
Semantic Web 1 (2012) 1–5 1
IOS Press

OntoWiki – An Authoring, Publication and
Visualization Interface for the Data Web
Editor(s): Roberto Garcia, Universitat de Lleida, Spain; Heiko Paulheim, University of Mannheim, Germany; Paola Di Maio, Universal
Interfaces Research Lab, ISTCS, Edinburgh, UK
Solicited review(s): Paul Hermans, ProXML, Belgium; Jenny Ure, University of Edinburgh, Scotland; Mariano Rico, Universidad Politécnica
de Madrid, Spain

Philipp Frischmuth ∗, Michael Martin, Sebastian Tramp, Thomas Riechert, Sören Auer,
University of Leipzig, Institute of Computer Science, AKSW Group, Augustusplatz 10, D-04009 Leipzig, Germany
E-mail: {lastname}@informatik.uni-leipzig.de

Abstract. OntoWiki is a front-end application for the Semantic Data Web, which was originally developed to support distributed
knowledge engineering scenarios. Due to its extensibility it also serves as a development framework for knowledge intensive
applications. On the surface, OntoWiki is a generic user interface for arbitrary RDF knowledge graphs. It supports the navigation
through RDF knowledge bases using SPARQL-generated lists, tables and trees (e.g. class trees and taxonomies). All resources
are automatically represented as hyperlinks and backlinks are created whenever feasible, thus enabling users to easily traverse
entire knowledge graphs. Since all collections of resources displayed in OntoWiki are generated by SPARQL queries, they can
be further refined by applying additional filters. In order to explore large datasets, a comprehensive statistical data management
and visualization method was integrated. We render an architectural overview and explain the navigation, exploration and vi-
sualization features provided for RDF based information and derived statistics. To showcase the versatility of OntoWiki and its
various deployments in the Linked Data Web, we describe some large-scale use cases in the domains of enterprise data inte-
gration, governmental data publication and digital humanities. This article is the first comprehensive presentation of OntoWiki
summarizing the advancements after the initial publication in 2006 [4].

Keywords: Linked Data, Data Web, RDF, SPARQL, Wiki

1. Introduction

Despite its recent increase in popularity, the Seman-
tic Data Web is still difficult to interact with end users.
There is a large amount of structured data adhering to
the RDF data model being published on the Web. How-
ever, it is cumbersome to discover, access and explore
this data. Also, the Data Web is currently still rather a
Read Web than a Read-Write Web – the vast amount of
information is published by a relatively small amount
of publishers [3]. One approach for making the Seman-
tic Web a Read-Write Web are Semantic Wikis.

*Corresponding author. E-mail: frischmuth@informatik.uni-
leipzig.de.

From Semantic Wikis to Semantic Data Wikis. Se-
mantic Wikis are an extension to conventional, text-
based Wikis. While in conventional Wikis pages are
stored as blocks of text using a special Wiki markup
for structuring the display of the text and adding
links to other pages, semantic Wikis aim at adding
rich structure to the information itself. To this end,
two initially orthogonal approaches have been used:
a) extending the markup language to allow seman-
tic annotations and links with meaning or b) building
the Wiki software directly with structured information
in mind. Nowadays, both approaches have somewhat
converged, for instance Semantic MediaWiki [24] also
provides forms for entering structured data (see Fig-
ure 1). Characteristics of both approaches are summa-
rized in Table 1 for the two prototypical representa-

1570-0844/12/$27.50 c© 2012 – IOS Press and the authors. All rights reserved

2 Frischmuth et al. / OntoWiki

tives of both approaches, i.e. Semantic MediaWiki and
OntoWiki.

Table 1

Conceptual differences between Semantic MediaWiki and
OntoWiki.

Semantic
MediaWiki

OntoWiki

Managed entities Articles Resources
Editing Wiki markup Forms
Atomic element Text blob Statement

Extending Wikis with Semantic Markup. The bene-
fit of a Wiki system comes from the amount of in-
terlinking between Wiki pages. Those links clearly
state a relationship between the linked-to and the link-
ing page. However, in conventional Wiki systems this
relationship cannot be made explicit. Semantic Wiki
systems therefore add a means to specify typed rela-
tions by extending the Wiki markup with semantic (i.e.
typed) links. Once in place, those links form a knowl-
edge base underlying the Wiki which can be used to
improve search, browsing or automatically generated
lists and category pages. Examples of approaches for
extending Wikis with semantic markup can be found
in [24,36,6,33,37]. They represent a straightforward
combination of existing Wiki systems and the Seman-
tic Web knowledge representation paradigms. Yet, we
see the following obstacles:

Usability: The main advantage of Wiki systems is
their unbeatable usability. Adding more and more
syntactic possibilities counteracts ease of use for
editors.

Redundancy: To allow the answering of real-time
queries to the knowledge base, statements have to
be additionally kept in a triple store. This intro-
duces a redundancy, which complicates the im-
plementation.

Evolution: As a result of storing information in both
Wiki texts and triple store, supporting evolution
of knowledge is difficult.

Wikis for Editing Structured Data. In contrast to text-
based systems, Wikis for structured data – also called
Data Wikis – are built on a structured model of the
data being edited. The Wiki software can be used to
add instances according to the schema or (in some sys-
tems) edit the schema itself. OntoWiki, as a represen-
tative of this class, bases its data model on RDF. This

way, both schema and instance data are represented us-
ing the same low-level model (i.e. statements) and can
therefore be handled identically by the Wiki.

OntoWiki - a Semantic Data Wiki. OntoWiki started
as an RDF-based data wiki with emphasis on collab-
oration but has meanwhile evolved into a comprehen-
sive framework for developing Semantic Web applica-
tions [21]. This involved not only the development of
a sophisticated extension interface allowing for a wide
range of customizations but also the addition of sev-
eral access and consumption interfaces allowing Onto-
Wiki installations to play both a provider and a con-
sumer role in the emerging Web of Data. OntoWiki
is inspired by classical Wiki systems, its design, how-
ever, (as mentioned above) is independent and com-
plementary to conventional Wiki technologies. In con-
trast to other semantic Wiki approaches, in OntoWiki
text editing and knowledge engineering (i.e. working
with structured knowledge bases) are not mixed. In-
stead, OntoWiki directly applies the Wiki paradigm of
“making it easy to correct mistakes, rather than mak-
ing it hard to make them” [25] to collaborative man-
agement of structured knowledge. This paradigm is
achieved by interpreting knowledge bases as informa-
tion maps where every node is represented visually and
interlinked to related resources. Furthermore, it is pos-
sible to enhance the knowledge schema gradually as
well as the related instance data agreeing on it. As a
result, the following features characterize OntoWiki:

Intuitive display and editing of instance data is pro-
vided in generic ways, yet enabling domain-
specific presentation of knowledge.

Semantic views allow the generation of different views
and aggregations of the knowledge base.

Versioning and evolution provides the opportunity to
track, review and roll-back changes selectively.

Semantic search facilitates easy-to-use full-text
searches on all literal data, search results can be
filtered and sorted (using semantic relations).

Community support enables discussions about small
information chunks. Users are encouraged to vote
about distinct facts or prospective changes.

Online statistics interactively measures the popularity
of content and activity of users.

Semantic syndication supports the distribution of in-
formation and their integration into desktop ap-
plications.

OntoWiki enables the easy creation of highly struc-
tured content by distributed communities. The fol-

Frischmuth et al. / OntoWiki 3

Categorial
navigation

Form-based
editing

Graph
navigation

History Search
Free text
editing

Fig. 1. Comparison of Semantic MediaWiki and OntoWiki GUI building blocks.

lowing points summarize some limitations and weak-
nesses of OntoWiki and thus characterize the applica-
tion domain:

Environment: OntoWiki is a Web application and pre-
sumes all collaborators work in a Web environ-
ment, possibly distributed.

Usage Scenario: OntoWiki focuses on knowledge en-
gineering projects where a single, precise usage
scenario is either initially (yet) unknown or not
(easily) definable.

Reasoning: Reasoning services are not in the primary
focus of application.

Application scenarios. One of the main character-
istics is the versatility of OntoWiki. In its 7 year
life-time, there have been numerous deployments and
a number of large-scale comprehensive use cases in
many different domains. Three complementary use
cases involving stakeholders from very different do-
mains are presented in this article:

4 Frischmuth et al. / OntoWiki

Enterprise Data Integration. Data integration in
large enterprises and organizations is a crucial but
at the same time costly, long lasting and challenging
problem. While business-critical information is often
already gathered in integrated information systems,
such as ERP, CRM and SCM systems, the integration
of these systems itself as well as the integration with
the abundance of other information sources is still a
major challenge. We present how the use of Seman-
tic Wiki technology facilitates the integration of enter-
prise data. In particular, existing enterprise taxonomies
which capture the key concepts and terms of an organi-
zation can evolve using OntoWiki into comprehensive
enterprise knowledge hubs interlinking a large number
of knowledge and data sources in the enterprise.
Open Data Publication and Visualization. Recently,
we have seen a rapid growth of open data catalogs be-
ing made available on the Web. The data catalog reg-
istry datacatalogs.org, for example, already lists 285
data catalogs worldwide. Many of the datasets pub-
lished in these data catalogs, however, are cumber-
some to explore and visualize. With the generic On-
toWiki arbitrary datasets can be browsed. For statisti-
cal data, which is one of the most important open data
types, we developed with CubeViz a specific exten-
sion to OntoWiki facilitating the user-directed visual-
ization of data in various chart and diagram types. We
report about the deployment of OntoWiki at the Euro-
pean Commissions’s Open Data portal.
Digital Humanities. With the Catalogus Professo-
rum Lipsiensium (CPL) we developed an adaptive,
semantics-based knowledge engineering application
based on OntoWiki for prosopographical knowledge.
In prosopographical research, historians analyze com-
mon characteristics of historical groups by studying
statistically relevant quantities of individual biogra-
phies. Researchers from the Historical Seminar at Uni-
versity of Leipzig created a prosopographical knowl-
edge base about the life and work of professors in
the 600 years history of University of Leipzig rang-
ing from the year 1409 till 2009 – the Catalogus Pro-
fessorum Lipsiensium. In order to enable historians
to collect, structure and publish this prosopographi-
cal knowledge the Catalogus Professorum Model was
developed and incrementally refined using OntoWiki
over a period of three years. As result, a group of 10
historians supported by a much larger group of vol-
unteers and external contributors collected information
about 2,000 professors, 15,000 associated periods of
life, 400 institutions and many more related entities.

Structure of the article. This article is structured as
follows: We give an overview on OntoWiki’s architec-
ture in Section 2. The discovery and exploration fea-
tures including key user interface elements and the vi-
sual representation of semantic content is presented in
Section 3. In Section 4 we detail the authoring and
content management functionality. We describe tech-
niques implemented in OntoWiki facilitating machine-
consumption and data integration in Section 5. Three
complementary use cases are presented in Section 6.
Finally, we conclude with an outlook on future work
in Section 7.

2. Architectural Overview

This section provides an architectural overview on
OntoWiki. We start with an explanation of the gen-
eral architecture as depicted in Figure 2 and describe
the key building blocks (denoted with bold frames in
the figure). We organized the architecture in the fig-
ure in three layers comprising a backend, application
and frontend layer as well as a vertical meta layer. The
meta layer encapsulates the ecosystem of third party
extensions available for use within the remaining three
layers.

OntoWiki Application
Framework

(MVC, Extension System, ...)

Zend
Frame-
work

Zend
Frame-
work

Erfurt API
(RDF Store Abstraction, Auth,

ACL, Versioning, ...)

Generic Data
Wiki

RDF-
author

SPARQL /
Linked
Data /

Webservices

B
ac

ke
nd

A
pp

li
ca

ti
on

Fr
on

te
nd Custom-

ized UIs /
Services

T
hi

rd
 P

ar
ty

 D
ev

el
op

er
s

Extensions

Plugins

Fig. 2. The OntoWiki architecture divided into three layers: back-
end layer, application layer and frontend layer. An additional vertical
meta layer depicts the extension ecosystem of OntoWiki.

The backend layer comprises the Erfurt API1 and
tangentially (through usage and extension of function-
ality) the Zend Framework2, a stable and well estab-
lished web application framework for PHP.

1http://aksw.org/Projects/Erfurt
2http://framework.zend.com/

http://aksw.org/Projects/Erfurt
http://framework.zend.com/

Frischmuth et al. / OntoWiki 5

The Erfurt API supports the development of seman-
tic web applications more generally. It is built and
maintained parallel to OntoWiki and provides func-
tionality for persisting RDF quads (RDF triples and
context information) as well as retrieving those via the
SPARQL query language [18]. The storage abstrac-
tion layer of the Erfurt API facilitates the usage of
different RDF stores, for example, Virtuoso [15] or
the built-in RDF store that persists triples in a rela-
tional database and translates SPARQL queries into
corresponding SQL queries. In addition, Erfurt API
comprises authentication and access control features,
which maintain user related access control information
in a separate RDF system knowledge base. Further fea-
tures provided by Erfurt API include:

– support for versioning of RDF data,
– a SPARQL query cache [28] that significantly ac-

celerates complex queries,
– a plug-in environment based on events as well as
– a lightweight resource wrapper mechanism for

accessing and converting arbitrary resources (e.g.
from specific CSV files or REST APIs identified
via URIs) into RDF resources.

On top of this layer the application layer involves
the OntoWiki Application Framework [21], which on
the one hand again uses and extends Zend Framework
functionality (e.g. for the Model-View-Controller in-
frastructure) and on the other hand uses Erfurt API
(e.g. for accessing a triple store).

The frontend layer consists of the generic Data
Wiki, which is ontology and vocabulary agnostic and
hence can be used out-of-the-box with arbitrary RDF
knowledge bases. Furthermore, it includes RDFau-
thor [39] to provide user-friendly editing forms, as
well as other access interfaces like a SPARQL proto-
col [16] conform endpoint, and a Linked Data [9] end-
point.

Third party developers are enabled and encouraged
to extend the functionality of OntoWiki on all three
layers. On the backend level plug-ins can be devel-
oped that listen to certain events (e.g. changes on the
triple store). Multiple extension mechanisms are avail-
able on the application level to add new functional-
ity or change existing behavior, which result in cus-
tomized user interfaces and services on the frontend
level.

2.1. Generic Data Wiki

OntoWiki can be used out-of-the-box as a generic
tool for publication, exploration, authoring and main-

tenance of arbitrary RDF knowledge bases. For this
purpose it provides generic methods and views, which
do not require any tailoring to the domain concerned.
We refer to it as a Wiki, because it adheres to the Wiki
principles [25]:

1. Although access control is supported, by de-
fault everyone can contribute changes and partic-
ipate in the development/evolution of a knowl-
edge base.

2. Since RDF allows schema information and in-
stance data to be mixed, content and structure of
a knowledge base can be edited in tight relation.

3. All activities are tracked, such that it becomes
easy to correct mistakes.

4. Changes can be discussed online on resource
level.

OntoWiki is based solely on the RDF data model
and consequently focuses on structured information in-
stead of textual content with some added semantics.

The resource view and the list view are the two
generic views that are included in the OntoWiki core.
The resource view is generally used for displaying a
description with all known information about a re-
source. The list view represents a set of resources, for
example, instances of a certain concept. These two
views are sufficient for browsing and editing all in-
formation contained in a knowledge base in a generic
way.

Figure 3 depicts the typical workflow when work-
ing with OntoWiki as a generic tool. When a user
visits the homepage of an OntoWiki deployment she
is presented with a list of existing knowledge bases
(cf. 1 in Figure 3). After selecting a knowledge
base she is then presented with a hierarchy (obtained
from rdfs:subClassOf statements) of classes,
which are themselves instances of owl:Class or
rdfs:Class. By selecting one of these classes, the
user receives a list of resources that are instances of
this class. In Figure 3 the class Person has been se-
lected and yields a list of persons being either a direct
instance of Person or one of its subclasses. In or-
der to achieve this, OntoWiki applies basic RDFS [11]
reasoning for computing the transitive closure of the
rdfs:subClassOf relation automatically. Once a
list of resources is retrieved, it can be extended by se-
lecting additional properties that should be displayed
(cf. 3 in Figure 3) and refined by selecting facet restric-
tions (cf. 4 in Figure 3). The user interface elements
for expanding and restricting the current view adapt
both automatically according to the resources currently

6 Frischmuth et al. / OntoWiki

Fig. 3. Screenshot of OntoWiki with typical workflow: 1) selection of a knowledge base; 2) selection of a class; 3) selection of additional
properties to be shown as columns in the list; 4) further restriction of the resources in the list; 5) selection of a resource redirects the user to a
generic resource details view; 6) representation of RDF triples in the user interface as resource attribute value notation.

contained in the list (i.e. the properties offered to ex-
pand the tabular view and the facets are dynamically
recomputed). In Figure 3 the list of instances of the
class Person was further filtered, such that it only
contains those resources, that currently work on the
OntoWiki project. After selecting an instance from the
list the user is directed to the generic resource view,
which is depicted in the right part of Figure 3. Here
it is possible to view all information available for the
selected resource as well as to manage (i. e. insert, edit
and update) it.

2.2. OntoWiki Application Framework

OntoWiki was initially developed as a generic tool
for social, semantic collaboration on RDF knowledge
bases [4]. Although we still refer to it as a generic Data
Wiki (as described in Section 2.1), most APIs used to
render its functionality are also available to third-party
developers. The provided points of contact allow de-
velopers to extend, customize and tailor OntoWiki in
several ways. In fact larger parts of the functionality
included in a default OntoWiki setup is realized using
those extension mechanisms only. Thus, we also refer
to OntoWiki as the OntoWiki Application Framework
(OAF) [21].

The building blocks of the OAF are the Model-
View-Controller (MVC), the Linked Data infrastruc-
ture and the extension system. The former ensures that
all incoming requests are dispatched to an appropri-
ate controller providing a certain functionality (possi-

bly hosted by an extension). A controller groups han-
dlers for different kinds of requests into actions, which
then use different types of model classes and model
helper classes to prepare content to be finally ren-
dered using view templates. One of OntoWiki’s most
outstanding features is that it automatically displays
human-readable representations of resources instead
of URI strings. The naming properties it uses are con-
figurable and SPARQL queries that test all those prop-
erties can be quite complex. OntoWiki therefore pro-
vides a model helper class that handles the nitty-gritty
details of fetching titles of resources.

The Linked Data infrastructure provided by On-
toWiki ensures that requested resources (identified by
URIs) that do not relate to a controller/action pair and
that have a description in the RDF store get served in
the most appropriate format. Thus, a user providing a
URI within the address bar of his browser would get
the HTML representation while another Linked Data
capable tool would get a representation in an RDF se-
rialization format (e.g. RDF/XML [7]).

The OntoWiki extension system consists of four
main extension types:

Plug-ins are the most basic, yet most flexible types of
extensions. They consist of arbitrary code that is
executed on certain events. OntoWiki uses plug-
ins to render certain information resources (e.g.
images, videos or documents on the web) with the
appropriate tags in the HTML output (cf. 1 Fig-
ure 4).

Frischmuth et al. / OntoWiki 7

Fig. 4. Screenshot of OntoWiki with: 1) image rendered by plugin, 2) module window, 3) main content provided by component, 4) different
types of menus, 5) toolbar and 6) navigation.

Wrappers are lightweight plug-ins that enable devel-
opers to provide data in the RDF format for ar-
bitrary resources. A social web application based
on OAF for example would use a wrapper to fetch
data from Twitter via its API and translate the
JSON data into RDF with the help of the SIOC
vocabulary [10].

Modules display little windows that provide addi-
tional user interface elements with which the user
can affect the main window’s content. By default
OntoWiki displays a class hierarchy next to the
main content to enable users to quickly navigate
through a knowledge base. For this purpose a
module is used to render the content (cf. 2 in Fig-
ure 4).

Components are pluggable MVC controllers to which
requests can be dispatched. Usually but not nec-
essarily, components provide the main window’s
content (cf. 3 in Figure 4) and, in that case, can
register with the navigation to be accessible by
the user. In other cases components can function
as controllers that provide services without a con-

crete UI representation (e.g. serve asynchronous
requests). A typical example for such an exten-
sion is the map extension3. It includes a controller
that renders resources on a map using a config-
urable set of properties for the geolocation.

In addition to these facilities a few connecting fac-
tors exist in the user interface, which allow extensions
to hook into:

Menus and context menus exist throughout the user
interface of OntoWiki (cf. 4 in Figure 4). Exten-
sions are enabled to add as well as replace entries
in those menus.

Toolbar is a centrally managed UI element that en-
sures a consistent user interface in all views. It
is displayed above the main content as depicted
under 5 in Figure 4. Extensions can append or
prepend buttons and separators to the toolbar or
disable it if not applicable.

3https://github.com/AKSW/map.ontowiki

https://github.com/AKSW/map.ontowiki

8 Frischmuth et al. / OntoWiki

Navigation Bar in OntoWiki by default is a tab bar
displayed above the main content (and the toolbar
if enabled). A typical navigation is shown under 6
in Figure 4. Components can register one or more
actions with the navigation, which will result in
additional tabs or disable the navigation.

Messages represent user notifications and can have
a message text as well as a type (success, info,
warning, error). OntoWiki keeps a stack of these
messages and extensions can add messages to this
stack, which will then be shown in the upper part
of the main content.

Furthermore it is possible to customize the user in-
terface with the help of themes and adapt it to the target
audience using localizations. Localizations of Onto-
Wiki are already available for a set of common lan-
guages (including English, German, Russian and Chi-
nese). Extensions can also provide their own localiza-
tions for output that they generate.

3. Discovery and Exploration

Table 2

Categorization of applicable UI element types by level of data
awareness – OntoWiki with its extensibility provides support for all
levels of data awareness.

Data
Awareness

Applicable UI
Element Types

Example UI Elements

0 (none) generic lists, resource views
(Section 3.1)

1 (partial) common resource titles, images,
weblinks, maps
(subsubsection 3.2.1)

2 (structural) common hierarchies (classes,
SKOS, properties),
statistical charts
(subsubsection 3.2.2 and
subsubsection 3.2.3)

3 (full) custom-built custom pages
(subsubsection 3.2.4) and
forms

OntoWiki provides a wide range of possibilities to
discover and explore RDF knowledge bases. Table 2
shows a categorization of applicable UI element types
by level of data awareness. We introduce three main
UI element types:

Generic UI elements can be applied to arbitrary RDF
data.

Common user interface elements are reusable in a
variety of domains. Depending on the charac-
teristics of the element very little (e.g. utilized
properties) up to more profound (e.g. employed
meta-vocabularies) knowledge about the data is
required.

Custom-built UI elements are tailored to a particular
domain and thus only operate on a very narrow
set of data.

Those element types are related to four awareness
levels:

Level 0 denotes that no knowledge about the data
needs to exist (other than that it is represented
using RDF). Thus only generic UI elements are
applicable in this situation. Since OntoWiki is a
generic tool it provides two key user interface
elements for generic data, namely resource lists
based on SPARQL queries and table-based re-
source views.

Level 1 requires that partial knowledge about the data
is available. For example, most datasets typically
contain a human readable title for resources. If the
utilized properties are known, the user interface
can adapt accordingly and render a title instead of
a URI.

Level 2 represents the existence of structural knowl-
edge about the data. Often resources are grouped
into classes using meta-vocabularies like RDFS
or OWL [29] or concepts are related to each other
employing SKOS [30]. Another example is sta-
tistical metadata that is added on top of instance
data using a vocabulary like DataCube [14].

Level 3 denotes that full knowledge about the data
is available. Hence fully customized user inter-
face elements become feasible in order to support
the users, such as highly adapted (and possibly
styled) HTML renderings and simplified forms.

OntoWiki with its extensibility has support for all
levels of data awareness by providing appropriate user
interface elements either out of the box or with the help
of third party extensions. In the remainder of this sec-
tion we describe the different capabilities of the tool in
this regard.

3.1. Key User Interface Elements (Human
Consumption)

OntoWiki provides two key user interface elements
to support the visualization of generic RDF data,

Frischmuth et al. / OntoWiki 9

namely a list and a resource view. As those were al-
ready briefly introduced in the overview section (cf.
Section 2), Figure 3 depicts both of them.

3.1.1. Generic SPARQL-based Lists
Lists are a central UI element within the OntoWiki

tool. In most cases users start browsing a dataset either
by

– issuing a keyword search,
– selecting a resource in the navigation interface or
– constructing a SPARQL query.

In the first two cases a SPARQL select query is cre-
ated with appropriate filter conditions. When a user
provides a SPARQL query directly, the query needs to
satisfy some constraints. It must be a select query and
the first column of the result set must contain URIs. In
all cases a SPARQL base query exists that is persisted
until the user creates/selects a new list. In the mean-
time it is likely that the base query is modified several
times in order to further refine the list.

SPARQL
Queries

Lists

Local Triple
Store

Remote
Triple Store

3
4

5

Access Control

Configuration

Admin

Graph Selection

Taxonomies

Filter

Search

User

1

2 Pagination

Fig. 5. The process of rendering a list from arbitrary RDF data within
OntoWiki: Administrative facets (1) and facets controlled by the user
(2) influence the creation of SPARQL queries (3), which are then
executed against local or remote endpoints (4) and finally rendered
as HTML tables (5).

Figure 5 depicts the facets that influence the SPAR-
QL queries that finally result in lists rendered as
HTML tables. In the first step an administrator can re-
strict access to certain knowledge bases, such that all
SPARQL queries issued to the OntoWiki deployment
in question will only operate on allowed graphs. This
is achieved by filtering and explicitly assigning FROM
clauses to all queries. An administrator can also influ-
ence certain base queries by configuration. The nav-
igation interface for example is highly customizable
not only in regard to what is shown (e.g. a class hierar-

chy), but also in regard to what happens when an item
is selected.

Primarily however the user affects the base query for
a list:

– By selecting a certain knowledge base, the FROM
clause of the query is filtered again.

– Adding a constraint that further restricts a list (via
the filter module) also adds a suitable FILTER
condition to the base query.

– Issuing a free text search results in the addition of
a FILTER(regex(...)) condition.

– By selecting a specific range of a list (pagination),
which leads to a LIMIT, OFFSET combination
set for the base query.

Afterwards a second SPARQL query (value query) is
created, which is responsible for fetching values for
additionally selected columns. Both queries are then,
depending on the configuration, executed against a lo-
cal or a remote triple store. The results are combined
and finally rendered into a generic yet dynamic list.

Since the generic lists utilized within OntoWiki are
solely SPARQL based and no assumptions regarding
the underlying data and applied vocabularies are made,
these lists perform well on arbitrary RDF datasets.

3.1.2. Generic (table-based) resource views
The second key user interface element for generic

data in OntoWiki is the table-based resource view. It
is capable of rendering arbitrary resources, since it ex-
ploits the simple structure of RDF statements. In order
to prepare the rendering, all statements contained in
the currently active knowledge base are selected, that
match the resource to be shown in the subject position.
The main table then consists of two columns:

– one for the property (predicate of the statement)
and

– a second column for the value(s) (object of the
statement).

This is achieved by issuing a simple SPARQL query.
To maintain the clarity, values are grouped by prop-
erties and only a configurable number of values are
included in the final rendering. If that number is ex-
ceeded, a show me more link is included, which causes
the creation of a new generic list. By default all re-
sources, which include resource values and properties
are rendered as internal links, i.e. as links to the generic
resource view.

The main table only contains values where the re-
source is the subject of a suitable statement. The

10 Frischmuth et al. / OntoWiki

generic nature of RDF however implies that useful in-
formation for a resource is not necessarily encoded that
way. In some situations the resource may be related
to another resource the other way around, i.e. occur-
ring in the object position of statements (e.g. contain-
ment relations are often modeled this way). For this
purpose an additional interface is integrated in the re-
source view, which displays incoming links in a small
window.

3.2. Visual Representation of Semantic Content

In this section we present the visualization capabil-
ities of OntoWiki with regard to the remaining data
awareness levels in ascending order.

3.2.1. Visualization Helper and Plugins
Naturally human users and especially non-technical

users do not remember URIs well and user inter-
faces quickly become confusing, if they get polluted
with them. OntoWiki therefore hides URIs from users
whenever feasible, displaying a title instead that at its
best fits the demands of the users.

Title Helper. Since titles for resources are required
in various situations, OntoWiki includes a helper class
that centrally handles this important functionality. This
has the following advantages:

– resources are represented consistently throughout
the application,

– other parts of the tool (especially extensions) do
not have to bother with the details of retrieving
titles and

– the results of the retrieval can be cached in order
to improve performance.

By default the title helper checks for titles using
properties from well-known vocabularies like SKOS,
DCTerms4, FOAF5, DOAP6, SIOC and RDFS. It also
prefers those values that are tagged with the users pre-
ferred language. Since many datasets already include
descriptions using at least one of the above vocabular-
ies, the title helper often works out-of-the-box with ar-
bitrary RDF data. If a dataset utilizes custom proper-
ties to represent titles, OntoWiki can be easily config-
ured to use those properties instead.

4http://dublincore.org/documents/dcmi-
terms/

5http://xmlns.com/foaf/spec/
6https://github.com/edumbill/doap/wiki

When working with RDF data it is not always guar-
anteed that properties are used consistently within a
knowledge base. For example, a graph can consist
of multiple subgraphs that originate from different
sources. To solve this issue the title helper maintains an
ordered list of possible title properties. Higher ranked
properties will be preferred when a value is available
and lower ranked properties are used otherwise. If no
title can be determined at all, the title helper still tries
to return something meaningful. For example, HTTP
URIs are decomposed into a namespace part and a lo-
cal name. If the namespace is well-known and a prefix
was defined for it (e.g. rdfs7), the title helper will re-
turn the local name appended to the prefix followed by
a colon.

Plugins. In addition to displaying a title for all re-
source URIs, OntoWiki by default renders the re-
sources as internal links to the generic resource view.
However, this is not always the desired behavior as il-
lustrated with the help of the FOAF vocabulary:

– foaf:homepage is used to relate something to
a homepage about it. Since OntoWiki is a web
based application, users may expect to be pre-
sented with the target homepage instead of an
OntoWiki rendering of the resource.

– foaf:mbox is used to relate an agent to a mail-
box identified by a mailto: URI. Users proba-
bly want to open their personal email client when
following such links.

– foaf:depiction relates something to an im-
age about it. It is very likely that users will very
much appreciate being presented with the actual
image instead of a textual link.

OntoWiki contains plugins for all three of the above
cases. These plugins are enabled by default and config-
ured to work with many datasets without further mod-
ification. The weblink plugin renders resources as
external links to the target resource. The same applies
for the mailtolink plugin, but a mailto: proto-
col string is prepended iff not existent in the value.
Finally the imagelink plugin employs the HTML
 tag to make images visible to the users.

Other cases require more sophisticated interventions
than replacing the rendering of a single value only. Ge-
ographic coordinates for example are often encoded
with two statements, one to represent the longitude and
another to encode the latitude. Here the OntoWiki map

7http://www.w3.org/2000/01/rdf-schema#

http://dublincore.org/documents/dcmi-terms/
http://dublincore.org/documents/dcmi-terms/
http://xmlns.com/foaf/spec/
https://github.com/edumbill/doap/wiki
http://www.w3.org/2000/01/rdf-schema#

Frischmuth et al. / OntoWiki 11

extension adds, amongst other things, a rendering of
the geolocation on a map.

3.2.2. Navigation Component
RDF knowledge bases are typically structured by

– grouping instances into classes and arranging
those classes with a subclass relationship,

– describing concepts and their relationship to other
broader or more narrow concepts or

– utilizing a set of properties to describe entities of
the domain of interest.

The navigation component is a powerful OntoWiki ex-
tension that is able to extract the structure of knowl-
edge bases in the above mentioned situations and thus
facilitate the navigability of datasets. As already de-
scribed in Section 2.1, the navigation box (cf. left side
of Figure 4) renders a class hierarchy by default. An
arrow next to a class name indicates, that the class has
at least one subclass. Following this link will result in
an updated list showing only those subclasses. When a
class is selected from the list, all instances of this class
will be presented to the user in the main window.

Through an entry in the menu of the box the user
can select other configurations. The SKOS configura-
tion shows a list of skos:Concept instances and
utilizes the skos:broader and skos:narrower
relationships to produce a hierarchy. Depending on the
configuration the result of selecting a concept is either

– a list of resources (e.g. resources, which are re-
lated to the concept via dcterms:subject) or

– a rendering of the concept itself (via the generic
resource view).

Another example to showcase the flexibility of the
navigation component is the Properties configuration.
It shows a hierarchy of properties that are used within
a knowledge base (via rdfs:subPropertyOf).
When a user selects a property, a list with resources
is created again. In this case only those resources are
contained, that make use of the property. Additionally
the selected property is added as a column to the list,
such that the user can immediately work with the val-
ues. The navigation extension is highly configurable
and can be tailored in various ways to better represent
the data.

3.2.3. CubeViz - Discovery of statistical Linked Data
In the recently published open data portal of the

European Commission8, more than 5.700 statistical

8http://open-data.europa.eu/

datasets are listed. Hence, currently almost 95% of
the datasets are statistical data. Most of these datasets
are published using CSV, XML or similar representa-
tions, but there are several efforts to convert and pub-
lish them as RDF as can be seen by the example of
the RDF version of Eurostat data9. Certainly, it is pos-
sible to develop web applications specifically adopted
to particular datasets (e.g. The Digital Agenda Score-
board10) or to use diverse spreadsheet tools to browse
over the data. However, this is time-consuming and
cost-intensive, as well not cumbersome for data con-
sumers. In the following we describe the RDF Dat-
aCube vocabulary, provide a state-of-the-art overview
in the field of representing statistics in RDF, and intro-
duce CubeViz11, an OntoWiki extension component for
exploring statistics represented using this vocabulary.

The DataCube Vocabulary. The representation of
statistics in RDF started with SCOVO [19,13] and con-
tinued with its successor the RDF Data Cube Vocab-
ulary [14], which has been established as a common
standard. This vocabulary is compatible with the Sta-
tistical Data and Metadata eXchange (SDMX, [23])
and is being increasingly adopted. SDMX is an ini-
tiative started in 2001 to foster standards for the ex-
change of statistical information. The SDMX sponsor-
ing institutions are the Bank for International Settle-
ments, the European Central Bank, Eurostat, the Inter-
national Monetary Fund (IMF), the Organisation for
Economic Co-operation and Development (OECD),
the United Nations Statistics Division and the World
Bank. The SDMX message formats have two ba-
sic expressions, SDMX-ML (using XML syntax) and
SDMX-EDI (using EDIFACT syntax and based on
the GESMES/TS statistical message). Experiences and
best practices regarding the publication of statistics on
the Web in SDMX have been published by the United
Nations [31] and the Organization for Economic Co-
operation and Development [32].

In brief, to encode structural information about sta-
tistical observations, the RDF Data Cube vocabulary
contains a set of concepts, such as
qb:DataStructureDefinition12 and qb:DataSet.
Every statistical observation has to be encoded as
qb:Observation and must be linked to a specific
resource of type qb:DataSet. Existing resources

9http://eurostat.linked-statistics.org/
10http://digital-agenda-data.eu/
11http://aksw.org/Projects/CubeViz
12qb is a prefix used as an abbreviated form for http://purl.

org/linked-data/cube#

http://open-data.europa.eu/
http://purl.org/linked-data/cube
http://purl.org/linked-data/cube#Data StructureDefinition
http://purl.org/linked-data/cube
http://purl.org/linked-data/cube#DataSet
http://eurostat.linked-statistics.org/
http://digital-agenda-data.eu/
http://aksw.org/Projects/CubeViz
http://purl.org/linked-data/cube#
http://purl.org/linked-data/cube#

12 Frischmuth et al. / OntoWiki

typed as qb:DataSet usually have one relation to an
instance of type qb:DataStructureDefinition,
which is used to declare the structure of each ob-
servation that is linked to the specific dataset. Such
an observation structure is given by a set of com-
ponent properties used to encode dimensions, at-
tributes and measures. Each property is an instance
of the abstract qb:ComponentProperty class, which
in turn has subclasses qb:DimensionProperty,
qb:AttributeProperty and qb:MeasureProperty.
Furthermore, such component properties can be typed
additionally as qb:CodedProperty to attach (hi-
erarchically organized) code lists to them. In addi-
tion to structure observations within datasets it is
possible to organize observations within slices and
groups using the respective concepts qb:Slice and
qb:ObservationGroup and their related properties.

Exploring DataCubes using CubeViz. In order to
hide the complexity of the RDF Data Cube vocabulary
from users and to facilitate the browsing and explo-
ration of DataCubes we developed the RDF DataCube
browser CubeViz. CubeViz can be divided into two
parts, both developed as an extension of OntoWiki:

1. A Faceted data selection component, which
queries the structural part of a selected RDF
graph containing DataCube resources.

2. A Chart visualization component, which queries
observations (selected by the faceted selection
component) and visualizes them with suitable
charts.

CubeViz renders facets according to the DataCube
vocabulary to select data on the first component, using
SPARQL as the query language. Currently, the follow-
ing facets are available:

1. Selection of a DataCube DataSet,
2. Selection of a DataCube Slice,
3. Selection of a specific measure and attribute

(unit) property encoded in the respective
DataCube dataset and

4. Selection of a set of dimension elements that are
part of the dimensions encoded in the respective
DataCube dataset.

As illustrated in Figure 6, all facets have a graphical
user interface representation. Users have to click the
icon next to the currently selected dataset to change
the single choice selection of the first facet, which
opens the respective dialogue. The slice facet, that
offers a single choice selection, is only available if

Fig. 6. Screenshot of CubeViz faceted data selection component

the selected RDF knowledge base contains materi-
alized slices. All observations need to have at least
one measurement, that can be selected, if more than
one measurement is defined in the structure of the
dataset. It is recommended to encode measurements
with a respective unit definition using a resource of
type qb:AttributeProperty but it is not manda-
tory. CubeViz only offers the single choice selection
of attributes if at least one is defined. The last visible
facet in Figure 6 offers abilities to select dimension el-
ements of interest (slice and dice on-the-fly). Every di-
mension encoded in the dataset is listed together with
their respective amount of available and selected di-
mension elements. After analyzing available chart im-
plementations, CubeViz is aware of the maximum of
realizable chart axis at one time. This amount of re-
alizable chart axis is used to render the dialogues for
selection of dimension elements – below this amount
it is possible to have multiple choice selections, above
this amount the user has to select exactly one element
from the selection form.

A SPARQL query is generated to retrieve all match-
ing observations, as a result of such a selection. After-
wards, the result set is analyzed to detect the amount of

http://purl.org/linked-data/cube
http://purl.org/linked-data/cube#DataSet
http://purl.org/linked-data/cube
http://purl.org/linked-data/cube#DataStructureDefinition
http://purl.org/linked-data/cube
http://purl.org/linked-data/cube#ComponentProperty
http://purl.org/linked-data/cube
http://purl.org/linked-data/cube#DimensionProperty
http://purl.org/linked-data/cube
http://purl.org/linked-data/cube#AttributeProperty
http://purl.org/linked-data/cube
http://purl.org/linked-data/cube#MeasureProperty
http://purl.org/linked-data/cube
http://purl.org/linked-data/cube#CodedProperty
http://purl.org/linked-data/cube
http://purl.org/linked-data/cube#Slice
http://purl.org/linked-data/cube
http://purl.org/linked-data/cube#ObservationGroup

Frischmuth et al. / OntoWiki 13

Fig. 7. Screenshot of the CubeViz chart visualization component

dimensions containing multiple elements and to select
the charts that can be used to visualize the selected ob-
servation. As an outcome of the analysis, the first entry
is selected from the chart list and the conditioned result
set is assigned to it. Further configurations adjustable
in CubeViz act on the visualization level. Users or do-
main experts are able to select different types of charts
such as a bar chart, pie chart, line chart and polar chart
that are offered depending on the selected amount of
dimensions and its respective elements. CubeViz was
developed focusing on easy adjustability of existing
workflows and extensibility by libraries used to ren-
der the chart output. Currently, CubeViz renders charts
on the client side using the JavaScript library High-
charts13, a result of which is depicted in Figure 7.
However, the integrated workflows allow an easy ex-
tension of existing charts or the addition of further
chart libraries such as the Google Charts14 or Data
Driven Documents15.

After rendering a chart, CubeViz offers chart-specific
options, that can be used to adjust the output accord-
ing to the users needs. For instance, in order to dis-
play widespread measurement values a logarithmic
scale can be selected for improved visualization expe-
rience. Further integrated adjustment options are the
chart subtype (offering combinations, e.g. polar/col-
umn chart) and the switch/inversion of the axis and
dimensions. The set of adjustment options can be en-
hanced easily by adding/editing the specific option
and/or the respective option values stored in the con-
figuration file. After selection of observations and the
adjustment of the chart the user is able to browse the

13http://www.highcharts.com/
14https://developers.google.com/chart/
15http://d3js.org/

metadata about the selected graph, the DataCube struc-
ture and the observations. Furthermore it is possible to
share the results within a community using the perma-
nent links, and to download the data in CSV or RDF-
Turtle notation.

3.2.4. Content Management
One of the most frequently requested feature set dur-

ing the last years of the project was the request for con-
tent management methods – more precisely, a method-
ology which allows for serving HTML representations
of the resources of a specific knowledge base, in ad-
dition to RDF representations such as Turtle and RD-
F/XML.

The motivation for this requirement lies deeply in
the workflow of special interest groups where people
around a specific topic want to collect and share data
about instances of their interest but do want also pub-
lish nice HTML pages based on these data. In this use
case, OntoWiki acts as a content management backend
where the data is managed while a frontend presents it
to the non-editor user of the site. This distinction be-
tween frondend and backend user interface is typical
for most content management systems16 and the idea
was to integrate a template engine as well as a method
to provide public HTML representations, navigation
menus, in-template queries and other template helpers.

With OntoWiki’s site extension17 a component was
published which enables every OntoWiki instance to
serve not only RDF but sophisitcated HTML represen-
tations of resources which are in the namespace of the
instance. In the next paragraphs we introduce some as-
pects of the extension and outline its architecture.

URI design. The site extensions fosters a URI de-
sign based on well known file extension suffixes such
as ttl for Turtle [8], nt for NTriples18 and rdf
for RDF/XML. This means that a resource X, such
as http://example.com/X has specific informa-
tion resources for different representations at X.ttl,
X.nt and so on. A client which accesses X is then
redirected to the most acceptable information resource
based in its Accept HTTP request header field. In
most cases, this is the HTML representation which is

16Such as Drupal (http://drupal.org) and Word-
press (http://wordpress.com).

17https://github.com/AKSW/site.ontowiki
18http://www.w3.org/2001/sw/RDFCore/

ntriples/

http://www.highcharts.com/
https://developers.google.com/chart/
http://d3js.org/
http://example.com/X
http://drupal.org
http://wordpress.com
https://github.com/AKSW/site.ontowiki
http://www.w3.org/2001/sw/RDFCore/ntriples/
http://www.w3.org/2001/sw/RDFCore/ntriples/

14 Frischmuth et al. / OntoWiki

rendered by the site extension based on a template se-
lection query19.

RDFa Templates. In order to avoid non-semantic
HTML output, the site extension provides multiple
query helper to produce RDFa enhanced HTML snip-
pets based on the data of the current resource. These
helpers can be used as part of the templates itself20 as
well as as part of the content of the resources.

The implemented helper markup is used in the same
way as well known wiki actions. The general syn-
tax of a helper tag is: {{tagname p1=value1
... pX=valueX}} where p1 . . . pX where pX →
valueX are key value pairs for parameter handover.

The following incomplete list of helper tags demon-
strate their usage areas:

– The query helper uses a SPARQL where
clause and renders the result set in a given sub
template. This generic helper is used in a wide
range of cases where dynamic lists of resources
need to be created (list of current projects, lists of
group members, . . .).

– The link helper produces inline RDFa enabled
HTML links to a specific resource. This helper is
very useful when editing abstracts or running text
of a resource description. Instead of using URIs
for linking, the helper is able to select a resource
by attribute search or full text search.

– The img helper consumes the description of
an image resource and produces RDFa enabled
HTML image code including caption, links and
other characteristics.

– The navigationlist helper uses a cascading
RDF sequence resource tree and builds a naviga-
tion menu out of the links. This allows site owners
to manipulate their menus by changing attributes
in the OntoWiki backend.

These are the most generic helpers which can be used
in nearly all contexts. More specifically helpers gen-
erate HTML code based on the content of specific lit-
eral values (e.g. date, time and location coordinates).
Each of the listed helpers outputs the literal content of
the displayed resources in the requested language only.
This is done by limiting the underlying queries to spe-
cific language tags and fall back languages. As a re-

19Without the site extension enabled, OntoWiki would redirect to
a resource view such as depicted in Figure 4.

20We use phtml-templates here, which is an easy to write HTML
file with PHP annotations.

sult, every OntoWiki hosted site can be translated just
by providing different literals in the backend.

Extension vocabulary. In order to provide a method
of manipulating and controlling the rendering internals
as well as to provide a set of commonly used templates
we created a site extension vocabulary which captures
the available options. This includes properties to pro-
vide class and resource specific templates, to describe
SPARQL queries and navigation structures.

As an example of a running site extension deploy-
ment we provide the content of our research group
page http://aksw.org21.

4. Authoring and Maintenance

To a large extent the overwhelming success of the
World Wide Web was based on the ability of ordinary
users to author content easily. In order to publish con-
tent on the WWW, users had to do little more than to
annotate text files with few, easy-to-learn HTML tags.
Unfortunately, on the semantic data web in general and
more specific, on Linked Data authoring tools the sit-
uation is slightly more complicated. Users do not only
have to learn a new syntax (such as Turtle, RDF/XML
or RDFa), but also have to get acquainted with the RDF
data model, ontology languages (such as RDFS, OWL)
and a growing collection of connected RDF vocabular-
ies for different use cases (such as FOAF, SKOS and
SIOC). OntoWiki lowers this entrance barrier in au-
thoring and maintaining semantic content by introduc-
ing editing interfaces which try to hide this complexity
and still support all language features of the RDF.

4.1. RDFauthor

The RDFauthor approach is based on the idea
of making arbitrary XHTML views with integrated
RDFa annotations editable. RDFa [1] is the W3C
Recommendation, which allows to combine human
and machine-readable representations within a single
HTML document. RDFauthor builds on RDFa by pre-
serving provenance information in RDFa representa-
tions following the named-graph paradigm and by es-
tablishing a mapping from RDFa view representations
to authoring widgets. On configurable events (such as

21The dataset can be downloaded at http://aksw.
org/model/export/?m=http%3A%2F%2Faksw.org%
2F&f=turtle, is annotated with VoID and listed at the
http://datahub.io.

http://aksw.org
http://aksw.org/model/export/?m=http%3A%2F%2Faksw.org%2F&f=turtle
http://aksw.org/model/export/?m=http%3A%2F%2Faksw.org%2F&f=turtle
http://aksw.org/model/export/?m=http%3A%2F%2Faksw.org%2F&f=turtle
http://datahub.io

Frischmuth et al. / OntoWiki 15

the clicking of a button or moving over a certain infor-
mation fragment with the mouse) the widgets will be
activated and allow the editing of all RDFa-annotated
information on the Web page. While editing, the wid-
gets can access background information sources on
the Data Web in order to facilitate the reuse of identi-
fiers or to encourage the interlinking of resources. Our
resource editing widget, for example, suggests suit-
able, previously defined resources derived from calls
to the Sindice Semantic Web index [40]. Once editing
is completed, the changes are propagated to the under-
lying triple stores by means of the SPARQL/Update
language. This allows for integration of RDF author-
ing widgets not only in OntoWiki itself but also inside
of frontend websites generated with the site extension
(refer to section 3.2.4).

In addition to that, RDFauthor is even not at all lim-
ited to editing semantic representations from a single
source. An RDFa view made editable with RDFau-
thor can contain statements from a variety of sources,
which can be edited simultaneously and in a wholly
transparent manner for the user. Based on an ex-
tended RDFa markup supporting named graphs and
SPARQL/Update endpoint information, simultaneous
changes of several graphs from different sources will
be dispatched to the respective SPARQL/Update end-
points. RDFauthor is implemented in JavaScript so that
it works entirely on the browser side and can be used
together with arbitrary Web application development
techniques and is not tied to an integration in OntoWiki
only.

RDFa enables the annotation of information en-
coded in HTML with RDF. This ability allows to ex-
tract a set of RDF triples from an RDFa-annotated
HTML page. RDFauthor makes these triples editable,
but in order to store changes persistently in the wiki,
RDFauthor needs information about the data source
(i. e. SPARQL and SPARQL/Update endpoint) regard-
ing the named RDF graph from which the triples were
obtained or where they have to be updated. In order
to make this information available, we have defined a
slight extension of the RDFa annotations.

To represent information about the information
source, we follow the named graphs approach [12]. We
created a small schema22 to represent attributes and
relations for the following purposes:

22The RDFauthor vocabulary namespace is http://ns.
aksw.org/update/. We use the prefix update for this names-
pace throughout this paper.

– In order to link certain RDFa annotations on
the page to the respective querying/update ser-
vices, namely SPARQL/Update and SPARQL
endpoints, we propose the use of the link
HTML tag with an about-attribute to identify
the named graph, a rel-attribute with the value
update:updateEndpoint and the HTML href
attribute with the URL of the respective SPAR-
QL/Update endpoint. Another option to declare
graph metadata is the use of empty span- or
div-elements together with the RDFa attributes
inside the body of the page.

– For declaring which statements belong to which
named graph, we propose the use of the
update:from attribute with the named graph as
attribute value to which all nested RDFa annota-
tions should belong. The update:from attribute
and the additional RDFa processing rules are in-
spired by [22]. The use of named graphs is op-
tional and only required, if triples from multiple
sources should be made editable.

OntoWiki includes graph metadata in every single
list and resource view which is generated. In addition
to that, the site extension can include this data based
on template helpers. This allows for triggering the gen-
eration of authoring widgets through a number of dif-
ferent trigger events. These events can be grouped into
element-based events or page-wide events. In particu-
lar, the following triggers are supported:

– Clicking on an edit button next to an element con-
taining the object of a statement,

– moving the pointer and hovering above an object
element,

– an application-specified custom trigger such as
the “Edit Properties” in OntoWiki,

– a bookmarklet which loads all RDFauthor com-
ponents and runs all widgets at once,

– the universal edit button23 which runs the same
bookmarklet by using a browser button.

Upon user interaction or a programmatic trigger,
RDFauthor starts processing the current page by ex-
tracting all RDF triples and placing them in an rdf-
Query databank; one for each named graph. Triples
that describe the named graphs in the page by using
the update vocabulary are excluded from editing. If no
update information has been defined for a graph, it is

23http://universaleditbutton.org

http://ns.aksw.org/update/
http://ns.aksw.org/update/
http://ns.aksw.org/update/
http://ns.aksw.org/update/updateEndpoint
http://ns.aksw.org/update/
http://ns.aksw.org/update/from
http://ns.aksw.org/update/
http://ns.aksw.org/update/from
http://universaleditbutton.org

16 Frischmuth et al. / OntoWiki

Fig. 8. RDFauthor Widget Example: This editing view was triggered by the universal edit button integrated in the underlying profile page and
is added on top of the complete site as a modal view. After submitting the changes back to the Wiki by using the Save button, SPARQL update
requests communicate the added or deleted triples.

considered non-editable, hence no form elements are
created for the triples it contains.

If the named graph from which the statement origi-
nates is linked to a SPARQL endpoint RDFauthor tries
to retrieve property metadata from the endpoint by
querying the rdf:type and rdfs:range of the prop-
erty description. Based on this information, a corre-
sponding editing widget is selected. All selected wid-
gets are combined into an edit view and are displayed
to the user. Depending on the type of trigger, this edit
view can be rendered in two ways: overlay window
or integration view. Figure 8 depicts an example of an
RDFauthor generated form in an overlay window.

When the user finishes the editing process, all wid-
gets involved are asked to update the respective named
graph with their changes. The difference between the
original and modified graphs are calculated (i. e. added
statements, removed statements), yielding a diff graph.
The associated store to each graph is then updated
with the respective diff graph by means of SPAR-
QL/Update [17] operations. By explicitly listing all
inserted or deleted triples using INSERT DATA and
DELETE DATA syntax, sophisticated SPARQL/Up-
date support is not required. In addition, RDFauthor
can cope with several access control scenarios. It,

therefore, evaluates the server’s response to SPAR-
QL/Update requests. For instance, in the case of an
HTTP 401 (unauthorized) or 403 (forbidden) status
code, a login form is displayed.

In addition to modifying the triple content of a page,
it is possible to add new statements. This can happen
either based on existing triples used as templates or by
adding entirely new statements. If existing triples are
used as templates, three cases can be distinguished:

– Creating a new statement that shares subject
and property with an existing statement. Our ap-
proach supports this case via a small button be-
side each statement.

– Creating a new statement that shares the subject
with an existing statement. At the end of a subject
description a small button is shown which lets the
user add a new statement to the subject’s descrip-
tion.

– Creating a new resource using an existing re-
source as a template. Widgets for all properties
found on the template resource are available on
the new resource.

Adding new properties to an existing resource is ac-
complished in two steps. First, the user chooses a prop-

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#range

Frischmuth et al. / OntoWiki 17

erty which she wants to use. She types a name or de-
scription fragment into the search input field of the
property widget and RDFauthor searches for proper-
ties in the referenced SPARQL endpoint of the given
named graph. Subsequently, the corresponding widget
is selected from the existing widget library.

4.2. Versioning

Versioning of wiki content is, according to Leuf and
Cunning [25], a fundamental part of wiki systems. To
roll back a previous change helps users of a wiki to fix
mistakes as well as to overcome their fear to damage
the whole system with their user input.

The OntoWiki versioning system is implemented
based on added and deleted triples in a change set.
Since change sets can be pushed over different chan-
nels, such as the SPARQL endpoint or the JSON/RPC
interface, the versioning system is integrated deeply
into the triple store access functionality of the Erfurt
API.

Fig. 9. Timeline of an example resource which starts with a data im-
port, followed by some small changes and concluded by an acciden-
tal deletion and the rollback of this action.

This means that every update request will cause a
calculation of added and deleted statements in order
to be able to roll back this change. Multiple update
requests can be handled as one single transaction of
changes. In addition to that, each change set is tagged
with the acting agent, the time stamp and an optional
transaction name for user convenience. These transac-
tion names can be used as IDs for a timeline view as
depicted in figure 9.

4.3. Import and Triplification of Resources

An important feature which helps in daily data ac-
tivities is to import different small and big chunks of
data from different sources and optionally transform
foreign non-RDF resources to RDF. First of all, Onto-
Wiki is able to fetch and integrate data via linked data.

This is important e.g. for gathering property and class
descriptions from the schema namespace document.

OntoWiki is also able to parse content of RDFa
pages and can be extended with other data gathering
plugins in order to support non-RDF import of other
structured data (e.g. EXIF data).

In addition to this, OntoWiki is able to use foreign
SPARQL endpoints to provide read-only knowledge
bases inside of a local deployment. Such endpoints
can be provided by RDB2RDF mapping tools such as
Sparqlify [41] in order to integrate data from relational
databases.

4.4. Evolution of Datasets

In order to allow more sophisticated manipulation
activities we integrated an approach for writing, us-
ing and managing evolution patterns. The EvoPat [35]
approach is based on the definition of basic evolution
patterns, which are represented declaratively and can
capture simple evolution and refactoring operations
on both data and schema levels. For more advanced
and domain-specific evolution and refactorings, sev-
eral simple evolution patterns can be combined into a
compound one. In [35] we performed a comprehen-
sive survey of possible evolution patterns with a com-
binatorial analysis of all possible before/after combi-
nations, resulting in an extensive catalog of usable evo-
lution patterns. The execution of an evolution pattern
on a knowledge base results in requesting multiple
changes as one single transaction. If the result is not as
intended, a roll back can revert these changes easily.

5. Machine Consumption

Up to this section we presented a variety of discov-
ery and exploration as well as authoring and mainte-
nance methods that are provided by OntoWiki. Those
methods are to a large extend targeted at human users.
In this section we present additional interfaces that
OntoWiki provides in regard to machine consumption.

5.1. SPARQL Endpoint

OntoWiki internally relies on a SPARQL capable
triple store. Hence, this functionality can also be made
available externally adhering to the SPARQL proto-
col [16]. The SPARQL query service of OntoWiki
by default listens at <OntoWikiRoot>/sparql
and requires only a single mandatory parameter:

18 Frischmuth et al. / OntoWiki

query=EncodedQuery. When provided, the op-
tional parameters

– default-graph-uri and
– named-graph-uri

are also evaluated. By default, the SPARQL endpoint
responds with a

– application/sparql-results+xml
content-type for ASK and SELECT queries, as
well as with

– a application/rdf+xml content-type for
CONSTRUCT queries.

Instead of making all data contained in the under-
lying RDF store available, OntoWiki applies the same
access control rules for the endpoint that are evaluated
within the tool itself. Only those graphs visible to the
user can be queried with SPARQL.

5.1.1. Linked Data Endpoint
Without further configuration, OntoWiki automati-

cally publishes all resources according to the Linked
Data principles [9] as long as they use the same names-
pace as the OntoWiki deployment. Since the tool is
generic and works with arbitrary RDF data, this is not
always the case. But when it comes to authoring data
with OntoWiki, resources are automatically created us-
ing the correct namespace and thus are Linked Data
capable.

Another requirement is that resource URIs must not
collide with URLs used for OntoWiki functionality.
Since the number of such URLs is very small and the
number of possible URIs within a namespace in com-
parison is very large, this will rarely lead to problems.

For the publication process OntoWiki utilizes the
303 approach, which yields in multiple URIs. If a
client requests a Linked Data resource, it will never
get the result in the format it requested (determined
via content negotiation) directly. Instead a 303 HTTP
response will be send back to the client with an ap-
propriate Location header field. A human consumer
usually uses a web browser and thus would request
a HTML representation of the resource. Hence Onto-
Wiki would return the URL of the generic resource
view in its 303 response. Another tool would more
likely request any of the RDF serialization formats. In
this case OntoWiki would return a URL that leads to a
suitable export in that format, iff OntoWiki supports it.

5.1.2. Other Interfaces
In addition to the above introduced interfaces for

machine consumption, OntoWiki has further inter-
faces.

A JSON-RPC24 gateway exposes a wide range of
functionality to be used by other applications, such as
for example owcli, the OntoWiki Command Line Inter-
face25.

Furthermore OntoWiki provides support for the Se-
mantic Pingback protocol [38] in order to improve the
interlinking within the (Data) Web.

Support for the pubsubhubbub26 protocol permits,
that other applications can subscribe to feeds provided
by OntoWiki (e.g. changes on resources) and retrieve
updates immediately.

6. Experiences with OntoWiki

6.1. Enterprise Data Integration

Nowadays, almost every large enterprise uses tax-
onomies to provide a shared linguistic model aiming at
structuring the large quantities of documents, emails,
product descriptions, enterprise directives, etc. which
are produced on a daily basis. However, those tax-
onomies often are stored in proprietary formats as well
as maintained and controlled by certain departments.
This creates a considerable barrier for the use and es-
pecially reuse of such data.

In an industry project with a large enterprise, we em-
ployed OntoWiki to improve this situation by convert-
ing existing dictionaries containing term definitions in
multiple languages into RDF. We utilized the standard-
ized and popular SKOS vocabulary for this purpose
and published all term definitions via the Linked Data
principles.

As a first result all terms (that were previously
spread over multiple dictionary files) were available in
a unified knowledge base and users were able to com-
fortably browse the taxonomy using OntoWiki.

To showcase the benefits of making the enterprise
taxonomy available as RDF (especially the reusability
in other scenarios), we converted another data source
into RDF, which contains structured information about
the products the company offers (cars). We linked
those products to terms in the taxonomy and built a

24http://json-rpc.org/
25https://github.com/AKSW/owcli
26https://code.google.com/p/pubsubhubbub/

http://json-rpc.org/
https://github.com/AKSW/owcli
https://code.google.com/p/pubsubhubbub/

Frischmuth et al. / OntoWiki 19

Fig. 10. The left side shows OntoWiki, which displays the definition of the term T-Modell from the taxonomy and other resources that link to
this term. The right side shows a search application after searching for combi, which employs the term metadata as well as the links to this very
concept for finding and suggesting relevant content.

custom search service, which is depicted in Figure 10.
The screenshot on the left side shows OntoWiki, which
displays the definition of the term T-Modell contained
in the taxonomy graph along with some additional in-
formation. The location bar on the top of the screen
displays the URI used for this very concept, which
other resources can link to. It is also possible to di-
rectly de-reference this identifier and obtain the de-
scription for this resource in a machine-readable for-
mat. The properties table for this term shows:

– the type of this resource (skos:Concept),
– a link to a concept that is broader (hierarchical

order),
– a textual description of the meaning of this term,
– preferred labels for this term in different lan-

guages as well as
– an alternative label Combi.

Additionally, a small box on the right side of the On-
toWiki screen shows other resources that link to this
term. As one can imagine, the broader concept from
above also contains a link to this term stating that it
is a narrower term (skos:narrower). More inter-
estingly the other links show that certain car models
link to this concept. This circumstance is used in the
search application, which is shown on the right side of
Figure 10. This screenshot shows a simple prototype
application with a search field. When a user types the
keyword combi, the knowledge base is used to obtain
the fact, that this search term is a synonym for the con-
cept T-Modell. Once this is done, all linked car models

are retrieved and shown to the user. The depicted sce-
nario is a good example of an application of a taxon-
omy outside the scope of the originally intended use.

6.2. Open Data Publication and Visualization

Two main advantages of the Linked Data paradigm
are standardized techniques and workflows for pub-
lishing and consuming structured data. It is possible to
categorize applications according to their focus [26].
On the one hand, applications can facilitate re-use of
their data through a Linked Data endpoint publish-
ing dereferencable RDF resources and, in addition, a
SPARQL endpoint to make the data available through
custom queries. On the other hand, applications that
consume Linked Data (e.g. to create custom views on
the data) contain access interfaces for querying data
via SPARQL and to receive RDF resources using de-
referencable URIs. In the following we describe two
use cases wherein customized versions of OntoWiki
were deployed. In addition to capitalizing on the ad-
vantages of Linked Data for developers, both use cases
focus on human consumption interfaces.

Financial Transparency Data of the EC. The Fi-
nancial Transparency System (FTS) of the European
Commission contains information about commitments
granted and supported by the European Union starting
from 2007. It allows users to get an overview on EU
funding, including information on beneficiaries as well
as the amount and type of expenditure and information
on the responsible EU department. The original dataset

20 Frischmuth et al. / OntoWiki

is freely available on the European Commission web-
site, where users can query the data using an HTML
form and download it in CSV and most recently XML
format 27.

In order to publish this dataset (1) which can be re-
used, (2) which can allow more complex and interest-
ing queries, we analyzed the original dataset, devel-
oped a vocabulary and converted the data into RDF
[27]. Afterwards, we geocoded the spatial resources
and interlinked further resources with other datasets
from the Linked Data Web to increase its added value.
In addition to providing the RDF dataset as a dump
for download, we also published the data according to
the Linked Data principles. All URIs minted during
the transformation process are within a dedicated FTS
namespace28. After publishing FTS data, we added
related meta information (partially supported by On-
toWiki’s VoID plugin29) to the owl:Ontology node
of the FTS graph such as authors, contributors, the last
modification date (currently: October, 10, 2012) and
the license (Creative Commence License CC-BY-3.0).

OntoWiki is used to publish the FTS dataset as
Linked Data and to proceed FTS specific optimiza-
tions. Since the instance of OntoWiki for the FTS is
not to be used as a data acquisition Wiki, but instead
only as a publishing and consumption interface for ma-
chines and humans, we disabled all authentication and
editing interfaces. A static landing page30 was created
to present details about the dataset such as content de-
scriptions, original sources, examples, dumps to down-
load and contact information.

FTS was published in September 2012 and approx-
imately 1.000 unique users visited the site per month.
Furthermore, we successfully tested the SPARQL and
Linked Data endpoint of FTS using Facete31, an ad-
vancement of the LinkedGeodataBrowser32, that facil-
itates browsing of geocoded RDF resources and related
resource chains as illustrated in Figure 11.

European Data Portal and statistical data discovery.
The European Data Portal was launched in 2012 (cf.
subsubsection 3.2.3). It is a data catalog based on
CKAN33 publishing meta information about publicly
available datasets. Most of them deal with statistical

27http://ec.europa.eu/beneficiaries/fts/
28http://fts.publicdata.eu/
29https://github.com/AKSW/void.ontowiki
30http://fts.publicdata.eu/
31http://aksw.org/Projects/Facete
32http://browser.linkedgeodata.org/
33http://ckan.org/

data and can be downloaded or browsed with specially
created web applications. One of the tools, that will be
integrated and listed on the European Data Portal is a
customized version of OntoWiki in combination with
CubeViz. Since the responsible department hosting the
portal does not own and maintain most of the listed
datasets, CubeViz can not be setup to receive data from
a local triple store. Therefore, CubeViz will act as a hu-
man consumption interface to provide easy access and
discovery of statistical data to users. As a result, we
deployed OntoWiki with a customized theme adhering
to the EC Open Data Portal style guide and a trimmed
set of necessary extensions such as the CubeViz com-
ponent.

Further extensions that have been developed for
the portal are translations to support multi-linguality,
static links34 and page35 to publish explanations about
the usage of the tool and the defaultmodel extension
that is necessary to start the tool without knowledge
about available datasets. We deployed a specially con-
figured SPARQL backend for the use of OntoWiki
without a local triple store. Maintainers only have to
configure a specific SPARQL endpoint and the set of
graph IRIs used to identify therein hosted datasets in
order to use this backend. If the user selects a dataset
containing a well-formed DataCube (according to the
integrity constraints published by the W3C36), the user
is able to browse the dataset as illustrated in Figure 12.

6.3. Prospographical database Catalogus
Professorum Lipsiensium

The World Wide Web, as an ubiquitous medium
for publication and exchange, has already significantly
influenced the way historians work: the online avail-
ability of catalogs and bibliographies allows to effi-
ciently search for content relevant for a certain inves-
tigation; the increasing digitization of works from his-
torical archives and libraries, in addition, enables his-
torians to directly access historical sources remotely.
The capabilities of the web as a medium for collabora-
tion, however, is part of many initiatives in the field of
digital humanities. Many, historical questions can only
be answered by combining information from different
sources, from different researchers and organizations.

34https://github.com/AKSW/staticlinks.
ontowiki

35https://github.com/AKSW/page.ontowiki
36http://www.w3.org/TR/vocab-data-cube/#wf-

rules

http://www.w3.org/2002/07/owl
http://www.w3.org/2002/07/owl#Ontology
http://ec.europa.eu/beneficiaries/fts/
http://fts.publicdata.eu/
https://github.com/AKSW/void.ontowiki
http://fts.publicdata.eu/
http://aksw.org/Projects/Facete
http://browser.linkedgeodata.org/
http://ckan.org/
https://github.com/AKSW/staticlinks.ontowiki
https://github.com/AKSW/staticlinks.ontowiki
https://github.com/AKSW/page.ontowiki
http://www.w3.org/TR/vocab-data-cube/#wf-rules
http://www.w3.org/TR/vocab-data-cube/#wf-rules

Frischmuth et al. / OntoWiki 21

Fig. 11. Screenshot of Facete browsing FTS.

Fig. 12. Screenshot of CubeViz as part of EC’s Open Data Portal.

22 Frischmuth et al. / OntoWiki

If the original sources are analyzed, the derived infor-
mation is often much richer, than can be captured by
simple keyword indexing. These factors pave the way
for the successful application of knowledge engineer-
ing techniques in historical research communities.

Fig. 13. Public interface of CPL

With the Catalogus Professorum Lipsiensium (CPL)
we developed an adaptive, semantics-based knowl-
edge engineering application based on OntoWiki for
prosopographical knowledge [34]. In prosopographi-
cal research, historians analyze common characteris-
tics of historical groups by studying statistically rele-
vant quantities of individual biographies. Untraceable
periods of biographies can be determined on the ba-
sis of such accomplished analyses in combination with
statistically examinations as well as patterns of rela-
tionships between individuals and their activities.

Researchers from the Historical Seminar at Univer-
sity of Leipzig aimed at creating a prosopographical
knowledge base about the life and work of profes-
sors in the 600 years history of University of Leipzig
ranging from the year 1409 till 2009 – the Catalogus
Professorum Lipsiensium. In order to enable historians
to collect, structure and publish this prosopographi-
cal knowledge an vocabulary was developed and incre-
mentally refined over a period of three years. The Cat-
alogus Professorum Model37 (CPM) comprises several
ontologies and vocabularies for structuring the proso-
pographical information. The model consist of con-
cepts like Person, Body or Period of Life, that are in-
dividually modeled and interlinked.

37Catalogus Professorum Model: http://catalogus-
professorum.org/model/

The community of historians working on the project
was enabled to add information to the knowledge base
using an adapted version of the semantic Data Wiki
OntoWiki. For the general public, a simplified user in-
terface38 is dynamically generated based on the con-
tent of the knowledge base (cf. Figure 13, Figure 14).
For access and exploration of the knowledge base by
other historians a number of access interfaces was de-
veloped and deployed, such as a graphical SPARQL
query builder, a relationship finder [20] and plain RDF
and Linked Data interfaces. As a result, a group of 10
historians supported by a much larger group of vol-
unteers and external contributors collected information
about 2.000 professors, 15.000 associated periods of
life, 400 institutions and many more related entities.

The system architecture of CPL combines different
applications, which interact using standardized inter-
faces as illustrated in Figure 14. It is divided in a public
and a protected zone due to technical constraints and in
order to prevent security problems. The semantic Data
Wiki OntoWiki located in the protected layer 39 uses
the Catalogus Professorum Model for structuring the
prosopographical information. The project team, con-
sisting of historians supported by knowledge engineers
and Semantic Web experts, is working collaboratively
and spatially distributed (e.g. in archives or libraries)
to collect, structure and validate information about per-
sons and institutions relevant to this knowledge do-
main. The resulting knowledge base is accessible only
by the project team and is backed-up nightly.

Using two configurable tools the knowledge base is
exported in order to make it accessible for the public.
Domain experts, i.e. historians, are able to interact with
CPL via an experimental version40 of OntoWiki. The
version of the catalog available there is synchronized
using the tool OCPY41 (Ontology CoPY), that exports
data from the protected OntoWiki installation, trans-
forms the exported data considering any linked knowl-
edge bases and imports the changed data into this ex-
perimental installation. This experimental deployment
in particular offers new functionality of OntoWiki for
testing purposes.

38Available at: http://www.uni-leipzig.de/
unigeschichte/professorenkatalog/

39http://professoren.ontowiki.net [restricted ac-
cess]; OntoWiki-Version 0.85

40http://catalogus-professorum.org/
41http://catalogus-professorum.org/tools/

ocpy/

http://catalogus-professorum.org/model/
http://catalogus-professorum.org/model/
http://www.uni-leipzig.de/unigeschichte/professorenkatalog/
http://www.uni-leipzig.de/unigeschichte/professorenkatalog/
http://professoren.ontowiki.net
http://catalogus-professorum.org/
http://catalogus-professorum.org/tools/ocpy/
http://catalogus-professorum.org/tools/ocpy/

Frischmuth et al. / OntoWiki 23

general
web user

experienced
web user

content editor
(Project Team)

SPARQL
Endpoint

HTML GUI

[stable]

OntoWiki

Persistency Layer

SPARQL
Endpoint

HTML GUI
[experimental]

OntoWiki

Persistency Layer

HTML GUI
[stable]

CPL Frontend

Persistency Layer

OCPY
TOWEL

co
nfi

gu
re

co
nfigure

query, search

add, edit, maintain

getData

query, search

browse, annotate, discuss

backup Model

 synchronize
Model Data (SPARUL)

 synchronize
 Model Data (SPARUL)

browse, search

Linked Data

Linked Data

Partial RDF export

Full RDF export

[protected zone]

[public zone]

Fig. 14. Architectural overview about the CPL project platforms

As users of this web interface are interested in us-
ing the newest technologies it is strictly separated from
the main and stable layer. The knowledge base that
is provided there is updated at least once per month.
The script OCPY exports, transforms and imports the
knowledge base according to the latest version of the
vocabulary and takes care of additional linked knowl-
edge bases that provide e.g. geographical informations
using the Spatial Hierarchy Ontology42.

The benefits of the developed knowledge engineer-
ing platform for historians are twofold: Firstly, the
collaboration between the participating historians has
significantly improved: The ontological structuring
helped to quickly establish a common understanding
of the domain. Collaborators within the project, peers
in the historic community as well as the general public
were enabled to directly observe the progress, thus fa-
cilitating peer-review, feedback and giving direct ben-
efits to the contributors. Secondly, the ontological rep-
resentation of the knowledge facilitated original his-
torical investigations, such as historical social network
analysis, professor appointment analysis (e.g. with re-
gard to the influence of cousin-hood or political influ-
ence) or the relation between religion and university.

The use of the developed model and knowledge
engineering techniques is easily transferable to other

42http://ns.aksw.org/spatialHierarchy/

prosopographical research projects and with adapta-
tions to the ontology model to other historical re-
search in general. In the long term, the use of collab-
orative knowledge engineering in historian research
communities can facilitate the transition from largely
individual-driven research, where one historian inves-
tigates a certain research question solitarily, to more
community-oriented research, where many partici-
pants contribute pieces of information in order to en-
lighten a larger research question. Also, this will im-
prove the reusability of the results of historic research,
since knowledge represented in structured ways can be
used for previously not anticipated research questions.

7. Conclusions and Future Work

In this article, we provided a comprehensive presen-
tation of the concepts, technical architecture and inter-
faces of the semantic Data Wiki OntoWiki. We show-
cased three complementary use cases in different se-
mantic knowledge engineering and management do-
mains thus proving OntoWiki’s versatility. During the
development and application of OntoWiki we encoun-
tered a number of challenges. The main challenge from
our experience is the balancing of scalability, usability
and functionality. Each of these three areas is of crucial
importance for certain applications and use cases but
they mutually impact each other. For example, adding

http://ns.aksw.org/spatialHierarchy/

24 Frischmuth et al. / OntoWiki

more features or improving usability might jeopardize
scalability. Also, adding more features can overload
the user interface and complicate usability. As a result,
even though OntoWiki in its core is generic and do-
main agnostic, it is of paramount importance to make
the system flexible to adapt to new usage scenarios.
For that purpose, we integrated a number of measures,
such as a modular, layered MVC architecture, plug-in
and extension interfaces, high-configurability through
system models, binding of visualization components to
SPARQL query result sets, etc.

Although the resulting system already fulfills the re-
quirements of industrial strength applications, much
more work has to be done in order to further reduce the
entrance barrier for the development of Semantic Web
applications. We plan to continue our work with regard
to optimizing the balancing within the scalability, us-
ability and functionality triangle. We plan to further in-
crease the flexibility by better leveraging the relation-
ships between vocabularies, configuration knowledge
and background knowledge available on the Data Web.
A particularly promising avenue of research and devel-
opment is also the tighter integration of OntoWiki with
other stages of the Linked Data life-cycle [5]. A first
step in this direction was performed with the release
of the LOD2 Stack [2], which includes in addition to
OntoWiki for the authoring, visualization and explo-
ration stages a number of other tools for data linking,
quality improvement, enrichment, evolution and visu-
alization. By continuing to work in this direction, we
hope that OntoWiki will help to make the Web a place,
where structured data publishing and consumption can
be performed in a distributed, decentralized, semanti-
cally heterogeneous and still collaborative way thus fa-
cilitating to the long tail of information domains and
usage scenarios.

Acknowledgments

We are grateful to the numerous students, contrib-
utors, colleagues without whom the development of
OntoWiki would not have been possible. In particular,
we would like to thank Norman Heino, who was one
of the main initial OntoWiki developers, and Amra-
pali Zaveri for supporting the completion of this paper.
This work was supported by a grant from the Euro-
pean Union’s 7th Framework Programme provided for
the projects LOD2 (GA no. 257943) and DIACHRON
(GA no. 601043).

References

[1] B. Adida, M. Birbeck, S. McCarron, and S. Pemberton.
RDFa in XHTML: Syntax and Processing. W3C Rec-
ommendation, World Wide Web Consortium (W3C), Oct.
2008. http://www.w3.org/TR/2008/REC-rdfa-
syntax-20081014.

[2] S. Auer, L. Bühmann, C. Dirschl, O. Erling, M. Hausen-
blas, R. Isele, J. Lehmann, M. Martin, P. N. Mendes, B. van
Nuffelen, C. Stadler, S. Tramp, and H. Williams. Manag-
ing the Life-Cycle of Linked Data with the LOD2 Stack. In
P. Cudré-Mauroux, J. Heflin, E. Sirin, T. Tudorache, J. Eu-
zenat, M. Hauswirth, J. X. Parreira, J. Hendler, G. Schreiber,
A. Bernstein, and E. Blomqvist, editors, The Semantic Web -
– ISWC 2012, 11th International Semantic Web Conference,
Boston, MA, USA, November 11-15, 2012, Proceedings, Part
II, volume 7650 of Lecture Notes in Computer Science, pages
1–16, Berlin / Heidelberg, 2012. Springer.

[3] S. Auer, J. Demter, M. Martin, and J. Lehmann. LOD-
Stats — An Extensible Framework for High-Performance
Dataset Analytics. In A. ten Teije, J. Völker, S. Handschuh,
H. Stuckenschmidt, M. d’Acquin, A. Nikolov, N. Aussenac-
Gilles, and N. Hernandez, editors, Knowledge Engineering
and Knowledge Management, 18th International Conference,
EKAW 2012, Galway City, Ireland, October 8-12, 2012. Pro-
ceedings, volume 7603 of Lecture Notes in Computer Science,
pages 353–362, Berlin / Heidelberg, 2012. Springer.

[4] S. Auer, S. Dietzold, and T. Riechert. OntoWiki – A Tool for
Social, Semantic Collaboration. In I. Cruz, S. Decker, D. Alle-
mang, C. Preist, D. Schwabe, P. Mika, M. Uschold, and L. M.
Aroyo, editors, The Semantic Web – ISWC 2006, 5th Inter-
national Semantic Web Conference, ISWC 2006, Athens, GA,
USA, November 5-9, 2006. Proceedings, volume 4273 of Lec-
ture Notes in Computer Science, pages 736–749, Berlin / Hei-
delberg, 2006. Springer.

[5] S. Auer, J. Lehmann, A.-C. N. Ngomo, and A. Zaveri. In-
troduction to Linked Data and Its Lifecycle on the Web. In
S. Rudolph, G. Gottlob, I. Horrocks, and F. van Harmelen,
editors, Reasoning Web. Semantic Technologies for Intelli-
gent Data Access, 9th International Summer School 2013,
Mannheim, Germany, July 30 – August 2, 2013. Proceedings,
volume 8067 of Lecture Notes in Computer Science, pages 1–
90, Berlin / Heidelberg, 2013. Springer.

[6] D. Aumüller. Semantic Authoring and Retrieval within a Wiki
(WikSAR). In Demo Session at the Second European Semantic
Web Conference (ESWC2005), May 2005, Heraklion, Crete,
Greece. Available at http://wiksar.sf.net, 2005.

[7] D. Beckett. RDF/XML Syntax Specification (Revised).
W3C Recommendation, World Wide Web Consortium (W3C),
Feb. 2004. http://www.w3.org/TR/2004/REC-rdf-
syntax-grammar-20040210/.

[8] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, and
G. Carothers. RDF 1.1 Turtle – Terse RDF Triple Language.
W3C Recommendation, World Wide Web Consortium (W3C),
Feb. 2014. http://www.w3.org/TR/2014/REC-
turtle-20140225/.

[9] T. Berners-Lee. Linked Data. W3C Design Issues, World
Wide Web Consortium (W3C), July 2006. http://www.
w3.org/DesignIssues/LinkedData.html.

[10] J. G. Breslin, A. Harth, U. Bojars, and S. Decker. Towards
Semantically-Interlinked Online Communities. In A. Gómez-

http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014
http://wiksar.sf.net
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

Frischmuth et al. / OntoWiki 25

Pérez and J. Euzenat, editors, The Semantic Web: Research
and Applications, Second European Semantic Web Conference,
ESWC 2005, Heraklion, Crete, Greece, May 29–June 1, 2005.
Proceedings, volume 3532 of Lecture Notes in Computer Sci-
ence, pages 500–514, Berlin / Heidelberg, 2005. Springer.

[11] D. Brickley and R. Guha. RDF Vocabulary Description Lan-
guage 1.0: RDF Schema. W3C Recommendation, World Wide
Web Consortium (W3C), Feb. 2004. http://www.w3.
org/TR/2004/REC-rdf-schema-20040210/.

[12] J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named Graphs,
Provenance and Trust. In A. E. Southern and T. Hagino,
editors, Proceedings of the 14th international conference on
World Wide Web, pages 613–622, New York, NY, USA, 2005.
ACM.

[13] R. Cyganiak, S. Field, A. Gregory, W. Halb, and J. Tennison.
Semantic Statistics: Bringing Together SDMX and SCOVO. In
C. Bizer, T. Heath, T. Berners-Lee, and M. Hausenblas, ed-
itors, LDOW-2010, Linked Data on the Web 2010, Proceed-
ings of the WWW2010 Workshop on Linked Data on the Web,
Raleigh, USA, April 27, 2010., volume 628 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2010. http://ceur-
ws.org/Vol-628/.

[14] R. Cyganiak, D. Reynolds, and J. Tennison. The RDF Data
Cube Vocabulary. W3C Recommendation, World Wide Web
Consortium (W3C), Jan. 2014. http://www.w3.org/
TR/2014/REC-vocab-data-cube-20140116/.

[15] O. Erling and I. Mikhailov. RDF Support in the Virtuoso
DBMS. In S. Auer, C. Bizer, C. Müller, and A. v. Zhadanova,
editors, The Social Semantic Web 2007: Proceedings of the
First Conference on Social Semantic Web (CSSW), September
26-28, 2007, Leipzig, Germany, volume 113 of GI-Edition –
Lecture Notes in Informatics (LNI), pages 59–68, Bonn, 2007.
Gesellschaft für Informatik (GI).

[16] L. Feigenbaum, G. T. Williams, K. G. Clark, and E. Tor-
res. SPARQL 1.1 Protocol. W3C Recommenda-
tion, World Wide Web Consortium (W3C), Mar. 2013.
http://www.w3.org/TR/2013/REC-sparql11-
protocol-20130321/.

[17] P. Gearon, A. Passant, and A. Polleres. SPARQL 1.1 Up-
date. W3C Recommendation, World Wide Web Consortium
(W3C), Mar. 2013. http://www.w3.org/TR/2013/
REC-sparql11-update-20130321/.

[18] S. Harris and A. Seaborne. SPARQL 1.1 Query Lan-
guage. W3C Recommendation, World Wide Web Consortium
(W3C), Mar. 2013. http://www.w3.org/TR/2013/
REC-sparql11-query-20130321/.

[19] M. Hausenblas, W. Halb, Y. Raimond, L. Feigenbaum, and
D. Ayers. SCOVO: Using Statistics on the Web of Data. In
L. Aroyo, P. Traverso, F. Ciravegna, P. Cimiano, T. Heath,
E. Hyvönen, R. Mizoguchi, M. S. Eyal Oren, and E. Sim-
perl, editors, The Semantic Web: Research and Applications,
6th European Semantic Web Conference, ESWC 2009 Herak-
lion, Crete, Greece, May 31–June 4, 2009 Proceedings, volume
5554 of Lecture Notes in Computer Science, pages 708–722,
Berlin / Heidelberg, 2009. Springer.

[20] P. Heim, S. Hellmann, J. Lehmann, S. Lohmann, and T. Stege-
mann. RelFinder: Revealing Relationships in RDF Knowledge
Bases. In T.-S. Chua, Y. Kompatsiaris, B. Mérialdo, W. Haas,
G. Thallinger, and W. Bailer, editors, Semantic Multimedia, 4th
International Conference on Semantic and Digital Media Tech-
nologies, SAMT 2009 Graz, Austria, December 2-4, 2009 Pro-

ceedings, volume 5887 of Lecture Notes in Computer Science,
pages 182–187, Berlin / Heidelberg, 2009. Springer.

[21] N. Heino, S. Dietzold, M. Martin, and S. Auer. Developing
Semantic Web Applications with the OntoWiki Framework.
In T. Pellegrini, S. Auer, K. Tochtermann, and S. Schaffert,
editors, Networked Knowledge – Networked Media, Integrat-
ing Knowledge Management, New Media Technologies and Se-
mantic Systems, volume 221 of Studies in Computational In-
telligence, pages 61–77. Springer, Berlin / Heidelberg, 2009.

[22] T. Inkster and K. Kjernsmo. Named Graphs in RDFa
(RDFa Quads). Buzzword.org.uk Draft, Buzzword.org.uk,
Jan. 2009. http://buzzword.org.uk/2009/rdfa4/
spec-20090120.

[23] ISO. Statistical data and metadata exchange (SDMX). Stan-
dard No. ISO/TS 17369:2005, ISO, 2005.

[24] M. Krötzsch, D. Vrandečić, M. Völkel, H. Haller, and
R. Studer. Semantic Wikipedia. Journal of Web Semantics:
Science, Services and Agents on the World Wide Web, Elsevier,
vol. 5, issue 4:251–261, Dec. 2007.

[25] B. Leuf and W. Cunningham. The Wiki Way: Quick Collabo-
ration on the Web. Addison-Wesley Professional, Apr. 2001.

[26] M. Martin and S. Auer. Categorisation of Semantic Web Appli-
cations. In Proceedings of the 4th International Conference on
Advances in Semantic Processing (SEMAPRO2010), October
25-30, Florence, Italy, Oct. 2010.

[27] M. Martin, C. Stadler, P. Frischmuth, and J. Lehmann. In-
creasing the financial transparency of european commission
project funding. Semantic Web Journal, Special Call for Linked
Dataset descriptions, IOS Press, 5, 2/2014:157–164, 2014.

[28] M. Martin, J. Unbehauen, and S. Auer. Improving the Per-
formance of Semantic Web Applications with SPARQL Query
Caching. In L. Aroyo, G. Antoniou, E. Hyvönen, A. ten
Teije, H. Stuckenschmidt, L. Cabral, and T. Tudorache, edi-
tors, The Semantic Web: Research and Applications, 7th Ex-
tended Semantic Web Conference, ESWC 2010, Heraklion,
Crete, Greece, May 30 – June 3, 2010, Proceedings, Part II,
volume 6089 of Lecture Notes in Computer Science, pages
304–318, Berlin / Heidelberg, 2010. Springer.

[29] D. L. McGuinness and F. van Harmelen. OWL Web Ontol-
ogy Language Overview. W3C Recommendation, World Wide
Web Consortium (W3C), Feb. 2004. http://www.w3.
org/TR/2004/REC-owl-features-20040210/.

[30] A. Miles and S. Bechhofer. SKOS Simple Knowledge Orga-
nization System Reference, Aug. 2009. http://www.w3.
org/TR/2009/REC-skos-reference-20090818/.

[31] U. Nations. Guidelines for Statistical Metadata on the In-
ternet. Technical report, United Nations Statistical Com-
mission and Economic Commission for Europe (UNECE),
Geneva, 2000. http://www.unece.org/fileadmin/
DAM/stats/publications/metadata.pdf.

[32] OECD. Management of Statistical Metadata at the OECD.
Technical report, Organisation for Economic Co-operation and
Development (OECD), Sept. 2006. http://www.oecd.
org/std/33869551.pdf.

[33] E. Oren. SemperWiki: a semantic personal Wiki. In S. Decker,
J. Park, D. Quan, and L. Sauermann, editors, Semantic Desktop
Workshop, Proceedings of the ISWC 2005 Workshop on The
Semantic Desktop – Next Generation Information Management
& Collaboration Infrastructure. Galway, Ireland, November 6,
2005, volume 175 of CEUR Workshop Proceedings. CEUR-
WS.org, 2005. http://ceur-ws.org/Vol-175/.

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://ceur-ws.org/Vol-628/
http://ceur-ws.org/Vol-628/
http://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/
http://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://www.w3.org/TR/2013/REC-sparql11-update-20130321/
http://www.w3.org/TR/2013/REC-sparql11-update-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://buzzword.org.uk/2009/rdfa4/spec-20090120
http://buzzword.org.uk/2009/rdfa4/spec-20090120
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://www.unece.org/fileadmin/DAM/stats/publications/metadata.pdf
http://www.unece.org/fileadmin/DAM/stats/publications/metadata.pdf
http://www.oecd.org/std/33869551.pdf
http://www.oecd.org/std/33869551.pdf
http://ceur-ws.org/Vol-175/

26 Frischmuth et al. / OntoWiki

[34] T. Riechert, U. Morgenstern, S. Auer, S. Tramp, and M. Mar-
tin. Knowledge Engineering for Historians on the Example of
the Catalogus Professorum Lipsiensis. In P. F. Patel-Schneider,
Y. Pan, P. Hitzler, P. Mika, L. Zhang, J. Z. Pan, I. Horrocks, and
B. Glimm, editors, The Semantic Web — ISWC 2010, 9th In-
ternational Semantic Web Conference, ISWC 2010, Shanghai,
China, November 7-11, 2010, Revised Selected Papers, Part
II, volume 6497 of Lecture Notes in Computer Science, pages
225–240, Berlin / Heidelberg, 2010. Springer.

[35] C. Rieß, N. Heino, S. Tramp, and S. Auer. EvoPat -– Pattern-
Based Evolution and Refactoring of RDF Knowledge Bases.
In P. F. Patel-Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang,
J. Z. Pan, I. Horrocks, and B. Glimm, editors, The Semantic
Web — ISWC 2010, 9th International Semantic Web Confer-
ence, ISWC 2010, Shanghai, China, November 7-11, 2010, Re-
vised Selected Papers, Part I, volume 6496 of Lecture Notes in
Computer Science, pages 647–662, Berlin / Heidelberg, 2010.
Springer.

[36] S. Schaffert. IkeWiki: A Semantic Wiki for Collaborative
Knowledge Management. In Proceedings of the 1st Interna-
tional Workshop on Semantic Technologies in Collaborative
Applications (STICA), June 26-28, 2006, Manchester, U.K.,
2006.

[37] A. Souzis. Building a Semantic Wiki. IEEE Intelligent Sys-
tems, 20(5):87–91, 2005.

[38] S. Tramp, P. Frischmuth, T. Ermilov, and S. Auer. Weaving a
Social Data Web with Semantic Pingback. In P. Cimiano and
H. S. Pinto, editors, Knowledge Engineering and Management
by the Masses, 17th International Conference, EKAW 2010,

Lisbon, Portugal, October 11-15, 2010. Proceedings, volume
6317 of Lecture Notes in Computer Science, pages 135–149,
Berlin / Heidelberg, 2010. Springer.

[39] S. Tramp, N. Heino, S. Auer, and P. Frischmuth. RDFauthor:
Employing RDFa for Collaborative Knowledge Engineering.
In P. Cimiano and H. S. Pinto, editors, Knowledge Engineer-
ing and Management by the Masses, 17th International Con-
ference, EKAW 2010, Lisbon, Portugal, October 11-15, 2010.
Proceedings, volume 6317 of Lecture Notes in Computer Sci-
ence, pages 90–104, Berlin / Heidelberg, 2010. Springer.

[40] G. Tummarello, R. Delbru, and E. Oren. Sindice.com: Weav-
ing the Open Linked Data. In K. Aberer, K.-S. C. qnd
Natasha Noy, D. Allemang, K.-I. Lee, L. Nixon, J. Gol-
beck, P. Mika, D. Maynard, R. Mizoguchi, G. Schreiber, and
P. Cudré-Mauroux, editors, The Semantic Web, 6th Interna-
tional Semantic Web Conference, 2nd Asian Semantic Web
Conference, ISWC 2007 + ASWC 2007, Busan, Korea, Novem-
ber 11-15, 2007. Proceedings, volume 4825 of Lecture Notes
in Computer Science, pages 552–565, Berlin / Heidelberg,
2007. Springer.

[41] J. Unbehauen, C. Stadler, and S. Auer. Accessing Relational
Data on the Web with SparqlMap. In H. Takeda, Y. Qu, R. Mi-
zoguchi, and Y. Kitamura, editors, Semantic Technology, Sec-
ond Joint International Conference, JIST 2012, Nara, Japan,
December 2-4, 2012. Proceedings, volume 7774 of Lecture
Notes in Computer Science, pages 65–80, Berlin / Heidelberg,
2013. Springer.

