
Undefined 1 (2013) 1–5 1
IOS Press

YASGUI: How do we Access Linked Data? 1

Laurens Rietveld a and Rinke Hoekstra a,b

a Department of Computer Science, VU University Amsterdam, The Netherlands
E-mail: {laurens.rietveld,rinke.hoekstra}@vu.nl
b Leibniz Center for Law, Faculty of Law, University of Amsterdam, The Netherlands
E-mail: hoekstra@uva.nl

Abstract. The size and complexity of the Semantic Web makes it difficult to query. For this reason, accessing Linked Data
requires a tool with a strong focus on usability. In this paper, we present YASGUI, a Web application for accessing the Semantic
Web through SPARQL, that integrates live services and query management. We elaborate on the trade-offs that exist between
these requirements, and discuss the restrictions inherent in application development for the Semantic Web. We identify typical
SPARQL-specific tasks, and investigate how these relate to the actual usage SPARQL in general, and of YASGUI in particular.

Keywords: HCI, SPARQL, User Interface, Linked Data, Semantic Web, Tasks

1. Introduction

Developers who use traditional Web technologies
are pampered with full-featured development tools
such as in-browser debugging, integrated development
environments, increasingly simple and lightweight ser-
vices (RESTful APIs), and broad take up in industry.
Semantic Web technologies have some catching up to
do. The recent start of the W3C Linked Data Platform
working group1 is a good step in bringing triple-store
querying closer to traditional RESTful APIs. However,
the ingenuous developer wanting to have a first taste
of Linked Data is scared away by austere clients for a
rich but complex query language: SPARQL.

Indeed, several good RDF programming libraries
exist, but uptake of these still relies on a good un-
derstanding of SPARQL and the underlying Seman-
tic Web paradigm which can only be attained with
simple, lightweight and user friendly clients for inter-
acting with Linked Data. This observation holds for
Semantic Web savvy developers as well: trying and
testing SPARQL queries is often a cumbersome and
painful experience. All who know the RDF namespace
by heart raise their hands now! A related question that

1This paper is an extended version of [21].
1See http://www.w3.org/2012/ldp

is hard to answer for many: “Where is that Linked
Data?” Most will know the DBpedia endpoint URL,
but can perhaps mention only a handful of other end-
points in total.

The first contribution of this paper is ‘yet another
SPARQL GUI’ (YASGUI2), a SPARQL client that
shows the added value of combining Web 2.0 and Se-
mantic Web technologies [1,2] for providing a more
gentle Linked Data interaction environment. We find
that most existing SPARQL clients do not offer func-
tionality that goes far beyond a simple HTML form
(section 2). These implementations convey a rather
narrow interpretation of what a SPARQL client in-
terface should do: POST (or GET) a SPARQL query
string to an endpoint URL. As a result, they currently
offer only a selection of the features that we, as a com-
munity, could offer to both ourselves as well as new
users of Semantic Web technology.

YASGUI is a web-based SPARQL client that can be
used to query both remote and local endpoints. It inte-
grates linked data services and web APIs to offer fea-
tures such as autocompletion and endpoint lookup. It
supports query retention – query texts persist across
sessions – and query permalinks, as well as syntax
checking and highlighting. YASGUI is easy to deploy

2See http://yasgui.org

0000-0000/13/$00.00 c© 2013 – IOS Press and the authors. All rights reserved

2 Laurens Rietveld and Rinke Hoekstra / YASGUI: How do we Access Linked Data?

locally, and it is robust. Because of its dependency on
third party services, we have paid extra attention to
graceful degradation when these services are inacces-
sible or produce unintelligible results.

The second contribution of this paper is an analy-
sis of the types of things people use SPARQL for, and
how this relates to SPARQL clients (and more specif-
ically, YASGUI). The analysis consists of two parts.
We combine several “taskonomies” [5,22,15,23] into a
categorization of SPARQL-client specific tasks (Sec-
tion 4). This analysis is then used to compare YAS-
GUI to the state of the art, both through a question-
naire and by relating these tasks to typical patterns
in SPARQL queries and server logs. We furthermore
compare query characteristics between YASGUI and
part of the USEWOD DBpedia query logs [3].

Structure of the paper
This paper is structured as follows. Section 2 pro-

vides an overview of the features present in the state
of the art in SPARQL user interfaces. We then com-
pare and explain the features and design considera-
tions of YASGUI in section 3. In section 4, we present
and discuss a taskonomy of tasks that are compatible
with the potential interaction with SPARQL endpoints.
Section 5 relates these tasks to the reported use of
SPARQL by knowledgeable Semantic Web users, by
means of questionnaire. We then continue to relate the
tasks to the actual usage of SPARQL endpoints by an-
alyzing and comparing the logs of YASGUI with that
of DBPedia (section 6). We conclude in section 7.

2. State of the Art in SPARQL User Interfaces

The features of SPARQL clients can be categorized
under three main headers, syntactic features (auto-
completion, syntax highlighting and checking), appli-
cability features (endpoint or platform dependent or in-
dependent) and usability (query retention, results ren-
dering and download, quick evaluation). Table 1 lists
twelve currently existing SPARQL clients – that range
from very basic to elaborate – and depicts what fea-
tures they implement. This section describes these fea-
tures in more detail, and discusses whether and how
the clients of Table 1 implement these features.

2.1. Syntactic Features

Most modern applications that feature textual input
support some form of auto-completion. Examples are

the Google website which shows an auto-completion
list for your search query, or your browser which
(based on forms you previously filled in) shows auto-
complete lists for text inputs. One advantage of auto-
completion is that it saves you from writing the com-
plete text. Another advantages is the increase in trans-
parency, as the auto-completion suggestions may con-
tain information the user was not aware of. The lat-
ter is especially interesting for SPARQL, where users
might not always know the exact prefix he/she would
like to use, or where the user might not know all avail-
able properties in a triple-store. The only SPARQL in-
terface that currently makes use of this functionality is
the FLINT SPARQL Editor3 (and indirectly, the Spar-
QLed editor[8] based on the former), which uses auto-
completion to suggest classes and properties.

Syntax highlighting is a common functionality for
programming language editors. It allows users to
distinguish between different properties, variables,
strings, etc. The same advantage holds for query lan-
guages such as SPARQL, where you would like to dis-
tinguish between literals, URIs, query variables, func-
tion calls, etc. The only SPARQL editor that currently
supports syntax highlighting is the FLINT SPARQL
Editor, which uses the CodeMirror JavaScript library4

to bring color to SPARQL queries.
Most Integrated Development Environments (IDEs)

provide feedback when code contains syntax errors
(i.e. syntax checking). Feedback is immediate, which
means the user can spot syntax errors in the code
without having to execute it. Again, such function-
ality is useful for SPARQL editing as well. Imme-
diate feedback on a SPARQL syntax means the user
can spot invalid queries without having to execute it
on a SPARQL endpoint. The FLINT SPARQL edi-
tor supports syntax checking by means of a JavaScript
SPARQL grammar and parser.

2.2. Applicability Features

There are only few clients who allows access to
multiple endpoints. Most triple-stores provide a client
interface, linking to that specific endpoint. They are
endpoint dependent. Examples are 4Store [14], Open-
Link Virtuoso [19], OpenRDF Sesame Workbench [7]
and SPARQLer5. More generic clients are the Sesame2

3See http://openuplabs.tso.co.uk/demos/
sparqleditor

4See http://codemirror.net/
5See http://www.sparql.org/

Laurens Rietveld and Rinke Hoekstra / YASGUI: How do we Access Linked Data? 3

Table 1
SPARQL client feature matrix

Feature 4S
to

re

O
pe

nL
in

k
V

ir
tu

os
o

SN
O

R
Q

L

SP
A

R
Q

L
er

Se
sa

m
e

W
or

kb
en

ch

Se
sa

m
e2

W
in

do
w

s
C

lie
nt

G
lin

t

Tw
in

kl
e

Sp
ar

ql
G

U
I

Sp
ar

Q
L

ed

Fl
in

tS
PA

R
Q

L
E

di
to

r

YA
SG

U
I

Auto-completion - - - - - - - - - + a + a + b

Syntax Highlighting - - - - - - + - - + + +
Syntax Checking - - - - - - - - - + + +
Multiple Endpoints - - - - - + + + + c - +/- c +
Query retention - - - - - + + - + - - +
File upload - - - - + +/- d - + + - - - e

Platform independent + + + + + - - + - + + +
Results rendering - +/- f + +/- f + +/- f +/- f +/- f +/- f + + +
Results download + + + + + + + + + - - +

a Auto-completion of properties and classes available in the triple store
bAutocompletion of prefixes/namespaces. Autocompleting properties is implemented but not released yet. Autocompleting classes is a planned feature.
c Can deal with a limited number of endpoints, e.g. only CORS enabled ones.
dFile upload requires a local triple store that implements the OpenRDF SAIL API, e.g. OpenRDF Sesame or OpenLink Virtuoso.
eFile upload is a planned feature, using cloud triple-store services (e.g. dydra.com)
fThe rendering does not use hyperlinks for URI resources.

Windows Client [7], Glint6, Twinkle7 and SparqlGUI8.
Other applications fall somewhere in between. The
FLINT SPARQL Editor only connects to endpoints
which support cross-domain JavaScript (i.e. CORS en-
abled). This is a problem because not all endpoints
are CORS enabled, such as FactForge, CKAN, Mon-
deca or data.gov. Other editors support only XML
or JSON as query results, such as SNORQL9 (part
of D2RQ [4]), which only support query results in
SPARQL-JSON format.

Platform (In)dependence increases the accessibility
of a SPARQL client. The user can access the client on
any operating system. Web interfaces are a good ex-
ample: a site should work on any major browser (In-
ternet Explorer/Firefox/Chrome), and at least one of
these browsers is available for any type of common
operating system. Examples are Virtuoso, 4Store and
the Flint SPARQL Editor. Another example of multi-
platform support is the use of a .jar file (e.g. Twin-
kle), as any major operating system supports Java and
executing Java archives. Examples of single-platform

6See https://github.com/MikeJ1971/Glint
7See http://www.ldodds.com/projects/twinkle/
8See http://www.dotnetrdf.org/content.asp?

pageID=SparqlGUI
9See https://github.com/kurtjx/SNORQL/

applications are Sesame2 Windows Client and Sparql-
GUI: they require Windows.

2.3. Usability Features

Query retention allows for easy re-use of important
or often used queries. This allows the user to close the
application, and resume working on the query later.
An example is the ‘ Query Book’ functionality of the
Sesame Windows Client.

Quick evaluation or testing of a graph generated by
the user should not require the hassle of installing a lo-
cal triple-store Ideally, this functionality would be em-
bedded in the SPARQL client application itself. Most
applications requiring a local installation on the users
computer support this feature, such as Twinkle. The
Sesame Windows Client supports file uploads as well,
though it requires a local triple-store which imple-
ments the OpenRDF SAIL API.

Query results (such as JSON or XML) for SELECT
queries are often relatively difficult to read and in-
terpret, especially for a novice. A rendering method
which is easy to interpret and understand is a table.
All applications except 4Store support the rendering of
query results into a table. Because of the use of per-
sistent URIs, we would expect navigable results for re-
sources, e.g. in the form of drawing the URIs as hy-

4 Laurens Rietveld and Rinke Hoekstra / YASGUI: How do we Access Linked Data?

perlinks. This feature is not supported by some ap-
plications, such as Virtuoso, Twinkle or SparqlGUI.
SNORQL is an application with an elaborate way of
visualizing the query results. Besides allowing the user
to navigate to the page of the URI, the user can click
on a link to browse the current endpoint for resources
relevant to that URI.

Downloading the results as a file allows for better
re-use of these results. A user might want to avoid
running the same heavy query more than once, and
use the results stored as a file instead. Additionally,
the results of CONSTRUCT queries are often used in
other applications or triple-stores Saving the user from
needing to copy & paste query results clearly improves
user experience as well. The only application that does
not support the downloading of results, is the FLINT
SPARQL editor.

Most of the clients described above are restricted
to one simple task: accessing information behind a
SPARQL endpoint. However, equally important to this
task is assisting the user in doing so. This is some-
thing where all but one applications fail. Regrettably,
the one interface with a user-friendly interface (FLINT
SPARQL editor) falls short in the important feature of
accessing all endpoints. We conclude that currently no
single endpoint independent, accessible, user-friendly
SPARQL client exists.

3. The YASGUI SPARQL Client

The overview of the preceding section shows us that
current SPARQL clients fall short with respect to two
important features: accessibility to Linked Data and
usability of the client. The two most important goals
of YASGUI (Figure 1) are:

1. support users in writing/executing SPARQL queries
as much as possible, and

2. allow access to any SPARQL endpoint (either
online or offline, regardless of response types
such as XML or JSON).

Both goals bring inherent trade-offs for some fea-
tures: tightly connecting a SPARQL interface with a
single endpoint provides more freedom in usability
features. For instance, calculate graph summaries of-
fline for auto-completion purposes, such as SparQLed.
However, such an interface would not be interopera-
ble with other endpoints, thus conflicting with the first
goal. In this section we discuss how we try to achieve

both goals. We elaborate on the architecture, features,
and design considerations of YASGUI, and compare
them to the other clients.

3.1. Architecture

YASGUI was developed using the SmartGWT10 and
jQuery libraries.11 It uses new HTML5 functionali-
ties such as local storage and client-side generation of
files. Some of the newest HTML5 functionalities are
not supported by outdated browsers and Internet Ex-
plorer. This degradation is handled gracefully: access
via an incompatible browser results in a notification to
the user and disabled features (such as downloading of
files, or client-side caching of large objects). The de-
cision to use HTML5 is motivated by the increasing
support of the standard by major browsers. The server-
side part of YASGUI is responsible for part of the
communication with external services and endpoints.
Communication with SPARQL endpoints is done us-
ing the Jena library [13]. External services used by
YASGUI are CKAN12, Mondeca13 and Prefix.cc14 (see
section 3.2), and bitly15 (see section 3.4).

3.2. Syntactic Features

Two libraries provide support for syntax high-
lighting and checking in YASGUI: The CodeMirror
JavaScript library, which is an extensive JavaScript li-
brary for highlighting code, and a JavaScript SPARQL
grammar of the FLINT SPARQL Editor. Given this
grammar, CodeMirror applies the highlighting to the
SPARQL query. Additionally, CodeMirror provides
a well documented API to parse and dissect the
SPARQL query, useful for other YASGUI features
such as prefix auto-completion. Both libraries are well
documented, well maintained, extendable and easy to
use. The existence of both libraries illustrate the avail-
ability of elaborate open source project, and the small
amount of effort it takes to integrated them into an ap-
plication.

Additionally, YASGUI uses Prefix.cc16 to perform
auto-completion of namespace prefixes: full names-

10See http://www.smartclient.com/product/
smartgwt.jsp

11See http://jquery.com/
12See http://semantic.ckan.net/sparql
13See http://labs.mondeca.com/endpoint/ends
14See http://prefix.cc/
15See http://bitly.com
16See http://prefix.cc/

Laurens Rietveld and Rinke Hoekstra / YASGUI: How do we Access Linked Data? 5

Fig. 1. Screenshot of the YASGUI interface

pace URIs are completed as you type. We furthermore
rely on the CKAN SPARQL endpoint17 and Mon-
deca Endpoint Status endpoint18 for endpoint URL
auto-completion and search. The CKAN endpoint pro-
vides access to the CKAN datahub.io19 catalogue of
datasets, where the Mondeca endpoints filters these
endpoints by accessibility. Users can either use a sim-
ple auto-completion combobox, or browse through /
search in a list of endpoints in a table. This auto-
completion matches the partially typed endpoint with
the list of endpoints (and their descriptions).

Both endpoints have proven to be difficult to use and
access for our purposes. The CKAN endpoint is rather
unreliable in up-time, and the Mondeca endpoint often
return syntactically invalid XML. In the implementa-
tion of YASGUI we try to handle both issues as grace-
fully as possible. The list of endpoints provided by
CKAN or Mondeca is cached on the YASGUI server
as well as by users browser. If YASGUI fails to retrieve
the list in real time from either of the endpoints, we fall
back to the cached results.

Another issue with CKAN (and to a lesser extent
Mondeca) is the reward model for adding and main-
taining the catalogue: there is little incentive for own-
ers of a dataset to add it to CKAN, and even less incen-
tive keep the information up to date (e.g. when the end-
point is down or moved). As a result, CKAN is clut-
tered with outdated information, and some endpoints

17See http://datahub.io
18See http://labs.mondeca.com/endpoint/ends
19See http://datahub.io

are missing. This is partly compensated by Mondeca,
which allows filtering by endpoints which are up,
though incorrect or missing information still persists.
The reward model employed by Prefix.cc is the oppo-
site: the content is crowd-sourced (anybody can easily
add prefix definitions), and voting is used to deal with
conflicting prefix definitions. Users of prefix.cc have
an incentive to keep the information up to date and
as correct as possible. As a result, the information re-
trieved from prefix.cc is more reliable and usable than
information from CKAN and Mondeca.

3.3. Applicability Features

As mentioned in section 2.2, client-side web appli-
cations such as the FLINT SPARQL Editor are end-
point independent, but only work for endponts that
enable Cross-Origin Resource Sharing (CORS).20 To
overcome this limitation, YASGUI includes a server-
side proxy for accessing endpoints that do not support
CORS. For endpoints which do support cross domain
JavaScript, YASGUI executes the queries solely from
the clients side via JavaScript. The only scenario where
YASGUI fails to connect to an endpoint is where (1) a
locally installed endpoint is unreachable from the web,
(2) operating on a different port than YASGUI, and
(3) CORS-disabled. Here, the YASGUI proxy is not
able to access the client. Because of the CORS restric-
tion, YASGUI is not able to access the endpoint via

20See http://www.w3.org/TR/cors/

6 Laurens Rietveld and Rinke Hoekstra / YASGUI: How do we Access Linked Data?

JavaScript as well, as it is operating on a different port.
We consider this issue to be minor: because the end-
point is installed locally, the user will have access to
change its CORS settings, or even run the endpoint via
a different port.

Other than dealing with the accessibility issues of
CORS disabled sites, endpoint independent clients
should support configurable requests. For instance,
some endpoints may only support the XML results for-
mat, or allow the use of additional request parameters,
such as the ‘soft-limit’ of 4Store. Such endpoints can
only be used to their full potential if users are able to
specify these additional arguments manually. There-
fore, YASGUI supports the specification of an arbi-
trary number of request parameters for every endpoint.

Finally, YASGUI has to deal with the wide variety
of possible errors returned by endpoints. The SPARQL
protocol specifies what the endpoint request and re-
sponse should look like, but leaves error handling un-
specified: what HTTP error code should be sent by an
endpoint, and how should error messages be communi-
cated? As a result, triple stores come with various ways
of conveying errors. Some endpoints return the error
as part of an HTML page (with the regular 200 HTTP
code), or as a SPARQL query result. Others only re-
turn an HTTP error code, where only some include a
reason phrase together with the error code. The latter
is a best practice for RESTful services. The absence of
a standard, and the failure to adhere to best practices,
makes a generic robust error handling solution messy
and difficult to implement. Developing such a solution
requires coding and testing by trial and error, and test
queries on as many different endpoints as possible.

3.4. Usability Features

As Table 1 shows, most SPARQL clients support
both rendering and downloading of query results to
some extent. YASGUI does both as well. Users can
render results either as a lightweight HTML table (for
large number of results), an elaborate sortable/groupable
table, or show the raw query results with syntax high-
lighting. Tables can be downloaded as CSV, where
raw query results are available for download ‘as is’.
YASGUI supports the same functionality of SNORQL.
Whenever the user clicks a resource from the query
results, a new query opens and executes that shows
information related to this resource.

YASGUI stores the application state, making this
application state persistent between browser/user ses-
sions: a returning user will see the screen as it was

when she last closed the YASGUI browser page. Addi-
tionally, YASGUI supports bookmarking queries. This
way users are able to re-use queries between user ses-
sions, browsers, and computers.

Furthermore, YASGUI provides query permalink
functionality. For a given query and endpoint combi-
nation, YASGUI creates a link that can optionally be
shortened via the Bitly service.21 Opening the link in a
browser opens YASGUI with the specified query, end-
point and request arguments filled in. We believe this
is a welcome feature for people working together with
a need to share queries.

4. A SPARQL Taskonomy

As we have demonstrated in table 1, YASGUI has a
richer feature set than the state-of-the-art in SPARQL
client interfaces. And in fact, these features were added
because we, the developers, think they are useful for
our own work, and by transitivity to others working on
the same types of projects in Semantic Web research.
Secondly, we feel that a narrow interpretation of what a
SPARQL client is supposed to support – i.e. “sending a
query to a SPARQL endpoint” – does not do justice to
the important role these clients play in Semantic Web
development, use and uptake. The features of YASGUI
touch upon many aspects associated with query writ-
ing, execution and management. We have not come
across a comprehensive overview of the types of tasks
SPARQL clients are used for in a broader Semantic
Web context.

ISO/IEC 25010:2011 proposes a quality model for
the evaluation of software22, that “categorizes product
quality properties into eight characteristics” (section
4.2): functional suitability, reliability, performance ef-
ficiency, usability, security, compatibility, maintain-
ability and portability. The first of these, functional
suitability, reflects what defines a system: to what de-
gree does the system provide functions that meet cer-
tain stated or implied needs? In other words, with
which problems in mind was the system developed,
and to what extent does the system assist users in per-
forming the tasks that solve these problems?

21See http://bitly.com
22See http://www.iso.org/iso/home/store/

catalogue_ics/catalogue_detail_ics.htm?
csnumber=35733, the quality model in Section 4.2 is freely
available online.

Laurens Rietveld and Rinke Hoekstra / YASGUI: How do we Access Linked Data? 7

Like the Web [15], the range of application areas
of Semantic Web technology has proven to be more
versatile than expected when the technology was first
standardized in the 1990s. An example is the growing
importance of linked open government data. Instead
of formulating strict functional requirements for YAS-
GUI from the top down, we propose to work from the
bottom-up, and analyze the use of YASGUI and other
clients with respect to a list of typical tasks.

In this section we explore the types of tasks that
pertain to the Semantic Web, and discuss how they
may relate to the use of SPARQL. This results in a
“SPARQL Taskonomy”. The next section (section 5)
shows the result of a survey amongst SPARQL users,
and compares the position on the taskonomy of YAS-
GUI with that of the other SPARQL clients that were
discussed in section 3. What tasks is YASGUI deemed
more suited for than the other clients?

4.1. Taskonomies

The distinction between task and domain knowl-
edge, and the comparable attention for them that was
prevalent in knowledge engineering of the eighties
and early nineties (e.g. in KADS and CommonKADS,
[5,22]) has largely disappeared into the background
since the advent of ontologies. Inspired by this earlier
research, van Harmelen et al. [23] studied the types of
applications developed for the annual Semantic Web
Challenge,23 a challenge for the Semantic Web com-
munity to show the best of the Semantic Web. Sim-
ilarly, Heath [15] developed a “taskonomy” (pun in-
tended) for Semantic Web users based on a sizable
body of research on tasks performed on the Web. Most
importantly, he stresses the distinction between tasks
and activities that represent means or methods from
ends or purposes. Tasks that reflect means are too eas-
ily biased towards a specific technology or implemen-
tation. The work on Linked Data Patterns by Dodds
and Davis [11], though useful in its own right, falls into
the former category.

Breuker [5] categorizes eight problem types accord-
ing to three major types: synthesis, modification and
analysis. There is broad consensus about the distinc-
tion between the analysis and synthesis tasks. Synthe-
sis involves the combining and creating entities, where
modification refers to changing the behavior of the
knowledge based system itself. In the later work of

23http://challenge.semanticweb.org/

Schreiber et al. [22], this category is merged with the
synthesis type. Analysis tasks take as input some data
about a system, and produce some characterization of
the system as output [5,22,10]. Here, the system is an
“abstract term for the object to which the task is ap-
plied” [22]. Clancey [10] defines a system as a “a com-
plex of interacting objects that have some process (I/O)
behavior”, e.g. a computer program, a university, an
experimental procedure etc.

Breuker’s major types are not meant to be disjoint:
a task of a certain type may be composed of any num-
ber of subtasks that belong to other major categories.
His problem types are to be used as an index to a col-
lection of problem solving methods (PSM) [5,6,22].
Breuker [5] emphasizes the problem rather than the
task for the same reason that Heath distinguishes ends
from means: “indeed also in KADS tasks and PSM are
closely related [..] but not keeping these apart may lead
to a confusion of goals and means” [5, p. 60]. This is in
line with the discussion by O’Hara and Shadbolt [18]
of Chandrasekaran’s generic task methodology [9].

These categories were identified in the context of
expert systems design, at a time when the Web was
still in its infancy: they are limited to the kinds of
tasks one could expect an expert system to perform.
In the following, we group the tasks identified in [15]
and [23] into the synthesis and analysis categories, and
a third “modern” dialectical category: communication
(see Table 2).

4.1.1. Synthesis Tasks
Synthesis involves the combination of several enti-

ties into a new structure. The clearest example of syn-
thesis are the web-service composition and data inte-
gration tasks of [23]. Service composition it is about
combining a number of candidate services into a single
composite service and involves aspects of both plan-
ning and design. Data integration constructs a “single,
merged instance set, organised in a single, merged ter-
minology” Semantic enrichment [23] involves the an-
notation of existing resources with concepts and terms
from the Linked Data cloud.

The asserting task of [15] is more generic. It in-
volves making “statements of fact or opinion available,
with no discursive expectation”. This can mean that
new information is made explicit, that existing infor-
mation is combined in a new way, or that prior state-
ments are negated (retracted). What exactly constitutes
the information in terms of Linked Data is intention-
ally left implicit.

8 Laurens Rietveld and Rinke Hoekstra / YASGUI: How do we Access Linked Data?

Table 2
Tasks and activities from [5], [22], [15] and [23]

major type Breuker [5] Schreiber et al. [22] Heath [15] van Harmelen et al. [23]
synthesis modeling modeling asserting web-service composition

design design semantic enrichment
planning/reconstruction planning data integration

assignment
scheduling

modification assignment (scheduling, configuration)

analysis prediction prediction locating search
monitoring monitoring exploring browsing
diagnosis diagnosis grazing personalization & recommending
assessment assessment monitoring web-service selection

classification evaluating

communicating sharing
notifying
discussing
arranging
transacting

4.1.2. Analysis Tasks
Perhaps not surprisingly, the majority of analysis

tasks listed by [15,23] are search related. We group the
search, personalization and recommending, browsing
and web-service selection tasks from [23] under this
heading.

The search task is performed by applications that
given a query and a dataset of instances, return a subset
of these instances that match the query. [23] restrict the
query to a concept description in some ontology O. It
is a reformulation of the classification task of [22]: re-
turn all entities that meet certain criteria. Web-service
selection involves a search for web services that meet
certain criteria, on the basis of a partial description.
Browsing is similar to these, but the queries used are
more constrained, and “its output can be both a set of
instances, or the immediate sub or super concepts of
the input concept”. Personalization and recommend-
ing takes a dataset plus a personal profile, and returns
a smaller dataset based on this user profile.

Again, the search tasks of [15] are less loaded
by technology. These are locating, exploring, graz-
ing, monitoring and evaluating. Locating is look-
ing for an object or chunk of information which is
known/expected to exist, where exploring involves
information gathering about something, or obtaining
background knowledge of that thing. The grazing task
is a more generic formulation of the browsing task of
[23]. Heath defines grazing as moving speculatively
between sources with no specific goal in mind.

The evaluating task is a form of assessment [5,22],
it is about determining wether a particular piece of in-
formation is true. Finally, monitoring is a direct instan-
tiation of the monitoring problem of [5,22]. It is the
regular checking for changes to known resources, with
the intention of detecting the occurrence and nature of
changes.

4.1.3. Communication Tasks
This final category groups tasks where the main fo-

cus lies on communication. The following five tasks
from [15] belong to this category: sharing, notify-
ing, discussing, arranging and transacting. Sharing is
making an object or chunk of information available to
others, where notifying is informing others of an event
in time or change of state. Discussing differs from
sharing and notifying in that it is about the exchange
of knowledge and opinions between persons or orga-
nizations. Transacting involves transferring money or
credit between two parties. Finally, Arranging is the
task of coordinating with others to ensure something
will take place or will be possible at a certain time.

4.1.4. Discussion
The tasks of [23] and [15] are quite different. Where

the former categorization sticks close to actual appli-
cations, and thus to technology, the latter is much more
generic. The drawback of the application-based cate-
gories is that they are rather inflexible for accommo-
dating new, unforeseen uses of the technology. Sec-
ondly, and perhaps as a consequence, the distinctions
between the categories of [23] are sometimes too de-

Laurens Rietveld and Rinke Hoekstra / YASGUI: How do we Access Linked Data? 9

Synthesis Analysis Communication

Asserting

Integrating

Combining Searching Grazing Sharing Notifying DiscussingEvaluating

Exploring Locating

Fig. 2. A SPARQL Taskonomy

tailed and pragmatic. For instance, why distinguish a
“web-service selection” task, and not a “hotel selec-
tion” task? The same may be said for the personaliza-
tion and recommendation task.

Conversely, the downside of the generic categories
in [15] is that they are sometimes a bit too generic,
and it may prove to be hard to identify instantiations
of these tasks in existing applications. For instance, the
asserting task covers essentially any SPARQL update
query, while the data integration task of van Harmelen
et al. more closely captures the omnipresent mashup-
style of combining information from multiple informa-
tion sources.

Although we cannot dismiss them offhandedly, not
all tasks we have listed can be linked to features of
SPARQL clients. For instance, it is quite far fetched
to imagine a client that actively supports the transact-
ing and arranging communication tasks. On the other
hand, the input/output of clients may well be used in
notification and discussing tasks. Although it is possi-
ble to use a SPARQL client to monitor a triple store
for changes, this is clearly functionality that is better
suited for environments with less need for user inter-
vention.

Taking these considerations into account, Figure 2
lists the final SPARQL taskonomy that we will be us-
ing to evaluate the usage of SPARQL clients in the fol-
lowing sections. Similar tasks, such as exploring and
locating are grouped under a higher level task (search-
ing). The distinction with grazing is that search implies
an explicit formulation of a query by a user, whereas
grazing is speculative browsing [15]. The integrating
task is a combination of asserting and combining in-
formation.

5. Reported SPARQL Use

The SPARQL taskonomy presented in the previous
section allows us to better understand how SPARQL

endpoints are used, and how people use YASGUI. In
this section, we explore the relation between the tasks,
and the reported use of SPARQL by knowledgeable
Semantic Web users. This information is gathered via
an online questionnaire. Respondents were solicited
via an email to various popular Semantic Web and
Linked Data related mailing lists, as well as by means
of a pop up screen in YASGUI. The following sub sec-
tions cover the design of our questionnaire, and the
discussion of how our results relate to the usage of
SPARQL endpoints and YASGUI.

5.1. Questionnaire setup

All questionnaire respondents receive questions on
background information, the tasks they perform on
endpoints, and the tools they use. Respondents who in-
dicate that they use YASGUI receive additional ques-
tions on how they use YASGUI, and which features
they consider important with respect to the taskonomy.

Table 3 shows the we questions presented to our
respondents. First, respondents are asked background
questions such as the country of residence, their occu-
pation, and their field of study (only shown to students
and academics). Additionally, we inquire as to their fa-
miliarity with several technologies and tools, such as
SPARQL or ontologies. We complement this list with
other non-Semantic Web concepts such as SQL and
programming.

Next, we ask the respondent how frequently he or
she uses tools for accessing SPARQL endpoints. The
tools we present to the respondents is based on the
list of tools in table 1. However, we grouped the list
of endpoint interfaces directly shipped with endpoints,
as respondents might have difficulty distinguishing be-
tween them. Additionally, we added two methods for
accessing SPARQL endpoints which do not contain a
graphical user interface: accessing SPARQL endpoints

10 Laurens Rietveld and Rinke Hoekstra / YASGUI: How do we Access Linked Data?

using code (e.g. java, python) or via command-line
tools (e.g. curl).

The following question asks about the frequency
by which the respondent performs certain tasks on
SPARQL endpoints. The list we present is based on
the previous section (more specifically, figure 2). Be-
cause some of these task are not necessarily exclusive
(e.g. the act of asserting and combining might be per-
formed simultaneously), we combine some of them.
We present the following list to the user: Searching,
Grazing, Evaluating, Integrating and Communicating.
This should make the questionnaire as intuitive as pos-
sible, and avoid any confusion the respondent might
have.

Further questions in the questionnaire are only
shown when the respondent indicated that he or she
uses YASGUI. We ask these respondents which tools
and methods they used prior to using YASGUI. When-
ever the previous answers of a respondent show that
he or she uses a tool with the same frequency despite
knowing YASGUI, we ask the respondents for their
motivation for using that tool.

We furthermore ask the YASGUI-using-respondents
to sort a list of YASGUI features by how well they
support them in accomplishing a certain task. We ask
this question only for the three tasks the respondent
performs most frequently. The list of features we ask
the respondent to re-arrange, is based on section 3:

– Query syntax highlighting
– Query syntax checking
– Generation of query permalinks
– Endpoint search and auto-completion
– Prefix auto-completion
– Query bookmarking
– SNORQL-type navigation
– Access to -all- endpoints
– Configurable requests
– Cross-platform operability

The final question was to re-arrange a set of poten-
tial new features by priority. This list of eight features
is based on a backlog of feature requests from the Se-
mantic Web community. This list of potential new fea-
tures is:

– Visualizing DESCRIBE and CONSTRUCT re-
sults as a graph

– Visualizing results in charts (e.g. bar chart, pie
chart, map)

– Class auto-completion
– Property auto-completion

– Query catalogue feature (add or tag queries, and
search for queries)

– Offline functionality: opening YASGUI offline
will still allow you to connect to a localhost end-
point

– Upload a small RDF file to query on
– Simple edit feature, where you can edit the query

results, and execute the changes as insert query

5.2. Questionnaire Results

We received 39 responses to our questionnaire,
out of which 12 respondents used YASGUI recently.
This means that we do not have sufficient response
to present statistically relevant conclusions. We can,
however, present some of our results anecdotally.

Professional Background The majority of the re-
spondents are academics with a background in Com-
puter Science, and most respondents are familiar with
the SPARQL protocol.

Tools By far the most common way of accessing
SPARQL endpoints is via the client interface shipped
with an endpoint. Other frequent tools (in decreasing
popularity) are via code, command-line, YASGUI and
SNORQL. All other tools are rarely used (i.e. by less
than 10% of the respondents). Respondents indicate di-
rect and quick access as the primary reason for using
the standard web client of endpoints. The frequency of
accessing SPARQL endpoints via code makes sense,
as this is what the Semantic Web is particularly suited
for: allowing machine agents to communicate with
SPARQL endpoints. Programming such an agent re-
quires accessing these endpoints using code. The use
of command line relates to the previous, as question-
naire respondents indicate they use command line for
programming purposes as well, such as post process-
ing the SPARQL results in bash, validating SPARQL
endpoint server responses, and general scripting.

Task Frequency Figure 3 shows the statistics for how
often our respondents perform each of the tasks, bro-
ken down against the type of user. Figure 3a shows
the tasks frequency distribution of all questionnaire re-
spondents, where figure 3d only shows results for re-
spondents who have indicated that they use YASGUI.
Figure 3c shows how often these respondents actually
use YASGUI for performing the tasks. The final figure
(figure 3b) shows the task frequency for respondents
who are unfamiliar with YASGUI.

As figure 3a shows, respondents perform the search-
ing task most frequently, followed by grazing and inte-

Laurens Rietveld and Rinke Hoekstra / YASGUI: How do we Access Linked Data? 11

Table 3
Questionnaire setup

Topic of question Answers Note

General questions asked to all respondents

1 Country of residence List of 272 countries

2 Occupation/Profession Academic, Student, Industry, other
(namely)

3 Field of study (multiple responses possible)
Natural Science, Social Science,
Computer Science, Humanities, other
(namely)

Only shown to students / academics

4 Familiarity with SPARQL, ontologies, programming, SQL
and Linked Data Scale from 1 (unfamiliar) to 5 (familiar)

5 Frequency of usage of tools/methods (see section 2) for
accessing SPARQL endpoints (in the last 3 months) 5-scale frequency answers a

6 Frequency of performing tasks (see Fig 2) 5-scale frequency answers a

Questions shown to respondents who use YASGUI

7 Frequency of usage of tools/methods prior to using YASGUI 5-scale frequency answers a

8 Frequency of performing tasks using YASGUI (see Fig 2 5-scale frequency answers a Only for tasks the respondent performs
monthly

9 Motivation for using a tool open question Asked for every tool the respondent uses
alongside YASGUI

10 Priority of features related to a given task
List of YASGUI features which the
respondents needs to drag/drop and
rearrange

Asked separately for the three most
frequently performed tasks by the
respondent

11 Importance of new features
List of new features which the
respondent needs to drag/drop and
rearrange

a (almost) never, 1-2 times a month, 3-5 times a month, 6-15 times a month, 16+ times a month

grating. The frequency of searching and grazing shows
that SPARQL endpoints are primarily used for in-
formation retrieval related purposes. Both these tasks
are performed most often with YASGUI as well (fig-
ure 3c). Sharing and evaluating are performed least fre-
quent.

The frequency distribution between the respondents
unfamiliar with YASGUI (figure 3b) and the respon-
dents familiar with YASGUI (figure 3c) is interesting:
integrating, searching, grazing and communicating are
performed more frequent by the latter. In other words,
users familiar with YASGUI have a different usage
behavior of SPARQL endpoints than users unfamiliar
with YASGUI. However, do the former use other tools
in performing their task, or do they use YASGUI? The
difference between figure 3c and figure 3d answers this
question: the tasks are performed less frequent using
YASGUI, indicating that respondents use other tools
instead.

Features Unfortunately, the data that resulted from
the question where we asked YASGUI users to order
features by usefulness, per task, is too sparse to draw
any definitive conclusions. However, if we look only at

the features themselves, and aggregate the data across
the tasks, we do see some interesting results.

Access to all endpoints is considered the most
important feature. Prefix auto-completion, SPARQL
syntax checking, SPARQL syntax highlighting and
SNORQL-type navigation follow in priority. Respon-
dents consider the features of query bookmarking,
query permalinks, cross-platform operability, endpoint
search and configurable request to be less important.

Potential Features Users of YASGUI are most inter-
ested in property and class autocompletion, and the
ability for YASGUI to work in offline mode. Espe-
cially the latter is interesting, as the request for this
feature indicates YASGUI is regularly used to access
endpoints that are installed locally. Using a locally in-
stalled endpoint indicates that such a user is managing
his or her own triple-store.

6. Actual SPARQL Use

The previous section discussed the tasks users re-
portedly execute on SPARQL endpoints, and how this
relates to YASGUI and other SPARQL clients. This

12 Laurens Rietveld and Rinke Hoekstra / YASGUI: How do we Access Linked Data?

0

5

10

15

20

25

#
 r

e
sp

o
n

d
en

ts

Tasks

(almost) never

1-2 times a month

3-5 times a month

6-15 times a month

16+ times a month

(a) All questionnaire respondents

0

5

10

15

20

25

#
 r

e
sp

o
n

d
en

ts

Tasks

(almost) never

1-2 times a month

3-5 times a month

6-15 times a month

16+ times a month

(b) Respondents unfamiliar with YASGUI

0

1

2

3

4

5

6

7

#
 r

e
sp

o
n

d
en

ts

Tasks

(almost) never

1-2 times a month

3-5 times a month

6-15 times a month

16+ times a month

(c) Tasks performed using YASGUI

0

1

2

3

4

5

6

7
#

 r
e
sp

o
n

d
en

ts

Tasks

(almost) never

1-2 times a month

3-5 times a month

6-15 times a month

16+ times a month

(d) Respondents familiar with YASGUI

Fig. 3. Task frequencies

does not provide a complete overview though: we only

had a limited number of respondents familiar with

YASGUI, and using the questionnaire as an instrument

does not provide a detailed view on the usage of YAS-

GUI (e.g. what button is pressed how many times). For

these reasons, this section explores whether we can re-

late our YASGUI usage logs to the tasks from sec-

tion 4, and if so, about the effect of YASGUI on the

behavior of users, compared to other clients.

We first introduce the data sources we analyzed to

determine SPARQL usage and task execution (section

6.1), followed by a description of the analysis method

in (section 6.2). Section 6.3 presents the patterns we

observe as a result of the analysis, followed by some

general observations in section 6.4.

6.1. Data Sources

We use Google Analytics24 to log the actions of
YASGUI users. These actions include the queries a
user executes, the endpoint they use, and more general
information such as (an estimate of) the users location,
the time, etc. However, we do not track the actions of
all users: every user is presented with an opt-out form
in which users may choose to disable Google Analytics
logging completely, or to disable Google Analytics for
logging of endpoints and queries only. As a result, the
YASGUI statistics described in this section are incom-
plete: 65% of the users specified everything could be
logged, 5% disabled logging of endpoints and queries
only, where the remainder disabled logging altogether.
These logs show that YASGUI received 1124 unique
visitors over the past 6 months, and 7707 queries were
executed against 294 different endpoints.

24See http://www.google.com/analytics/

Laurens Rietveld and Rinke Hoekstra / YASGUI: How do we Access Linked Data? 13

Secondly, we can use the Bitly service as a source
for user logs as well. YASGUI uses Bitly to convert
long query permalinks to short-links. This feature is
optional: users may use the long URL as is, or they can
convert it to a short link. This means that not all use of
the query permalink functionality is logged, but only
the query permalink functionality in combination with
Bitly.

Google Analytics and Bitly provide us with the data
to analyze the usage of YASGUI and link these to our
user tasks. However, can we relate this to the usage
of other clients? Does YASGUI invite users to write
different or more complex queries? To achieve this,
we compare YASGUI queries with those listed in the
DBpedia 3.8 server logs published via the USEWOD
workshop [3]. These DBpedia logs are anonymized,
and contain all the HTTP (SPARQL) requests send
to the DBpedia endpoint. Unfortunately, the YASGUI
logs only maintain explicit links between endpoint and
query since May 2013. Therefore, we were only able
to retrieve YASGUI DBPedia queries from this point
onwards.

6.2. Analysis Method

First, we extract relatively simple information such
as the use of SPARQL keywords (e.g. DESCRIBE,
ASK, SELECT, etc.), and relate these to the taskon-
omy from section 4:

– Communicating is associated with the use of the
URL shortening service.

– Evaluating can be done via ASK and DESCRIBE
queries, but also by means of very simple SE-
LECT style queries.

– Integrating data is most typically performed
through CONSTRUCT and INSERT queries.

– Searching is most strongly associated with SE-
LECT queries, though DESCRIBE queries can be
used as well.

– Grazing is often done through some form of
(HTML) rendering of query results by services
such as SNORQL and Pubby. This means that
both SELECT and DESCRIBE queries may be
used. We have identified a separate category for
these SNORQL-type SELECT queries (see be-
low).

See 4 for a quick overview of the relation between
tasks and simple query types.

A deeper analysis of the structure of the queries al-
lows for more fine-grained links between queries and

tasks, though this fine-grained level may make it diffi-
cult to detect all queries matching a certain task. Note
that we want to both analyze YASGUI usage in general
and in comparison to other clients. The latter is done
by comparing queries against DBpedia via YASGUI,
to the general DBpedia server logs. DBpedia query
logs have been subject to analysis before [12,20], and
in this paper, we analyze all logged queries in a similar
fashion.

To analyse the difference in complexity between the
query sets, we use the same method as [12]:

Triple pattern structure The number of triple pat-
terns used in queries, as well as the structure
of these triple patterns. Each element in a triple
can be a variable (V), or a constant (C). Using
this abstraction, we can classify [] rdf:type
?object as V C V.

Joins When two triple patterns have one variable in
common, the query engine would need to join
both. We use the method described in [12] to cal-
culate the number of joins per query, and the type
of join. For each triple pattern containing a sub-
ject (S), predicate (P) and object (O), there are 6
possible join types: SS, PP, OO, SP, SO, PO. And
example of two triple patterns where an SO join
takes place is:
:NY :hostsConference ?conference
and ?conference rdfs:label ?name.

The idea is that more complex queries will show
more triple patterns and more joins.

The SNORQL-type queries we alluded to above are
identified by matching queries to a pattern that is in-
dicative of grazing behavior. For instance, in YAS-
GUI, these queries are executed when clicking on a
resource in your query results. Because the results of
the SNORQL query are browsable as well, this behav-
ior typically emerges when users speculatively nav-
igate between resources. The SNORQL pattern con-
tains one UNION , three projection variables, and two
triple patterns (where the first triple contains a projec-
tion variable in the predicate and object position, and
the second triple contains a projection variable in the
subject and predicate position). An example of such a
SNORQL-type query is shown below:

6.3. Results

6.3.1. Permalinks
The Bitly logs (taken from late March until early

August) show the URL shorten service is used for 50

14 Laurens Rietveld and Rinke Hoekstra / YASGUI: How do we Access Linked Data?

Table 4
Query properties

YASGUI YASGUI (DBpedia) DBpedia logs task

syntactically valid queries 6507 372 1.466.287
time URL shortener is used 50 20 N/A Communicating
SELECT queries 92.08% 98.66% 93.62% Searching / Grazing / Evaluating
DESCRIBE queries 0.81% 0.81% 0.00% Searching / Grazing / Evaluating
ASK queries 0.15% 0.00% 6.26% Evaluating
CONSTRUCT queries 6.96% 0.54% 0.12% Integrating
INSERT queries 0.00% 0.00% 0.00% Integrating
SNORQL-type queries 6.63% 8.33% 0.01% Grazing

SPARQL Query 1 Example SNORQL query

SELECT ?prop ?hasValue ?isValueOf
WHERE {

{ <uri> ?prop ?hasValue }
UNION
{ ?isValueOf ?prop <uri> }

}

queries, which are clicked on (by others) a total 62
times. In other words, this feature is seldom used. Us-
ing the Bitly service is the most straight-forward way
in YASGUI to share a query (compared to for instance
copy/pasting a query and endpoint URL in an email).
This indicates that the task communicating is uncom-
mon. This corresponds with our questionnaire, where
2/3 of the respondents indicated that they never per-
form the task of communicating.

6.3.2. Queries
Our queries logs show a total of 7707 queries. How-

ever, after filtering invalid queries using the Jena25

query parser, this number drops to 6507 queries. When
we remove duplicate queries from this query set, 3447
queries remain. Table 4 shows the YASGUI usage
statistics when we relate query types to the SPARQL
taskonomy.

SELECT The majority of queries executed via YAS-
GUI are SELECT queries. However, linking these
queries to a specific task is far from trivial. SELECT
queries are suited for typical information retrieval
tasks such as searching and grazing. Even evaluation
tasks (for which the ASK keyword would be a sensible
solution) may use the SELECT keyword instead. That

25See http://jena.apache.org/

being said, our questionnaire shows searching as the
most often used task, which does correspond with the
prevalence of the SELECT keyword usage.

ASK and DESCRIBE ASK queries amount to 0.15%
of all YASGUI queries. As mentioned before, this key-
word is a sensible one to use for the task of evaluat-
ing. However, the low use of this keyword does not
correspond to the frequency our questionnaire respon-
dents perform this task (half of them indicate perform-
ing this task at least once a month). We believe this
shows that respondent prefer the more common SE-
LECT keyword instead, as this suits the purpose of
evaluating as well. Instead of returning a boolean value
when using an ASK query, the user may evaluate the
query results from the SELECT query as-is. Because
users are probably more used to executing SELECT
queries, only a few of them will opt for an ASK query.
In other words, accurately mapping the Evaluation task
to a specific set of SPARQL queries is not possible.]

The DESCRIBE query type meets the same fate,
with a score 0% in the YASGUI logs: users apparently
prefer to write SELECT queries instead.

CONSTRUCT CONSTRUCT queries are relatively
popular as well with 6.96%. Together with INSERT
queries (0.00%), these keywords correspond to the in-
tegrating task. This task is relatively common among
questionnaire respondents as well: 2/3 of them per-
form this task monthly. However, several questionnaire
respondents indicated that they do not directly use
SPARQL for these tasks, but rather prefer tools such
as Protege [17] instead. The relatively high number of
CONSTRUCT queries, as well as the large number of
respondents performing this task, shows that SPARQL
interfaces should not only focus on the retrieval of in-
formation. They should support the user in integrating
information as well.

Laurens Rietveld and Rinke Hoekstra / YASGUI: How do we Access Linked Data? 15

SNORQL Table 4 shows the number of SNORQL-
type queries as well. Our results26 show these queries
are relatively popular: 6.63% of the queries executed
on YASGUI have the structure of a SNORQL query
(indicating they perform the grazing task), which we
consider a relatively large number.

6.3.3. Query Comparison
Here, we try analyze and compare the usage of YAS-

GUI to the usage of other clients. We do so by com-
paring the properties of DBpedia queries executed via
YASGUI, with the query properties from the DBpe-
dia server logs. The YASGUI DBpedia query set con-
tains 372 queries, where the DBpedia queries from the
server logs (all USEWOD server logs from DBpedia
3.8) contains 1.4 million queries. Although the num-
ber of YASGUI DBpedia queries is only a fraction of
the number of queries from the DBpedia server, we be-
lieve this number provides enough queries to analyze
the differences between both query sets.

Query Types Table 4 shows a number of interesting
differences between both query sets. In general, most
query types (such as the number of SELECTs) corre-
spond roughly. However, the number of ASK queries
greatly differs between both: 0% in the YASGUI DB-
pedia logs, and 6.26% in the DBpedia server logs.

Additionally, the number of SNORQL-type queries
greatly differs, as this number contributes to 8% of the
YASGUI DBpedia queries, and 0.01% of the DBpedia
log queries. In the previous section we made a con-
nection between this type of queries and the grazing
task. For DBpedia however, counting the number of
SNORQL-type queries only retrieves a subset of the
people performing this task. This is because several
services, such as the DBpedia faceted browser27 use
DESCRIBE queries instead.

Nevertheless, even when enumerating the SNORQL-
type queries (0.01%) and DESCRIBE queries (0.00%),
the number of queries related to Grazing remains
marginal compared all queries executed on DBpedia.
This shows a striking difference between how often
the grazing task seems to be performed on the DBpe-
dia endpoint, and with respect to the times this task
is performed using YASGUI. A possible reason for
this difference is a low awareness of tools such as
SNORQL and the faceted browser. Where YASGUI

26The SNORQL feature was added in the end of May. Therefore,
the query set to calculate the number of SNORQL-type queries on
has a smaller sample size (from May onwards)

27See http://dbpedia.org/fct/

has the SNORQL feature integrated in the application,
users accessing the DBpedia endpoint would need to
use a search engine or read the DBpedia wiki to find an
application supporting the Grazing task on DBpedia.
In other words: combining such features in one single
application increases the use of these features.

Query Complexity Table 5 shows striking structural
differences as well. The YASGUI DBpedia logs show
a larger number of queries with at least 1 join than the
DBpedia server logs. Both the frequency of the triple
pattern types differ greatly between the query sets, as
well as the number of queries with at least 1 join. In
other words, the structure of the queries from the DB-
pedia server logs are quite different from the structure
of the DBpedia queries executed via YASGUI.

However, using this information to compare the us-
age of YASGUI with the usage of other clients is vir-
tually impossible. The very probable reason for these
differences is that DBpedia contains queries executed
by humans as well as machine agents. And, one cannot
differentiate between user and agent queries. Because
both humans and machine agents use the HTTP proto-
col, it is virtually impossible to accurately distinguish-
ing both at the HTTP request level. [16] recognizes this
same problem as well.

That we cannot distinguish with certainty is exactly
why the YASGUI query logs are interesting. Espe-
cially in cases where the research problem is targeted
towards human users (as we do), the YASGUI logs
provide a much more accurate reflection of endpoint
usage by human users. A first step in detecting differ-
ences in the queries between machines and humans, is
knowing what type of queries humans execute. YAS-
GUI offers this first step. To our knowledge, YAS-
GUI is currently the only service containing a diverse
(query-wise, as well as endpoint-wise) set of SPARQL
queries solely made by humans.

6.4. General Observations

The results described above related the usage of
YASGUI and DBpedia to our tasks from section 4.
However, unrelated from these tasks, are two other in-
teresting observations we want to elaborate.

First, we analyzed the endpoint usage of YASGUI
users. Where the previous section showed the actions
users perform on YASGUI, the endpoint usage would
show what endpoints users perform these on. To fil-
ter typographic errors, we reduce the list of 294 end-
points to a list of endpoints which only contain those

16 Laurens Rietveld and Rinke Hoekstra / YASGUI: How do we Access Linked Data?

Table 5
Query complexity

YASGUI YASGUI (DBpedia) DBpedia logs

Queries with 1 or more joins 47.20% 7.80% 12.32%
Queries with at least 1 V C C triple pattern 49.29% 20.97% 30.89%
Queries with at least 1 C V V triple pattern 8.71% 14.62% 22.8%
Queries with at least 1 V V C triple pattern 52.10% 13.77% 16.69%
Queries with at least 1 C C V triple pattern 10.97% 1.48% 9.95%
Queries with at least 1 V V V triple pattern 8.58% 15.04% 9.12%
Queries with at least 1 C V V triple pattern 9.31% 14.62% 0.71%
Queries with at least 1 V C V triple pattern 40.96 11.86% 0.71%
Queries with at least 1 C V C triple pattern 0.14% 0.00% 3.19%
Queries with at least 1 C C C triple pattern 2.03% 0.27% 0.04%

Table 6
YASGUI endpoint usage

Relative to # endpoints Weighted by #queries executed on endpoint

CKAN endpoints 18% 56%
Inaccessible endpoints 58% 32%

where more than 1 query was executed on. This re-
sults in a list of 185 endpoints. For each of the end-
points in this filtered list, we check whether this end-
point is in the CKAN dataset catalogue, and whether
this endpoint is accessible. The results are shown in
table 6. Results show 18% of these endpoints occur
in the CKAN dataset catalogue, where 58% of these
endpoints are inaccessible from the internet. When we
weight these percentages using the number of queries
executed on these endpoints, we observe 56% of the
endpoints occurs in the CKAN dataset catalogue, and
32% of the endpoints are inaccessible from the in-
ternet. The difference between the weighted and un-
weighted percentages is mostly due to the large num-
ber (43%) of queries executed on DBpedia (which oc-
curs in CKAN, and is obviously reachable).

These results show that a relatively large number of
endpoints accessed via YASGUI are not listed in the
CKAN dataset, and are not reachable from the inter-
net. About 1/3 of all executed queries are targeted to
localhost or intranet SPARQL endpoints. We believe
these results indicate that a large part of our queries are
executed against non-public endpoints and endpoints
of which the data is still under construction (e.g. in-
stalled locally). This corresponds to the questionnaire
results, where the respondents were particularly inter-
ested in offline functionality for YASGUI (something

only suitable to situations where an endpoint is in-
stalled locally).

Our second other observation involves the differ-
ences in query complexity between the queries exe-
cuted via YASGUI, and the DBpedia queries. Table 5
shows almost half of all queries executed via YASGUI
contain 1 or more joins. The DBpedia queries how-
ever (taken from both the YASGUI DBpedia queries,
as well as the server logs) show at most 12.32% of the
queries contain 1 or more join. The different triple pat-
tern structures show similar large differences. (e.g. the
V V C triple pattern: 52.10% vs. max 16.69%, respec-
tively). These difference might be caused by the type
of users accessing DBpedia, or the structure of the DB-
pedia graph. These numbers ask for a more thorough
analysis in future work.

7. Conclusion and Future Work

The size and complexity of the Semantic Web make
it difficult to query, and requires tools with a strong fo-
cus on usability. In this paper we presented the state of
the art in SPARQL user interfaces, and showed most
of these are rather austere clients with little focus on
usability, and feature completeness. Most striking is
that their functionality is largely complementary: we
have the SNORQL client for associative browsing, the

Laurens Rietveld and Rinke Hoekstra / YASGUI: How do we Access Linked Data? 17

FLINT SPARQL editor for highlighted queries, and
other tools whose major selling point is access to any
SPARQL endpoint. This large collection of tools, each
with their own specific ‘area of expertise’, makes it
hard for users to find and use the right tool for their
task. Increasing user accessibility to the Semantic Web
would require one single tool combining such features
as possible.

This is why we introduced the YASGUI SPARQL
client, a SPARQL client that shows the added value
of combining Web 2.0 and Semantic Web technolo-
gies for providing a more gentle Linked Data inter-
action environment. It is a web-based SPARQL client
that can be used to query both remote and local end-
points. It integrates linked data services and web APIs
to offer features such as autocompletion and endpoint
lookup. It supports query retention – query texts per-
sist across sessions – and query permalinks, as well as
syntax checking and highlighting.

In section 4, we stated that evaluating a Semantic
Web tool such as YASGUI, starts with a functional-
ity analysis: does the tool adequately support the tasks
for which it was designed? The question we asked
ourselves is to what extent do we know what tasks
SPARQL clients are used for? Limiting the functional-
ity analysis to just the interaction with a SPARQL end-
point over the HTTP protocol is a too broad criterion.
Clearly, all clients discussed in section 2 meet this re-
quirement. We furthermore argued, that this holds even
for the Semantic Web itself. The quest for the Seman-
tic Web killer app is still ongoing, and one can won-
der whether such a thing can even be found.28 Rather,
as happened to Web technology in general [15], new
uses of the technology will emerge and change our
views. The shift of emphasis from description logics
and OWL to Linked Data over the past years fits this
picture.

With these considerations in mind, we propose a
‘taskonomy’ of types of tasks that we feel can be asso-
ciated with the use of SPARQL endpoints (see figure
2). We used the taskonomy to come to grips both with
the reported usage of tools for accessing SPARQL
endpoints, and the actual usage. For the former, we
conducted a questionnaire-based survey (section 5),
for the latter we analyzed query logs of both YASGUI
and the USEWOD logs for DBPedia.

28See http://databanker.com/2013/03/05/
the-myth-of-the-killer-app/ and http://beust.
com/weblog2/archives/000474.html for insightful
discussions on whether or not a killer app exists.

Our analysis shows that users of SPARQL do rec-
ognize the tasks in the taxonomy as relevant to their
work with SPARQL. Classical information retrieval
tasks such as searching and evaluating are by far the
most often executed tasks on the Semantic Web, and
should deserve attention in relation to the usability
features of SPARQL clients. The questionnaire shows
that Semantic Web users perform integrating tasks fre-
quently as well, but our respondents do not often use
SPARQL clients for this task. Interestingly, our first re-
sults show that users of YASGUI perform the integrat-
ing task more often than users of other clients, but they
do not use YASGUI for it. The logs show a similar pic-
ture, only few integrating-related DESCRIBE queries
are executed via YASGUI. Clearly, a feature for feed-
ing the results of e.g. CONSTRUCT queries back to
the same or a different triple store could be quite ben-
eficial to the YASGUI user community.

When take a closer look at the complexity of queries
formulated via YASGUI, compared to that of DBPe-
dia, we cannot draw any real conclusions. Even though
we can e.g. see in Table 5 that the CVV and VCV
triple patterns are overrepresented in YASGUI, the
hypothesis that a richer user interface for SPARQL
queries would support more complex querying can-
not be tested. This is for two reasons. Firstly, we have
too little knowledge of what the instantiations of tasks
look like at the level of actual SPARQL queries. And
secondly, the DBPedia logs intermix queries posed by
people directly with queries that are fired by Seman-
tic Web applications. This is like comparing arts and
crafts with industrial products. The area of Human-
Computer Interaction and Semantic Web needs more
specific and detailed query logs. Despite millions of
(semi-)public queries available as server logs, we have
no way of knowing how and for what purpose peo-
ple create queries. We feel that the YASGUI logs are a
promising first start.

Acknowledgements

This work was supported by the Dutch national pro-
gram COMMIT/.

References

[1] Anupriya Ankolekar, Markus Krötzsch, Thanh Tran, and
Denny Vrandečić. The two cultures: Mashing up Web 2.0
and the Semantic Web. Web Semantics: Science, Services and
Agents on the World Wide Web, 6(1):70–75, February 2008.

18 Laurens Rietveld and Rinke Hoekstra / YASGUI: How do we Access Linked Data?

[2] Robert Battle and Edward Benson. Bridging the semantic Web
and Web 2.0 with Representational State Transfer (REST). Web
Semantics: Science, Services and Agents on the World Wide
Web, 6(1):61–69, February 2008.

[3] Bettina Berendt, Laura Hollink, Markus Luczak-Rösch, Knud
Möller, and David Vallet. Proceedings of USEWOD2013 - 3rd
international workshop on usage analysis and the web of data.
In 10th ESWC - Semantics and Big Data, Montpellier, France,
2013.

[4] Christian Bizer and Andy Seaborne. D2rq - treating non-rdf
databases as virtual rdf graphs. World Wide Web Internet And
Web Information Systems, page 26, 2004.

[5] Joost Breuker. A suite of problem types. In CommonKADS
library for expertise modelling: reusable problem solving com-
ponents, volume 21 of Frontiers in Artificial Intelligence and
Applications. IOS Press, 1994.

[6] Joost Breuker. Indexing problem solving methods for reuse.
In Knowledge Acquisition, Modeling and Management, pages
315–322. Springer, 1999.

[7] Jeen Broekstra, Arjohn Kampman, and Frank Van Harmelen.
Sesame: An architecture for storing and querying RDF data
and schema information, 2001.

[8] Stephane Campinas, Thomas E Perry, Diego Ceccarelli, Re-
naud Delbru, and Giovanni Tummarello. Introducing rdf graph
summary with application to assisted sparql formulation. In
Database and Expert Systems Applications (DEXA), 2012 23rd
International Workshop on, pages 261–266. IEEE, 2012.

[9] Balakrishnan Chandrasekaran. Design problem solving: A task
analysis. AI Magazine, 11(4), 1993.

[10] William J. Clancey. Heuristic classification. Artificial Intelli-
gence, 27(3):289 – 350, 1985.

[11] Leigh Dodds. Twinkle: A sparql query tool.
[12] Mario Arias Gallego, Javier D Fernández, Miguel A Martínez-

Prieto, and Pablo de la Fuente. An empirical study of real-
world sparql queries. In 1st International Workshop on Usage
Analysis and the Web of Data (USEWOD2011) at the 20th In-

ternational World Wide Web Conference (WWW 2011), Hyde-
barabad, India, 2011.

[13] Michael Grobe. Rdf, jena, sparql and the ’semantic web’. In
Proceedings of the 37th annual ACM SIGUCCS fall confer-
ence, SIGUCCS ’09, pages 131–138, New York, NY, USA,
2009. ACM.

[14] Steve Harris, Nick Lamb, and Nigel Shadbolt. 4store: The de-
sign and implementation of a clustered RDF store. In 5th Inter-
national Workshop on Scalable Semantic Web Knowledge Base
Systems (SSWS2009), pages 94–109, 2009.

[15] Tom Heath. A taskonomy for the semantic web. Semantic Web,
1(1):75–81, 2010.

[16] Knud Möller, Michael Hausenblas, Richard Cyganiak, and
Siegfried Handschuh. Learning from linked open data usage:
Patterns & metrics. 2010.

[17] Natalya F Noy, Michael Sintek, Stefan Decker, Monica
Crubézy, Ray W Fergerson, and Mark A Musen. Creating se-
mantic web contents with protege-2000. Intelligent Systems,
IEEE, 16(2):60–71, 2001.

[18] Kieron O’Hara and Nigel Shadbolt. Locating generic tasks.
Knowledge Acquisition, 5(4):449 – 481, 1993.

[19] Openlink Virtuoso. Universal server platform for the real-time
enterprise, 2009.

[20] Francois Picalausa and Stijn Vansummeren. What are real
sparql queries like? In Proceedings of the International Work-
shop on Semantic Web Information Management, page 7.
ACM, 2011.

[21] Laurens Rietveld and Rinke Hoekstra. Yasgui: Not just another
sparql gui. In Proceedings of the Workshop on Services and
Applications over Linked APIs and Data (SALAD2013), 2013.

[22] Guus Schreiber. Knowledge engineering and management: the
CommonKADS methodology. the MIT Press, 2000.

[23] Frank Van Harmelen, Annette Ten Teije, and Holger Wache.
Knowledge engineering rediscovered: towards reasoning pat-
terns for the semantic web. In Foundations for the Web of In-
formation and Services, pages 57–75. Springer, 2011.

