con-
firms our hypothesis that a Web form-based user in-
terface is familiar enough to computer literate users to
create RDF data correctly, even if the participants are
inexperienced in semantic Web technologies. Interest-
ingly enough, there was very little difference between
the performance of the experienced and inexperienced
user group in WebProtégé for the first test case, with
both groups only managing to correctly model 2/3 of
the triples. The significant increase in accuracy in the
second test case is due to the feedback the participants
received after completing test case 1, which identified
their mistakes.

8.5.1. Efficiency
Table 6 shows the average times participants re-

quired to complete a test case. As mentioned pre-
viously, we used a cut-off time of five, ten and fif-
teen minutes for each test case, respectively. This time
limit was particularly relevant in the first test case in
WebProtégé, where six participants did not complete
in time. However, this was due to five of six partici-
pants getting stuck, not knowing how to proceed fur-
ther. For the second test case only one participant could
not finish in time in WebProtégé. In the third test case,
also in WebProtégé, only three participants did not fin-
ish in time. Again, only one of these participants ac-
tually ran out of time, whilst the other two were un-
able to proceed further. All participants finished in
time in ActiveRaUL. Both participant groups, inexpe-
rienced and experienced, were significantly faster (be-
tween 27% and 56% faster) completing the test cases
in ActiveRaUL compared to WebProtégé. Particularly
pronounced were the differences in the first test case,
confirming our hypothesis that even without prior ex-
perience with ActiveRaUL, users were able to quickly
and accurately create RDF data.

8.5.2. Satisfaction
After completion of the test cases participants were

asked to anonymously fill out an online survey cov-

26 Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data

Table 4
Accuracy in completing test cases in WebProtégé and ActiveRaUL

Test Case 1 Test Case 2 Test Case 3
WebProtégé ActiveRaUL WebProtégé ActiveRaUL WebProtégé ActiveRaUL

No. %age No. %age No. %age No. %age No. %age No. %age

Exp. Users 3.40 68.00 5 100.00 5.8 96.67 5.8 96.67 14 93.33 14.8 98.67
Inexp. Users 3.29 65.71 4.86 97.14 4.71 78.57 6.00 100.00 12.00 80.00 13.86 92.38

All Users 3.33 66.67 4.92 98.33 5.17 86.11 5.92 98.61 12.83 85.56 14.25 95.00

Table 5
Overall accuracy in completing test cases in WebProtégé and ActiveRaUL

Total Accuracy
WebProtégé ActiveRaUL

%age %age

Exp. Users 82.05 91.03
Inexp. Users 76.92 87.91

All Users 82.05 91.03

Table 6
Average times (mm:ss) to complete test cases in WebProtégé and ActiveRaUL

Test Case 1 Test Case 2 Test Case 3
WebProtégé ActiveRaUL WebProtégé ActiveRaUL WebProtégé ActiveRaUL

Exp. Users 3:46 1:50 5:13 1:50 10:24 4:01
Inexp. Users 4:05 2:17 5:23 1:29 11:26 4:08

All Users 3:57 2:05 5:19 1:38 11:00 4:05

Fig. 23. System Usability Scale score for ActiveRaUL and WebProtégé

Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data 27

ering the questions specified by the System Usability
Scale. SUS yields a single number representing a com-
posite measure of the usability of a system, whereby
SUS scores have a range from 0 to 100, 100 being
the best score. Fig. 23 shows the individual aggregated
scores for each question for both systems. Overall Ac-
tiveRaUL scored 72.1 out of 100 points in the System
Usability Scale scale compared with 32.5 for WebPro-
tégé, clearly indicating that the participants found Ac-
tiveRaUL easier to use.

9. Conclusion

In this article we presented ActiveRaUL, a system to
generate Web forms from arbitrary ontologies. These
Web forms can then be used to create and maintain
RDF data that is typed according to the input ontol-
ogy (ontology instances). The process of automati-
cally generating Web forms from an ontology involved
a number of novel techniques in mapping the graph-
based input ontology to a tree-based Web form. For
the mapping we proposed multiple types of widget ele-
ments in the Web form that are used for different graph
patterns in the input ontology, including object proper-
ties, OWL property restrictions and complex relations
among the same concept (graph cycles). The result-
ing widget elements are themselves expressed accord-
ing to an ontology, the RDFa User Interface Language
(RaUL) and can be rendered in any browser by using
ActiveRaUL.

We evaluated our approach of automatically gener-
ating Web forms in a user study based on use cases de-
veloped by the W3C Semantic Sensor Network (SSN)
Incubator group. In the study we compared the effi-
ciency, the effectiveness and the user satisfaction of the
participants in creating RDF data using two interfaces:
(1) Web forms automatically generated by ActiveR-
aUL; (2) Web-based user interfaces automatically gen-
erated in the ontology editing tool WebProtégé. The
participants in the study created in average 91% cor-
rect triples for all test cases in ActiveRaUL compared
to 82% in WebProtégé. Further, the participants were
significantly faster (between 27% and 56%) complet-
ing the test cases in ActiveRaUL compared to WebPro-
tégé. After completing the user study we asked the par-
ticipants to rate the two systems for RDF data creation
based on the System Usability Score. In overall Ac-
tiveRaUL scored 72.1 out of 100 points compared with
32.5 for WebProtégé, clearly indicating that the partic-
ipants found ActiveRaUL easier to use to create RDF

data than WebProtégé, a tool that allows both, scheme
modelling and RDF data creation.

Future Work Although our approach of automati-
cally generating a Web form from an input ontology
results in sufficiently usable user interfaces as demon-
strated in our user study, it is arguably a first step in
a refinement process to create the best possible Web
form-based user interface for a given ontology. Since
the resulting user interface templates are themselves
expressed according to an ontology and identified by
a URI, they can iteratively improved by a developer
and assigned a new URI every time the Web form is
changed.

One such area that currently still may require man-
ual refinement is the ordering of widget elements on
a Web form. Our algorithm does not rank the seman-
tic associations for a concept node, therefore the wid-
get elements appear unordered on Web forms. This be-
comes problematic when there is a large number of as-
sociations for a concept and its related concepts. To
overcome this limitation we are considering multiple
strategies of ordering the semantic associations on an
automatically generated Web form as future work.

Further, our current implementation only deals
with rdfs:labels, the other annotation properties (i.e.
owl:versionInfo, rdfs:comment, rdfs:seeAlso, and rdfs:-
isDefinedBy) are ignored and for datatype proper-
ties we do not perform a type check based on its
xsd:datatype after submission of the data. In future
work we plan to take advantage of the automatic type
checks offered by HTML5 and also offer widget tem-
plates for common input types such as a calendar for
xsd:date.

Another area of future work is to consider a mapping
from RaUL templates to templating languages such as
Mustache7. Offering Mustache templates as one of the
output types of the ActiveRaUL service would allow
a developer to more easily inject customised code in
the resulting Web forms. Currently, with RaUL Web
forms the structural styling is limited to the features
supported in CSS3.

References

[1] SSN Wiki. http://www.w3.org/2005/Incubator/
ssn/wiki/Report_Work_on_the_SSN_ontology.
(Last visited: March, 2013).

7http://mustache.github.io/

28 Anila Sahar Butt et al. / ActiveRaUL: Automatically generated Web interfaces for creating RDF data

[2] S. Auer, S. Dietzold, and T. Riechert. OntoWiki – A Tool
for Social, Semantic Collaboration. In In Proceedings of the
5th International Semantic Web Conference, pages 736–749.
Springer, 2006.

[3] S. Auer, R. Doehring, and S. Dietzold. LESS - template-based
syndication and presentation of linked data. In Proceedings of
the 7th European Semantic Web Conference, ESWC’10, pages
211–224, 2010.

[4] X. Bai, E. Klein, and D. Robertson. RDFa2: Lightweight
semantic enrichment for hypertext content. In Proceedings
of the Joint International Semantic Technology Conference
(JIST2011), 2011.

[5] A. Bangor, P. T. Kortum, and J. T. Miller. An Empirical Eval-
uation of the System Usability Scale. International Journal of
Human-Computer Interaction, 24(6):574–594, 2008.

[6] S. Battle, D. Wood, J. Leigh, and L. Ruth. The Callimachus
Project: RDFa as a Web Template Language, 2012.

[7] J. Baumeister, J. Reutelshoefer, and F. Puppe. KnowWE: a Se-
mantic Wiki for knowledge engineering. Applied Intelligence,
35:323–344, 2011.

[8] D. Brickley and L. Miller. FOAF Vocabulary Specification
0.91. Namespace document, Nov. 2007.

[9] J. Brooke. SUS - A quick and dirty usability scale. In B. A. W.
A. L. M. P. W. Jordan, B. Thomas, editor, Usability Evaluation
in Industry. Taylor and Francis, London, 1996.

[10] M. Compton, P. Barnaghi, L. Bermudez, R. Garcia-Castro,
O. Corcho, S. Cox, J. Graybeal, M. Hauswirth, C. Henson,
A. Herzog, V. Huang, K. Janowicz, W. D. Kelsey, D. L. Phuoc,
L. Lefort, M. Leggieri, H. Neuhaus, A. Nikolov, K. Page,
A. Passant, A. Sheth, and K. Taylor. The SSN ontology of
the W3C semantic sensor network incubator group. Journal of
Web Semantics, 17:25–32, 2012.

[11] S. Corlosquet, R. Delbru, T. Clark, A. Polleres, and S. Decker.
Produce and consume linked data with drupal! In Proceedings
of the International Semantic Web Conference (ISWC 2009),
pages 763–778. Springer-Verlag, 2009.

[12] P. Haase, H. Lewen, R. Studer, D. T. Tran, M. Erdmann,
M. d‘Aquin, and E. Motta. The neon ontology engineering

toolkit. In Proceedings of the WWW 2008 Developers Track,
2008.

[13] A. Haller, T. Groza, and F. Rosenberg. Interacting with Linked
Data via Semantically Annotated Widgets. In Proceedings
of the Joint International Semantic Technology Conference
(JIST2011), pages 300–317, 2011.

[14] A. Haller, J. Umbrich, and M. Hausenblas. RaUL: RDFa User
Interface Language – A data processing model for Web appli-
cations. In Proceedings of WISE2010, 2010.

[15] A. Kalyanpur, B. Parsia, J. Hendler, and J. Golbeck. SMORE
– Semantic Markup, Ontology, and RDF Editor, 2003.

[16] T. Kuhn. AceWiki: Collaborative Ontology Management in
Controlled Natural Language. In Proceedings of the 3rd Se-
mantic Wiki Workshop (SemWiki 2008), in conjunction with
ESWC 2008, 2008.

[17] A. Maedche, S. Staab, N. Stojanovic, R. Studer, and Y. Sure.
Seal a framework for developing semantic web portals. Ad-
vances in Databases, 2097:1–22, 2001.

[18] N. Noy, M. Sintek, S. Decker, M. Crubezy, R. Fergerson, and
M. Musen. Creating Semantic Web contents with Protege-
2000. Intelligent Systems, IEEE, 16(2):60–71, 2001.

[19] A. Passant, J. G. Breslin, and S. Decker. Open, distributed and
semantic microblogging with smob. In Proceedings of the 10th
International Conference on Web Engineering (ICWE 2010),
pages 494–497. Springer-Verlag, 2010.

[20] T. Reenskaug. The original mvc reports. Technical report,
February 2007.

[21] T. Riechert, U. Morgenstern, S. Auer, S. Tramp, and M. Martin.
Knowledge engineering for historians on the example of the
catalogus professorum lipsiensis. In Proceedings of the 9th In-
ternational Semantic Web Conference, pages 225–240, Berlin,
Heidelberg, 2010. Springer-Verlag.

[22] The Gene Ontology Consortium. Gene ontology: tool for the
unification of biology. Nat. Genet., 25(1):25–9, 2000.

[23] T. Tudorache, C. Nyulas, N. F. Noy, and M. A. Musen.
WebProtégé: A Collaborative Ontology Editor and Knowledge
Acquisition Tool for the Web. Semantic Web, 0(0):1–11, Jan.
2012.

