
The Collections Ontology:
creating and handling collections
in OWL 2 DL frameworks
Editor(s): Giancarlo Guizzardi, Federal University of Espírito Santo (UFES), Brazil
Solicited review(s): Fernando Naufel do Amaral, Pólo Universitário de Rio das Ostras Universidade Federal Fluminense, Brazil, and Csaba Veres,
University in Bergen, Norway

Paolo Ciccaresea,b,* and Silvio Peronic

aMassachusetts General Hospital, Department of Neurology, Mindinformatics, 65 Landsdowne Street, Cambridge,
02139 MA, USA
bHarvard Medical School, Boston, MA, USA
cDepartment of Computer Science And Engineering, University of Bologna, Mura Anteo Zamboni 7, 40127 Bologna
(BO), Italy

Abstract. The RDF collections and containers is one of the most used features by RDF technicians and practitioners. Although some
work has been published in past, there is not a standard and accepted way for defining collections within OWL DL frameworks.
Here, we attempt to address this issue with the introduction of the Collections Ontology (CO) version 2.0. CO is an OWL 2 DL
ontology developed for creating sets, bags and lists of resources, and for inferring collection properties even in the presence of
incomplete information.

Keywords: OWL, collection, list, bag, set

*Corresponding author. E-mail: paolo.ciccarese@gmail.com.

1. Introduction

In mathematics and computer science, objects that group
multiple elements into a single unit, e.g. sets and lists, are
commonly known as collections. These entities may involve
groups of non-repeatable entities (e.g., students of a particular
class), unsorted and repeatable items (e.g., votes of the latest
US presidential elections), and even ordered indexes of things
(e.g., bibliographic reference lists of scientific papers).

The need to describe those items as belonging to particular
collections occurs quite often when formalising real domains
through ontologies. Semantic Web technologies (e.g., RDF
[1], RDFS [2] and OWL [3]) allow the use of collections to
some extent. However, problems arise when we want to
define OWL 2 DL ontologies that include known constructs
from underlying modelling languages (e.g., RDF sequences
and bags).

Several well-known ontologies, e.g. BIBO [4], adopt the
aforementioned approach. Of course, such a technique is not
an option we want or need to strictly follow the formal
constraints given by the OWL 2 DL specifications. In such
case, a large amount of ontologies define their own structure
for describing collections within OWL 2 DL frameworks.
The alternative to this approach is the creation of different
and interoperable ways of describing, handling, and querying
upon entities defined as collections of items.

We envision two possible solutions to properly address
collections modelling within OWL 2 DL:
• extend the OWL specification in order to explicitly

define mechanisms for handling collections, as
happened in RDF, or

• create a standard model for describing collections within
OWL 2 DL frameworks, along the line of what has been
proposed in [5].

We firmly believe that modifications to the OWL
specification are not feasible in the short term. For this
reason, here we introduce the Collection Ontology (CO), a
model for creating collections and align different
conceptualisations of them through classes and properties that
describe sets, bags and lists of items.

Although this ontology has been first introduced in 2007
as part of the project SWAN (Semantic Web Applications in
Neuromedicine) [6], it is been conceived as a separate
orthogonal module with no dependencies from the rest of the
SWAN ontology ecosystem.

We are here presenting the current version of the CO
ontology (v. 2.0), which has been greatly improved
capitalizing on the experience matured in the last four years
within several projects and carefully updated to utilize many
of the new features released in OWL 2 DL.

The rest of the paper is structured as follows. In Section 2
we introduce previous approaches to define collections in
RDF and OWL. In Section 3 we present the Collections
Ontology (CO), describing its main entities and features.
Then we show its inference power (Section 4) and how to
answer particular queries on CO collections through
SPARQL (Section 5). In Section 6 we briefly introduce a
Java API for creating and handling CO entities inside a Java
application. Finally, we present projects that are making use
of CO for describing different domains (Section 7) and we
conclude the paper briefly discussing on future development
of our work.

2. Related Works

A large amount of literature exists about Semantic Web
models for handling collections of entities. In this section we

discuss the most important techniques currently used to
address this issue, namely: RDF containers, RDF collections,
ontological patterns and OWL ontologies.

2.1. RDF Containers

RDF allows the usage of three kinds of containers1:
• rdf:Bag. A bag represents a group of resources or

literals, possibly including duplicate members,
where there is no significance in the order of the
members. For example, a bag might be used to
describe a group of part numbers in which the order
of entry or processing of the part numbers does not
matter.

• rdf:Seq. A sequence (or seq) represents a group of
resources or literals, possibly including duplicate
members, where the order of the members is
significant. For example, a sequence might be used
to describe a group that must be maintained in
alphabetical order.

• rdf:Alt. An alternative (or alt) represents a group
of resources or literals that are alternatives
(typically for a single value of a property). For
example, an alt might be used to describe
alternative language translations for the title of a
book, or to describe a list of alternative Internet
sites at which a resource might be found. An
application using a property whose value is an alt
container should be aware that it can choose any
one of the members of the group as appropriate.

In order to show how to use these constructs, let us take
into consideration the following natural language scenario:

The resolution was approved by the Rules
Committee, having members Fred, Wilma, and
Dino.

We could describe the above scenario in RDF as follows2:

ex:resolution exterms:approvedBy

ex:fred , ex:wilma , ex:dino .

However, in the above excerpt we are saying that the

resolution is approved by each individual member rather than
by the whole group.

Using RDF containers allows us to avoid this issue. In
fact, we can use a bag for grouping people as a single unit
and then saying that the group approved (property
approvedBy) the resolution:

ex:resolution exterms:approvedBy ex:rules-committee .

ex:rules-committee a rdf:Bag

 ; rdf:_1 ex:fred

; rdf:_2 ex:wilma

; rdf:_3 ex:dino .

Of course RDF containers have some constraints. In
particular, they only state that certain identified resources are
members, but they cannot express whether other members
that are part of the same container exist. It is not possible to

1 Please note that the current W3C Working Draft of RDF 1.1, dated
June 5, 2012 (available at http://www.w3.org/TR/rdf11-concepts/),
has deprecated such collections without offering an alternative
solution.
2 The prefixes ex and exterms refer to fictional URLs that describe
resources and vocabulary terms respectively.

exclude that there might be another graph somewhere that
describes additional members.

2.2. RDF Collection

RDF provides support for describing groups containing
only the specified members in the form of RDF collections.
An RDF collection is a group of entities represented as a list
structure (class rdf:List) in the RDF graph.

For instance, we can describe the group of people
introduced in the example in the previous section as follows:

ex:resolution exterms:approvedBy ex:rules-committee .

ex:rules-committee rdf:first ex:fred

 ; rdf:rest [rdf:first ex:wilma

; rdf:rest [rdf:first ex:dino

; rdf:rest rdf:nil]] .

RDF imposes no “well-formedness” conditions on the use
of the collection vocabulary – it is possible, for instance, to
define multiple rdf:first elements). Thus, RDF applications
that require collections to be well-formed should be written
to check that the collection vocabulary is being used
appropriately, in order to be fully robust.

Of course, both RDF/XML and Turtle provide compact
syntaxes for describing collections that avoid the
aforementioned “well-formedness” issue, as shown as
follows:

ex:resolution exterms:approvedBy

(ex:fred ex:wilma ex:dino) .

2.3. OWL and ordering

OWL has no support for ordering, and the natural
constructs from the underlying RDF vocabulary (rdf:List and
rdf:nil) are unavailable in OWL-DL because they are used in
its RDF serialization. In principle, rdf:Seq is not illegal but it
depends on lexical ordering and has no logical semantics
accessible to a DL classifier.

In other terms, as stated in [7]:
• the elements in a container are defined using the

relations rdf:_1, rdf:_2, and so on that have no
formal definition in RDF. Using them for the
purpose of reasoning will require us to define and
enforce the properties of these relations;

• it is not possible to define a container that has
elements only of a specific type.

• for updating a specific element in a container in a
remote source, one is forced to transmit the whole
container.

• it is not possible to associate provenance
information with the elements in a container.

Since OWL has greater expressiveness than RDF - with
constructs such as transitive properties - and reasoning
capabilities - for checking the consistency and inferring
subsumptions -, the idea of reasoning with sequential
structures in OWL-DL looks appealing.

In [5], the authors proposed a way of representing
sequential structures in OWL-DL. They argued that the
representation of these structures “requires extensive
rewriting, the relation of the resulting structures to the
original lists is not intuitive and, more importantly, the
resulting structures grow as the square of the length of the
list”. Then, they describe a general list pattern that they

incorporated in the Semantic Web Best Practice Working
Group’s note on n-ary relations [8].

Similar patterns are introduced in [9] and are available as
OWL ontologies at the Ontology Design Patterns portal3.
Among them, the sequence pattern [10] seems to be
particularly appropriate for describing sequential structures.
In fact, it has been developed primarily for sorting time-
dependant entities such as tasks, processes, spatially located
objects and situations. Moreover, it defines transitive and
intransitive object properties to link an entity of the sequence
with its successors and predecessors.

Another not-so-logically-grounded technique for
specifying order among entities makes use of literal indexes.
The main idea is to aggregate entities in a collection where
the order is specified by a value (usually, an integer) defined
through data property assertions. For instance, the Music
Ontology [11] uses this approach (through the data property
track_number) to list the tracks in a record (linked to it with
the object property track). Although this approach is very
simple, it is very easy to introduce mistakes when modelling
such a scenario, for example assigning the same track number
to two different tracks of the same record. Usually, this
technique prevents common OWL applications from
checking automatically the consistency of the ontology unless
implementing ad hoc codes.

3. The Collections Ontology (CO)

Our contribution in addressing the issue of defining and
handling collections within OWL 2 DL frameworks consists
in the latest version (2.0) of the Collections Ontology (CO)4
or CO2, originally proposed as part of the SWAN Ontology
Ecosystem [6]. As summarised in the Graffoo diagram5 in
Figure 1, this ontology defines classes and properties that
allow one to define three different kinds of collection
depending on the particular features that are requested.
Namely, sets for describing collections of non-repeatable and
unordered elements; bags for defining collections of
repeatable and unordered elements; and lists for introducing
collections of repeatable and ordered elements. However,
before better defining and detailing such classes we would
like to explain how CO relates to the mathematical definition
of sets, multisets and sequence and to ontological theories
about collectivities.

3.1. Set, multisets and sequences

According to Georg Cantor, a set is a gathering together
into a whole of definite, distinct objects of our perception and
of our thought – which are called elements of the set. A set
can be described by extension by listing each member of the
set. An extensional definition is denoted by enclosing the list
of members in curly brackets:
 C = {4, 2, 1, 3}
 D = {blue, white, red}

3 http://www.ontologydesignpatterns.org
4 Available at http://purl.org/co.
5 This and all the following graphical representations of ontologies
are drawn using Graffoo, the Graphical Framework for OWL
Ontologies, available at http://www.essepuntato.it/graffoo. Yellow
rectangles represent classes (solid border) and restrictions (dotted
border), green parallelograms represent datatypes, arrows starting out
of a filled circle refer to object property definitions, arrows starting
out of an open circle refer to data property definitions, while other
arrows represent assertions between resources.

Every element of a set must be unique; no two members
may be identical and the order in which the elements of a set
or multiset are listed is irrelevant.

A multiset (or bag) is a generalization of the notion of set
in which members are allowed to appear more than once. The
number of times an element belongs to the multiset is the
multiplicity of that member. The total number of elements in
a multiset, including repeated memberships, is the cardinality
of the multiset. The bag {1,2} is also a set.

A sequence is an ordered list of objects (or events). Like a
set, it contains members (also called elements or terms), and
the number of terms (possibly infinite) is called the length of
the sequence. Unlike a set, order matters, and exactly the
same elements can appear multiple times at different
positions in the sequence.

In general, the principle of identity operates on the
elements of a collection and, if handled, on their order rather
then on the collection seen as proper artefact. This means, for
instance, that in mathematics two sets containing the same
group of elements are the same set, two lists contains the
same elements in the same order are the same list, and so on.

In CO we decided not to model the sets, multisets and
sequence as extensional objects (in the mathematical sense).
We introduced a superclass co:Collection and to split its
subclasses in two disjoint groups according to their ability to
consent (i.e., co:Bag and co:List) or not (i.e., co:Set) the
repetitiveness of their elements. We therefore defined
asserted – manually defined – classes that are not mapping
one-to-one to the mathematical classes.

The relationships between the above mathematical entities
and those defined by Collections Ontology – and detailed in
the following sub-sections of the paper – can be defined as
follow:
 co:Set ⊑ Set
 co:Bag ⊑ Bag
 co:Set ⊓ co:Bag = ∅
 co:List = co:Bag ⊓ Sequence

3.2. Part-whole relations and collectives

 In order to use CO when modelling scenarios describing
“collections in terms of the constructive boundaries of those
plural entities that form themselves a whole” [13], we
intentionally did not model the mathematical principle of
identity. Therefore, it is possible to consider two sets of
people (actually, collectives of people), composed exactly by
the same people, as two different research groups without
contradictions. A more extensive example of this use is
shown in section 4, in which we introduce how to use this
feature to leverage inference.

In the past, several works have been addressed the
comparison between such mathematical collections and
collectives. One of the most remarkable study in this
direction is [14]. In this work, Guizzardi remarks as
collectives are often considered identical to sets while they
actually are not. In particular, he analyses how the classical
mathematical operations of sets, i.e. the membership and the
subset relations, are not able to describe the relations between
an individual and a collection and between a sub-collective
and a collective, respectively named as member-collective
and subcollective-collective relations.

Contrary to the set membership, the member-collective
relation is intransitive, which means that each member of the
collective is atomic [15] with regard to the collective itself.
Thus, from having a person p member of a club c and the
club c member of an association of clubs a we cannot infer

that p is member of a. The subcollective-collective relation is
actually a transitive relation instead, which holds between
plural entities. However, this kind of relations is irreflexive at
the type level, which means that two subcollectives part of
the same collective must have different characterisations (e.g.
collective of the alumni of a school can have part the
collective of all the male alumni and the collective of all the
female alumni of that school).

The property co:element - introduced in Section 3.4 -,
which links any collection (either a set, a bag or a list) to its
members, is very general and has been defined without
particular property constraints. Thus, CO leaves its users to
interpret and/or restrict such a property so as to describe
either the membership of sets or member-collective relations.
In addition, we did not define any property to model either
the subset operation or the subcollective-collective relation,
thus allowing users to extend CO so as to adopt the semantics
they prefer.

3.3. What is new in CO

The version 2.0 of the Collections Ontology we introduce
in this article is a meaningful extension of its earliest OWL 1
version. Our main aims were to improve the definition of
such an ontology through using a significant portion of the
new features introduced by OWL 2.

The work described in this paper was undertaken
collaboratively between both authors, PC based in Boston
(US) and SP based in Bologna (IT), without face-to-face
meetings. Instead we used a combination of Skype
discussions, e-mail exchanges, a collaborative wiki page to
record issues to be discussed and added to the ontology.

When developing such a new version, we followed all the
best practices introduced in [16], which are directly inspired
by OBO Foundry Principles6. In particular, the new version
of the ontology:

• should be open for use by all;
• should possess a unique identifier space

(namespace);
• should be published in distinct successive versions;
• should have clearly specified and delineated

content;
• should be orthogonal to other ontologies;
• should include textual definitions for all terms;
• should use relationships (object and data

properties) that are unambiguously defined;
• should be well documented;
• should serve a plurality of independent users;
• should be developed collaboratively.

In addition to the above guidelines, we also had to take
into account particular constraints. First, we had to guarantee
a backward compatibility of CO version 2.0 with its previous
versions, since they are currently used in implemented
systems and frameworks, as we introduce in Section 7. In
addition, according to both the above constraint and an
implementation standpoint, we decided to develop the data
structures managing co:Set and co:Bag differently from the
related mathematical entities, as introduced in Section 3.5
and 3.6, respectively.

Although this choice can be seen as odd, inconvenient or
even incorrect, we decided to follow this path also to keep the

6 OBO Foundry Principles: http://www.obofoundry.org/crit.shtml.

ontology as simple as possible (and, thus, easier to
understand and use by final users). To be totally close to the
mathematical definitions of such collections, thus keeping the
original mathematical subclass-class organisation, we should
define a collection as an entity having items, each referring to
the particular individual member of the collection in
consideration. In this way, we could say that:

• a bag is a collection having non-ordered items
referring to repeatable elements;

• a set is kind of bag having non-ordered items
referring to non-repeatable elements;

• a list is a collection having ordered items referring
to repeatable elements.

However this organisation, even possible, would have
made the new version of CO incompatible with its previous
versions and would have increased the complexity when
defining sets, adding an item for each of its member – even if
that item would not add any particular feature to the set itself,
since it is used to guarantee neither repetition nor order in this
particular case.

Thus, we decided to organise CO according to a pure
structural point of view, thus disjointing bags/lists – which
always needs items to enable the repeatability and the order
of elements – and sets – which hide such items behind a
direct relation with their members through the property
co:element.

Thus, the main improvements introduced in this version of
CO, according to the principles and constraints introduced
above, are:

• all the entities are assigned to a new URL base, i.e.
“http://purl.org/co/”;

• the existing logical structure of the ontology has
been partially re-organised;

• addition of new properties describing inverse
relations and indexes of list items;

• use of new OWL 2 DL capabilities to offer a better
inference layer;

• introduction of additional logical axioms and
SWRL rules for improved consistency checking
and integrity constraints;

• addition of natural language labels and comments
for improving the human-understanding of CO;

• an accompanying ontology7 that aligns the current
version of CO with the old version developed for
SWAN and with other ontologies handling
collections;

• a Java API so as to load, manage and store CO
collections within a Java application;

In the following subsections, we introduce all the main
classes and properties defined in CO, supporting them
through exemplar use cases.

3.4. Collection

The class co:Collection is the top-level “abstract” class of
CO. Any individual of this class can only contain elements as
OWL entities (i.e., individuals of the class owl:Thing) and
must specifies a particular size (property co:size). It is the
superclass of the “concrete” collections of CO, i.e., co:Set,
co:Bag and co:List – we introduce in the following sections.
This class and its related properties are defined as follows:

Class: co:Collection

 SubClassOf:

co:element only owl:Thing,

co:size exactly 1

 DisjointWith: co:Item

ObjectProperty: co:element

7 Alignment of CO to other ontologies: http://purl.org/co/alignment.

Figure 1. Diagram summarising the main structure of the Collections Ontology.

 Domain: co:Collection

 SubPropertyChain: co:item o co:itemContent

 InverseOf: co:elementOf

DataProperty: co:size

 Domain: co:Collection

 Range: xsd:nonNegativeInteger

Note that the size of a collection C refers to the number of
times C refers to its elements. For example, the following
collections – composed (property co:element) by the same
three elements a, b and c – have all different sizes:

• the size of the set {a,b,c} is 3;
• the size of the bag [a,b,b,c,a] is 5;
• the size of the list (a,b,c,a,a,c,b) is 7.

3.5. Set

An individual of the class co:Set is a collection that cannot
contain duplicate elements. All the elements of the set are
directly linked to it through the property co:element, as
shown in Figure 2. This class is defined as follows8:
Class: co:Set

 SubClassOf: co:Collection

Figure 2. Diagram summarising the class Set and the related property

element.

In OWL, identical elements connected by the same
property are, by default, treated as items of a set.

Let us take again into consideration the example
introduced in Section 2.1. Using CO sets, it is possible to
describe easily that scenario as follows:

ex:resolution exterms:approvedBy ex:rules-committee .

ex:rules-committee a co:Set

 ; co:element ex:fred , ex:wilma , ex:dino .

3.6. Bag

An individual of the class co:Bag (that is disjoint with
co:Set) is a collection that can have multiple copies of each
element. As shown in Figure 3, this is performed through the
class co:Item and the property co:item. The class co:Item
links exactly one resource that effectively is contained in the
bag through the relationship co:itemContent. The
dereferencing mechanism implemented through the
properties co:item and co:itemContent allows, then, to
associate a same resource to a collection more than one time.
This class and its related properties are defined as follows:

Class: co:Bag

 SubClassOf: co:Collection

8 This and all the following excerpts of ontology models are written
according to the Manchester Syntax, while all the examples of use of
the model are written in Turtle.

 DisjointWith: co:Set

ObjectProperty: co:item

 Domain: co:Bag

 Range: co:Item

 InverseOf: co:itemOf

 SubPropertyChain: co:item o co:nextItem

Class: co:Item

 SubClassOf: inverse co:item some co:Bag

 DisjointWith: co:Collection

ObjectProperty: co:itemContent

 Characteristics: Functional

 Domain: co:Item

 Range: not co:Item

 InverseOf: co:itemContentOf

Figure 3. Diagram summarising the class Bag and the related class
Item and properties item, itemContent and element.

Bags can be used in all those scenarios where we do not

care about the order and we want to keep track of
repeatability of elements. The following example introduces
a simple context in which bags can be used for:

The factorisation of the number 20 is “2, 2, 5”.
Since the order of the prime factors in the factorisation is

not important for mathematical purposes, we can use CO
bags to describe the above scenario in OWL:

ex:twenty exterm:hasFactorisation ex:twenty-factors .

ex:twenty-factors a co:Bag

; co:item ex:i1 , ex:i2 , ex:i3 .

ex:i1 a co:Item ; co:itemContent ex:two .

ex:i2 a co:Item ; co:itemContent ex:two .

ex:i3 a co:Item ; co:itemContent ex:five .

Moreover, by means of the OWL 2 feature for defining
property chains, it has been possible to infer automatically
the membership in a bag, i.e., all the co:element relations
between a bag instance and all the other objects it effectively
contains, that are dereferenced through items and the related
properties co:item and co:itemContent for allowing
repetition.

3.7. List

An individual of the class co:List (that is subclass of
co:Bag) is an abstract data structure that implements an
ordered collection of elements, where the same element may
occur more than once. As shown in Figure 4, the ordering is
performed through the property co:nextItem that links an
individual of the class co:ListItem (subclass of co:Item) to
exactly another one. Moreover, co:nextItem is accompanied
by its related inverse and transitive properties. As for co:Item,
the class co:ListItem links exactly one resource through the
relationship co:itemContent.

In order to identify which are the first and the last items in
a list, two object properties are defined, co:firstItem and
co:lastItem, as sub-property of co:item. Of course, list items
linked through these two properties cannot be respectively
preceded or followed by another list item. This class and its
related properties are defined as follows:

Class: co:List

 SubClassOf:

 co:firstItem max 1,

 co:lastItem max 1,

 co:Bag that co:item only co:ListItem

ObjectProperty: co:firstItem

 Characteristics: Functional

 SubPropertyOf: co:item

 Domain: co:List

 Range: co:ListItem that

co:previousItem exactly 0 and

co:index value 1

 InverseOf: co:firstItemOf

ObjectProperty: co:lastItem

 Characteristics: Functional

 SubPropertyOf: co:item

 Domain: co:List

 Range: co:ListItem that

co:nextItem exactly 0

 InverseOf: co:lastItemOf

Class: co:ListItem

 SubClassOf: co:Item that co:index exactly 1

ObjectProperty: co:followedBy

 Characteristics: Transitive

 Domain: co:ListItem

 Range: co:ListItem

ObjectProperty: co:precededBy

 Characteristics: Transitive

 InverseOf: co:followedBy

ObjectProperty: co:nextItem

 Characteristics: Functional

 SubPropertyOf: co:followedBy

ObjectProperty: co:previousItem

 Characteristics: Functional

 SubPropertyOf: co:precededBy

 InverseOf: co:nextItem

DataProperty: co:index

 Domain: co:ListItem

 Range: xsd:positiveInteger

Let us introduce an example to show how to use CO lists
for describing ordered collections. Suppose one wants to
describe the paper referenced by [5] specifying its authors
(e.g., through the property dcterms:creator) in that specific
order. It is possible to model this scenario straightforwardly
using a CO list as follows9:

ex:putting-owl-in-order exterm:creator ex:auth-list

; exterm:title “Putting OWL in Order:
Patterns for Sequences in OWL” .

ex:auth-list a co:List

 ; co:size “7”^^xsd:nonNegativeInteger

 ; co:firstItem ex:i1

 ; co:item ex:i2 , ex:i3 , ex:i4

, ex:i5, ex:i6

 ; co:lastItem ex:i7 .

ex:i1 a co:ListItem

 ; co:index “1”^^xsd:positiveInteger

 ; co:itemContent ex:drummond

; co:nextItem ex:i2 .

ex:i2 a co:ListItem

 ; co:index “2”^^xsd:positiveInteger

 ; co:itemContent ex:rector

 ; co:nextItem co:i3 . …

ex:i6 a co:ListItem

 ; co:index “7”^^xsd:positiveInteger

 ; co:itemContent ex:seidenberg .

ex:drummond a exterms:Person

 ; exterm:name “Nick Drummond” .

ex:rector a exterm:Person

 ; exterm:name “Alan Rector” . …

9 The prefixes xsd and dcterms in the following examples refer to the
XML Schema (http://www.w3.org/2001/XMLSchema#) and the
DCTerms (http://purl.org/dc/terms/) vocabularies respectively.

Figure 4. Diagram summarising the class List and the related class ListItem and properties.

Following this methodology, it is possible to keep separate
the elements involved in a list (i.e., the authors of the paper in
the previous example) and the position that those elements
occupy in a particular list. This feature is particularly
important when the same element can be part (at different
indexes) of more than one list (e.g., a person can be first
author of a paper and third author of another).

3.7.1 Leave it to the inference layer

In CO, the lists are defined in a way that is possible to
consider some data as implicit, leaving to a reasoner or an
inference system the job of inferring them.

For example, it is not needed to explicitly specify all the
items that are involved in a list. In fact, through the following
property chain axiom defined for the property co:item:
co:item o co:nextItem

it is possible not to specify all the items of a list, but just
the first (property co:firstItem) and the last (property
co:lastItem) ones. In this way, the reasoner will be able to
infer all the remaining co:item assertions simply following
the chain of co:nextItem defined by the list items.

Moreover, the combination of the above property chain
can be very useful when combined with the following SWRL
rules [12]:

co:itemOf(?i,?l) , co:index(?i,1)
 -> co:firstItem(?l,?i)
co:lastItem(?l,?i) , co:size(?l,?value)
 -> co:index(?i,?value)
co:itemOf(?i,?l) , co:index(?i,?value) ,
co:size(?l,?value)
 -> co:lastItem(?l,?i)
co:lastItem(?l,?i) , co:index(?i,?value)
 -> co:size(?l,?value)
co:nextItem(?i1,?i2) , co:index(?i1,?value1) ,
add(?value2,?value1,1)
 -> co:index(?i2,?value2)
co:itemOf(?i1,?l) , co:itemOf(?i2,?l) ,
co:index(?i1,?value1) , co:index(?i2,?value2) ,
add(?value2,?value1,1)
 -> co:nextItem(?i1,?i2)

Through this inference layer, it is then possible to
complete lists even when they present partial information, in
particular identifying:

• the first item of a list starting from its index;
• the last item of a list starting from its index and the

related list size (and vice versa);
• the size of the list from its last item;
• indexes of items starting from their co:nextItem

assertions (and vice versa).

3.7.2 Integrity constraints

The transitive properties co:followedBy and
co:precededBy (super-properties of co:nextItem and
co:previousItem respectively) are used to indicate all the
items that follow/precede a particular item. In CO, no cycles
are permitted, i.e., an item cannot either follow or precede
itself. OWL 2 allows one to set this behaviour for object
properties specifying them as irreflexive. However, it is not
possible to set those two properties as irreflexive since it
would violate one of the constraints needed keep the ontology
in a DL framework10.

Since the constraint on co:followedBy and co:precededBy
is fundamental to keep the ontology consistent, we chose to

10 In this particular case, it is not possible to specify an object
property as transitive and irreflexive at the same time.

specify integrity constraints by means of a particular model:
the Error Ontology11. This ontology is a unit test that allows
producing an inconsistent ontology if a particular (and
incorrect) situation happens. It works by means of a data
property, error:hasError, that denies its usage for any
resource, as shown as follows:

DataProperty: error:hasError

Domain: error:hasError exactly 0

Range: xsd:string

In fact, by defining its domain as “all those resources that
do not have any error:hasError assertion”, a resource that
asserts having an error makes automatically the ontology
inconsistent12.

By means of the Error Ontology, we can mandate the
properties co:followedBy and co:precededBy to be,
implicitly, irreflexive. This behaviour is implemented
through the following SWRL rules13:
co:followedBy(?i,?i)

-> error:hasError(?i, “A list item cannot be
followed by itself”)

co:precededBy(?i,?i)

-> error:hasError(?i, “A list item cannot be
preceded by itself”)

4. Leveraging inference

The Open Reuse and Exchange specification (ORE
specification) [17] is a standard defined by the Open
Archives Initiative for describing and exchanging
aggregations of Web resources.

The main concept of this specification is the Aggregation,
i.e., a particular resource that aggregates, either logically or
physically, other resources. It is also possible to use particular
kinds of resources called proxies, so as to refer to a specific
aggregated resource in a context of a particular aggregation.
Moreover, by using proxies, we can specify an order (with an
external vocabulary) for aggregated resources of an
aggregation, if needed.

Let us briefly introduce the use of ORE for a real-world
scenario. For instance our personal scientific library,
composed by a large number of works, can be seen as an
aggregation of different papers. We can use ORE to describe
this scenario14:

ex:my-own-library a ore:Aggregation

; ore:aggregates

 ex:putting-owl-in-order

11 Available at: http://www.essepuntato.it/2009/10/error. The prefix
error refers to entities defined in it.
12 Of course, the Collection Ontology could be forced to be
inconsistent in a simpler way that doesn't require the use of the
property error:hasError – e.g specifying a rule such as
followedBy(?i, ?i) -> owl:Nothing(?i). However, we prefer to specify
an error message, which can be very useful when used with
automated debugging tools.
13 It is important to notice that all these rules do not work at the
Tbox level and, thus, you need an Abox to be correctly applied. In
addition, they also do not work with anonymous individuals since the
DL safe rules constraint must hold to use SWRL rules within OWL
ontologies. We are aware of this constraint and, even though all the
examples in the previous sections make use of several black nodes
(i.e. anonymous individuals) thus making these SWRL rules
unusable, we decided to use such black nodes for the sake of clarity.
14 The prefixes ore and w3 refer respectively to
http://www.openarchives.org/ore/items/ and http://www.w3.org/TR/

, w3:rdf-concepts

, w3:rdf-sparql-query .

Another exemplar aggregation in the same context can be
the bibliographic reference list of a particular article. When
we are writing a scientific paper, we use to refer to
bibliographic references, each of them referencing a precise
paper, for explicitly citing other works in our paper. Of
course, two bibliographic references, even when defined in
two different papers and referring to the same work, can have
associated particular (and contextual) metadata that change
reference by reference. This scenario can be described in
OWL through ORE as follows:

:paper-one-ref-list a ore:Aggregation .

:proxy1 a ore:Proxy

; ore:proxyIn :paper-one-ref-list

; ore:proxyFor ex:putting-owl-in-order

; dcterms:bibliographicCitation "Rector, B.
et al. (2006). Putting OWL in Order:
Patterns for Sequences in OWL." .

:proxy2 a ore:Proxy

; ore:proxyIn :paper-one-ref-list

; ore:proxyFor w3:rdf-concepts

; dcterms:bibliographicCitation "Klyne, G.
et al. (2004). Resource Description
Framework (RDF): Concepts and Abstract
Syntax" .

:paper-two-ref-list a ore:Aggregation .

:proxy3 a ore:Proxy

; ore:proxyIn :paper-two-ref-list

; ore:proxyFor w3:owl2-syntax

; dcterms:bibliographicCitation "OWL 2 Web
Ontology Language Structural, W3C
Recommendation 27 October 2009" .

:proxy4 a ore:Proxy

; ore:proxyIn :paper-two-ref-list

; ore:proxyFor w3:rdf-sparql-query

; dcterms:bibliographicCitation "SPARQL
Query Language for RDF, W3C Recommendation
15 January 2008" .

ORE does not require to use a specific vocabulary for
describing the order between proxies. Since the order in a
reference list is usually important to handle, we can use CO
with ORE in order to describe proxies sorting, adding the
following statements:

:paper-one-ref-list a co:List

; co:firstItem :proxy1

; co:lastItem :proxy2 .

:proxy1 a co:Item

; co:itemContent ex:putting-owl-in-order.

:proxy2 a co:Item

; co:itemContent w3:rdf-concepts . …

Of course, ore:Aggregation and co:List are used in a very
redundant way in the above excerpts. Adding an additional
layer of ontological alignment between the two ontologies
can help in obtaining the same set of data writing just some
of them. For instance, we can add the following (Manchester
Syntax) axioms to ORE with the explicit goal of leveraging
inference:

Class: ore:Aggregation

EquivalentTo: co:Set or

(co:Bag that

co:item only ore:Proxy)

ObjectProperty: ore:aggregates

EquivalentTo: co:element

ObjectProperty: ore:proxyIn

EquivalentTo: co:itemOf

ObjectProperty: ore:proxyFor

EquivalentTo: co:itemContent

In this way, it becomes possible to re-write a less verbose
definition of the first reference list of the above examples as
follows:

:paper-one-ref-list a ore:Aggregation

 ; co:firstItem [

dcterms:bibliographicCitation
"Rector, B. et al. (2006). Putting
OWL in Order: Patterns for Sequences
in OWL."

 ; co:nextItem [

dcterms:bibliographicCitation
"Klyne, G. et al. (2004). Resource
Description Framework (RDF):
Concepts and Abstract Syntax"]] .

5. Querying CO datasets

CO allows one to make very sophisticated SPARQL
queries [18] to datasets containing information structured as
CO collections. In this section we introduce just few query
samples, of incremental complexity, in order to highlight how
CO is able to treat even complicated scenarios. In the next
examples, we take into consideration the data described in
Section 3.7.
Query: “Give me all the author collections containing persons
named ‘Alan Rector’”.

SELECT DISTINCT ?collection

WHERE { ?paper exterm:creator ?collection .

?collection co:element [a exterm:Person

; exterm:name “Alan Rector”] }

Query: “Give me all the papers written by persons named
‘Alan Rector’ and not ‘Nick Drummond’”15.

SELECT DISTINCT ?paper

WHERE { ?paper exterm:creator ?collection .

?collection co:element [a exterm:Person

; exterm:name “Alan Rector”]

FILTER NOT EXIST { ?collection co:element [

a exterm:Person

; exterm:name “Nick Drummond” } }

Query: “Tell me how many author lists contain persons
named ‘Alan Rector’”.

SELECT (COUNT(DISTINCT ?item) AS ?number)

WHERE { ?paper exterm:creator [

?item a co:ListItem

; co:itemContent [a exterm:Person

; exterm:name “Alan Rector”]] }

15 In the following SPARQL query we use the construct “FILTER
NOT EXISTS” to get out the correct answer. This approach only
works because the SPARQL processor evaluates the query according
to a close-world point of view, contrarily to what is prescribed by
OWL ontologies in general, that strictly follow the open-world
assumption. Thus, it is important to clarify there is nothing in the
Collection Ontology that allows a reasoner to prove a list does not
contain a particular.

Query: “Give me all the author lists where persons are named
‘Alan Rector’ are either first or second author”.

SELECT DISTINCT ?list

WHERE { ?paper exterm:creator ?list .

 ?author a exterms:Person

 exterms:name “Alan Rector” .

 ?list co:firstItem ?first .

{ ?first co:itemContent ?author }

UNION

{ ?first co:nextItem [

co:itemContent ?author] } }

Query: “Give me all the papers and their respective authors
ordered by their positions.”

SELECT DISTINCT ?paper ?person

WHERE { ?paper exterm:title ?title

; exterm:creator [co:item [

co:index ?position

co:itemContent ?author]]

} ORDER BY ?title ?position

6. A Java API

Even when an ontology is well-developed and useful to
describe a particular domain, it still remains just a theoretical
model if it is not accompanied by an API that allows one to
use the model inside software applications. To this end, we
developed a complete and extensible Java API for CO16. It
allows one to create/modify and load/store CO entities
directly from a Java code. It is composed by a base package
(i.e., “org.purl.co”) that implements the core classes for
handling CO collections in Java. Moreover, it includes
general interfaces for loading/storing an environment of CO
collections from/into files or input/output streams.

Our API is a general-purpose library that is easy to be
integrated with any other RDF/OWL APIs such as Jena [19]
and OWLAPI [20]. This is possible by implementing the
interfaces COReader and COWriter so as to have mechanism
to handle RDF resources through the favourite Java library.

In the following excerpts, we introduce the use of our own
Jena extension to the CO API. The first thing to do is to
create a new CO environment (interface COEnvironment) in
which we can handle collection of Jena resources (interface
Resource):

COEnvironment<Resource> env =

new StandardCOEnvironment<Resource>();

Each CO environment makes available all the methods for
creating new CO collections, i.e. sets (method createCOSet,
that returns a COSet object), bags (method createCOBag, that
returns a COBag object) and lists (method createCOList, that
returns a COList object). Through these interfaces and
methods, the creation of the list introduced in Section 3.3
becomes straightforward:

Model m = ModelFactory.createDefaultModel();

String ex = "http://www.example.com/ex/";

COList<Resource> auth-list =

16 Available at: http://code.google.com/p/collections-
ontology/downloads

env.createCOList(

URI.create(ex+"auth-list"));

auth-list.add(m.createResource(ex+"drummond"));

auth-list.add(m.createResource(ex+"rector")); …

auth-list.add(m.createResource(ex+"seidenberg"));

Finally, it is possible to load/store an environment
from/into files or other input/output streams through
implementation of the interfaces COReader and COWriter.
For instance, to store the previous defined list in a particular
file using the Turtle format we need to create a new writer,
specifying the destination format, and then store the
environment in a file:

COWriter<Resource> writer =

new JenaRDFWriter(Format.Turtle);

File destination = new File("mylist.ttl");

writer.store(env,destination);

Beside these basic operations, the API implements Java
methods and classes for all the OWL properties and classes
defined in CO. Moreover, it includes mechanisms to
guarantee the correctness and consistency of all the
collections one creates.

7. Who is using CO

The Collections Ontology has been already adopted by the
Semantic Web applications and projects introduced in this
section.

7.1. SWAN

The SWAN project17 (Semantic Web Applications in
Neuromedicine) aims to develop a practical, common,
semantically structured framework for biomedical discourse
initially applied, but not limited, to significant problems in
Alzheimer Disease (AD) research. AlzSWAN18 an AD
knowledge base created in collaboration with the Alzheimer
Research Forum19 represents the most popular instance of the
SWAN platform. It consists in a network of about 2400
research statements linked to about 2700 publications.

The SWAN biomedical discourse ontology [6] represents
the backbone of the project. The purpose of SWAN is to
function as the schema of a distributed knowledgebase in
AD, and to link information in that knowledgebase with other
information in biomedicine. Back in 2007, the SWAN
ontology has been architected as a set of orthogonal modules
that combines into the SWAN ontology ecosystem.

One such module was the first version of Collections
Ontology as collections are necessary to manage several
aspects of the scientific discourse modeling. For example, a
scientific argument can be represented by a sequence of
research statements such as hypothesis, claims and questions.
And their order is crucial as a way to convey the hypothesis
properly.

The SWAN platform features have been incrementally
embedded in the new Domeo Annotation Toolkit20 [21] an
extensible web application enabling users to visually and
efficiently create and share ontology-based stand-off
annotation on HTML or XML document targets. Domeo

17 Available at: http://swan.mindinformatics.org
18 Available at: http://hypothesis.alzforum.org
19 Available at: http://alzforum.org
20 Available at: http://annotationframework.org

supports manual, fully automated, and semi-automated
annotation with complete provenance records, as well as
personal or community annotation with access authorization
and control. Domeo uses the SWAN ontology and
Collections Ontology for representing scientific discourse.

7.2. EARMARK

The Extremely Annotational RDF Markup (EARMARK)
[22-23] is a new markup meta-language defined by means of
Semantic Web technologies. The basic idea is to model
EARMARK documents as collections of addressable text
fragments, and to associate such text content with OWL
assertions that describe structural features as well as semantic
properties of (parts of) that content. As a result EARMARK
allows not only documents with single hierarchies (as with
XML) but also multiple overlapping hierarchies where the
textual content within the markup items belongs to some
hierarchies but not to others. Moreover, EAMARK makes it
possible to add semantic annotations to the content though
assertions that may overlap with existing ones.

EARMARK is defined by an OWL ontology21 that models
all the classes and properties for describing typical markup
structures, such as elements, attributes, text nodes, parent-
child relations and the like. From an ontological perspective,
EARMARK documents are just ABox of cited ontology.

One of the most important features that must be supported
in document markup languages is the possibility of
specifying a particular order between items (e.g., elements
and attributes). The EARMARK ontology implements this
feature importing the (old version) of CO. This makes it
possible to handle markup items as collections of other
ordered or unordered, repeatable or non-repeatable items.

A new version of EARMARK (both the ontology and its
Java API22) is now in-development with the aim of adopting
the current version of CO, so as to take advantage from all its
new features and inferential power.

7.3. SPAR

The Semantic Publishing and Referencing Ontologies
(SPAR)23 is a suite of orthogonal and complementary OWL 2
DL ontology modules. They together permit the creation of
comprehensive machine-readable RDF metadata for all
aspects of semantic publishing and referencing: documents
description, types of citations and their related contexts,
bibliographic references, document parts and status, agents'
roles and workflow processes, etc.

Some of the SPAR ontologies, such as the FRBR-aligned
Bibliographic Ontology (FaBiO) [24], suggest explicitly to
use CO for handling scenarios in which specifying an order
among entities is mandatory (e.g., the list of the authors of a
paper). Others, such as the Bibliographic Reference Ontology
(BiRO), import directly CO for handling particular purposes,
such as describing reference lists in research articles.

8. Conclusions

One of the most important and used features of existing
RDF data is the possibility of defining collections and
containers to group resources as one entity. This
characteristic has not been included in OWL since its

21 Available at: http://www.essepuntato.it/2008/12/earmark
22 Available at: http://palindrom.es/phd/research/earmark
23 Available at: http://purl.org/spar

beginning, even in its latest OWL 2 DL specification.
Alternative proposals has been done in past for addressing
this issue, but it seems they do not come to develop a shared
standard for defining collections within OWL DL
frameworks.

In this paper we introduced the Collections Ontology (CO)
version 2.0, our OWL 2 DL ontology developed specifically
for addressing the issue of defining collection in OWL
frameworks. In particular, we introduced the graphical and
formal description of the ontology and we provided examples
of usage in terms of Abox modelling, inferences and
SPARQL queries. In addition to what we illustrated here,
more information and examples are also available on the
project website24.

One of the most immediate future developments for our
work is the extension of the Java API so as to release libraries
to be used with other Java OWL environments, such as
OWLAPI, as well as the porting of the current API in
different program languages.

9. Acknowledgements

We thank the editor, the reviewers and Jonathan Rees for
their valuable feedback, Tim Clark for his support and finally
to some anonymous experts who gave us several suggestions
in terms of terminology, modelling and presentation.

References

[1] Carroll, J., Klyne, G. (2004). Resource Description
Framework (RDF): Concepts and Abstract Syntax. W3C
Recommendation, 10 February 2004. World Wide Web
Consortium. http://www.w3.org/TR/rdf-concepts/ (last
visited December 27, 2012).

[2] Brickley, D., Guha, R.V. (2004). RDF Vocabulary
Description Language 1.0: RDF Schema. W3C
Recommendation, 10 February 2004. World Wide Web
Consortium. http://www.w3.org/TR/rdf-schema/ (last
visited December 27, 2012).

[3] Motik, B., Patel-Schneider, P. F., Parsia, B. (2009).
OWL 2 Web Ontology Language: Structural
Specification and Functional-Style Syntax. W3C
Recommendation, 27 October 2009. World Wide Web
Consortium. http://www.w3.org/TR/owl2-syntax/ (last
visited December 27, 2012).

[4] D'Arcus, B., Giasson, F. (2009). Bibliographic Ontology
Specification. Specification Document, 4 November
2009. http://bibliontology.com/specification (last visited
December 27, 2012).

[5] Drummond, N., Rector, A., Stevens, R., Moulton, G.,
Horridge, M., Wang, H. H., Seidenberg, J. (2006).
Putting OWL in Order: Patterns for Sequences in OWL.
In Grau, B. C., Hitzler, P, Shankey, C., Wallace, E.
(Eds.), Proceedings of the Workshop on OWL:
Experiences and Directions (OWLED 2006). Aachen,
Germany: Sun SITE Central Europe.
http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-
216/submission_9.pdf (last visited December 27, 2012).

[6] Ciccarese, P., Wu, E., Kinoshita, J., Wong, G., Ocana,
M., Ruttenberg, A., Clark, T. (2008). The SWAN
Biomedical Discourse Ontology. Journal of Biomedical

24 Collections Ontology (CO) Google Code project available at:
http://code.google.com/p/collections-ontology

Informatics, 41 (5), 739-751. DOI:
10.1016/j.jbi.2008.04.010.

[7] Chaudhri, V. K., Jarrold, B., Pacheco, J. (2006).
Exporting Knowledge Bases into OWL. In Grau, B. C.,
Hitzler, P, Shankey, C., Wallace, E. (Eds.), Proceedings
of the Workshop on OWL: Experiences and Directions
(OWLED 2006). Aachen, Germany: Sun SITE Central
Europe. http://sunsite.informatik.rwth-aachen.de/
Publications/CEUR-WS/Vol-216/submission_34.pdf
(last visited December 27, 2012).

[8] Hayes, P., Welty, C. (2006). Defining N-ary Relations
on the Semantic Web. W3C Working Group Note, 12
April 2006. World Wide Web Consortium.
http://www.w3.org/TR/swbp-n-aryRelations/ (last
visited December 27, 2012).

[9] Presutti, V., Gangemi, A. (2008). Content Ontology
Design Patterns as practical building blocks for web
ontologies. In Li, Q., Spaccapietra, S., Yu, E. S. K.,
Olivé, A. (Eds.), Proceedings of the 27th International
Conference on Conceptual Modeling (ER 2008).
Heidelberg, Germany: Springer.

[10] Gangemi, A. (2010). Submission: Sequence.
http://ontologydesignpatterns.org/wiki/Submissions:Seq
uence (last visited December 27, 2012).

[11] Raimond, Y., Giasson, F. (2010). Music Ontology
Specification. Specification Document, 28 November
2010. http://musicontology.com/ (last visited December
27, 2012).

[12] Horrocks, I., Patel-Schneider, P. F., Boley, H. Tabet, S.,
Grosof, B., Dean, M. (2004). SWRL: A Semantic Web
Rule Language Combining OWL and RuleML. W3C
Member Submission 21 May 2004. World Wide Web
Consortium. http://www.w3.org/Submission/SWRL/
(last visited December 27, 2012).

[13] Bottazzi, E., Catenacci, C., Gangemi, A., Lehmann, J.
(2006). From collective intentionality to intentional
collectives: An ontological perspective. In Cognitive
Systems Research, 7 (2&3): 192-208. DOI:
10.1016/j.cogsys.2005.11.009.

[14] Guizzardi, G. (2011). Ontological Foundations for
Conceptual Part-Whole Relations: The Case of
Collectives and Their Parts. In H. Mouratidis, C.
Rolland (Eds.), Proceedings of the 23rd International
Conference (CAiSE 2011): 138–153. Berlin, Germany:
Springer. DOI: 10.1007/978-3-642-21640-4_12

[15] VIeu, L., Aurnague, M. (2007). Part-of relations,
functionality and dependence. In M. Aurnague, M.
Hickmann, L. Vieu (Eds.), The categorization of spatial

entities in language and cognition: 307–336.
Amsterdam, Netherlands: John Benjamins.

[16] Ciccarese, P., Shotton, D., Peroni, S., Clark, T. (2013).
CiTO + SWAN: The Web Semantics of Bibliographic
Records, Citations, Evidence and Discourse
Relationships. To appear in Semantic Web –
Interoperability, Usability, Applicability. DOI:
10.3233/SW-130098

[17] Lagoze, C., Van de Sompel, H., Johnston, P., Nelson,
M., Sanderson, R., Warner, S. (2008). Abstract Data
Model. Object Reuse and Exchange Specification. Open
Archives Initiative. http://www.openarchives.org/
ore/1.0/datamodel (last visited December 27, 2012).

[18] Harris, S., Seaborne, A. (2011). SPARQL 1.1 Query
Language. W3C Proposed Recommendation, 08
November 2012. World Wide Web Consortium.
http://www.w3.org/TR/sparql11-query/ (last visited
December 27, 2012).

[19] Carroll, J., Dickinson, I., Dollin, C., Reynolds, D.,
Seaborne, A., Wilkinson, K. (2004). Jena: implementing
the semantic web recommendations. In Feldman, S. I.,
Uretsky, M., Najork, M., Wills, C. E. (Eds.),
Proceedings of the 13th international conference on
World Wide Web - Alternate Track Papers & Posters
(WWW 2004). New York, New York, USA: ACM.

[20] Horridge, M., Bechhofer, S. (2011). The OWL API: A
Java API for OWL ontologies. In Semantic Web –
Interoperability, Usability, Applicability, 2 (1): 11-21.
DOI: 10.3233/SW-2011-0025.

[21] Ciccarese, P., Ocana, M., Clark, T. (2011). DOMEO: a
web-based tool for semantic annotation of online
documents. Paper at Bio-Ontologies 2011, Vienna,
Austria.

[22] Di Iorio, A., Peroni, S., Vitali, F. (2011). A Semantic
Web Approach To Everyday Overlapping Markup. In
Journal of the American Society for Information Science
and Technology, 62 (9): 1696-1716. DOI:
10.1002/asi.21591.

[23] Di Iorio, A., Peroni, S., Vitali, F. (2011). Using
Semantic Web technologies for analysis and validation
of structural markup. In International Journal of Web
Engineering and Technologies, 6 (4): 375-398. DOI:
10.1504/IJWET.2011.043439

[24] Peroni, S., Shotton, D. (2012). FaBiO and CiTO:
ontologies for describing bibliographic resources and
citations. In Journal of Web Semantics: Science,
Services and Agents on the World Wide Web, 17
(December 2012): 33-43. DOI:
10.1016/j.websem.2012.08.001

