
Change Impact Analysis and Optimization in Ontology-based Content Management
Systems

Yalemisew Abgaza,1,∗, Muhammad Javeda, Claus Pahla,∗∗

aCentre for Next Generation Localization (CNGL),
School of Computing, Dublin City University,

Dublin 9, Ireland

Abstract

Ontologies are used to semantically enrich content in content management systems. Ontologies cover a wide range of disciplines
enabling machines to understand meanings and reason in different contexts. We use ontologies for semantic annotation to facilitate
understandability of the content by humans and machines. Wecall OCMS and ontologies evolve due to changes in the conceptu-
alization, representation or specification of the domain knowledge. These changes are often substantial and frequent in relatively
complex systems such as DBpedia1. Implementing the changes and adapting the OCMS accordingly requires a considerable ef-
fort. This is due to complex impacts of the changes on the ontologies, the content and dependent applications. We approach the
problem of evolution by proposing a framework which clearlyrepresents the dependencies of the components of an OCMS. We
propose a layered OCMS framework which contains an ontologylayer, content layer and annotation layer. Further, we present a
novel approach for analysing impacts of atomic and composite change operations. The approach uses impact cancellation, impact
balancing and impact transformation as a mechanism to analyse impacts of composite change operations. We propose a model
which estimates the cost of evolving an OCMS using four criteria. The model ranks available evolution strategies and identifies the
best strategy. The approach allows the ontology engineer toex-ante evaluate the impacts and select an optimal strategyduring the
ontology evolution.

Keywords: Ontology Evolution, Change Impact Analysis, Content Management Systems, Optimizaiton

1. Introduction

Ontologies are used to semantically enrich content in content
management systems. They are used to exchange semantics
between humans, computers and other emerging devices [1].
In Ontology-based Content Management Systems (OCMS), on-
tologies facilitate a common understanding, specification, rep-
resentation and interpretation of a shared knowledge between
humans and machines [2]. This is achieved by embedding se-
mantics by annotating the target content using ontologies.This
allows both humans and computer systems to gain a common
understanding about the target content.

In OCMS the content, the ontology and the annotation evolve
frequently and dynamically. When new things are discovered,
existing ones are deleted or modified, the respective content
needs to be updated. Whenever there is a change in a domain,
its conceptualization or specification, related ontologies need to
evolve [3] [4]. When the meaning of the content changes, the
annotation needs to evolve to respond to the change.

However, applying the changes and evolving the OCMS and
its dependent systems is a challenging task for ontology engi-

∗Corresponding Author
∗∗Principal corresponding Author

Email addresses:yabgaz@computing.dcu.ie (Yalemisew Abgaz),
mjaved@computing.dcu.ie (Muhammad Javed),
cpahl@computing.dcu.ie (Claus Pahl)

neers. During the evolution of an ontology, a change of one
entity may cause many unseen and undesired changes and im-
pacts on dependent entities [5] [6]. Identifying the changes and
determining the impacts is a complex and time consuming ac-
tivity which often causes inconsistencies in the ontology [7] [8],
if it is not done correctly. Changes in the content also causea
change in the annotation. These changes further cause other
unseen and undesired impacts on the instances. Thus, before
permanent implementation of a change request, it is vital tocon-
duct change impact analysis to understand the impacts and the
impacted entities [9]. Ontology engineers benefit from the anal-
ysis in that it enables them to conduct what if analysis before
permanent implementation of changes. It supports maintenance
of ontologies and optimizes evolution of an OCMS. The analy-
sis provides detailed and summarized impacts of changes in rel-
atively large and complex OCMSs which consume much time
and effort otherwise. In large ontology-based applications such
as DBpedia2 which contains more than 359 classes, 1,775 prop-
erties and 2,350,000 instances, the impact analysis will have a
significant contribution for identifying impacts and for compar-
ing and selecting optimal strategies.

Moreover, a given change request can be realized using differ-
ent evolution strategies [5]. The evolution strategies differ both
in the type and the number of change operations used to imple-

2http://wiki.dbpedia.org/Ontology

Preprint submitted to Journal of web semantics May 1, 2013

ment the requested change. The selection of the best strategy
requires an in-depth analysis of the nature of impacts, the state-
ments affected, the entities added or removed and the numberof
change operations. However, comparing and selecting the best
strategy with an optimal solution is difficult, error prone and
time consuming. Therefore, evolving and maintaining the over-
all integrity of an OCMS is a complex process. The evolution
process involves the following core tasks.

• The representation of change requests using one or more
available change realization options (evolution strategies).

• The characterization and analysis of impacts, impact types
and the impacted entities.

• The estimation of the cost of evolution using selected cri-
teria.

• The comparison of available evolution strategies and selec-
tion of the optimal strategy that ensures minimum cost of
evolution.

While operational aspects of ontology evolution have been
substantial in the past [5] [10] [11], this paper presents a novel
approach to impact analysis that assist transparent, consistent
and optimized evolution of an OCMS. To this end, we present
a bottom-up change impact analysis process. Following this,
we propose a model that analyses and selects an optimal im-
plementation strategy. The change impact analysis approach
uses novel techniques such as individual change impact analysis
and composite change impact analysis which employs impact
cancellation, impact balancing and impact transformationas a
mechanism to analyse impacts of composite change operations.
We extend existing research by incorporating impacts of change
operations, analysing the severity of impacts, defining criteria
for estimating the cost of evolving an OCMS and proposing a
model for selection of optimal implementation strategy. The
contribution of this paper includes the following.

• realization of change requests using existing and cus-
tomized evolution strategies (Section 4.1 to 4.2).

• analysis of impacts of atomic and composite change oper-
ations. The approach provides useful information beyond
what is added or deleted. The proposed method ensures
the evolution of an OCMS in a consistent, accurate and
transparent manner (Section 5.1 to 5.3).

• quantitative estimation of the impacts of the change opera-
tions, and the cost of evolution (Section 6.1 to6.5).

• selection of an optimal implementation that ensures mini-
mum cost of evolution (Section 6.6 to 7).

This paper is the extension of previous publications on
change impact analysis [12] [13] [14] [15] and [16].

2. Related Work

In recent years, several researchers addressed the problemof
changes in ontologies and ontology-based applications.

A six-phase evolution framework is widely used to evolve
ontologies [17] [18] [19]. The framework [17] focuses on
change detection, change representation, semantics of change,
change propagation, change validation and change implementa-
tion. The semantics of change phase deals with derived change
operations to consistently evolve the ontology. This phasefo-
cuses on the effects of the changes on dependent entities. Our
work provides detailed analysis of the change operations and
present how and why the changes affect the entities.

Validity of data instances against ontology evolution is sug-
gested by [8]. The work discusses evolution of OWL ontologies
with the aim of guaranteeing validity of data instances. The
work distinguishes structural and semantic changes and identi-
fies instances that are invalidated by any of these changes. This
work specifically focuses onABox statements. Our approach
extends this work to analyse the structural and semantic impacts
that arise from the changes.

The authors [7] [20] [21] have proposed a formal approach
for RDF/s ontology evolution. The work aims at providing
an algorithm to determine the effects and side effects of a re-
quested elementary or complex change operations. It focuses
on change requests and tries to resolve the evolution problem by
analysing the requested updates in relation to the validityrules
presented by the authors. The authors in [7] incorporate mini-
mal change criterion to ensure minimum number of changes to
evolve ontologies. The work in belief change principle focuses
on structural changes and excludes semantic changes which are
crucial in ontology evolution. Furthermore, the authors give
emphasis to the validity model and exclude other evolution fac-
tors such as the user preferences, impacts and sensitivity of the
ontology toABox orTBox statements

Authors in [22] developed PromptDiff to compare different
versions of an ontology. It compares two versions of an on-
tology and analyse the differences in terms of additions and
deletions. At the end of the evolution process, ontology editors
use PromptDiff to review changes and approve or reject those
changes. Currently, PromptDiff does not support OWL2 ontolo-
gies. However, [23] [24] developed a successor of PromptDiff
that use the heuristics used in PromptDiff to support OWL2
ontologies. The authors [24] have suggested a system that man-
ages changes using version control systems. The authors pro-
pose a system which addresses the existing problems of ontol-
ogy version control systems. This includes addressing prob-
lems in concurrent editing, complete change tracking, scalabil-
ity, and performance. They focus on add, delete and rename
operations and perform analysis using Diffs between two ontol-
ogy versions. The authors in [25] have presented a pluggable
difference engine which aligns ontology entities before conduct-
ing comparison. The difference engine highlights additions, re-
movals and renamings of entities. This approach requires two
versions to compare changes. It does not consider the change
operations that are the sources of the change. The work view
changes with the differences between two versions and does

2

not deal with the change operations that causes the differences
and their impacts either individually or as a composite change.
It further requires the original ontology and the evolved ontol-
ogy after the changes are implemented. However, support for
analysis of impacts of the changes before implementation isnot
available in all Diff approaches.

Content CVS [26] [27] allows the concurrent development
of ontologies following concurrent versioning methods in soft-
ware development. Concurrent changes, version comparison,
conflict detection and resolution and version merging are in-
cluded in the Content CVS system. When ontologies evolve
conflicting changes occur and result inconsistency. The system
keeps local and global versions and compares the ontologiesto
detect conflicting changes using structural and semantic differ-
ences. Conflicting changes or unintended entailments are pre-
sented to the user with zero or more resolution plans. The au-
thors in [28] have proposed a web-based tool, CODEX (COm-
plex Ontology Diff EXplorer). The tool computes ontology dif-
ferences and presents the number of changes, Diff sizes and the
growth rates of changes. It allows exploration of elements that
have been influenced by the changes. Codex uses Diffs to anal-
yse impacts of change operations. This work is closely related
to our work; however we view impacts as results of individual
change operations implemented in the original ontology than
the difference between two ontology versions. Change impacts
are attributed to the atomic and composite changes that are im-
plemented on the original ontology and an ex-ante evaluation of
impact analysis and selection of strategies based on the analysis
of impacts is suggested.

Optimization of ontology evolution and optimal selection of
evolution strategies is given a little attention in the state-of-the-
art literature. The authors in [29] conduct a study on user de-
fined ontology changes and propose an optimization strategyto
reduce the time of execution of changes. Their methodology fo-
cuses on eliminating redundant atomic change operations. Us-
ing redundancy elimination, their methodology optimizes the
change implementation in terms of time. This research explores
a new area in evolution of ontology-based content management
by covering optimal strategy selection using quantitativeanaly-
sis of parameters.

In this paper, we extend the evolution strategies suggestedin
[5] to generate change operations to implement the requested
changes. We exploited structural and semantic changes sug-
gested in [8] to identify structural and semantic impacts. The
bottom-up change impact analysis approach from the perspec-
tive of the change operations and an optimal implementation
which focuses on criteria such as severity of impacts, statement
types, operation types and number of change operations are the
novel contributions of this work. This work mainly focuses on
the impacts of change operations on asserted axioms of ontolo-
gies and annotations. Our next stage will be incorporating the
impacts of change operations on inferred axioms in the OCMS.

3. OCMS Principles

OCMS are systems that use ontologies to semantically enrich
content. OCMS are used to facilitate accessibility of content for

Figure 1: Layered architecture of OCMS

both humans and machines by integrating semantics about the
content using ontologies. An OCMS is composed of three dif-
ferent layers. The first layer is the ontology layer (represented
using OWL2), the second is the annotation layer (represented
using RDF triples) and the third one is the content layer (setof
documents). The layered architecture is presented in (Fig.1).

Ontology Layer. This layer provides the specification of a
shared conceptualization of a domain. This means ontologies
provide a common ground for understanding, conceptualiza-
tion, representation and interpretation of domain concepts uni-
formly across different systems, languages and formats. They
provide a representation of knowledge that allows machinesto
reason about known facts and generate new knowledge from
them.

Content Layer. Content, in this paper, refers to any digital
information that is in a textual format that includes structured
or semi-structured documents, web pages, executable content,
software help files etc. [6][12]. An OCMS essentially deals
with content in the form of books, web pages, blogs, news-
papers, software products, documentations, help files, reports,
publications, etc. [6].

Annotation Layer. Annotation is a process of linking con-
tent with ontology entities to provide better semantics to the
content. The aim of semantic annotation is to explicitly iden-
tify concepts and relationships between concepts in the content
[30]. In any application that makes use of ontologies, the target
content which needs to be semantically enriched is requiredto
have an explicit link, at least to one or more elements in the
ontology.

3.1. Running Example

In this section, we present a Software Help Management Sys-
tem (SWHMS) case study as a running example to illustrate
the process and to validate the proposed solution later. The
SWHMS is designed to support users of an enterprise software
product to efficiently exploit the help files that are distributed

3

with the software or available online. The target software prod-
uct provides integrated content archiving that enables users to
store, manage and discover organizational information. The
case study focuses on enhancing the overall help management
system using various domain ontologies by semantically anno-
tating the help files and the software product. The help files
describe the components, purpose of the software and the tasks,
procedures, steps, etc., required to use the software and totrou-
bleshoot problems. The help files are prepared by domain ex-
perts in software and digital archiving.

In this case study, the help files are extracted from different
version of the software. The help files are either semi-structured
or structured files in HTML and XML formats respectively. The
files are organized in different folders using a conceptual struc-
ture of the software. For each version concept maps which de-
scribe the relationship between concepts discussed in the help
files are available. For this study, we gained access to two
versions of the software help files. The first version contains
162 HTML files organized into 4 folders which represent the
four components of the software. The second version con-
tains 839 XML files organized in 17 folders. These folders are
used to categorize the help files based on the available software
components. We built four primary ontologies for supporting
SWHMS. A high-level description of these ontologies and their
dependencies are depicted in Figure 2.

Figure 2: A high level view of software help management ontology

The first ontology is the DocBook ontology which describes
the overall structure of the help files [31]. The DocBook ontol-
ogy is constructed by extracting the structural entities from the
available DocBook files [32] [33]. The second ontology is the
help ontology. The help ontology is designed to guide the soft-
ware ontology by providing semantics about the help files and
their content. The help ontology guides the software ontology
in a way that explains usability of the topics, procedures, steps,
etc. by the software ontology. The software ontology is usedto
describe the different behaviours and components of a standard
software. It provides semantics about software related concepts.
The fourth is a domain ontology which specifically focuses on
the domain area of the software at hand. The domain ontology
is also known as the application ontology. In our case study
the domain of the software is digital archiving which includes
backup, searching, sharing, etc.

The rationale behind selecting this case study is that it cov-
ers a wide range of topics from help to software systems do-
mains. In this software product, the help files are directly as-
sociated to the various domains. Help files are organized using
document structures, software concepts such as GUI elements,
commands, hardware and software requirements, etc. More-
over, since concepts and instances are distributed throughout
the help files, they create a strong link between the instances in

the content and the concepts in the ontologies. This makes itof
great interest to investigate impacts of concept changes and in-
stance changes because the changes made in the content of the
help files will have an impact on the ontology and vice versa.

3.2. Graph-based Representation of OCMS
We use a graph-based formalism to represent the OCMS. We

choose graph-based formalization for the following basic rea-
sons. First, graphs provide exhaustive theory support and re-
duce the problem to a well-studied topics in graph theory [34].
Graphs have some proven efficiency for searching subgraphs,
nodes and edges [35]. Second, graphs provide an appropri-
ate data structure to model ontologies represented as RDF and
OWL [36] [37]. Finally, graphs visualize complex data in a
simple and understandable way.

An OCMS is represented as a graphG = Go ∪ Ga ∪ Cont
whereGo is the ontology graph,Ga is the annotation graph and
Cont is the content set. An example of a graph representation
of an OCMS is given in Figure 3.

Figure 3: Graph-based representation of OCMSs

An Ontology Graph is represented by a directed labelled
graph Go = (No,Eo) where No is a set of labelled nodes
no1,no2, . . . ,nol which represent classes, data properties, ob-
ject properties and instances [38].Eo is a set of labelled
edgeseo1,eo2, . . . ,eom. An edgeeo is written as (n1, α,n2)
wheren1,n2 ∈ No and the labels of an edge represented by
α ∈ CA∪ DPA∪ OPA∪ IA ∪ RA. The representation follows
the OWL2 specification3.

In general, we treat properties as nodes and property in-
stances as edges. When we define properties as part of an on-
tology, we represent them as nodes and when we use properties
for annotation, we represent them as edges of the annotation
graph. This means, we represent the properties as a node and
link them with other class or property nodes in the ontology
graph. We represent property instances as edges that link two
instances in the annotation graph.

A Content Set can be viewed as a set of content documents.
Cont = {d1,d2, . . . ,dn} where: di represents a structured or

3http://www.w3.org/TR/owl2-quick-reference/

4

CA= {subClassOf, disjointClasses, equivalentClasses}
DPA= {subDataPropertyOf, dataPropertyRange, dataProperty Domain,

disjointDataProperties, equivalentDataProperties, functionalDat-
aProperty}

OPA= {subObjectPropertyOf, objectPropertyRange, objectProperty Do-
main, disjointObjectProperties, inverseObjectProperties, equiv-
alentObjectProperties, symmerticObjectProperties, functionalOb-
jectProperty, inverseFunctionalObjectProperties, transitiveObject-
Property, reflexiveObjectProperty, irreflexiveObjectProperty}

IA= {sameindividual, differentIndividuals, classAssertion,DataProp-
ertyAssertion, objectPropertyAssertion}

RA= {allValuesFrom, someValuesFrom, minimumcardinality, maximum-
cardinality, exactCardinality}

semi-structured document or elements of a document. In the
content layer, such content is represented as a node. The con-
tent is represented as a set of documents either in a flat file, or in
a database. We represent the set of documents using their URI.

An Annotation Graph is represented by a directed labelled
graph Ga = (Na,Ea) where Na is a set of labelled nodes
na1,na2, . . . ,nal andEa is a set of labelled edgesea1,ea2, . . . ,eam.
An annotation edgeea is written as (na1, αa,na2) wherena1 ∈
Cont is a subject,na2 ∈ Cont∪ GO is an object andαa ∈ GO

is a predicate. The edges are referred as triples. We represent
documents as nodes in the OCMS graph.

Attributes of the Graph. The type of a node is given by
type(n) that maps the node to its type which is defined in the
schema (class, instance, data property, object property).The
label of any edgee= (n1, α,n2), which isα , is a string given by
a functionlabel(e). The label of a noden is the URI associated
with the node and is given by a functionlabel(n). All the edges
of a noden are given by a functionedges(n). It returns all the
edges as (n, α,m) wheren is the target node andm is any node
linked ton via α.

3.3. The Change Impact Analysis Framework

The overall change impact analysis framework contains three
major phases. The first phase receives change requests and rep-
resents them using change operations. This phase uses evolu-
tion strategies and dependency analysis to generate additional
change operations to complete the requested change. The sec-
ond phase takes the represented changes and analyses the im-
pacts of the change operations. This phase merges integrity
analysis and change impact analysis together for efficient pro-
cessing. Finally, we have the change implementation phase
which allows the user to implement the changes based on the
results of the impact analysis. Figure 4 outlines the phasesof
the change impact analysis framework and their interactions.

Figure 4: The change impact analysis framework

4. Change Request Capturing and Representation

The objective of this phase is to represent detected changes
using suitable change operations that ensure the efficient im-
plementation of the required change. The execution depends
on how the change is represented and relies on two factors.
The first factor is the selection of the appropriate change op-
erator [5] [39]. A requested change is implemented either by
an atomic change operation which does a unit task or a com-
posite change operation composed of two or more atomic or
composite changes. The second factor is the order of execu-
tion of the operations focusing on efficient ordering of atomic
change operations into composite and higher-level granularity
to minimize impacts [40] [41]. Change representation uses the
outputs of the evolution strategies and the dependency analy-
sis. To fully implement a requested change we may generate
complementary change operations. The requested change oper-
ation and the generated change operations make the complete
change operation. Complementary changes are generated using
dependencies and evolution strategies. Dependency analysis is
discussed in Section 4.1 and evolution strategies are discussed
in Section 4.2.

4.1. Dependency Analysis for Change Representation

Before we present the details of change impact analysis, we
discuss dependencies that are crucial inputs for the changeim-
pact analysis process.Dependencyis defined as a reliance of
one node on another node to get its structural and semantic
meanings. Given a graphG = (N,E) and two nodesN1,N2 ∈ N,
N1 is dependent onN2 represented byDep(N1,N2), if ∃ Ei ∈ E
whereEi = (N1, α,N2). N1 is the dependent entity andN2 is the
antecedent entity. Understanding how the entities in the OCMS
depend on each other is a crucial step for analysing how the
change of one entity affects the other [42]. Characterization,
representation and analysis of dependencies within and among
the ontology, the annotation and the content layers are impor-
tant. All the dependencies that exist in the graph may not be im-
portant for dependency analysis. Thus, we identify the depen-
dencies that are useful for implementing changes and analysing
their impacts.

4.1.1. General Properties of Dependency
A dependency can be direct or indirect. A dependency is

said to be indirect, if there exist transitive or intermediate de-
pendencies that link two nodes. Given a graphG = (N,E) and
nodesN1,N2,N3 ∈ N, N1 is indirectly dependent on N3 repre-
sented asindDep(N1,N3), i f ∃N2. Dep(N1,N2) ∧ Dep(N2,N3)
∧ N1 , N2 , N3. A direct dependency does not require inter-
mediate dependency between entities. Algorithm 1 in general
returns all the direct dependent entities of a given entity,in this
specific case a given class. This means all classes that are di-
rectly connected to a given class are returned. A total depen-
dency refers a dependency when an entity is fully dependent on
another entity for its existence. That means, there is no other
dependency that enables it to get its meaning. Given a graph
G = (N,E) and nodesN1,N2,N3 ∈ N , N1 is totally depen-
dent on N2, represented byT Dep(N1,N2), if ∃N2. Dep(N1,N2)

5

∧ ¬∃N3. Dep(N1,N3) ∧ (N2 , N3). Algorithm 2 identifies all
total dependent entities of a given entity. It identifies alltotal
dependent entities whether they are directly or indirectlydepen-
dent. A partial dependency refers to a dependency where the ex-
istence of a node depends on more than one node. Given a graph
G = (N,E) and nodesN1,N2,N3 ∈ G, N1 is partially dependent
on N2, represented byPdep(N1,N2), if ∃N2,N3. Dep(N1,N2) ∧
Dep(N1,N3) ∧ (N2 , N3). Partial dependency is a complement
of total dependency over all dependent entities. It is represented
asPDep= Dep− T Dep. Algorithm 2 can be customized to re-
turn partial dependent entities by changing the return value.

Algorithm 1 getDirectDependentClasses(G,c)
1: Input: GraphG, Class nodec
2: Output: direct dependent classes (d)
3: d← ∅
4: if the nodec exists inG then
5: for each edgeEi = (m, α, c) directed toc do
6: if label(Ei) = “ subClassO f” ∧ type(m) = “class”

then
7: addm to d
8: end if
9: end for

10: end if
11: return d

Algorithm 2 getTotalDependentClasses(G,c)
1: Input : GraphG, Class nodec
2: Output: all total dependent classes=d
3: d← ∅, contained=true
4: Set depCls=∅ ,totalDepCls=∅ ,partialDepCls=∅, super=∅
5: depCls← getAllDependentClasses(G,c)
6: for each conceptci in depClsdo
7: if count(getSuperClasses(ci)=1 then
8: super← getSuperClasses(G, ci)
9: if super not in partialDepclsthen

10: addci to totalDepCls
11: end if
12: else
13: super← getSuperClasses(G, ci)
14: contained=true
15: for eachsc in superdo
16: if scnot in depClsthen
17: contained=false
18: end if
19: end for
20: end if
21: if contained=truethen
22: addci to totalDepCls
23: else
24: addci to partialDepCls
25: end if
26: end for
27: return totalDepCls

4.1.2. Types of Dependency
We categorize dependencies as dependencies within layers

and across layers based on the layers the entities come from.
Using an empirical study, the following dependency types are
identified and their detailed definition is given below. The most
frequent dependencies are presented here and the list can grow
more when we represent complex class relationships. The con-
text of the dependency is the OCMS graphG = (N,E) and the
examples are taken from Figure 3.

Dependency within a Layer.These dependencies occur be-
tween entities that come from the same layer.

1. Concept-Concept Dependency:for a graphG and con-
cept nodesC1,C2 ∈ N, C1 is dependent on C2 represented
by CCDep(C1,C2), if ∃C2. Dep(C1,C2) ∧ (label(Ei =

(C1, α,C2)) = “ subClassO f”) ∧ (type(C1) = type(C2) =
“class”). For example, there is a concept-concept depen-
dency betweenActivity andArchive. Archivedepends on
Activitybecause there is an edge that links these two nodes
with typeClassand with node labelsubClassOf. Concept-
concept dependency is transitive.

2. Concept-Axiom Dependency:for a graphG, a class node
C1, and any nodeNi ∈ N and an edgeEi ∈ E, Ei is de-
pendent on C1 represented byCADep(Ei ,C1), if (Ei =

(C1, α,Ni) ∨ Ei = (Ni , α,C1)) ∧ (type(C1) = type(Ni) =
“class”). For example, if we take the concept “Activity”,
there are three dependentsubClassOfedges, one depen-
dentrdfs:range. These axioms further characterize the de-
pendency types.

3. Concept-Restriction Dependency:for a graphG, a class
node C1 and any nodeNi ∈ N and an edgeEi ∈ E,
Ei is dependent on C1 represented byCRDep(Ei ,C1), if
Ei = (Ni , α,C1) ∧ (type(C1) = “class” ∧ α ∈ RA). For
example, if we have a restriction(isAbout, allValuesFrom,
Activity), this specific restriction is dependent on the con-
ceptActivity.

4. Property-Property Dependency: for a graphG and
a property nodesP1,P2 ∈ N, P1 is dependent on
P2 represented byPPDep(P1,P2) if ∃P2. Dep(P1,P2)
∧ (label(Ei = (P1, α,P2)) = “ subPropertyO f”) ∧
(type(P1) = type(P2) = “ property”). Here, property
refers to both data property and object property.

5. Property-Axiom Dependency: for a graphG, a property
nodeP1, and any nodeNi ∈ N and an edgeEi ∈ E, Ei is
dependent on P1 represented byPADep(Ei ,P1), if Ei =

(P1, α,Ni) ∨ Ei = (Ni , α,P1) ∧ (type(P1) = “ property”).
6. Property-Restriction Dependency:for a graphG, a prop-

erty nodeP1 ∈ N and a restriction edgeR1 ∈ E , R1 is
dependent on P1 represented byPRDep(R1,P1) if Ei =

(N1, α,P1) ∨ Ei = (P1, α,N1) ∧ (type(P1) = “ property”).
7. Axiom-Concept Dependency:Given an axiom edgeEi

and a concept nodeC1 ∈ G,C1 is dependent on Ei

represented byACDep(C1,Ei), if Ei = (C1, α,Ni) ∧
(label(Ei) = “ subClassO f”) ∧ (type(N1) = “class”). This
dependency type is used to catch orphan concepts. If or-
phan concepts are not allowed in the ontology, we use such
dependencies to find them.

6

Dependency across Layers. These dependencies occur
across entities in the three layers. Content-annotation depen-
dency and ontology-annotation dependency are the main depen-
dency types. We identify the following dependencies which ex-
ist across layers.

1. Concept-Instance Dependency:for a graphG and an in-
stance nodeI1 and a concept nodeC1 ∈ N, I1 is depen-
dent on C1 represented byCIDep(I1,C1) if ∃ Ei ∈ E
whereEi = (I1, α,C1) ∧ (label(Ei) = “classAssertion”)
∧ (type(I1) = “ individual”) ∧ (type(C1) = “class”).
For example, if we remove the classHelp f ile, the de-
pendent triples{(CNGL:id-19221955.xml,instanceO f,
Help f ile) and (CNGL:id-19221956.xml, instanceOf,
Help f ile)} will be affected. This indicates that those
annotations are dependent on the concept in the ontology
layer.

2. Property-Instance property Dependency:for a graphG
and an instance property nodeIP1, and any nodeNi ,N j

and a property nodeP1 ∈ N, IP1 is dependent on P1

represented byPIPDep(IP1,P1) if ∃ Ei ∈ E where
Ei = (Ni , α,N j) such that (label(Ei) = P1) ∧ (type(Ni) =
“ instance”) ∨ (type(N j) = “ instance”). For example, in
(CNGL : id19221956.xml, cngl:hasTitle, “How to delete
Mails”) the instance propertycngl:hasTitleis dependent
on the propertyhasTitlein the ontology layer.

3. Instance-Axiom Dependency:for a graphG, an instance
node I1, and any nodeNi ∈ N and an edgeEi ∈ E, Ei

is dependent on I1 represented byIADep(Ei , I1), if (Ei =

(I1, α,Ni) ∨ Ei = (Ni , α, I1)) ∧ (type(I1) = type(Ni) =
“ instance”).

4. Axiom-Instance Dependency:for a graphG and an in-
stance nodeI1 and an edgeEi ∈ E, I1 is dependent
on Ei represented byAIDep(I1,Ei) if Ei = (I1, α,N2) ∧
(label(Ei) = “ instanceO f”) ∧ (type(i1) = “ instance”).

All edges that are linked to a node or all nodes that are linked
together do not necessarily show dependency. For example, an
instance property is dependent on the definition of the corre-
sponding property. However, a property is not dependent on its
instance properties. The focus of this research is on identifying
and formalizing dependencies that result in the propagation of
impacts in the OCMS. Using these dependencies, we developed
algorithms to identify dependent entities.

4.2. Evolution Strategies

The selection of an optimal evolution depends on the differ-
ent options available to realize a change request. A change
request can be realized using different ways called evolution
strategies. These evolution strategies are used to specifyhow
a given change request is implemented. The change strategies
determine how to fill the gap between the requested change and
the changes required to correctly implement the user request.
This includes consequential changes, which are not specified in
the change request and corrective changes which are introduced
to avoid inconsistencies. The different change implementation

strategies are further used to avoid known violations of ontol-
ogy constraints [43] [5] [44].

We identified four different strategies used by existing sys-
tems [5] and customized them to provide additional implemen-
tation options for the users. These strategies areNo-Actionstrat-
egy,Cascadestrategy,Attach-to-Parentstrategy, andAttach-to-
Root strategy. We will focus on the first three change imple-
mentation strategies. The Attach-to-Root strategy uses a similar
technique as the Attach-to-Parent strategy. The only difference
between the two is that the Attach-to-Parent strategy uses the
immediate parent entity and the Attach-to-Root strategy uses
the root entity (the top entity). We customize the Attach and
Cascade strategies to be applied to bothTBox andABox state-
ments or only toTBox statements. The details of each of the
techniques used by the change implementation strategies are
discussed below.

No-Action Strategy. The No-Action strategy states that a
given change operation is implemented using the requested
change without adding consequential or corrective changes.
The complete change operation does not include any change op-
eration other than the ones that remove the traces of the target
entity from the OCMS.

Figure 5: No-Action Strategy

Given the graphG = (N,E) and a entity noden ∈ N, the
No-Actionstrategy is defined as follows:

No-Action(Delete Entity(n)) := {Delete Entity(n),Delete Axiom(A) |
A ∈ directDependentAxioms(G, n)}

Cascade Strategy.The Cascade strategy states that whenever
a change is requested, the change propagates to all dependent
entities of the target entity. In OCMS, this means when we
change some entity, we need to change all its dependent enti-
ties. In case of deletion, when we delete an entity, the deletion
propagates to all its total dependent entities. In case of addition,
when we add an entity, we need to add all other entities that
make the new entity semantically and structurally meaningful.

Given the graphG = (N,E) and a entity noden ∈ N, the
Cascadestrategy is defined as follows:

Cascade(Delete Entity(n)) := {Delete Entity(n′) | n′ = n∨
n′ ∈ allTotalDependentEntities(G, n)}

Attach-to-Parent/Root Strategy. The Attach-to-Parent
strategy, or attach strategy in short, states that when a change
is requested, link all the affected entities to the parent entity of
the target class whenever it applies. This means, when a cer-
tain entity is deleted, link its dependent entities to the parent

7

of the target entity whenever it applies. Thus, in the Attach-to-
Parent strategy, we generate intermediate change operations in
addition to the requested changes operations.

Given the graphG = (N,E) and an entity noden ∈ N, the
Attach strategy is defined as follows:

Attach(Delete Entity(n)) := {A, B,C |
A := Add Axiom(A′,n′) | A′ ∈ directDependentAxioms(G, n) ∧

n′ ∈ superEntity(n) ∧
B := Delete Axiom(A′,n) | A′ ∈ directDependentAxioms(G, n) ∧
C := Delete Entity(n) }

Using this strategy, for example, Delete Class (Archiving) in
(Figure 5) causes the deletion of the class and causes all the
subclasses of theArchivingclass to reconnect to the parent (Ac-
tivity) class. Moreover, the class (Archiving) and all its related
axioms will be deleted.

The Cascade and Attach strategies can be further customized
to Attach only TBox statements. This means the customized
strategies implement the changes only for TBox statements
without considering ABox statements.

5. Change Impact Analysis Process

The change impact analysis process (5) includes analysis of
impacts and their implication on the integrity of the OCMS. In
this section we will focus on identifying and characterizing im-
pacts, causes of impacts and the nature of the impacts.

5.1. Impacts of Change Operations

Impacts of change operations in OCMS are diverse. We iden-
tify these impacts and investigate their characteristics.In this
section, we discuss the impacts, their categories, the change op-
erations that cause the impacts and the impact preconditions at
which the impacts occur. an impact precondition defines the
necessary condition that needs to be satisfied for the impactto
occur.

Impact: The term impact refers to the effect of change of
entities due to the application of a change operation on one
or more of the entities in the OCMS [19] [45] [8]. Thus,
a given atomic change operation (ACh) will have an impact
Imp : (ACh,P) if the associated precondition (P) is satisfied.
The change impact analysis process uses a single change opera-
tion as an input at the atomic change operation level.

The impact function (Imp) is a function that maps an atomic
change operationACh to its corresponding impact whenever a
given preconditionP is satisfied.

Imp :(ACh,P)→ (Impact) where:
Impact= S trImp∪ S emImp
ACh= Atomic change,P = precondition

The structural and semantic impacts of an atomic change oper-
ation are discussed in the following subsections.

5.1.1. Structural Impacts
Structural impacts are impacts that change thestructural de-

pendencybetween the entities. Structural impacts occur when
we execute a change operation and if it impacts the structural

Figure 6: Example of structural impact

dependency of entities in the OCMS. It can be caused by a dele-
tion, addition or updating of an entity in the OCMS. The struc-
tural impacts of change operations and their associated rules are
discussed below. The first four are adopted from [5].

S trImp(ACh) = {OC,CCR,OPCR,DPCR,OI,NRC,NRO,AE,DE}
There are two types of structural impacts. The first type fo-

cuses on structural impacts that cause structural integrity vio-
lations (e.g. addition of cyclic reference). We call these im-
pacts integrity-violating impacts. The second type focuses on
changes, which are results or consequences of a given action
(e.g. addition of an entity). These are caused by changes that
add or remove entities. We call these impacts integrity non-
violating impacts.

A given change operation causes a structural impact in two
ways. First, it either adds a new entity or removes an existing
entity. Second, it violates the structural integrity of theOCMS.
We use the following example to elaborate the situation.

In the first version (Figure 6.a), we can see that there
are three entities. Due to a change operationAdd
Class(ArchivingEmail), the OCMS evolves to the second ver-
sion (Figure 6.b) which contains four entities.

When we compare the two versions, we can see the two im-
pacts of the change operation. First, the change operation in-
troduced a new class which was not available in the first ver-
sion (Figure 6.a). Second, the change operation introducedan
orphan class(ArchivingEmail). Here, it is very important to dis-
tinguish between a change operation and the impact of a change
operation. “Addition of new Entity (AE)” is an impact which
is different from theAdd Class(C) change operation, even if
the impact is a straightforward consequence of the change oper-
ation. This distinction is important to clarify impacts indepen-
dent of change operations. The separation is useful to systemati-
cally analyse impacts of composite change operations. The first
impact is integrity non-violating, whereas the second impact is
integrity violating impact.

To represent all the constructs of an ontology collectively,
we use the term Entity (E). However, to refer to a specific con-
structs, we replace the term Entity (E) by Class (C), Data Prop-
erty (DP), Object Property (OP), Instance (I), Axiom (A) and
Restriction(R) whenever appropriate. The following structural
impacts of atomic change operations are either integrity violat-
ing or integrity non-violating depending on the impact precon-
ditions.

• Orphan Concept (OC) occurs when a given concept is
introduced without a super class other than the default

8

“Thing” class. Generally, OWL allows orphan classes, but
sometimes the application requirements do not. It violates
the concept-closure invariant, which states that every con-
cept nodeci in N, excluding the root concept of the ontol-
ogy, should have at least one super conceptc in N, giving
closure toci : ∀ ci ∈ N \ {Root} ∧ type(ci) = “Class” →
∃c ∈ N. CCDep(ci , c).

• Concept Cyclic Reference (CCR) occurs when a change
operation introduces a cyclic reference to concepts. It vi-
olates the concept hierarchy invariant. The concept hierar-
chy is a directed acyclic graph. For two class nodesc1 and
c2 ∈ N, ¬∃c1, c2. CCDep(c1, c2) ∧ CCDep(c2, c1).

• Object Property Cyclic Reference (OPCR) occurs when
a change operation introduces a cyclic reference to ob-
ject properties. It violates the property hierarchy invariant.
The property hierarchy is a directed acyclic graph. For
two object property nodesop1 andop2 ∈ N, ¬∃op1,op2.

PPDep(op1,op2) ∧ PPDep(op2,op1).

• Data Property Cyclic Reference (DPCR) occurs when
a change operation introduces a cyclic reference to data
properties. It violates the property hierarchy invariant.
The property hierarchy is a directed acyclic graph. For
two object property nodesdp1 anddp2 ∈ N, ¬∃dp1,dp2.

PPDep(dp1,dp2) ∧ PPDep(dp2,dp1).

• Orphan Instance (OI) occurs when a change operation in-
troduces an instance with no link to a specific class. It vio-
lates the instance-closure invariant. Every instance nodei
∈ N is associated to a concept nodec∈ N. such that∀i ∈ N,
∃c. CIDep(i, c).

• Null Reference to Content set (NRC). Every instanceI
in the annotation graph should have a corresponding doc-
ument or part of document it refers in the content set.
Given GA = (Na,Ea), ∀na1 ∈ Ea. ∃na1 ∈ Cont where
Ea = (na1, αa,na2).

• Null Reference to an Ontology layer (NRO). Every ob-
ject nodena2 in the annotation graph should have a cor-
responding concept in the ontology graph. GivenGA =

(Na,Ea) andGo = (No,Eo), ∀na2 ∈ Ea. ∃na2 ∈ No where
Ea = (na1, αa,na2).

Every instance propertyαa in the annotation graph should
have a corresponding property in the ontology graph.
Given GA = (Na,Ea) and Go = (No,Eo), ∀αa ∈ Ea.

∃αa ∈ No whereEa = (na1, αa,na2).

• Addition of new Entity (AE) occurs when any entity is
added to the OCMS.

• Deletion of new Entity (DE) occurs when any entity is
removed from the OCMS.

The last two structural impacts directly correspond to the
change operations and are straightforward. We consider them
as impacts because they play a significant role during composite
change impact analysis.

5.1.2. Semantic Impacts
Semantic impacts are impacts that change the semantics (in-

terpretation) of entities in the OCMS. Whenever a structural
change occurs, it causes a change on the meaning of the tar-
get entity or dependent entities. We identify existing seman-
tic changes [8] and derived semantic impacts from the changes.
The semantic impact of an atomic change operation is defined
as:

S emImp(ACh) = {EG,ES,EMD,ELD,OPMR,OPLR,AME,ALE,UE, IE}
where:

• Entity More Described (EMD) occurs when we add pre-
viously unknown facts about an entity. An entity nodeNi

is more describedEMD(Ni) by a change operation that
transformsG = (N,E) to G′ = (N,E′) if |edges(Ni) ∈
E′| > |edges(Ni) ∈ E|. When the number of edgesE′ ∈ G′

containingNi as a subject or as an object is greater than the
number of edgesE ∈ G containingNi as a subject or as an
object, we say entityNi is more described. This means, if
there is a new edge added to a given entity, then that entity
is more described.

• Entity Less Described (ELD) occurs when we remove an
existing semantics (facts) about the entity. An entity node
Ni is less describedELD(Ni) by a change operation that
transformsG = (N,E) to G′ = (N,E′) if |edges(Ni) ∈
E′| < |edges(Ni) ∈ E|. When the number of edgesE ∈ G
containingNi as a subject or as an object is greater than the
number of edgesE′ ∈ G′ containingNi as a subject or as
an object, we say entityN1 is less described. This means,
if an existing edge is deleted from a given entity, then that
entity is less described.

• Property More Restricted (PMR) occurs when the ex-
isting semantics is more restricted. A property node
P ∈ N is more restrictedPMR(P) by a change opera-
tion that transformsG = (N,E) to G′ = (N,E′), for E =
(Ni ,domainO f,P) andE′ = (N j ,domainO f,P), if N j ⊂ Ni

or for E = (Ni , rangeO f,P) and E′ = (N j , rangeO f,P),
if N j ⊂ Ni). If the domain class(N j) of a given prop-
erty is changed to a subclass of the original class (Ni), the
property becomes more restricted. Likewise, if the range
class(N j) of a given property is changed to a subclass of the
original class (Ni), the property becomes more restricted.
A property more restricted shows a covariant property that
converts the domain or the range of a property from a gen-
eral class to a special class [46].

• Property Less Restricted (PLR) occurs when the existing
semantics is less restricted. A property nodeP ∈ N is less
restrictedPLR(P) by a change operation that transforms
G = (N,E) to G′ = (N,E′), for E = (Ni ,domainO f,P)
and E′ = (N j ,domainO f,P), if Ni ⊂ N j or for E =
(Ni , rangeO f,P) andE′ = (N j , rangeO f,P), if Ni ⊂ N j).
If the domain class(N j) of a given property is changed to
a super class of the original class (Ni), the property be-
comes less restricted. Likewise, if the range class(N j) of
a given property is changed to super class of the original

9

class (Ni), the property becomes less restricted. A property
less restricted shows a contravariant property that converts
the domain or the range of a property from a special class
to a general class [46].

• Axiom More Expanded (AME) occurs when the axiom
further extend its semantics to other entities. When a given
axiom includes more entities and allows the semantics to
apply for further entities, the axiom becomes semantically
more expanded. An axiomEi is more expandedAME(Ei)
by a change operation that transformsG = (N,E) to G′ =
(N,E′), for E = (Ni , α,N j) andE′ = (N′i , α,N j) or E′ =
(Ni , α,N′j), if N′i = Ni + Nk or N′j = N j + Nk whereNk , ∅.

• Axiom Less Expanded (ALE) occurs when the axiom fur-
ther restrict its semantics to fewer entities. When a given
axiom excludes existing entities and restricts the seman-
tics to apply for fewer entities, the axiom becomes seman-
tically less expanded or more restricted. An axiomEi is
less expandedALE(Ei) by a change operation that trans-
formsG = (N,E) to G′ = (N,E′), for E = (Ni , α,N j) and
E′ = (N′i , α,N j) or E′ = (Ni , α,N′j), if N′i = Ni − Nk or
N′j = N j − Nk whereNk , ∅.

• Entity Generalized (EG) occurs when an entity become
more general (move up in the hierarchy). Generaliza-
tion occurs for structural relationships that define a parent-
child relationship. An Entity nodeNi is generalized
EG(Ni) by a change operation that transformsG = (N,E)
to G′ = (N,E′), for E = (Ni , α,N j) andE′ = (Ni , α,N′j),
if N j ⊂ N′j whereα ∈ {subClassOf, subDataPropertyOf,
subObjectPropertyOf, instanceOf} .

• Entity Specialized (ES) occurs when an entity become
more specific (move down in the hierarchy). An Entity
nodeNi is specializedES(Ni) by a change operation that
transformsG = (N,E) to G′ = (N,E′), for E = (Ni , α,N j)
andE′ = (Ni , α,N′j), if N′j ⊂ N j whereα ∈ {subClassOf,
subDataPropertyOf, subObjectPropertyOf, instanceOf}.

• Entity Incomparable (EInc) occurs when a change on
an entity is neither generalized nor specialized it. An En-
tity node Ni becomes incomparableES(Ni) by a change
operation that transformsG = (N,E) to G′ = (N,E′),
for E = (Ni , α,N j) and E′ = (Ni , α,N′j), if (N′j 1 N j)
∧ N j 1 N′j whereα ∈ {subClassOf, subDataPropertyOf,
subObjectPropertyOf, instanceOf}.

• Unsatisfiable Entity (UE) occurs when a change on a
given entity introduces contradiction [47].

• Invalid Entity (IE) occurs when a change on a given in-
stance or instance property introduces invalid interpreta-
tion [8].

Researchers [5] [8] have categorized some semantic changes
in ontologies. In this research, we extend the semantic changes
to identify semantic impacts of change operations. However,

we customized existing ones and introduced new impacts for
applicable entities.

Semantic impacts are caused by structural changes [8]. Some
of the structural changes, which involve axioms that specify re-
lationships between concepts (subclass of, intersectionOf, dis-
jointWith, complementOf) and relations between properties and
concepts (domain, range) may cause semantic impacts.

The impact analysis process identifies one or more of the
above structural or semantic impacts of the requested change
operation. The change operation may make the dependent en-
tity an orphan entity. Two or more change operations can also
cause generalization or specialization of the dependent entities.

5.2. Individual Change Impact Analysis

Individual change impact analysis takes individual change
operations and analyses their impacts. The individual change
impact analyses the atomic changes and assigns impacts if they
satisfy the preconditions. To do this, we define all the potential
structural and semantic impacts of atomic change operations to-
gether with the affected entities and the impact preconditions
(Table 2).

If the change operation has a precondition for a given impact,
we will check if the precondition is satisfied. If the precondi-
tion is satisfied, we will take the impact and the target entity
as an impact of the change operation, otherwise ignore that im-
pact. For semantic impacts that cause unsatisfiability or incon-
sistency, the individual change operation may not be the sole
reason. In such situations, we further inspect other changeoper-
ations to explain the reason for the violation of the integrity and
to resolve the problem. If the preconditions are not satisfied, we
move to the next impact defined for the change operation and
continue the above process until we finish all the atomic change
operations contained in the complete change.

5.2.1. Impacts of Atomic Change Operations
We identified different atomic change operations and studied

their semantic and structural impacts. To discuss atomic change
impact analysis, we take frequently observed [48] change oper-
ations. The partial list of the impacts of atomic change opera-
tions and their preconditions is given in Table 1.

Analysing the semantic and the structural impacts of atomic
change operations requires a careful analysis of all possible sce-
narios. We use different cases to identify the scenarios. This
approach is time consuming, but it is a once-off task. The other
main advantage of this approach is that, it is very fine-grained
and it can be used to process the impacts of any composition of
atomic change operations. Once we define the potential impacts
of atomic change operations and the conditions at which the im-
pacts occur, the next step is to use them as an input to deter-
mine the actual impacts of change operations when an OCMS
evolves.

A general algorithm that attaches the structural and the se-
mantic impacts of change operations is given in Algorithm 3.
The algorithm takes the complete change operation, analyses
the impacts of the atomic change operations and returns the as-
sociated impacts of the change operations. Any ontology evo-

10

Table 1: Potential impacts of selected atomic change operations

No Change Operation Impact
Type

Impact (Entity) Impact Precondition

1 Add Class (c) Structural AC(c), OC(c) None
2 Add SubClass (c1, c) Structural AA (FullAxiom) None

CCR(c1), CCR (c) ∃c. CCDep(c, c1)
Semantic UC (c1) ∃c1. CCDep(c1,d) ∧ disjointClasses(c,d)

CMD(c1), CMD(c) None
3 Delete Class (c) Structural DC (c) None

Semantic UA (ai) ∃ai . CADep(ai , c)
4 Delete SubClass (c1, c) Structural DA (FullAxiom) None

OC (c1) ∃c1. CCDep(c1, c) ∧¬∃c1. CCDep(c1,d) ∧ c , d
Semantic CLD(c1), CLD (c) None

5 Add Instance (i) Structural AI(i), OI(i) None
6 Add InstanceOf (i, c) Structural AA (FullAxiom) None

Semantic II (i) ∃c1. CIDep(i,d) ∧ disjointClasses(c,d)
IMD(i), CMD(c) None

7 Delete Instance (i) Structural DI (i) None
Semantic UA (ai) ∃ai . IADep(ai , i)

8 Delete InstanceOf (i, c) Structural DA (FullAxiom) None
OI (i) ∃i. CIDep(i, c) ∧¬∃d. CIDep(i,d) ∧ c , d

Semantic ILD(i), CLD (c) None
9 Add ObjectProperty (op) Structural AOP(op) None
10 Add SubObjectProperty Structural AA (FullAxiom) None

(op1,op) OPCR(op1), OPCR(op) ∃op. PPDep(op,op1)
Semantic UOP (op1) ∃op1. PPDep(op1,oq) ∧

disjointObjectProperty(op,oq)
OPMD(op1), OPMD(op) None

11 Delete ObjectProperty
(op)

Structural DOP (op) None

Semantic UA (ai) ∃ai . PADep(ai ,op)
IIP(ip) ∃ip. PIPDep(ip,op)

12 Delete SubObjectProperty Structural DA (FullAxiom) None
(op1,op) Semantic OPLD(op1), OPLD (op) None

13 Add DataProperty (dp) Structural ADP(dp) None
14 Add SubDataProperty Structural AA (FullAxiom) None

(dp1,dp) DPCR(dp1), DPCR (dp) ∃dp. PPDep(dp,dp1)
Semantic UDP (dp1) disjointDataProperty(dp,dq) ∧ ∃dp1.

PPDep(dp1,dq)
OPMD(dp1), OPMD(dp) None

15 Delete DataProperty (dp) Structural DDP (dp) None
Semantic UA (ai) ∃ai . PADep(ai ,dp)

IIP(ip) ∃ip. PIPDep(ip,dp)
16 Delete SubDataProperty Structural DA (FullAxiom) None

(dp1,dp) Semantic OPLD(dp1), OPLD (dp) None
17 Add Disjoint Class (c1, c2) Structural AA (FullAxiom) None

Semantic UC (c1), UC(c2) ∃c. CCDep(c, c1)∧ CCDep(c, c2)
II(I) ∃i. CIDep(i, c1)∧ CIDep(i, c2)
CMD(c1),CMD(c2) None

18 Add Equivalent Class
(c1, c2)

Structural AA (FullAxiom) None

Semantic UC (c1), UC(c2) DisjointClasses(c,d) ∧ ∃c. CCDep(c1, c) ∧
CCDep(c2,d)

CMD(c1),CMD(c2) None
II(I) ∃i. CIDep(i, c1)∧ CIDep(i, c2)

11

Algorithm 3 Assign Individual Change Impacts
(CCh, Impact)

1: Input : Complete Change operation (CCh), Change im-
pacts(Impact)

2: Output: Complete Change operation with impacts
3: for each atomic change operation(ACh) in CChdo
4: if ACh is found in change impactsthen
5: assign corresponding impact to Imp
6: for each strImp in Impdo
7: if structural precondition(imp)=truethen
8: attach the affected entity to the strImp
9: attach strImp toACh

10: end if
11: end for
12: for each semImp in Impdo
13: if semantic precondition(imp)=truethen
14: attach the affected entity to the semImp
15: attach semImp toACh
16: end if
17: end for
18: end if
19: end for
20: returnCCh

lution tool that generates change operations at an atomic level
can exploit the individual change impact analysis step and can
find both the structural and the semantic impacts of the individ-
ual changes. Individual change impact analysis generates the
impacts of atomic change operations individually and givesus
crucial information about the impacts. However, when changes
are applied in a batch as a composite change operation, the im-
pact of one change operation depends on the other change op-
erations. Individual change impact analysis yield detailed im-
pacts of atomic change operations. But it does not consider the
previous or the following change operations. The impact of a
composite change operation is not a simple aggregation of the
impacts of the atomic change operations. Thus, we require a
different impact analysis strategy at the composite level.

5.3. Composite Change Impact Analysis

Composite change impact analysis focuses on analysing im-
pacts of two or more change operations when they are exe-
cuted together. Atomic change impact analysis shows only
the impacts of that specific atomic change operation. When
we implement a requested change, we often have more than
one atomic change operation to fully implement the requested
change. Composite change impact analysis considers the im-
pacts of one change operation in relation to impacts of other
preceding or following change operations. When a composite
change operation is implemented, the impacts of the composite
change may not be the same as the aggregation of the impacts
of its constituent atomic change operations. The impacts may
reduce or be transformed to other impacts. Composite change
impact analysis identifies techniques to analyse the impacts of
composite change operations. To analyse these impacts, we em-
ploy novel techniques, such as impact cancellation, impactbal-

ancing and impact transformation that exploit dependencies be-
tween individual changes and impacts. These approaches use
rules and optimizes the result by removing redundant impacts.

5.3.1. Impact Cancellation
Impact cancellation applies for two change operations. Im-

pact cancellation occurs when the impact of one operation can-
cels or overrides the impact of the other operation on a given
entity. This means, the impact of a given change operation re-
moves the impacts caused by another change operation, or one
impact subsumes the other impact. Impact cancellation occurs
between a pair of addition or a pair of deletion operations. For
example, if the impact of one change operation introduces an
Orphan Entity (OE)and a following change operation deletes
the orphan entity resulting in a structural impactDelete Entity
(DE), then the impact of the second change operation overrides
the impact of first change operation. This means, the orphan en-
tity is deleted by the second change operation. In this case,we
remove the impact of the first change operation (Orphan Entity
(OE)) because that entity is deleted.

Impact cancellation uses the following rules to identify and
cancel impacts of composite change operations.

• Rule 1. When a target entity is affected by an operation
ACh1, and if that target entity is deleted by another opera-
tion ACh2, the applicable structural and semantic impacts
of ACh1 on the target entity will be cancelled.

ForCCh= {ACh1,ACh2}, Imp : {CCh} = Imp{ACh2} if
Imp{ACh1} = strImp(x) ∪ (semImp(x)\DE(x)) ∧
imp{ACh2} = DE(x).

• Rule 2. When a change operationACh1 is executed, if it
introduces an impact (I1), but if there is another change op-
erationACh2 that changes the precondition of the impact
(I1), the impact (I1) will be cancelled.

For CCh = {ACh1,ACh2}, Imp{ACh1,ACh2} =
Imp{ACh2} if
Imp{ACh1} = OE(x) ∧ imp{ACh2} = AA(α)
whereα = (x, subClassO f, y) ∨ (x, instanceO f, y).

We further identify pairs of cancelling and cancelled impacts
for the two rules. Table 2 gives the pairs of impacts that are can-
didates for cancellation. In the first rule, if an entity is deleted,
all the structural and semantic impacts associated with it will be
removed. In the second rule, we remove orphan entities when
the following change operations add an axiom that links the en-
tity to a parent entity.

Table 2: Candidate impacts for cancellation

Rules Cancelling Impact Candidates for cancellation
Rule 1 Delete Entity(DE) All StrImp exceptDE

All SemImp
Rule 2 Axiom Added(AA) OE

A typical characteristics of cancellation is that the change op-
erations, that have cancelling impacts, have the same operation
(addition and addition or deletion and deletion), but one acts

12

on a node (e.g. class) and another on the edge (e.g. subclass)
linked to that node. The rationale behind impact cancellation is
to filter out impacts, which are subsumed by other impacts. In
composite change impact analysis, keeping the impacts of an
entity, which is totally removed or overridden by another im-
pact, is meaningless.

For example, the impact ofDelete SubClass (DeletingFile,
Deleting)andDelete Class (Deleting)is given in Table 3. The
two atomic change operations are candidates for impact can-
cellation according to Rule 1. The target classDeletingFile is
affected by the first change and is deleted by the second change
operation.

Table 3: Impact cancellation using Rule-1
No Change Operation Structural Impact Semantic Impact
1 Delete SubClassOf OC(DeletingFile) CLD(DeletingFile)

(DeletingFile,Deleting) CLD(Deleting)
2 Delete Class DC(DeletingFile) None

(DeletingFile)

After Cancellation
1 Delete SubClassOf None CLD(Deleting)

(DeletingFile, Deleting)
2 Delete Class DC(DeletingFile) None

(DeletingFile)

When we look at the two change operations, the first change
operation deletes the subClassOf axiom and introduces the
OC(DeletingFile) impact. However, the following change op-
eration deletes the classDeletingFile. The first change opera-
tion makes theDeletingFileclass an orphan class and semanti-
cally less described. The second change operation removes the
class from the ontology layer. Thus, theOC(DeletingFile)and
CLD(DeletingFile)impacts are cancelled from the first opera-
tion.

In Table 4 the first change operation introduces an orphan
classOC(GUI). However, the second operation falsifies the pre-
condition of orphan class impact by introducing an axiom that
links the orphan class toUserInterfaceclass. Thus, the newly
added axiomAA(FullAxiom), which issubClassOf(GUI, User-
Interface), overrides the orphan class impact and removes it
from the list. The impacts are reduced from 5 to 4 because
theOC(GUI) impact is removed.

Table 4: Impact cancellation using Rule-2
No Change Operation Structural Impact Semantic Impact
1 Add Class(GUI) OC(GUI) None

AC(GUI)
2 Add SubClass(GUI, AA(FullAxiom) CMD(GUI)

UserInterface) CMD(UserInterface)

After Cancellation
1 Add Class(GUI) AC(GUI) None
2 Add SubClass(GUI, AA(FullAxiom) CMD(GUI)

UserInterface) CMD(UserInterface)

5.3.2. Impact Balancing
The impacts of two change operations balance each other

when one change operation introduces an impact to an entity

and another change operation removes the impact from the en-
tity. Unlike impact cancellation, impact balancing only occurs
between an addition and a deletion operation with the same tar-
get entity (e.g. class with class and subclass with subclass). The
main difference between balancing and cancelling is that bal-
ancing always occurs either between two structural impactsor
between two semantic impacts. However, in the case of can-
celling, a structural impact cancels both structural impacts and
semantic impacts. To facilitate impact balancing, we identify
counter-impacts for the candidate impacts.

• Rule 3. When a given change operation (ACh1) affects
the target entity with an impact, and when another change
operation (ACh2) affects the same entity with a counter-
impact or vice versa, the two impacts may balance each
other. Candidate impacts for balancing is presented in Ta-
ble 5.

Imp{ACh1,ACh2} = ∅ if

(Imp{ACh1} = EMD(x) ∧ Imp{ACh2}= ELD(x)) ∨
(Imp{ACh1} = AME(x) ∧ Imp{ACh2}= ALE(x)) ∨
(Imp{ACh1} = OPLR(x) ∧ Imp{ACh2}= OPMR(x)) ∨
(Imp{ACh1} = AE(x) ∧ Imp{ACh2}= DE(x)).

Impact balancing is commutative. This means,
Imp{ACh1,ACh2} =Imp{ACh2,ACh1}.

Table 5: Candidate impacts for balancing
Impacts Counter-Impacts

Entity More Described (EMD) Entity Less Described (ELD)
Axioms More Expanded (AME) Axioms Less Expanded (ALE)
Object Property Less Restricted
(OPLR)

Object Property More Restricted
(OPMR)

Addition of new Entity (AE) Deletion of existing Entity (DE)

To explain the impact balancing process, let us take two
atomic change operations:Add SubClassOf(DeletingFile, Ac-
tivity) andDelete SubclassOf(DeletingFile, Deleting)are can-
didates for balancing. TheAdd SubClassmatchesDelete Sub-
Classand the classDeletingFileis a common entity in both op-
erations. When we view these two change operations together,
they show a change in the subclass hierarchy ofDeletingFile
from Deletingto Activity. Thus, we can say that the subclass of
an axiom is modified and we understand that the addition fol-
lowed by deletion is just a modification. DeletingFile is more
described first and less described next, thus the semantic im-
pactsCMD andCLD balance each other, and thus both of them
will be removed. TheAdd Axiomand theDelete Axiomimpacts
are also balanced, thus will be removed. However, we can see
that the classActivity is more described (CMD) and the class
Deleting is less described (CLD). This impact reflects what is
happening to the two classes and we do not balance the two
impacts because they affect different entities.

After balancing of the change operations in Table 6, we re-
move the CLD and CMD semantic impacts and the AA and AD
structural impacts. However, when two change impacts balance
each other, they introduce a high level change impact, whichis

13

Table 6: Impact balancing using Rule-3
No Change Operation Structural Impact Semantic Impact
1 Add SubClassOf AA(FullAxiom) CMD(DeletingFile)

(DeletingFile, Activity) CMD(Activity)
2 Delete SubClassOf DA(FullAxiom) CLD(DeletingFile)

(DeletingFile, Deleting) CLD(Deleting)
After balancing

1 Add SubClassOf None CMD(Activity)
(DeletingFile, Activity)

2 Delete SubClassOf None CLD(Deleting)
(DeletingFile, Deleting)

caused by composite change operations. The change operations
may introduce impacts such as specialization or generalization
of the entities, more restriction or less restriction on cardinal-
ities of properties, etc. Thus, the original change impactsare
transformed to create another change impact. In such situations,
we move to the impact transformation step.

5.3.3. Impact Transformation
When two impacts are balanced, they may introduce another

impact that is created due to the combination of the two change
operations. The balancing of two or more impacts may trans-
form existing impacts to other impacts, which are not observed
at atomic change levels. For example, in case of balancing im-
pacts, even if we remove the impacts, the operation may indi-
cate generalization or specialization in the case of operations
that alter hierarchies. Here after balancing impacts, we should
check whether we are generalizing the entity by allowing it to
go up in the hierarchy (generalization) or specializing theentity
by allowing it to go down in the hierarchy (specialization).

The major impacts introduced by impact transformation are
semantic impacts such as generalization, specialization,and in-
comparable. These impacts are created by deletion and addi-
tion of subClassOf, subPropertyOf and instanceOf axioms. For
example, when an instanceOf axiom is added to an instance
which links it to a parent more general than its current parent
and another operation deletes the instanceOf axiom of the in-
stance from its previous parent, then we consider this as a gen-
eralization of the instance as it becomes an instance of a super
class.

When two operations are candidates of balancing and if the
target involves subClassOf, subPropertyOf and instanceOfax-
ioms, then the change operations are candidates for transform-
ing impacts.

• Rule 4. When impacts of two change operations bal-
ance and if the operations are applied to subsumption
(subClass, subDataProperty, subObjectProperty and clas-
sAssertion axioms), the balancing impacts will trans-
form to generalization, specialization or incomparable
impacts. ForACh1 = AddS ubclassO f(x, y) and ACh2

=DeleteS ubclassO f(x, y′)

Imp{ACh1,ACh2} =ES(x) if ACh1 andACh2 balance and
if y ⊂ y′

Imp{ACh1,ACh2} =EG(x) if ACh1 andACh2 balance and
if y′ ⊂ y

Imp{ACh1,ACh2} =Inc(x) if ACh1 andACh2 balance and
y 1 y′ ∧ y′ 1 y

Imp{ACh1,ACh2} = Imp{ACh2,ACh1}
To further elaborate the process of transforming the impacts,

we use the following rules.

Trans f ormation=



























EG, if entity moves up in the hierarchy

ES, if entity moves down in the hierarchy

EI, otherwise

In Table 7, the first semantic impact of the second change
operation is removed due to impact balancing. As the class
is more described with the first change operation and less de-
scribed with the second change operation, it is a candidate for
impact transformation. Thus, the semantic impact of the first
change operation will be transformed to another impact and the
transformation is determined by the current location of thetar-
get entity. In this case, the semantic impact is generalization,
because the conceptDeletingFilegoes up in the hierarchy.

Table 7: Impact transformation using Rule-4
No Change Operation Structural Impact Semantic Impact
1 Add SubClassOf AA(FullAxiom) CMD(DeletingFile)

(DeletingFile, Activity) CMD(Activity)
2 Delete SubClassOf DA(FullAxiom) CLD(DeletingFile)

(DeletingFile, Deleting) CLD(Deleting)

After balancing
1 Add SubClassOf None GC(DeletingFile)

(DeletingFile, Activity)
2 Delete SubClassOf None None

(DeletingFile, Deleting) None CLD(Deleting)

Finally, all the impacts balance each other. The candidate
impacts transform to generalization of the classDeletingFile.
However, the other impacts still exist asCMD(Activity) and
CLD(Deleting). We assign the transformed impact only for the
addition operation, because the addition change operationintro-
duces the new position of the entity. After applying compos-
ite impact analysis on individual change impacts, we achieve
11.4%, 21.2% and 20.7% reduction of impacts for No-Action,
Cascade and Attach strategies respectively. This shows that
composite change impact analysis is capable of filtering redun-
dant impacts and presenting the remaining impacts precisely.

6. Optimal Strategy Selection and Implementation

Ontology evolution often involves analysis and selection of
different strategies before implementing the changes and evolv-
ing the ontology. In this section, we propose a novel ap-
proach to select an optimal strategy that implements a requested
change. We further introduce an optimization framework that
utilizes evolution strategies, severity of change impacts, deduc-
tive and incremental changes, affected statement types andthe
number of change operations.

The framework begins with identifying available implemen-
tation strategies and the impacts of the complete change oper-
ations. Each strategy is evaluated using four criteria thatserve

14

Figure 7: Framework for selecting optimal strategy

as an input for calculating cost of evolution. Severity of im-
pacts, operation types, statement types and performance are the
criteria used in the framework. The cost of evolution is calcu-
lated using quantitative measures of the criteria. According to
the nature of the OCMS, ontology engineers assign weights to
each of the criteria to show the significance of one criterionover
another.

6.1. Severity of Impacts

In the previous section we identified structural and semantic
impacts. We observed that some of these impacts are severe and
cause more problems than the others. Thus, it is important to
distinguish between the impacts based on their severity. Sever-
ity measures the degree of seriousness of a given impact. To
quantify the severity of impacts, we propose a quantitativeesti-
mation on a scale of 0 to 100. A severity value 0 is assigned to
impacts with minimum severity and is interpreted as an impact,
which does not create any problem if it occurs in the OCMS.
The value 100 refers to an impact with a high degree of severity,
which makes the OCMS inconsistent. Any value in between
indicates the degree of severity of the associated impact.

Assigning an exact value for severity of an impact is not a
trivial task. Setting severity value of impacts in a given OCMS
depends on the requirements defined by the ontology engineer
or the content manager. We use heuristics to measure the sever-
ity value of the impacts. The heuristics considers criteriasuch
as the tolerance of a given OCMS to a given impact, the amount
of time and expertise required to reduce or avoid the impact and
the semantic information we lose or gain due to a given impact.
In general, there are impacts of change operations that introduce
errors in the system unless they are resolved. There are other
impacts that cause the OCMS to introduce integrity violations
in part without affecting the whole. Other impacts only cause
the loss of some semantics.

We use the following settings of severity in this experiment.
For semantic impacts,{(EMD,15), (ELD,75), (OPMR,75), (OPLR,35),

(AME,60), (ALE,80), (EG,50), (ES,70), (UC,100), (UDDP,100), (UOP,100),

(II ,80), (IIP,80)}. For structural impacts, severity is set to{(OC,80),

(OI,75), (OPCR,90), (DPCR,90), (CCR,95), (NRC,70), (NRO,70)}. These
severity values are average severity values assigned by experts
to the OCMS discussed in the running example.

Once a severity value is assigned to structural and seman-
tic impacts, calculating the severity of impacts caused by the
change operations in a given strategy is done by defining thresh-
old, maximum and average severity values. We analyse the
severity of the impacts after the composite change impact anal-
ysis is performed.

Severity Threshold. To calculate a representative measure
of the severity of a strategy, we define a severity threshold.The
severity threshold (T) sets a severity value which serves as a cut-
off point for impacts that are not allowed to occur in a given
OCMS. If one or more impacts have a severity value greater
than the threshold value, the maximum severity value will be
taken as a representative value for that specific strategy [49]
[50] [51]. A representative severity value (S) for a strategy is
selected based on the severity of the individual impacts in the
strategy. s = {s1, s2, . . . , sk} represents the severity of the in-
dividual impacts contained in the strategy . If the individual
severity value (si), where i ∈ {1,2, . . . , k} is greater than the
threshold (T), we select the maximum severityMAX(s), oth-
erwise we calculate an average severity valueAVG(s). Note
thatk represents the number of individual impacts of a change
operation.

S =















MAX(s) if MAX(s) ≥ T

AVG(s) otherwise

For example, if a threshold is set to beT=80 and if one
strategy has severity values of impacts as{75, 15, 35}, then
S=Avg(s)= 41.6. If another strategy has severity values as{100,
15, 100}, then S=Max(s)=100.

The average severity is calculated as follows. Herefi repre-
sents the frequency ofsi

AVG(s) =

∑k
i=1 si × fi
∑k

i=1 fi
,

We follow this approach to reduce the effects of frequent but
less severe impacts on the overall estimation of severity. By
definition, all impacts above the severity threshold shouldbe
avoided by any means. Anything which is less than the thresh-
old is represented by the average severity. The higher valueof
the severity indicates a lesser desirability of the solution.

6.2. Type of Change Operation

Addition and deletion operations are used as criteria for se-
lecting an optimal strategy. If the ontology evolution favours
incremental evolution, which adds new knowledge every time
without deleting existing knowledge, the complete change oper-
ations are expected to introduce more addition operations com-
pared to deletion operations. In this case, the removal of a given
entity and the introduction of a new entity may not have the
same impact. Thus, the type of the operation is considered as
another factor to determine the optimal implementation strategy.
The addition operation is different from deletion in the follow-
ing ways. When we add a new entity, we may need to search
existing entities, but the search is specific to an entity. This
means, there may not be much time and resource wasted to add

15

the new entity in the OCMS. However, when we delete an en-
tity, we conduct dependency analysis and cascade the changeto
all dependent entities. In terms of time and resource, a deletion
operation incurs extra cost compared to the addition operation.

Whenever there is a difference of performance between ad-
dition and deletion operations, we assign a different weight to
the change operations [50] [51]. We assignW(A) for the as-
sociated weight of addition operations andW(D) for the asso-
ciated weight of deletion operations. The lesser the weightis,
the higher the desirability of the change operation. Thus, for
a given complete change operation, the weighted frequency of
addition operations and deletion operations are used. Thismea-
sure makes this parameter quantifiable and facilitates compari-
son of one strategy with another.

WF(A) =W(A) ∗ |A|

WF(D) =W(D) ∗ |D|

OT =WF(A) +WF(D)

Where:
OT= Operation Type
WF(A) is weighted frequency of Additions
WF(D) is weighted frequency of Deletions
0 ≤W(A) ≤ 1, 0≤W(D) ≤ 1 andW(A)+ W(D) = 1
|A|=number of additions and|D|= number of deletions

6.3. Statement Types

In ontologies, changing theTBox statements may affect all
theABox statements associated with it. However, changing
theABox statements does not change theTBox. From all
the empirical studies, we found that theTBox and theABox
statements are not equally important in different application do-
mains and do not have equal weight. For example, in a univer-
sity administration OCMS with more instances than concepts,
it is preferable to change theTBox statements to amend in-
consistency than theABox statements. Changing theABox
statements means changing the information of an individual
student or department in the case of university administration
OCMS. Statement type serves as a means of selecting an opti-
mal implementation strategy. This criterion corresponds to the
OWL profiles. OWL profiles distinguish between ontologies
heavily used for instance annotation (OWL-QL4) and ontolo-
gies used for logical expressions (OWL-EL5). Ontologies ad-
hering to OWL-QL are more sensitive toABox statements and
ontologies adhering to OWL-EL are more sensitive toTBox
statements.

Thus, the weight of theABox and theTBox statements
depend on the application and the preference of the ontology
engineer. We take the weighted frequency of the strategies
to measureABox andTBox. These weighted frequencies
will be used to compare complete change operations in terms
of statement types. The weight ofABox statements is given

4http://www.w3.org/TR/owl2-profiles/#OWL2 QL
5http://www.w3.org/TR/owl2-profiles/#OWL2 EL

by W(ABox) and the weight ofTBox statements is given by
W(TBox). The weight is a value between 0 and 1.

WF(ABox) =W(ABox) ∗ |ABox|

WF(TBox) =W(TBox) ∗ |TBox|

S T=WF(ABox) +WF(TBox)

Where:
S T= Statement Type
WF(ABox) is weighted frequency ofABox statements
WF(TBox) is weighted frequency ofTBox statements
0 ≤W(ABox) ≤ 1∧ 0 ≤W(TBox) ≤ 1
|ABox|= number ofABox statements,
|TBox|= number ofTBox statements

6.4. Performance of Change Operations

We measure performance using the number of atomic change
operation required to implement the change. This is done by
counting the number of atomic change operations in the com-
plete change operation. The rationale for using this criterion is
that the number of atomic change operations affects the perfor-
mance and could be used to distinguish between two available
implementation strategies.

P = |ACh|

Where:
ACh∈ CCh
P= Performance
|ACh| = number of atomic change operations
|CCh| = number of composite change operations

6.5. Cost of Evolution

Measuring the cost of evolution to select the optimal strategy
based on the impact analysis is the central process of the imple-
mentation phase. To measure the cost of evolution, we need to
evaluate all of the above criteria together. The cost of evolution
becomes important as it includes all the criteria that affect the
decision of the ontology engineer. However, the criteria and the
measures discussed above may not be equally important. An
ontology engineer may assign a higher weight for the severity
of impacts and ignore the number of change operations, or may
give more weight to the statement types and ignore additions
and deletions. Thus, we need to compare each of the strategies
individually to select the optimal strategy for the given criteria
at hand. However, a single criterion does not fully characterize
the available strategy. A comprehensive measure that takesall
the above criteria into account is important. To achieve this, we
assign a weight to each criterion. The ontology engineer sets
a weight{w1,w2,w3,w4} for all criteria based on their impor-
tance in a given OCMS. These weights are different from the
previous individual weights. The weights here measure the im-
portance of a criterion compared to the other three criteria. The
individual weights measures the weights of individual criteria
compared to its pair, Addition with Deletion andABox with
TBox.

16

cost(strategy) =
4
∑

k=1

wk ∗Crk

Where:
Crk ∈ {S, ST, OT, P}
wk ∈ {w1,w2,w3,w4}
w1 + w2 + w3 + w4 = 1 and 0≤ wk ≤ 1

This cost is used to measure the overall impact of the change
operation. This approach further allows the ontology engineer
to remove one or more criteria if that criterion is not usefulin
that OCMS. This can be done by assigning a value zero for the
weight of the corresponding criterion.

6.6. Optimal Strategy Selection

The optimal strategy selection exploits the cost of evolution
for finding the optimal implementation strategy. The selection
of the best strategy is based on the selection of a strategy with
a minimum cost.

BestS trategy= MIN{Cost(S trategy1), . . . ,Cost(S trategyn)}

A strategy with a minimum cost implies that the strategy will
evolve the OCMS with minimum severity of impacts, minimum
number of change operations, minimum number of preferred
statement types and operation types.

7. Illustration and Validation

Continuing from Section 3.1, we identified 15 change sce-
narios that cover changes in the content and changes in the on-
tologies. Based on the frequency of the change, their cascaded
impacts, the operations involved and the number of ontologies
affected, we ranked the change scenarios. For the purpose of
this discussion, we use one of the change operations and present
the impact analysis process.

For the purpose of the evaluation, the ontology layer contains
80 classes, 8 data properties, 10 object properties and morethan
500 axioms. The annotation layer contains more than 1000 an-
notations and the content layer contains around 1000 HTML
and XML documents.

The selected change operation isDelete Class (Activity).
When we deleteActivity, we followed the proposed strategies in
Section 4.2 and identified that the requested change operation
can be implemented in five different strategies each yielding dif-
ferent set of atomic change operations. The five strategies are
Attach-All, Attach-TBox, Cascade-All, Cascade-TBox and No-
Action. We do not provide the detailed list of the change oper-
ations, however the number of change operations generated to
implement the change in each strategy and the impacts of the
change operations in each strategies are presented in Figure 8.

Figure 8 provides all the structural and semantic impacts of
the change operations in each strategy. The change impact anal-
ysis method provides the detailed impacts of the change opera-
tions of each strategy. As a comparison, from the structuralim-
pact point of view, there are more axioms deleted in the two Cas-

cade strategies (69) and the No-Action strategy deletes 18 ax-
ioms. The least is the Attach-All strategy with 5 axioms deleted
followed by the Attach-TBox strategy which deletes 6 axioms.
Another significant information is that both Cascade strategies
delete 29 classes as a result of cascading. In all other strategies,
only the intended class is removed. These and other analysis
values show that in terms of structural impact, the Attach-All
strategy is preferable because it has the minimum number of
structural impacts. In light of the semantic impacts, the two
Attach strategies yield the same result except on the instances.

In the Attach-All strategy there is one instance generalized
and two instances less described. In Attach-TBox strategy there
is no instance generalized, however 3 instances less described.
This is due to the fact that the Attach-All strategy attachesall
the instances to the parent class and results in generalization.
In the Attach-TBox strategy, the instance is left without any
further action, thus becomes less described as one of its pre-
vious parent is removed. In the case Cascade-All and Cascade-
TBox strategies, there are more classes less described, instances
less described and object properties less described. In gen-
eral, the analysis in terms of semantic impact shows that the
Attach-TBox strategy yields the minimum semantic impact and
Cascade-TBox yields the worst semantic impact.

In this situation, making a comparison and a selection be-
tween the different impacts is difficult and time consuming.
Moreover, the ontology engineer needs to compare between the
different impacts. For example, class less described and orphan
class may not be considered equally. An optimal strategy se-
lection is the next stage to compare the different strategies in a
further detail.

Once the change impact analysis is implemented, we further
analyse these impacts following the optimal strategy selection.
For the purpose of the case study we use two scenarios. The
first scenario assigns equal weight to each of the four criteria
(severity, statement type, operation type and performance) and
the second assigns different weights. However, the system al-
lows the ontology engineer to assign different weights to each
criterion based on the nature of the OCMS at hand.

Scenario 1.This scenario assigns equal weight for each cri-
terion. This means each criterion is given a weight of 0.25. The
results of the four criteria are presented in Figure 9. The first
graph shows the number of addition, deletion and total number
of change operations. The Attach-All and Attach-TBox strate-
gies have both addition and deletion operations. The Attach-All
strategy has 13 additions and 19 deletions and the Attach-TBox
strategy has 12 additions and 19 deletions. The No-Action strat-
egy gives the least number of change operations which is only
19 deletions. But when we look at the Cascade strategies, both
of them have large number of deletions. The results in terms
of statement types show that the No-Action strategy yields the
minimum number of changes on ABox and TBox statements.
The largest number of TBox and ABox changes is observed on
Cascade-All strategy because this strategy deletes all thedepen-
dent classes and instances. Attach-All and Attach-TBox strate-
gies yield a similar result on TBox changes. The Attach-All
strategy has one more ABox statement than the Attach-TBox
strategy.

17

0

5

10

15

20

25

30

35

40

Attach All
 Attach Tbox
 Cascade All
 Cascade

Tbox

NO Action

2
 2

28
 28

14

12
 12

0
 0
 0
1
 0
 0
 0
 0

2
 3

26

37

1
 1

24
 24

1

CLD

CG

IG

ILD

OPLD

0

10

20

30

40

50

60

70

Attach All
 Attach Tbox
 Cascade All
 Cascade

Tbox

NO Action

5
 6

69
 69

18

1
 1

29
 29

1
0
 0

8

0
 0
0
 0
 0
 0

12

0
 1
 0

8

1

AD

CD

ID

OC

OI

Structural Impacts
 Semantic Impacts

Figure 8: Structural and semantic impacts

Figure 9: Cost of Evolution: scenario 1

If we look at the severity of the semantic and structural im-
pacts based on the severity specification set to this case study,
the Attach-All and the Cascade-All impacts show less severe
impacts and all the rest indicate the presence of severe impacts
that violate the constraints set by the ontology engineer. Fi-
nally, the cost of evolution takes all the four criteria intocon-
sideration by assigning similar weight to each criterion. The
analysis result shows that the Attach-All strategy yields the min-
imum cost of evolution which makes it the best strategy to im-
plement the change. The No-Action strategy ranks second and
the Attach-TBox strategy ranks third. The Cascade-All strategy
ranks fourth and the Cascade-TBox strategy ranks last.

Scenario 2.This scenario assigns different weights for each
criterion for the purpose of the experiment. The weights for
S,S T,OTandPare 0.5, 0.3, 0.1, 0.1 respectively.

In this scenario, the weight assigned to the four criteria isdif-
ferent. Here we give more weight for the severity (0.5) and the
statement types (0.3). This means, we want to avoid strategies

that cause severe impacts than strategies that affect the state-
ment types. The operation type and the performance are given
equal weight. The results in Figure 10 shows the best strategy
with minimum cost is Attach-All strategy (35.8). The second
best strategy is No-Action strategy which yields 56.25 and the
third one is Cascade-All strategy (58.4).

Scenario 1 and scenario 2 selected the Attach-All strategy as
the best strategy and the No-Action strategy as the second best
strategy. However, if we consider the rank, we can see that the
third and the fourth strategies are swapped. Due to the increase
of the weight of the severity criteria, the cost of evolutionin-
creases by some factor in all strategies used in scenario 2.

The change impact analysis method allows the ontology engi-
neer to set his/her own weight depending on the requirement at
hand. It further allows the user to evaluate the strategies using
the individual criterion separately. One important feature of the
approach is, it provides customizable change impact analysis
by allowing users to assign severity values for the impacts,and

18

weights for the criteria. By doing so, they can give necessary
emphasis to impacts that are severe in a given OCMS and rank
the criteria according to their importance in a given OCMS.

0

20

40

60

80

100

Attach

All

Attach

Tbox

Cascade

All

Cascade

Tbox

NO

Action

35.38

60.12
 58.4

81.16

56.25

Cost

Cost

Figure 10: Cost of evolution: scenario 2

8. Evaluation

Our evaluation focuses on answering the following ques-
tions.

• Does the change impact analysis identify the impacts of
the change operations accurately?

• Does the proposed method identify the optimal strategy
accurately?

• Does the proposed method improve evolution of an
OCMS?

• Does the change impact analysis analyse the impacts ade-
quately?

For the purpose of the evaluation, we include two ontology
evolution experts, one general ontology user and one novice
user. All the users were given sufficient time to evaluate the
change impact analysis tool and compare the results with pro-
tege and NeON ontology editors. For the purpose of evaluating
the precision of the change impact analysis process, we used10
frequent change operations taken from three different OCMS
(Table 8). The users implement the changes using a prototype
developed for change impact analysis and optimal strategy se-
lection. An accurate change impact analysis should satisfythe
following criteria. First, it should identify the impacts that ac-
tually occur in the OCMS and second it should identify the im-
pacted entity correctly. When both criteria are satisfied, wecon-
sider the process accurate.

The First OCMS is the one presented in the case study. The
second and the third OCMS cover a university administration
domain and a database systems domain. These change oper-
ations represent frequent scenarios and are used to evolve the
ontology using the applicable strategies. We implemented the
change operations and measure the precision of the change im-
pact analysis method. The result shows that the change impact
analysis validated with 100% accuracy in all of the cases.

The result shows that the change impact analysis gives satis-
factory level of precision for implementing different change op-
erations over different case studies. As the evaluation involves

Table 8: Identification of the first three optimal strategies

Change Operation
Optimal Strategy Identified?
1st 2nd 3rd

Delete Class(Student)
√ √ √

Add DisjointClass(Staff, Student)
√

- -
Delete Instance(John)

√ √
-

Delete Class (Table)
√ √ √

Add SubClassOf(Schema, RelationSchema)
√

- -
Delete ObjectProperty(hasSchema)

√ √ √

Add Class (GUI)
√ √

-
Delete DataProperty (hasAverageSize)

√ √ √

Delete Instance(id-123.xml
√ √

-
Add Instance (id-1234/xml, File)

√ √
-

different case studies, it shows a promising result, which gives
a justification for the applicability of the proposed solution in
different domain areas.

8.1. Precision of Optimal Strategy Selection
We evaluate whether the proposed method achieves its ob-

jective by evaluating optimal strategy selection. The evaluation
mainly focuses on checking whether the system identifies the
optimal solution. We select the optimal solution accordingto
the weight of the criteria set by the user of the OCMS. For the
10 change scenarios used above, the prototype ranks the strate-
gies based on their cost of evolution as first optimal, second
optimal, etc. We evaluate whether the proposed change opera-
tion is the optimal solution by manually evaluating the change
operations.

Table 8 shows the evaluation result. The (
√

) mark indicates
that the system identified the optimal strategy correctly and the
(−) represents the absence of additional strategy. This means
the change is implemented using the available strategy and does
not have any other way of implementing the change. From the
result, it is possible to conclude that the optimal strategyse-
lection identifies the optimal strategy for all the implemented
changes.

8.2. Usefulness of the System
To evaluate the usefulness of the change impact analysis

(CIA) framework and the change impact optimization (CIO)
framework at the end of each scenario, we distributed a ques-
tionnaire to the participants. The questionnaire aims at answer-
ing whether the change impact analysis is useful and suitable
for selecting optimal strategy to evolve an OCMS (Table 9).
The separate presentation of the impacts of individual and com-
posite change operations is vital to understand the impactsof
the changes and to conduct what-if analysis.

Table 9: Users feedback on the optimal strategy selection
Questions Average response
CIA identified all occurring impacts 4.33
CIA identified all affected entities 4.67
CIA helps me understand the impacts 4.67
CIA highlights Integrity problems 4.33
The cost estimation is suitable to measure impacts 4.0
I understand what I am doing at each step and under-
stand the effects of my actions during evolution

4.0

CIO helps me find optimal strategy 3.33
Strongly Agree= 5, Agree= 4, Slightly Agree=3
Slightly disagree= 2, disagree= 1, Strongly disagree=0

The users further provide the following feedback on the us-
ability of the system.

19

• Providing a better interface to allow users to compare all
the strategies in parallel will further enhance the selection
of the optimal strategy.

• The prototype needs to be customizable. This is related to
setting weights of criteria and customizing the severity of
the impacts.

The result shows that the users strongly agree or agree on the
adequacy of the solution. In both cases the respondents agree on
the occurrence of the impacts. The result from the questionnaire
shows that the change impact analysis method identifies the im-
pacts and the affected entities. This helps the user to understand
the impacts of the changes they request before they implement
them permanently. Whenever there are integrity problems, the
analysis highlights the problems and the change operationsre-
sponsible for the violation. In general, the responses fromthe
users are encouraging. The users agree that the optimal strat-
egy selection is helpful to understand what is happening when
a change is implemented and is useful to select the optimal strat-
egy.

Some of these users; however, focused on the presentation
of the impacts (user interface issue) which is not the primary
concern of the evaluation. Despite the effort made to avoid the
bias arising from the user interface, some of the users pointed
out that the presentation of the optimal strategy has affected
their response. The responses for the open-ended questionsre-
inforce the need for customizability of severity of impactsand
the cost of evolution. A comparative presentation of the alterna-
tive strategies in a single view is an important aspect. In general,
the system provides us with an encouraging result in relation to
selecting an optimal strategy.

8.3. Comparison of the System with other Systems

For further validation of the results, we compare our ap-
proach with the evolution approach used in Protege and NeON
ontology editors. The comparison results are summarized in
Table 10. The results show that our approach is complemen-
tary to existing tools and is capable of achieving transparency,
reversibility and optimal implementation.

9. Conclusion

Changes in ontologies and OCMS cause different impacts on
entities and dependent systems. It is difficult to manually iden-
tify the structural and semantic impacts of these changes. In
this paper we present a change impact analysis method which
analyses the structural and semantic impacts of atomic and com-
posite change operations. The analysis includes identifying un-
satisfiable entities and invalid instances. We further presented a
novel approach to estimate the cost of evolving an OCMS using
four crucial criteria. The optimal strategy selection is flexible
and customizable to fit the specific requirements of the ontology
engineers and corresponds to the OWL profiles.

The proposed approach benefits users by enabling them to
view the actual impacts of change operations and the causes of
the impacts. It further enables them to compare implementation

strategies in terms of impact. It allows transparent evolution by
providing the impacts of changes as individual and/or compos-
ite operations. This approach assists the user to conduct what-
if analysis before permanently implement a requested change
operation. The system is able to compare and select an opti-
mal strategy that ensures consistent evolution whenever there
is an alternative implementation strategy. It uses criteria such
as severity of impacts, number of change operations, statement
types and operation types.

The integration of our change impact analysis tool with ex-
isting ontology editors and development of a plug-in and the
integration of additional criteria for optimal strategy selection
such as impacts on inferred axioms is the future direction of
this research.

Acknowledgment. This material is based upon works sup-
ported by the Science Foundation Ireland under Grant No.
07/CE/I1142 as part of the Centre for Next Generation Local-
isation (www.cngl.ie) at Dublin City University (DCU).

References

[1] H.-C. Chu, M.-Y. Chen, Y.-M. Chen, A semantic-based approach to con-
tent abstraction and annotation for content management, Expert Syst.
Appl. 36 (2009) 2360–2376.

[2] T. R. Gruber, A translation approach to portable ontology specifications,
Knowledge Acquisition 5 (1993) 199–220.

[3] N. F. Noy, M. Klein, Ontology evolution: Not the same as schema evolu-
tion., Knowledge and Information Systems. 6 (2004) 328–440.

[4] V. Benjamins, J. Contreras, O. Corcho, A. Gomez-perez, Sixchallenges
for the semantic web., Cristani, M(ED): KR2002 Workshop on the Se-
mantic Web, Toulouse, France. (2002).

[5] L. Stojanovic, Methods and tools for ontology evolution., Ph.D. thesis,
University of Karlsruhe, 2004.

[6] V. Gruhn, C. Pahl, M. Wever, Data model evolution as basis of business
process management, in: Proceedings of the 14th International Confer-
ence on Object-Oriented and Entity-Relationship Modelling, OOER ’95,
Springer-Verlag, London, UK, 1995, pp. 270–281.

[7] G. Konstantinidis, G. Flouris, G. Antoniou, V. Christophides, A formal
approach for rdf/s ontology evolution, in: Proceedings of the 2008 confer-
ence on ECAI 2008: 18th European Conference on Artificial Intelligence,
IOS Press, Amsterdam, The Netherlands, The Netherlands, 2008, pp. 70–
74.

[8] L. Qin, V. Atluri, Evaluating the validity of data instances against ontol-
ogy evolution over the semantic web., Information and Software Technol-
ogy. 51 (2009) 83–97.

[9] A. Khattak, Z. Pervez, S. Lee, Y.-K. Lee, After effects ofontology evolu-
tion, in: Future Information Technology (FutureTech), 20105th Interna-
tional Conference on, pp. 1 –6.

[10] M. Klein, Change Management for Distributed Ontologies, Ph.D. thesis,
Vrije Universiteit Amsterdam, 2004.

[11] P. Plessers, O. De Troyer, Ontology change detection using a version log,
in: Proceedings of the 4th international conference on The Semantic Web,
ISWC’05, Springer-Verlag, Berlin, Heidelberg, 2005, pp. 578–592.

[12] Y. Abgaz, M. Javed, C. Pahl, Empirical analysis of impactsof instance-
driven changes in ontologies., in: On the Move to MeaningfulInternet
Systems: OTM 2010 Workshops, Lecture Notes in Computer Science,
2010.

[13] Y. Abgaz, M. Javed, C. Pahl, A framework for change impact analysis of
ontology-driven content-based systems., in: On the Move to Meaningful
Internet Systems: OTM 2011 Workshops, Lecture Notes in Computer
Science, 2011.

[14] Y. Abgaz, M. Javed, C. Pahl, Dependency analysis in ontology-driven
content-based systems, in: L. Rutkowski, M. Korytkowski, R.Scherer,
R. Tadeusiewicz, L. Zadeh, J. Zurada (Eds.), Artificial Intelligence and
Soft Computing, volume 7268 ofLecture Notes in Computer Science,
2012, pp. 3–12.

20

Table 10: Comparison of impacts of different implementation strategies
Criteria Protege Neon Ours
Structural Impact does not show details of struc-

tural impact
shows structural changes shows changes, impacts, impacted entities

and gives explanation
Semantic Impact does not show semantic impact

before implementation
does not show semantic impact
before implementation

shows impacts, impacted entities and gives
explanation

Transparency user don’t know which entities
are affected before the change

structural impacts are transpar-
ent but not semantic impacts

users are able to see detailed impacts of
atomic or composite changes (how and why)

Implementation strategy Delete target entity and delete
entity and its reference

allow composition by adding or
removing atomic changes

allows Attach-All, Cascade, No-Action for
TBox and ABox whenever applicable

Optimal strategy suggestion Not available Not Available compares and shows the optimal strategy
Reversibility provides undo and redo provides undo and redo provides undo and redo

[15] Y. Abgaz, M. Javed, C. Pahl, Analyzing impacts of change operations in
evolving ontologies, in: ISWC Workshops: Joint Workshop on Knowl-
edge Evolution and Ontology Dynamics (EvoDyn), 12th November, 2012,
Boston, USA.

[16] Y. Abgaz, Change Impact Analysis for Evolving Ontology-based Content
Management., Ph.D. thesis, School of Computing, Dublin City University,
2013.

[17] L. Stojanovic, N. Stojanovic, S. Handschuh, Evolutionof the metadata
in the ontology-based knowledge management systems, in: Proceedings
of the 1st German Workshop on on Experience Management: Sharing
Experiences about the Sharing of Experience, pp. 65–77.

[18] N. F. Noy, A. Chugh, W. Liu, M. A. Musen, A framework for ontology
evolution in collaborative environments, in: 5th International Semantic
Web Conference, Springer-LNCS, 2006, pp. 544–558.

[19] P. Plessers, O. De Troyer, S. Casteleyn, Understandingontology evolu-
tion: A change detection approach, Web Semant. 5 (2007) 39–49.

[20] G. Flouris, D. Plexousakis, Handling ontology change:Survey and pro-
posal for a future research direction, Artificial Intelligence (2005) 1–55.

[21] G. Flouris, D. Plexousakis, G. Antoniou, A classification of ontology
change., Poster Proceedings of the 3rd Italian Semantic Web Workshop,
Semantic Web Applications and Perspectives(SWAP-2006) (2006).

[22] N. F. Noy, M. A. Musen, Promptdiff: A fixed-point algorithm for com-
paring ontology versions., in: AAAI/IAAI’2002, pp. 744–750.

[23] T. Tudorache, N. F. Noy, S. Tu, M. A. Musen, Supporting collaborative
ontology development in protege, in: Proceedings of the 7th International
Conference on The Semantic Web, ISWC ’08, Springer-Verlag, Berlin,
Heidelberg, 2008, pp. 17–32.

[24] T. Redmond, M. Smith, N. Drummond, T. Tudorache, Managing change:
An ontology version control system, in: In OWL: Experiences and Direc-
tions, 5th Intl. Workshop, OWLED 2008.

[25] T. Redmond, N. Noy, Computing the changes between ontologies,
in: Workshop on Knowledge Evolution and Ontology Dynamics, ISWC
2011.

[26] E. Jiḿenez Ruiz, B. C. Grau, I. Horrocks, R. Berlanga, Supporting con-
current ontology development: Framework, algorithms and tool, Data
Knowl. Eng. 70 (2011) 146–164.

[27] E. J. Ruiz, B. C. Grau, I. Horrocks, R. Berlanga, Building ontologies col-
laboratively using contentcvs, in: Proceedings of the 22ndInternational
Workshop on Description Logics (DL 2009).

[28] M. Hartung, A. Gross, E. Rahm, CODEX: Exploration of semantic
changes between ontology versions, Bioinformatics 26 (2012) 895–896.

[29] L. Zhang, S. Xia, Y. Zhou, Z. Xia, User defined ontology change and its
optimization, in: Control and Decision Conference, 2008. CCDC 2008.
Chinese, pp. 3586 –3590.

[30] V. Uren, P. Cimiano, J. Iria, S. Handschuh, M. Vargas-Vera,
E. Motta, F. Ciravegna, Semantic annotation for knowledge manage-
ment:requirements and survey of the state of the art., Web Semantics:
Science, Services and Agents on World Wide Web. 4 (2006) 14–28.

[31] C. Pahl, M. Javed, Y. Abgaz, Utilising ontology-based modelling for
learning content management, in: Proceedings of World Conference
on Educational Multimedia, Hypermedia and Telecommunications2010,
AACE, Toronto, Canada, 2010, pp. 1274–1279.

[32] M. Şah, V. Wade, Automatic metadata extraction from multilingual en-
terprise content, in: Proceedings of the 19th ACM international confer-
ence on Information and knowledge management, CIKM ’10, ACM, New
York, NY, USA, 2010, pp. 1665–1668.

[33] P. Ceravolo, E. Damiani, M. Viviani, Bottom-up extraction and trust-
based refinement of ontology metadata, IEEE Transactions on Knowledge
and Data Engineering 19 (2007) 149 –163.

[34] L. Baresi, R. Heckel, Tutorial introduction to graph transformation: A
software engineering perspective, in: Proceedings of the First Interna-
tional Conference on Graph Transformation, ICGT ’02, Springer-Verlag,
London, UK, 2002, pp. 402–429.

[35] R. Heckel, Graph transformation in a nutshell, Electronic Notes in Theo-
retical Computer Science 148 (2006) 187–198.

[36] J. Trinkunas, O. Vasilecas, A graph oriented model for ontology transfor-
mation into conceptual data model, Technology 36 (2007) 126–132.

[37] V. Bönstr̈om, A. Hinze, H. Schweppe, Storing rdf as a graph, in: Proceed-
ings of the First Conference on Latin American Web Congress, LA-WEB
’03, IEEE Computer Society, Washington, DC, USA, 2003, pp. 27–36.

[38] H. Zhang, Y.-F. Li, H. B. K. Tan, Measuring design complexity of seman-
tic web ontologies, J. Syst. Softw. 83 (2010) 803–814.

[39] R. Palma, P. Haase, O. Corcho, A. Gmez-prez, Change representation for
owl 2 ontologies, in: Proceedings of the sixth international workshop on
OWL: Experiences and Directions (OWLED).

[40] M. Lee, A. J. Offutt, R. T. Alexander, Algorithmic analysis of the impacts
of changes to object-oriented software, in: Proceedings ofthe Technology
of Object-Oriented Languages and Systems (TOOLS 34’00), TOOLS ’00,
IEEE Computer Society, Washington, DC, USA, 2000, pp. 61–70.

[41] R. S. Arnold, Software Change Impact Analysis, IEEE Computer Society
Press, Los Alamitos, CA, USA, 1996.

[42] L. Cox, D. Harry, D. Skipper, H. S. Delugach, Dependencyanalysis using
conceptual graphs, in: Proceedings of the 9th International Conference
on Conceptual Structures, ICCS 2001, Springer, 2001.

[43] R. Volz, D. Oberle, S. Staab, B. Motik, Kaon server - a semantic web
management system, in: Alternate Track Proceedings of the Twelfth Inter-
national World Wide Web Conference, WWW2003, Budapest, Hungary,
20-24 May 2003, ACM, 2003.

[44] H. Knublauch, R. Fergerson, N. Noy, M. Musen, The protg owl plu-
gin: An open development environment for semantic web applications,
in: S. McIlraith, D. Plexousakis, F. van Harmelen (Eds.), TheSemantic
Web ISWC 2004, volume 3298 ofLecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2004, pp. 229–243.

[45] M. O. Hassan, L. Deruelle, H. Basson, A knowledge-basedsystem for
change impact analysis on software architecture, in: Research Challenges
in Information Science (RCIS), 2010 Fourth International Conference on,
pp. 545 –556.

[46] G. Castagna, Covariance and contravariance: conflict without a cause,
ACM Transactions on Programming Languages and Systems 17 (1995)
431–447.

[47] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-
Schneider (Eds.), The Description Logic Handbook: Theory,Implementa-
tion, and Applications, Cambridge University Press, New York, NY, USA,
2003.

[48] R. S. Goncalves, B. Parsia, U. Sattler, Analysing the evolution of the nci
thesaurus, in: Proceedings of the 2011 24th International Symposium on
Computer-Based Medical Systems, CBMS ’11, IEEE Computer Society,
Washington, DC, USA, 2011, pp. 1–6.

[49] J. L. Johnson, Probability and Statistics for Computer Science, John Wi-
ley & Sons, Hoboken, 2011.

[50] K. S. Trivedi, Probability and Statistics with Reliability, Queuing and
Computer Science Applications, John Wiley and Sons Ltd., Chichester,
UK, 2nd edition edition, 2002.

[51] J. Sacks, W. Welch, T. Mitchell, H. Wynn, Design and Analysis of Com-
puter Experiments, Statistical science 4 (1989) 409–423.

21

	Introduction
	Related Work
	OCMS Principles
	Running Example
	Graph-based Representation of OCMS
	The Change Impact Analysis Framework

	Change Request Capturing and Representation
	Dependency Analysis for Change Representation
	Evolution Strategies

	Change Impact Analysis Process
	Impacts of Change Operations
	Individual Change Impact Analysis
	Composite Change Impact Analysis

	Optimal Strategy Selection and Implementation
	Severity of Impacts
	Type of Change Operation
	Statement Types
	Performance of Change Operations
	Cost of Evolution
	Optimal Strategy Selection

	Illustration and Validation
	Evaluation
	Precision of Optimal Strategy Selection
	Usefulness of the System
	Comparison of the System with other Systems

	Conclusion

