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Abstract. The recent outburst of context-dependent knowledge on the Semantic Web (SW) has led to the realization of the
importance of the quads in the SW community. Quads, which extend a standard RDF triple, by adding a new parameter of
the ‘context’ of an RDF triple, thus informs a reasoner to distinguish between the knowledge in various contexts. Although
this distinction separates the triples in an RDF graph into various contexts, and allows the reasoning to be decoupled across
various contexts, bridge rules need to be provided for inter-operating the knowledge across these contexts. We call a set of quads
together with the bridge rules, a quad-system. In this paper, we discuss the problem of query answering over quad-systems with
expressive bridge rules using a contextualized OWL-Horst semantics. We present various decidable classes of quad-systems on
which query answering can be done using forward reasoning. Besides undecidability of the most general case, both data and
combined complexity of query entailment has been established for the various classes derived.
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1. Introduction

One of the major recent changes in the semantic web
community is the transformation from a triple to a
quad as its primary knowledge carrier. This change,
primarily brought by the realization of the impor-
tance of contextual approach to knowledge representa-
tion [1], has resulted in more and more triple stores be-
coming quad stores. Some of the popular quad-stores

1The work was done as part of the research project, Contextual-
ized Knowledge Repositores (CKR) for the Semantic Web, funded
by FBK-IRST, Trento, Italy.
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are 4store1, Openlink Virtuoso 2, and some of the cur-
rent popular triple stores like Sesame3, Allegrograph4

internally keep track of the context by storing arrays of
four names (c, s, p, o) (further denoted as c : (s, p, o)),
where c is a URI that stands for the context of the triple
(s, p, o). Some of the recent initiatives in this direction
have also extended existing formats like N-Triples to
N-Quads. The latest Billion triples challenge datasets
(BTC 2011 and 2012) have been both released in the
N-Quads format.

1http://4store.org
2http://virtuoso.openlinksw.com/rdf-quad-store/
3http://www.openrdf.org/
4http://www.franz.com/agraph/allegrograph/
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One of the main benefits of quads over triples are
that they allow users to specify various attributes of
meta-knowledge that further qualify knowledge [2],
and also allow users to query for this meta knowl-
edge [3]. Examples of these attributes, which are also
called context dimensions [4], are provenance, cre-
ator, intended user, creation time, validity time, geo-
location, and topic. Having defined various contexts
in which triples are dispersed, one can declare in a
meta-context mc, statements such as mc : (c1, creator,
John), mc : (c1, expiryTime, “jun-2013”) that talk
about the knowledge in context c1, in this case its cre-
ator and expiry time. Another benefit of such a con-
textualized approach is that it opens possibilities of in-
teresting ways for querying a contextualized knowl-
edge base. For instance, if context c1 contains knowl-
edge about football world cup 2010 and context c2
about football euro cup 2012. Then the query “who
beat spain in both euro cup 2012 and world cup 2010”
can be formalized as the conjunctive query:

c1: (x, beat,Spain) ∧ c2: (x, beat,Spain),

where x is a variable. As the knowledge can be sep-
arated context wise and simultaneously be fed to sep-
arate reasoning engines, this approach not only in-
creases efficiency and scalability, but also prevents
reasoning inconsistencies in knowledge, especially
in those circumstances, when the knowledge is de-
rived from automated extraction/integration processes
from heterogeneous sources. Examples of such inter-
contextual inconsistencies are {c1: (a, owl:sameAs,
b), c2: (a, owl:differentFrom, b)}, and {c1: (C,
owl:disjointWith, D), c1: (a, rdf:type, C),
c2: (a, rdf:type, D)}. Note that in the above ex-
amples, knowledge in each context when considered
separately is consistent. Although current reasoning
engines like Sesame, 4store implicitly/explicitly sup-
port contexts, they do not do separate the triples in
different contexts during the reasoning process, but
runs reasoning procedures on the union of the triples
in all the contexts. Whereas in our approach, knowl-
edge in each context is treated separately during rea-
soning, and bridge rules like in DDL [5] are provided
for enabling inter-operability of reasoning in different
contexts. Such rules are primarily of the form:

c : φ→ c′ : φ′

where φ, φ′ are concepts/roles, c, c′ are contexts. The
bridge rules we consider, in this work, are an exten-
sion of the bridge rules in DDL [5] and lifting rules

by McCarthy [7], in terms of expressivity, as we allow
conjunctions and existential quantifiers in them.

In this work, we study contextual reasoning and
query answering on contextualized RDF/OWL knowl-
edge. We provide a basic semantics for contextual rea-
soning based on which we provide procedures for con-
junctive query answering. For query answering, we use
the notion of a distributed chase, which is an exten-
sion of a standard chase [17,18] that is widely used
in databases and KR for the same. As far as seman-
tics for reasoning is concerned, we adopt the approach
given in works such as Distributed Description Log-
ics [5], E-connections [19], and two-dimensional logic
of contexts [20], which is to use a set of interpretation
structures as a model for contextualized knowledge. In
this way, knowledge in each context is separately inter-
preted to a different interpretation structure. The main
contributions of this work are:

1. Adopting the approaches in the existing works
mentioned above, we extend the standard OWL-
Horst semantics to a context-based semantics
that can be used for reasoning over contextual-
ized RDF/OWL knowledge.

2. Studying conjunctive query answering over quad-
systems, we show that it is undecidable for the
most general class of quad-systems called unre-
stricted quad-systems.

3. We propose a decidable class of unrestricted
quad-systems called safe quad-systems, for which
we give both data and combined complexities of
conjunctive query entailment. We also present
an algorithm to decide whether an input quad-
system is safe or not.

4. We further derive less expressive Horn-based
fragments, for which we give both data and com-
bined complexity results.

The paper is structured as follows. In section 2, we for-
malize the idea of contextualized quad-systems, giv-
ing various definitions and notations for setting the
background. In section 3, we formalize the problem of
query answering on quad-systems, define notions such
as distributed chase that is further used for query an-
swering, and give the undecidability results of query
entailment on unrestricted quad-systems. In section 4,
we present safe quad-systems and its properties. In
section 5, the Horn based quad-systems. We provide a
detailed discussion to other relevant related works in
section 6, and conclude in section 7.
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2. Contextualized Quad-Systems

Let U be the set of URIs, B the set of blank nodes, and
L the set of literals. The set C = U∪B∪L are called
the set of (RDF) constants. Any (s, p, o) ∈ C×C×C
is called a generalized RDF triple (from now on, just
triple). A graph is defined as a set of triples. A Quad
is a tuple of the form c : (s, p, o), where (s, p, o) is a
triple and c is a URI, called the context identifier that
denotes the context of the RDF triple. Let X be the set
of variables, any element of the set Cx = X ∪C is a
term. Any (s, p, o) ∈ Cx ×Cx ×Cx is called a triple
pattern, and an expression of the form c : (s, p, o),
where (s, p, o) is a triple pattern, c a context iden-
tifier, is called a quad pattern. A quad-graph is de-
fined as a set of quads. For any quad-graph Q and
any context identifier c, we denote by graphQ(c) the
set {(s, p, o)|c : (s, p, o) ∈ Q}. We denote by QC the
quad-graph whose set of context identifiers is C. For
the sake of enabling interoperability between knowl-
edge in different contexts, special rules called Bridge
rules have to be provided:

Bridge rules (BRs) Formally, a BR is of the form:

∀~x∀~z [c1: t1(~x, ~z) ∧ ... ∧ cn: tn(~x, ~z)

→ ∃~y c′1: t′1(~x, ~y) ∧ ... ∧ c′m: t′m(~x, ~y)] (1)

where c1, ..., cn, c′1, ..., c
′
m are context identifiers, ~x, ~y, ~z

are vectors of variables, t1(~x, ~z), ..., tn(~x, ~z) are
triple patterns whose set of variables are from ~x
and ~z, t′1(~x, ~y), ..., t′m(~x, ~y) are triple patterns whose
set of variables are from ~x and ~y. For any BR, r,
of the form (1), we use the notation body(r) =
{c1: t1(~x, ~z), ..., cn: tn(~x, ~z)}, and head(r) = {c′1:
t′1(~x, ~y), ..., c′m: t′m(~x, ~y)}.

Definition 2.1 (Quad-System). A quad-system QSC is
defined as a pair 〈QC , R〉, where QC is a quad-graph,
whose set of context identifiers is C, and R is a set of
BRs.

For any quad-graph QC , its size |QC | is the number
of quads in QC , and for any set of BRs r, its size |r|
is given by number of quad-patterns in r. For a set of
BRs R, its size |R| is given as Σr∈R|r|. For any quad-
system QSC = 〈QC , R〉, its size |QSC | = |QC |+ |R|.

Semantics We build our contextual semantics on top
of OWL-Horst semantics. Readers should note that our
system can be ported to the standard OWL seman-
tics [41] with out much hassles, but the complexity re-
sults and finiteness properties of the quad-system frag-

ments, which we define further, does not carry over,
if one assumes the OWL semantics in the following
definition of a quad-system model (definition 2.3). An
OWL-Horst interpretation structure is a tuple 〈IR, IP,
IC, IEXT, ICEXT, IS, LV〉, where IR is the object do-
main, IP ⊆ IR is the property domain, IC ⊆ IR is
the class domain, IEXT, the property extension func-
tion, ICEXT, the class extension function, IS, the term
interpretation function, and LV ⊆ IR, are the set of
literal values, with a list of additional semantic re-
strictions [24]. For details about OWL-Horst semantics
and its computational properties, we refer the reader
to appendix A. The semantics is defined using a dis-
tributed interpretation structure, which is an indexed
set of OWL-Horst interpretation structures, defined as:

Definition 2.2 (Distributed Interpretation Structure).
Given a quad graph QC , a distributed interpretation
structure is IC = {Ic}c∈C where Ic = 〈IRc, IPc, ICc,
IEXTc, ICEXTc, ISc, LVc〉 is an OWL-Horst interpre-
tation structure.
For any triple-pattern (s, p, o), and for any function σ,
we use the notation (s, p, o)[σ] to denote (σ(s), σ(p),
σ(o)). We define the satisfaction relation, denoted by
|=, between a distributed interpretation structure IC
and a quad-system QSC as:

Definition 2.3 (Model of a Quad-System). A dis-
tributed interpretation structure IC = {Ic}c∈C satis-
fies a quad-system QSC = 〈QC , R〉, IC |= QSC , iff all
the following conditions are satisfied:

1. Ic |=owl-horst graphQC (c) for each c ∈ C, where
|=owl-horst is the classical satisfaction relation be-
tween an OWL-Horst interpretation and a graph.

2. ISci(a) = IScj (a), if ISci(a) ∈ IRci and
IScj (a) ∈ IRcj , for any a ∈ C, ci, cj ∈ C

3. for each BR r ∈ R of the form (1) and for each
σ ∈ Σ, if

Ic1 |=owl-horst t1(~x, ~z)[σ], ..., Icn |=owl-horst tn(~x, ~z)[σ],

then there exists function σ′ ⊇ σ, such that

Ic
′
1 |=owl-horst t

′
1(~x, ~y)[σ′], ..., Ic

′
m |=owl-horst t

′
m(~x, ~y)[σ′],

where Σ be the set of all functions σ : Cx → C,
such that σ(c) = c, for any c ∈ C.

Condition 1 in the above definition ensures that for any
model IC of a quad-graph, each Ic ∈ IC is an OWL-
Horst model of the set of triples in context c. Condi-
tion 2 ensures that, as for the standard RDF graphs, any
constant c represents the same resource across a quad-
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graph, irrespective of the context in which it occurs.
Condition 3 ensure that any model of a quad-system
satisfies each BR in it. Any IC such that IC |= QSC is
said to be a model ofQSC . A quad-systemQSC is said
to be consistent if there exists a model IC , such that
IC |= QSC , and QSC is said to be inconsistent if it is
not consistent. For any quad-system QSC = 〈QC , R〉,
it can be the case that graphQC (c) is OWL-Horst con-
sistent, for each c ∈ C, whereas QSC is not consistent.
This is because the set of BRs R adds more knowl-
edge to the quad-system, and restricts the set of models
that satisfy the quad-system. One advantage of basing
our semantics based on OWL-Horst semantics is that
it is now possible to reason on quad extensions of both
RDF and OWL (Full) ontologies.

Similar to the entailment of triples by a normal RDF
graph, one can define the entailment of quads by a
quad-graph as follows:

Definition 2.4 (Quad-system entailment). A quad-
system QSC entails a quad c : (s, p, o), in symbols
QSC |= c : (s, p, o), iff for any distributed inter-
pretation structure IC , if IC |= QSC then IC |=
〈{c : (s, p, o)}, ∅〉. A quad-system QSC entails a quad-
graph Q′C′ , in symbols QSC |= Q′C′ iff QSC |=
c : (s, p, o) for any c : (s, p, o) ∈ Q′C′ . A quad-system
QSC entails a BR r iff for any distributed interpreta-
tion structure IC , if IC |= QSC then IC |= 〈∅, {r}〉.
For a set of BRs R, QSC |= R iff QSC |= r, for
every r ∈ R. Finally, a quad-system QSC entails
another quad-system QS′C′ = 〈Q′C′ , R′〉, in symbols
QSC |= QS′C′ iff QSC |= Q′C′ and QSC |= R′.

3. Query Answering on Quad-Systems

In this work, we limit ourselves to Conjunctive Queries
(CQs), which are often called select-project-join queries.
For any vector ~x, let |~x| denote its size. A CQ,
Q(~x) ← ∃~y t1(~x, ~y) ∧ ... ∧ tn(~x, ~y), where ti, for
i = 1, ..., n are triple patterns over vectors of vari-
ables ~x = 〈x1, ..., x|~x|〉 and ~y = 〈y1, ..., y|~y|〉. The
variables in ~x are called free variables, the variables in
~y are quantified variables. Let ~a be a vector such that
ai ∈ U ∪ L and |~x| = |~a|; then, ~x/~a denote simulta-
neous substitution of xi by ai, for i = 1, ..., |~x|. For
any queryQ(~x), ~x/~a inQ(~x) is denoted byQ(~a). Any
non-boolean query Q(~x) becomes a boolean query af-
ter the substitution of ~x by a tuple of names, ~a, of the
same size.

For a quad-system, CQs are slightly extended to in-
clude context identifiers; we call such queries Contex-

tualized Conjunctive Queries (CCQs). A CCQ CQ(~x)
is an expression of the form:

CQ(~x)← ∃~y c1 : t1(~x, ~y)∧ ...∧ cn : tn(~x, ~y) (2)

where ci are context identifiers, ti are triple patterns
over vectors of variables ~x and ~y, for i = 1, ..., n. Intu-
itively, ci : ti(~x, ~y) is a query that has to be propagated
to context ci, for i = 1, ..., n. As for the CQs, for any
CCQ CQ(~x), CQ(~a) is boolean.

For any distributed interpretation structure IC =
{Ici}ci∈C with Ici = 〈IRci , IPci , ICci , IEXTci ,
ICEXTci , LVci , ISci〉, let IRC =

⋃
ci∈C IRci be called

the domain of IC . A vector ~a is an answer for a
CCQ CQ(~x) w.r.t. a distributed interpretation struc-
ture IC = {Ici}ci∈C , in symbols IC |= CQ(~a),
iff Ici |=owl-horst ti(~a, ~y)[µ], for i = 1, ..., n, where
µ : {y1, ..., y|~y|} → IRC is an assignment from set
of variables in ~y to the domain of IC . A vector ~a is a
certain answer for a CCQ CQ(~x) w.r.t. a quad-system
QSC iff IC |= CQ(~a) for every model IC of QSC . In
this case, we say that QSC entails CQ(~a). Note that
the problem of deciding, for any given CQ(~x), vector
~a, and a quad-system QSC , if QSC |= CQ(~a) is called
the CCQ entailment problem, and is the problem pri-
marily studied in this paper. Since CQ(~a) is boolean,
w.l.o.g., assume that input CCQ is boolean, and focus
on the boolean CCQ entailment problem. In order to
do query answering over a quad-system, we employ
what has been called in the literature, a chase [17,18],
specifically, we adopt the notion of the skolem chase in
Marnette [25]. For any OWL ontology O, and for any
boolean CQ Q(~a), its chase chase(O) has the prop-
erty: O |= Q(~a) iff t(~a, ~y)[µ] ∈ chase(O), for all
t(~a, ~y) ∈ Q(~a), where µ : ~y → C. We extend the
notion of chase to a quad-system, which we call a dis-
tributed chase, abbreviated as dChase. In the follow-
ing, we show how the dChase of a quad-system can be
constructed.

3.1. dChase of a Quad-System

For any BR r, we apply skolemization that replaces
~y in r with ~fr, where ~fr = 〈fr1 , ..., fr|~y|〉, is vector of
globally unique Skolem functions such that each fri :
C|~x| → Br

i , B
r
i ⊆ B is a fresh set of blank nodes.

Intuitively, fri (~x) gives a fresh blank node for every
distinct input vector ~a. For any BR r defined before,
we omit universal quantifiers, and replace conjunctions
with commas (Datalog notation), and r is written as:
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c1 : t1(~x, ~z), ..., cn : tn(~x, ~z)→

c′1 : t′1(~x, ~fr(~x)), ..., c′m : t′m(~x, ~fr(~x)) (3)

Normalization: after skolemization, a BR can be
treated like a horn first-order formula and can be trans-
formed to a semantically equivalent set of formulas,
such that there is only a single quad-pattern in the head
part of the BR. For example, result of this transforma-
tion on a skolemized BR of the form (3), is the follow-
ing:

c1 : t1(~x, ~z), ..., cn : tn(~x, ~z)→ c′1 : t′1(~x, ~fr(~x))

...

c1 : t1(~x, ~z), ..., cn : tn(~x, ~z)→ c′m : t′m(~x, ~fr(~x))

It can be noted that this transformation is linear, and
hence w.l.o.g. we assume that for any set of BRs R, its
skolemization sk(R) is also normalized in the above
fashion.

Let M be the set of all functions, such that each µ ∈
M is a function from the set of variablesX to the set of
constants C. For any quad-graph QC and BR r of the
form (3), application of r on QC , denoted by r(QC), is
given as:

r(QC) =
⋃
µ∈M

c
′
1 : t′1(µ(~x), ~fr(µ(~x)), ..., c′m : t′m(

µ(~x), ~fr(µ(~x))| c1 : t1(µ(~x), µ(~z)),
..., cn : tn(µ(~x), µ(~z)) ∈ QC


For any set of rules R, application of R on QC is given
as:

R(QC) =
⋃
r∈R

r(QC),

for any quad-graph QC , we define:

owl-horst-closure(QC) =
⋃
c∈C{c : (s, p, o)

| (s, p, o) ∈ owl-horst-closure(graphQC (c))}

For any quad-system QSC = 〈QC , R〉, let RF be
the skolemization of the set of rules in R with ex-
istential quantifiers, called as generating BRs, and
RI = R − RF , called as non-generating BRs. Let
dChase0(QSC) = owl-horst-closure(QC),

dChasei+1(QSC) = owl-horst-closure(dChasei(QSC)
∪ RI(dChasei(QSC))), if RI(dChasei(QSC)) 6⊆
dChasei(QSC);

dChasei+1(QSC) = owl-horst-closure(dChasei(QSC)
∪ RF (dChasei(QSC))), otherwise.

dChase of QSC , denoted by dChase(QSC), is given
as:

dChase(QSC) =
⋃
i∈N

dChasei(QSC)

It can be noted that, if there exists i such that dChasei(
QSC) = dChasei+1( QSC), then, dChase(QSC) =
dChasei(QSC). Any iteration i, such that dChasei(QSC)
is computed by the application of the set of (non-
)generating BRs,RF (resp.RI ), on dChasei−1(QSC)
is called a generating iteration (resp. non-generating
iteration).

In general, for any quad-system QSC = 〈QC , R〉,
its dChase need not be unique, since final constructed
dChase depends on the order in which rules in R
are applied and the order in which the assignments
to a BR are applied. By ordering the set of con-
stants and variables (for instance, lexicographically),
one can also use this to order the set of quads in
QC and rules in R. In each dChase iteration, ap-
plying BRs respecting this order, and also for each
BR r, applying assignments to r in this order, one
can construct a unique dChase for any quad-system.
From now on, we assume that for any quad-system
QSC , dChase(QSC) denotes its unique dChase con-
structed using the above mentioned procedure. We call
the sequence dChase0(QSC), dChase1(QSC), ..., the
dChase sequence ofQSC . The following lemma shows
that, for any quad-system the result of a single gener-
ating iteration and any subsequent non-generating iter-
ations in its dChase sequence, causes only a worst case
exponential blow up in size.

Lemma 3.1. For a quad-systemQSC = 〈QC , R〉, then
the following holds: (i) if i ∈ N is a generating itera-
tion, then |dChasei(QSC)| = O(|dChasei−1(QSC)||R|),
(ii) suppose i ∈ N is a generating iteration, and for
any j ≥ 1, i+1, ..., i+j are non-generating iterations,
then |dChasei+j(QSC)| = O(|dChasei−1(QSC)||R|),
(iii) for any iteration k, dChasek(QSC) can be com-
puted in time O(|dChasek−1(QSC)||R|).

Proof. (sketch)
(i) R can be applied on dChasei−1(QSC) by

groundingR to the set of constants in dChasei−1(QSC),
the number of such groundings is of the order O(
|dChasei−1(QSC)||R|), |R(dChasei−1(QSC))| =
O(|R| ∗ |dChasei−1 (QSC)||R|). Since OWL-horst
closure only increases the size polynomially [24],
|dChasei(QSC)| = O( |dChasei−1( QSC)||R|).
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(ii) From (i) we know that |R(dChasei−1(QSC))| =
O(|dChasei−1(QSC)||R|). Since, no new constant is
introduced in any subsequent non-generating itera-
tions, and since any quad contains only four constants,
the set of constants in any subsequent dChase iteration
is given by O(4 ∗ |dChasei−1(QSC)||R|). Since only
these many constants can appear in positions c, s, p, o
of any quad generated in the subsequent iterations,
the size of dChasei+j(QSC) can only increase poly-
nomially, which means that |dChasei+j(QSC)| =
O(|dChasei−1(QSC)||R|).

(iii) Since any dChase iteration k involves the fol-
lowing two operations: (a) owl-horst-closure(), (b)
computing R(dChasek−1(QSC)). (a) can be done in
PTIME w.r.t to its input [24]. (b) can be done in
the following manner: ground R to the set of con-
stants in dChasei−1(QSC); then for each ground-
ing g, if body(g) ⊆ dChasei−1(QSC), then add
head(g) to R(dChasek−1(QSC)). Since, the num-
ber of such groundings is of the order O(|dChasek−1

(QSC)||R|), and checking, if each grounding is con-
tained in dChasek−1(QSC), can be done in time poly-
nomial in dChasek−1(QSC), the time taken for (b)
is O(|dChasek−1 (QSC)||R|). Hence, any iteration k
can be done in time O(|dChasek−1(QSC)||R|).

In the following, we give a few computational charac-
teristics of quad-systems whose BRs are of the form
(1), which we call unrestricted quad-systems. It turns
out the dChase computation for unrestricted quad-
systems is some times impossible, as the dChase can
be infinite. This raises the question if there are other
approaches that can be used, for instance similar prob-
lem arises in DLs with value creation, due to the pres-
ence of existential quantifiers, whereas the approaches
like the one in Glim et al. [26] provides an algorithm
for CQ entailment based on query rewriting. On a close
look, it can be observed that a quad-system can be
seen as a set of Datalog+/- rules [6] using ternary pred-
icates, one for each context whose instances are the
set of triples in the contexts. Although, query entail-
ment is known to become undecidable on adding Dat-
alog like rules to DLs with value creation, see for in-
stance SWRL [27], and is also undecidable for gen-
eral Datalog+/- rules, we are not aware of any works
that provide undecidability results for our bounded 3-
arity case, or the undecidability of adding rules to DLs
with out value creation like OWL 2 RL, RDF, or in our
case OWL-Horst. The following theorem establishes
the fact the CCQ entailment problem for unrestricted
quad-systems is undecidable.

Theorem 3.2. The CCQ entailment problem over un-
restricted quad-systems is undecidable.

Proof. (sketch) We show that the well known un-
decidable problem of non-emptiness of intersection
of context-free grammars (CFGs) is reducible to the
CCQ entailment problem. Given two CFGs, G1 =
〈V1, T, S1, P1〉 and G2 = 〈V2, T, S2, P2〉, where
V1, V2 are the set of variables, T such that T ∩ (V1 ∪
V2) = ∅ is the set of terminals. S1 ∈ V1 is the start
symbol of G1, and P1 are the set of PRs of the form
v → ~w, where v ∈ V , ~w is a sequence of the form
w1...wn, where wi ∈ V1 ∪ T . Similarly s2, P2 is de-
fined. Deciding whether the language generated by the
grammars L(G1) and L(G2) have non-empty intersec-
tion is known to be undecidable [32].

Given two CFGs, G1 = 〈V1, T, S1, P1〉 and G2 =
〈V2, T, S2, P2〉, we encode grammars G1, G2 into a
quad-system of the formQSc = 〈Qc, R〉, with a single
context identifier, c. Each PR r = v → ~w ∈ P1 ∪ P2,
with ~w = w1w2w3..wn, is encoded as a BR of the
form:

c : (x1, w1, x2), c : (x2, w2, x3), ..., c : (xn, wn, xn+1)

→ c : (x1, v, xn+1)

where x1, .., xn+1 are variables. For each terminal
symbol ti ∈ T , R contains a BR of the form:

c : (x,rdf:type, C)→ ∃y c : (x, ti, y),

c : (y,rdf:type, C)

and Qc contains only the triple:

c : (a,rdf:type, C)

It can be observed that:

QSc |= ∃y c : (a, S1, y) ∧ c : (a, S2, y)↔

L(G1) ∩ L(G2) 6= ∅

We refer the reader to Appendix for the complete
proof.

4. Safe Quad-Systems: A decidable class

In this section, we define a more general fragment of
quad-systems, in which we put some restrictions on the
blank nodes generated in the dChase, in order to guar-
antee decidability and finiteness of dChase. We start
by giving some necessary notations.
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The set of constants occurring in a quad-graph QC ,
given as C(QC) = {c, s, p, o | c : (s, p, o) ∈ QC}. The
set of URIs in QC , is given by U(QC) = C(QC) ∩
U. The set of blank nodes B(QC), the set of literals
L(QC) are similarly defined. For a BR r, the set of
terms in r, is given as:

Cx(r) = {c, s, p, o | c : (s, p, o) ∈ body(r)∪head(r)}

The set of terms in a set of BRs R is given by
Cx(R) =

⋃
r∈RCx(r). The URIs, blank nodes, liter-

als, and variables in a set of BRs R are similarly de-
fined, and are denoted as U(R),B(R),L(R), X(R),
respectively. For any quad-system, QSC = 〈QC , R〉,
the set of constants in QSC is given by C(QSC) =
C(QC)∪C(R). The sets U(QSC), B(QSC), L(QSC),
and X(QSC) are similarly defined for any quad-
system QSC .

For any quad-system QSC , the set of blank-nodes
B(dChase(QSC)) in its dChase(QSC), not only con-
tains blank nodes in B(QSC), but can also contain
blank nodes, that are generated by Skolem functions
during the dChase construction process. We call such
blank nodes, Skolem blank nodes of dChase(QSC)
and is given as Bsk(dChase(QSC)) = B(dChase(
QSC )) \B(QSC). A quad in dChase(QSC) that con-
tains a Skolem blank node is called a Skolem quad.
Any Skolem blank node b can uniquely be represented
by the expression, f(~k), where f is the Skolem func-
tion symbol and ~k the vector of constants used by f to
generate b. Extending this also to the set of constants in
dChase(QSC), and recursively expanding each k ∈ ~k,
one can define, for each constant k in dChase(QSC),
its generating expression:

Definition 4.1 (genExp). For any constant k ∈
dChase(QSC), its generating expression genExp(k)
is defined inductively as:

– genExp(k) = k, for any k ∈ C(QSC),
– genExp(k) = f(genExp(k1), ..., genExp(kn)),

if k ∈ Bsk(dChase(QSC)), generated by a
Skolem function f using the vector of constants
〈k1, ..., kn〉.

For any Skolem blank node b = f(k1, ..., kn), where
k1, ..., kn are constants, we denote this relation be-
tween ki to b with the relational symbol childOf.
Moreover, since children of a Skolem blank node can
be Skolem blank nodes, which themselves can have
children, one can naturally define relation descen-
dantOf =childOf+ as the transitive closure of childOf.

_ :b2{c3}

b _ :b1

{c2, c3}
a

Fig. 1. descendance graph of _ :b2

Example 4.2. Consider the quad-system 〈QC , R〉,
where QC = {c1 : (a, b, c)}, and suppose the skolem-
ization sk(R) of R is the following set:

sk(R) =

c1:(x1, x2, x3)→ c2:(x1, x2, f1(x1, x2)),
c3:(x1, x2, f1(x1, x2))

c2:(x4, x5, x6)→ c3:(f2(x5, x6), x5, x6)


Iterations during dChase construction are:

dChase0(QSC) = {c1:(a, b, c)}

dChase1(QSC) = {c1:(a, b, c), c2(a, b, _ :b1),

c3(a, b, _ :b1)}

dChase2(QSC) = {c1:(a, b, c), c2(a, b, _ :b1),

c3(a, b, _ :b1), c3:(_ :b2, b, _ :b1)},

dChase(QSC) = dChase2(QSC),

where _ :b1 = f1(a, b) and _ :b2 = f2(b, _ :b1), p.s. we
have not shown the quads derived using local OWL-
Horst inferencing. Note that genExp(_ :b1) = f1(a, b)
and genExp(_ :b2) = f2(b, f1(a, b)). For any Skolem
blank node its descendant hierarchy can be visualized
using a descendance graph. Descendance graph for
_ :b2 is shown in Fig.1. Before defining the notion of
safety, let us define the notion of origin-contexts for
any skolem blank-node.

Definition 4.3 (Origin-contexts). For any quad-system
QSC , and for any Skolem blank node b∈Bsk(dChase(
QSC)), its origin-contexts, is given as originContexts(
b) = {c | ∃i.c:(s, p, o) ∈ dChasei(QSC), s = b ∨
p = b ∨ o = b, and @j < i, ∃c′.c′:(s′, p′, o′) ∈
dChasej(QSC), s

′ = b ∨ p′ = b ∨ o′ = b}.

Intuitively, origin-contexts for a Skolem blank node
b is the set of contexts in which triples contain-
ing b are first generated, during dChase construc-
tion. Note that there can be multiple contexts to
which b can simultaneously be generated. For the
quad-system and dChase, presented in example 4.2,
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originContexts(_ :b1) = {c2, c3}, originContexts(
_ :b2) = {c3}. Note that in Fig. 1, the origin-contexts
of _ :b1 and _ :b2 are shown along with their node la-
bels.

Definition 4.4 ((Un)safe quad-systems). A quad-
systemQSC is said to be unsafe, if its dChase dChase(
QSC), contains blank nodes b 6= b′, with b, b′ ∈
Bsk(dChase(QSC)), such that b is a descendant of
b′ and originContexts(b) = originContexts(b′). A
quad-system is safe iff it is not unsafe.

Intuitively, a quad-system is safe, if there does not exist
a Skolem blank-node that is generated in a (set of) con-
text(s), using another Skolem blank-node generated
in the same (set of) context(s). Safe quad-systems in
this way prevents recursive generation of blank nodes
generated in a (set of) context(s) using blank nodes
that are generated in the same (set of) context(s). One
should note that unsafety is an approximation of infi-
nite dChases, for which dChase computation is non-
terminating. It was shown in Deutsch et al. [28] that the
decision problem of deciding whether, for any set of
rules with existential variables, its chase is finite or not
is undecidable, in general. As we have seen earlier, for
any quad-system QSC = 〈QC , R〉, whose dChase is
dChase(QSC), any b ∈ Bsk(dChase(QSC)) can be
visualized using its descendance graph, that is rooted
at b. Furthermore, the descendance graph has the fol-
lowing property:

Property 4.5 (DAG property). For a safe quad-system
QSC , and for any blank node b ∈ Bsk(dChase(QSC)),
its descendance graph is a directed acyclic graph
(DAG).

Proof. By construction, as there exists no descen-
dant for any constant k ∈ C(QSC), there cannot
be any out-going edge from any such k. Hence, any
member of C(QSC) cannot be involved in cycles.
Hence, the only members that can be involved can
be the members of C(dChase(QSC)) − C(QSC)
= Bsk(dChase(QSC)). But if there exists a b ∈
Bsk(dChase(QSC)), such that there exists a cycle
through b, then this implies that b is a descendant of b.
Since this would violate the safety property, and imply
that QSC is unsafe, which is a contradiction.

Since the descendance graph G of any Skolem blank
node b ∈ Bsk(dChase(QSC)) is rooted at b and there
are no cycles in G, any path from b terminates at
some node. Hence, one can use a tree traversal tech-
nique, such as preOrder (visit a node first and then

Algorithm 1:
UnRavel (Descendance GraphG = 〈V,E〉, Label l)
/* procedure to unravel, a descendance graph

into a tree */

Input : descendance graphG, partial function l : V → 2C

Output: boolean value True or False
begin

G′ = 〈V,E〉=RemoveTranstiveEdges(G);
foreach Node v ∈ preOrder(G′) do

if (k = indegree(v)) > 1 then
V ′ = V − {v} ∪ {v1, ..., vk};/* where each

vi is fresh */
for i = 1; i ≤ k; i++ do

l(vi) = l(v);// copy the node and
origin context labels

foreach (v, v′) ∈ E do
E′ =

E−{(v, v′)}∪{(v1, v′), ..., (vk, v′)};
/* copy outgoing edge of v to
each vi */

i = 1;
foreach (v′, v) ∈ E do

/* distribute the incoming edges
of v, one for each vi */

E′ = E − {(v′, v)} ∪ {(v′, vi)};
i++;

E = E′, V = V ′;

_ :b2{c3}

b

b

_ :b1

{c2, c3}
a

Fig. 2. descendance graph of Fig. 1 unraveled into a tree

its children), to sequentially traverse each node in G.
The algorithm 1 below, takes a descendance graph
G and unravels it into a tree. The algorithm first re-
moves all the transitive edges from G, i.e. if there are
v, v′, v′′ ∈ V , with (v, v′), (v′, v′′), (v, v′′) ∈ E, then
it removes (v, v′′). Note that the information that v′′ is
a descedant of v is still present in the new graph. The
algorithm then traverses the graph in preorder fashion,
as it encounters a node v, if v has an indegree k greater
than one, it splits v to k fresh nodes v1, ..., vk, and dis-
tributes the set of edges incident to v across v1, ..., vk,
such that (i) each vi has at-most one incoming edge
(ii) all the edges incident to v are incident to some vi.
Whereas out going edges of v are retained for each vi.
Hence, after the splitting operation each vi has an in-
degree 1, where as outdegree vi is same as the out de-
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gree of v. Hence, once all the nodes are visited, any
node, except the root, in the new graph G has an in-
degree 1. G is still rooted, connected, acyclic, and is
hence a tree. The algorithm terminates as there are no
cycles in graph, and at some point reaches a node with
no children. For instance the unraveling of the descen-
dance graph of _ :b2 in Fig. 1 of example 4.2, is shown
in Fig. 2. The following property holds for any Skolem
blank node of a safe quad-system.

Property 4.6. For a safe quad-system QSC , and any
Skolem blank node in dChase(QSC), the unravelling
(Algorithm 1) of its descendance graph results in a tree
t such that:

1. any leaf node of t is from the set C(QSC),
2. any non-leaf node of t is from the set Bsk(
dChase(QSC)),

3. order(t) ≤max{ar(fi)|fi is a Skolem function
symbol occurring in sk(R)},

4. there cannot be a path between b 6= b′ with
originContexts(b) = originContexts(b′).

Proof.

1. Since any node n in the dependency graph is
such that n ∈ C(dChase(QSC)), and since
C(dChase(QSC)) = C(QSC) ∪ Bsk(dChase(
QSC)). Since any member m ∈ Bsk(dChase(
QSC)) is generated from a skolem function and
a set of constants, hence has at-least one child.
Since n is a leaf node n ∈ C(QSC).

2. Since any member m ∈ C(QSC) cannot have
descedants and since any non-leaf node has chil-
dren, m cannot be a non-leaf node. Hence, non-
leaf nodes should be from Bsk(dChase(QSC)).

3. Since order of t is the out degree of a node n
of t, such that there exists no other node n′ such
that outdegree(n′) > outdegree(n). Let n be
any such node, but since n is a blank node, this
implies that n is generated from a skolem func-
tion f occurring in sk(R), which implies that
outdegree(n) = ar(f).

4. Since any path from b to b′ implies that b′ is a
descendant of b, then it should be the case that
originContexts(b) 6= originContexts(b′),
otherwise safety condition would be violated.

The property above is exploited to show that there ex-
ists a finite bound in the dChase size and its computa-
tion time.

Lemma 4.7. For any safe quad-system QSC = 〈
QC , R〉, the following holds: (i) the dChase size

|dChase(QSC)| = O(222|QSC|

), (ii) dChase(QSC)
can be computed in 3EXPTIME, (iii) if |R| and the
set of schema triples in QC is fixed to a constant, then
|dChase(QSC)| is a polynomial in |QSC | and can be
computed in PTIME.

Proof. (sketch)
(i) Each Skolem blank node generated has a con-
strained tree structure t such that its depth is exponen-
tial in C, since there cannot be paths in t that contain
nodes with same C ⊆ C as origin-context labels. Also
order of the tree is bounded bym, wherem is the max-
imal arity of Skolem functions in sk(R). Hence, any
such tree can have O(m2|C|

) leaf nodes and O(m2|C|
)

inner nodes, and since each of the children can be ele-
ments in C(QSC), the number of such trees are clearly
triple exponential in C(QSC), hence bounds the num-
ber of Skolem blank nodes generated in dChase con-
struction.

(ii) From (i) |dChase(QSC)| is triply exponential in
|QSC |, and since each iteration add at-least one quad to
its dChase, the number of iterations are bounded triple
exponentially in |QSC |. Also, by lemma 3.1 any itera-
tion i can be done in time O(|dChasei−1(QSC)||R|).

Since using (i) |dChasei−1(QSC)| = O(222|QSC|

),

each iteration i can be done in time O(2|R|∗2
2|QSC|

).
Also, as number of iterations is triple exponential,
computing dChase(QSC) is in 3EXPTIME.

(iii) Since |R| is fixed to a constant, the set of skolem
function symbols F in sk(R), the arity of any f ∈ F ,
and set of origin contexts are constants. Because of
this, the number of tree structures of skolem blank-
nodes generated is a constant z. Hence, the number of
inner nodes and leaves of any such tree, which can be
taken by any constant in C(QSC). Hence, the number
of skolem blank nodes generated is O(|C(QSC)|z).
Hence, the set of constants in dChase(QSC) is a poly-
nomial in |QSC |, and also is |dChase(QSC)|.

Since in any dChase iteration except the final one,
atleast one quad should be added, and also since the
final dChase can have atmost O(|QSC |z) triples, the
total number of iterations are bounded by O(|QSC |z)
(†). By lemma 3.1, since any iteration i can be com-
puted in O(|dChasei−1(QSC)||R| time, and since |R|
is a constant, the time required for each iteration is a
polynomial in |dChasei−1(QSC)|, which is atmost a
polynomial in |QSC |. Hence, any dChase iteration can
be performed in polynomial time in size of QSC (‡).



10 Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Expressive Bridge Rules: Decidable Classes

From (†) and (‡), it can be concluded that dChase can
be computed in PTIME.

Lemma 4.8. For any safe quad-system, the follow-
ing holds: (i) data complexity of CCQ entailment is in
PTIME, (ii) combined complexity of CCQ entailment
is in 3EXPTIME.

Proof. Given a safe quad-system QSC = 〈QC , R〉,
since dChase(QSC) is finite, a boolean CCQ CQ()

can naively be evaluated by binding the set of con-
stants in the dChase to the variables in the CQ(), and
then checking if any of these bindings are contained
in dChase(QSC). The number of such bindings can
atmost be |dChase(QSC)||CQ()| (†).

(i) Since for data complexity, the size of the BRs
|R|, the set of schema triples, and |CQ()| is fixed to
constant. From lemma 4.7 (iii), we know that under the
above mentioned settings the dChase can be computed
in PTIME and is polynomial in the size of QSC . Since
|CQ()| is fixed to a constant, and from (†), binding the
set of constants in dChase(QSC) onCQ() still gives a
number of bindings that is worst case polynomial in the
size of |QSC |. Since membership of these bindings can
checked in the polynomially sized dChase in PTIME,
the time required for CCQ entailment is in PTIME.

(ii) Since in this case |dChase(QSC)| = O(222|QSC|

)

(‡), from (†) and (‡), binding the set of constants in

dChase(QSC) toCQ() amounts toO(2|CQ()|∗22|QSC|

)

bindings. Since the dChase is triple exponential in
|QSC |, checking the membership of each of these bind-
ings can be done in 3EXPTIME. Hence, the combined
complexity is in 3EXPTIME.

Theorem 4.9. For any safe quad-system, the follow-
ing holds: (i) The data complexity of CCQ entailment
is PTIME-complete (ii) The combined complexity of
CCQ entailment is in 3EXPTIME-complete.

Proof. (i)(Membership) See lemma 4.8 for the mem-
bership in PTIME.
(Hardness) Follows from the PTIME-hardness of data
complexity of CCQ entailment for Horn quad-systems
(Theorem 5.2), which are contained in safe quad-
systems.
(ii) (Membership) See lemma 4.8.
(Hardness) See following heading.

4.1. 3EXPTIME-Hardness of CCQ Entailment

In this subsection, we show that the decision prob-
lem of CCQ entailment for safe quad-systems is
3EXPTIME-hard. We show this by reduction of the
word-problem of a double-exponential space bounded
alternating turing machine (ATM) [33] to the CCQ
query entailment problem. From the following well
known relation that gives the relation between the
space complexity of ATMs to time complexity of de-
terministic turing machines (DTM):

ASPACE(f(n)) = DTIME(2O(f(n)))

it follows that A2EXPSPACE=3EXPTIME. Hence, by
reducing a problem word problem that is A2EXPSPACE-
hard, it follows that CCQ entailment problem is
3EXPTIME-hard.

An ATM M is a tuple M = 〈Q,Σ,∆, q0〉, where

– Q = U]E is a disjoint union of a set of universal
states U and existential states E,

– Σ is a finite alphabet that includes the blank sym-
bol �,

– ∆ ⊆ (Q×Σ)×(Q×Σ×{+1,−1}) is a transition
relation

– q0 ∈ Q is the initial state.

A (universal/existential) configuration is a word ~α ∈
Σ∗QΣ∗(Σ∗UΣ∗/Σ∗EΣ∗). A configuration ~α2 is a
successor of the configuration ~α1, if one of the follow-
ing holds:

1. ~α1 = ~wlqσσr ~wr and ~α2 = ~wlσ
′q′σr ~wr, if

(q, σ, q′, σ′, R) ∈ ∆, or
2. ~α1 = ~wlqσ and ~α2 = ~wlσ

′q′�, if (q, σ, q′, σ′, R) ∈
∆, or

3. ~α1 = ~wlσlqσ ~wr and ~α2 = ~wlq
′σlσ

′ ~wr, if
(q, σ, q′, σ′, L) ∈ ∆.

where q, q′ ∈ Q, σ, σ′, σl, σr ∈ Σ, and ~wl, ~wr ∈ Σ∗.
Suppose we put bound on the on the number of tape
cells of an ATM by a value n, since each configuration
~c can be represented in size |~c| = n + 1, the number
of possible configurations is bounded by O(2n+1). A
configuration ~c = ~wlq ~wr is an accepting configuration
iff

– q ∈ U , and all successor configurations of ~c are
accepting, or

– q ∈ E, and there exists a successor configuration
of w that is accepting
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Note that, by this definition, all the universal configu-
rations with out any successors are trivially accepting,
and existential configurations with out any successors
are trivially non-accepting. A language L ⊆ Σ∗ is ac-
cepted by a double exponential space bounded ATM
M , if for every ~w ∈ L,M acceptsw in spaceO(22|~w|

).

Simulating ATMs using Safe Quad-Systems Consider
an ATM M = 〈Q = U ] E,Σ, δ, q0〉, and a string w,
with |w| = n. Since the number of storage cells is dou-
bly exponentially bounded, we first construct a quad-
system QSMC = 〈QMC , R〉, where C = {c0, c1, ..., cn},
note that |C| = |~w| + 1. We employ a technique, that
is adapted from Cali et al. [34], to iteratively generate
a doubly exponential number of objects that represent
the cells of the tape of the ATM. Let QMC be initialized
with the following quads:

c0 : (k0,rdf:type, R), c0 : (k1,rdf:type, R),

c0 : (k0,rdf:type,min0), c0 : (k1,rdf:type,

max0), c0 : (k0, succ0, k1)

Now for each pair of elements of typeR in ci, a skolem
blank-node is generated in ci+1, and hence follows the
recurrence relation r(a) = a2, which after n iterations
yields rn(a) = a2n

. In this way, a doubly exponen-
tial long chain of elements is created in cn using the
following set of rules:

ci : (x0,rdf:type, R), ci : (x1,rdf:type, R)→

∃y ci+1 : (x0, x1, y), ci+1 : (y,rdf:type, R)

The combination of minimal element with the minimal
element (elements of type mini) in ci create the mini-
mal element in ci+1, and similarly the combination of
maximal element with the maximal element (elements
of typemaxi) in ci create the maximal element of ci+1

ci+1 : (x0, x0, x1), ci : (x0,rdf:type,mini)→

ci+1 : (x1,rdf:type,mini+1)

ci+1 : (x0, x0, x1), ci : (x0,rdf:type,maxi)→

ci+1 : (x1,rdf:type,maxi+1)

Successor relation succi+1 is created in ci+1 using the
following set of rules, using the well-known, integer

counting technique:

ci : (x1, succi, x2), ci+1 : (x0, x1, x3),

ci+1 : (x0, x2, x4)→ ci+1 : (x3, succi+1, x4)

ci : (x1, succi, x2), ci+1 : (x1, x3, x5), ci+1 : (x2, x4, x6)

, ci : (x3,rdf:type,maxi), ci : (x4,rdf:type,

mini)→ ci+1 : (x5, succi+1, x6)

By virtue of the first rule below, each of the objects
representing the cells of the ATM are linearly ordered
by the relation succ. Also the transitive closure of succ
is defined using relation succt

cn : (x0, succn, x1)→ cn : (x0, succ, x1)

cn : (x0, succ, x1)→ cn : (x0, succt, x1)

cn : (x0, succt, x1), cn : (x1, succt, x2)

→ cn : (x0, succt, x2)

Each of the above set rules are instantiated for 0 ≤ i <
n, and hence in this way after n generating dChase iter-
ations, cn has doubly exponential number of elements
of type R, that are ordered linearly using the relation
succ. Various triple patterns that are used to encode the
possible configurations, runs and their relations in M
are:

(x0, head, x1) denotes the fact that in configuration
x0, the head of the ATM is at cell x1.

(x0, state, x1) denotes the fact that in configuration
x0, the ATM is in state x1.

(x0, σ, x1), for each σ ∈ Σ, which denote the fact that
in configuration x0, the cell x1 contains σ.

(x0, succ, x1) denotes the linear order between cells
of the tape.

(x0, succt, x1) denotes the transitive closure of succ.
(x0, conSuccδ, x1) to denote the fact that x1 is a suc-

cessor configuration of x0 by the transition δ.
(x0, rdf : type, Accept) denotes the fact that the con-

figuration x0 is an accepting configuration.

Since in our construction, each σ ∈ Σ is represented
as relation, one should constrain that no two alpabets
σ 6= σ′ are on the same cell, we encode this using the
following set of axioms

cn : (σ,owl:disjointWith, σ′), for σ 6= σ′ ∈ Σ

Note that owl:disjointWith relation is present
even in weak logics such as OWL-Horst.
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Initialization Suppose the initial configuration I0 =

q0 ~w�, where ~w = σ0...σn−1, then we enode this using
the constant I0 and the following rules in our quad-
system QSMC as:

cn : (x,rdf:type,minn)→ cn : (I0, head, x),

cn : (I0, state, q0)

cn : (x0,rdf:type,minn) ∧
n−1∧
i=0

cn : (xi, succ, xi+1)

→
n−1∧
i=0

cn : (I0, σi, xi) ∧ cn : (I0,�, xn)

cn : (I0,�, x0), cn : (x0, succt, x1)→ cn : (I0,�, x1)

The last rule copies the � to every succeeding cell.

Transitions For every left transition δ = (qj , σ
′,−1) ∈

∆(q, σ), the following rules:

cn : (x0, head, xi), cn : (x0, σ, xi), cn : (x0, state, q),

cn : (xj , succ, xi)→ ∃y cn : (x0, conSuccδ, y),

cn : (y, head, xj), cn : (y, σ′, xi), cn : (y, state, qj)

For every right transition δ = (qj , σ
′,+1) ∈ ∆(q, σ),

the following rules:

cn : (x0, head, xi), cn : (x0, σ, xi), cn : (x0, state, q),

cn : (xi, succ, xj)→ ∃y cn : (x0, conSuccδ, y),

cn : (y, head, xj), cn : (y, σ′, xi), cn : (y, state, qj)

Inertia If in any configuration the head is at position
i of the tape, then in every successor configuration, el-
ements in preceeding and following positions i of the
tape are retained. The following two rules ensures this

cn : (x0, head, xi), cn : (x0, conSuccδ, x1),

cn : (xj , succt, xi), cn : (x0, σ, xj)→ cn : (x1, σ, xj)

cn : (x0, head, xi), cn : (x0, conSuccδ, x1),

cn : (xi, succt, xj), cn : (x0, σ, xj)→ cn : (x1, σ, xj)

The rules above are instantiated for every σ ∈ Σ and
for every δ ∈ ∆(q, σ), for q ∈ Q, σ ∈ Σ

Acceptance For each existential states qe ∈ E,

cn : (x0, state, qe), cn : (x0, conSuccδ, x1), cn : (x1,

rdf:type, Accept)→ cn : (x0,rdf:type, Accept)

For each universal state qu ∈ U ,

cn : (x0, state, qu) ∧
∧

δ∈∆(qu,σ)

(cn : (x0, conSuccδ, x1),

cn : (x1,rdf:type, Accept))→

cn : (x0,rdf:type, Accept)

Finally since M accepts ~w iff only if the inital con-
figuration I0 = q0 ~w� is an accepting configuration.
Hence, I0 is accepting iffQSMC |= c : (I0, rdf:type,
Accept). Hence, CCQ entailment is 3EXPTIME-hard.

4.2. Procedure for detecting safe quad-systems

In this subsection, we present a procedure for decid-
ing whether a given quad-system is safe or not. If the
quad-system is safe, the result of procedure is a safe
dChase, that contains the standard dChase, and can be
used for query answering. Since safety property of a
quad-system is attributed to the dChase of the quad-
system, the procedure nevertheless performs the stan-
dard operations for computing the dChase, but also
generate quads that indicate origin-contexts of each
Skolem blank nodes generated. In each iteration, a test
for safety is performed, by checking the presence of
a Skolem blank-nodes that violates the safety condi-
tion. In case violation of safety condition is detected,
a distinguished constant is generated and the dChase
construction is aborted prematurely. On the contrary, if
there exists an iteration i such that dChasei(QSC) =
dChasei+1(QSC), the dChase computation stops with
a completed dChase. Since all the additional quads
produced for accounting information, uses a distin-
guished context identifier cc 6∈ C, the computed safe
dChase itself can be used for standard query answer-
ing. We introduce a few notations and definitions.

Definition 4.10 (Context Scope). The context scope
of a term t in a set of quad-patterns Q, denoted by
cScope(t, Q) is given as: cScope(t, Q) = {c | c : (s,
p, o) ∈ Q, s = t ∨ p = t ∨ o = t}. For any vector
~a of terms, the context scope of ~a over Q is given as:
cScope(~a,Q) =

⋃
a∈~a cScope(a,Q).

For any BR r, of the form (3), in order to make
the variables in r explicit, we also use the nota-
tion body(r)(~x, ~z) and head(r)(~x, ~y) for body(r) and
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head(r), respectively. For any quad-system QSC =
〈QC , R〉, let sk(R) be the skolemization of R and cc
be an arbitrary context identifier such that cc 6∈ C, then
for r ∈ sk(R), we define transformation aug(r) as:

aug(r) =
∧

q∈body(r)(~x,~z)

q →
∧

q′∈head(r)(~x,~f(~x))

q′ ∧

∀fi(~x) ∈ ~f(~x) [
∧
xi∈~x

cc : (xi, descendantOf, fi(~x))

∧ cc : (fi(~x), descendantOf, fi(~x)) ∧ cc : (fi(~x),

originContext, ci)]

Intuitively, the transformation aug, on a skolemized
BR r whose set of Skolem function symbols is ~f(~x),
augments the head part of r with the following three
additional types of quad patterns:

1. cc : (xi, descendantOf, fi(~x)), for every Skolem
function fi(~x) in ~f(~x) and universally quantified
variable xi ∈ ~x. This is done because, during
dChase computation, an application of a BR con-
taining ~fi(~x), in which a vector ~a is assigned to
~x, resulting in the generation of a Skolem blank
node fi(~a), any ai ∈ ~a is a descendant of fi(~a).
Hence, due to these additional quad-patterns,
quads of the form cc : (ai, descendantOf, fi(~a))
are also produced, and in this way, keeps track of
the descendants of any Skolem blank node pro-
duced.

2. cc : (fi(~x), descendantOf, fi(~x)), in order to
maintain also the reflexivity of ‘descendantOf’
relation.

3. cc : (fi(~x), originContext, ci), for every Skolem
function fi(~x) in ~f(~x), and for any ci that is in
the context scope of fi(~x) in head(r)(~x, ~f(~x))).
This is done because, during dChase compu-
tation, an application of a BR contain ~fi(~x),
in which a vector ~a is assigned to ~x, result-
ing in the generation of a Skolem blank node
fi(~a), is produced in the set of contexts ci in
cScope(fi(~x), head(r)(~x, ~f(~x))). Hence, due to
these additional quad-patterns, quads of the form
cc : (fi(~a), originContext, ci) are also produced.
In this way, keeps track of the origin-contexts of
any Skolem blank node produced.

It can be noticed that for any BR r without any Skolem
function symbols, the transformation aug leaves r
unchanged. For any set of skolemized BRs R, let
aug(R) =

⋃
r∈R aug(r). The function unSafeTest de-

fined below, given a set of augmented BRs R and a
quad-graphQ checks, if application of any r ∈ R onQ
violates the safety condition. unSafeTest(Q,R)=True
iff ∃r = body(r)(~x, ~z) → head(r) (~x, ~f(~x)) ∈
R, ∃µ ∈ M, ∃b, b′ ∈ B, ∃fi(~x) ∈ ~f(~x) with the
following being satisfied:

– body(r)(~x, ~z)[µ] ⊆ Q, and
– b ∈ µ(~x), and
– cc : (b′, descendantOf, b) ∈ Q, and
– {c | cc : (b′, originContext, c) ∈ Q} = cScope(

fi(~x), head(r)(~x, ~f(~x))).

Intuitively, uncSafeTest returns True, if there is a BR
r ∈ R, containing Skolem function symbols, with
body body(r)(~x, ~z), head head(r)(~x, ~f(~x)), exists an
assignment µ with Skolem blank node b ∈ µ(~x), such
that r is applicable on Q using µ, and when µ applied
to r will produce a Skolem blank node b′′, such that
origin-contexts of b′′ is equal to origin-contexts of b′,
which is a descendant of b. For a set of BRsR, the safe
application of R on a quad-graph QC is defined as:

Rsafe(QC) =

{
unSafe, If unSafeTest(R,QC) = True⋃
r∈aug(R) r(QC), Otherwise

where unSafe is a constant that is generated, if in
any iteration, the safety condition is violated. For
any quad-system QSC = 〈QC , R〉, we define its safe
dChase dChasesafe(QSC) as follows:

dChasesafe
0 (QSC) = owl-horst-closure(QC ∪

cc : (descendentOf,rdf:type,owl:Transit-

-iveProperty))

dChasesafe
i+1(QSC) = owl-horst-closure(

dChasesafe
i (QSC) ∪ Rsafe(dChasesafe

i (QSC)))

dChasesafe(QSC) =
⋃
i∈N

dChasesafe
i (QSC)

If there exists i such that
dChasesafe

i (QSC) = dChasesafe
i+1(QSC),

then,
dChasesafe(QSC) = dChasesafe

i (QSC).
The following theorem shows that the procedure above
described for detecting unsafe quad-systems is sound
and complete:

Theorem 4.11. For any quad-systemQSC = 〈QC , R〉,
the constant unSafe ∈ dChasesafe(QSC), iff QSC is
unsafe.
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Hence, after running above mentioned procedure, if
constant unSafe is not generated, then its safe dChase
itself can be used for CCQ answering, since dChase
is contained in safe dChase, and all the quads gener-
ated for accounting information is in the distinguished
context cc. Hence, for any boolean CCQ that does not
contain quads of the form cc : (s, p, o), dChase entails
CCQ iff safe dChase entails CCQ.

5. Horn Quad-Systems: Restricting to Horn BRs

In this section, we investigate the complexity of CCQ
answering on quad-systems, whose BRs do no have
existential quantifiers, removing existential quantifiers
from BRs of the form (1) results in:

c1 : t1(~x, ~z) ∧ ... ∧ cn : tn(~x, ~z)→

c′1 : t′1(~x) ∧ ... ∧ c′m : t′m(~x)

Since a logical formula of the form, A → B1 ∧ ... ∧
Bn can be rewritten to a semantically equivalent set of
formulas of the form, A→ B1, ..., A→ Bn, the set of
BRs R can be rewritten to R′, such that each r ∈ R′ is
the form:

c1 : t1(~x, ~z), ..., cn : tn(~x, ~z)→ c′1 : t′1(~x) (4)

AlsoR′ is linear in size ofR, and hence, w.l.o.g, we as-
sume that each r ∈ R is of the form (4). We call these
rules Horn bridge rules, as they resemble the Horn
rules in logic programming. We call a quad-system
whose BRs are all of Horn-type, a Horn quad-system.
Since there exists no existential variables in BRs of a
Horn quad-system, the skolemization does not change
R, i.e. sk(R) = R. Since there are no blank-node gen-
erating Skolem functions in sk(R), no skolem blank
nodes are produced during chase computation. Hence,
there can be no violation of the safety condition in sec-
tion 4, and hence, the class of horn quad-systems are
contained in the class of safe quad-systems. Of course,
this containment is strict as any quad-system that con-
tains a BR with an existential variable is not horn. We
in the following see that restricting to Horn BRs, size
of the chase becomes polynomial w.r.t. size of the input
quad-system, and the complexity of CCQ entailment
further reduces compared to safe quad-systems.

Lemma 5.1. For any Horn quad-system QSC =
〈QC , R〉, the following holds: (i) |chase(QSC)| =
O(|QSC |4) (ii) chase(QSC) can be computed in
EXPTIME (iii) If |R| is fixed to be a constant,
chase(QSC) can be computed in PTIME.

Proof. (i) Since each c, s, p, o, for any c : (s, p, o) ∈
QC , is a constant, the number of constants in QSC ,
is given as |C(QSC)| = O(4 ∗ |QSC |). As no blank
node generating Skolem function occur in any BR
in a Horn quad-system QSC , the set of constants
C(chase(QSC)) in its chase, is such that C(chase(
QSC)) = C(QSC). Since each c : (s, p, o) ∈ chase(
QSC) is such that c, s, p, o ∈ C(QSC), |chase(QSC)|
= O(|C(QSC)|4) = O(|QSC |4).

(ii) Since from (i) |chase(QSC)| = O(|QSC |4),
and in each iteration of the chase at least one new
quad should be added, the number of iterations can-
not exceed O(|QSC |4). Since by lemma 3.1, each it-
eration i of chase computation requires O(|chasei−1(
QSC)||R|) time, and |R| ≤ |QSC |, time required for
each iteration is of the order O(2|QSC|) time. Since
each iteration requires EXPTIME, although the num-
ber of iterations is a polynomial, total time required for
chase computation is in EXPTIME.

(iii) As we know that the time taken for applica-
tion of a BR R is O(|chasei−1(QSC)||R|). Since |R|
is fixed to a constant, application of R can be done in
PTIME. Also we know that owl-horst-closure can be
computed in PTIME. Hence, each chase iteration can
be computed in PTIME. Also since the number of iter-
ations is a polynomial in |QSC |, computing chase is in
PTIME.

Theorem 5.2. Data complexity of CCQ entailment
over Horn quad-systems is PTIME-complete.

Proof. (Membership) Follows from the membership
in P of data complexity of CCQ entailment for safe
quad-systems that are more expressive than horn quad-
systems (Theorem 4.9).

(Hardness) In order to prove PTIME-hardness, we
reduce a well known PTIME-hard problem of “reacha-
bility of two nodes in a directed graph” which is a well
known PTIME-complete problem. Given a graph G =
〈V,E〉, whereE ⊆ V×V , and any two nodes s, t ∈ V ,
to determine where t is reachable from s is a PTIME-
hard problem. We reduce this problem to CCQ evalua-
tion problem over a quad-system whose set of schema
triples, the set of BRs, and the query CQ are all fixed.
Given any graph G = 〈V,E〉, a source node s and a
target node t. We create a quad-systemQSc = 〈Qc, ∅〉,
where instance set (corresponds to A-box or Data) of
Qc, Abox(Qc) = {c : (v, edge, v′)|(v, v′) ∈ E} ∪
{c : (s,rdf:type, A)}, the constant sized schema
set (corresponds to T-box) of Qc, i.e. Tbox(Qc) =
{A v ∀edge.A}, which is an OWL Horst compliant
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axiom, as OWL-Horst allows universal restrictions on
right hand side of sub-class expressions. Now it is easy
to see that QSc |= c : (t,rdf:type, A) iff t is reach-
able from s.

Theorem 5.3. Combined complexity of CCQ en-
tailment over a Horn quad-system is EXPTIME-
complete.

Proof. (Membership) By lemma 5.1, for any Horn
quad-systemQSC , its chase chase(QSC), can be com-
puted in EXPTIME. Also by lemma 5.1, its chase size
|chase(QSC)| is a polynomial w.r.t to |QSC |. Since
a boolean CCQ CQ() can naively be evaluated by
grounding the set of constants in the chase to the vari-
ables in the CQ(), and then checking if any of these
groundings are contained in chase(QSC). The number
of such groundings can at most be |chase(QSC)||CQ()|

(†). Since |chase(QSC)| is polynomial in QSC , there
are an exponential number of groundings w.r.t |CQ()|.
Since containment of each of these groundings can be
checked in chase(QSC) in PTIME, as |chase(QSC)|
is a polynomial w.r.t. |QSC |. Hence, the time complex-
ity of CCQ entailment is in EXPTIME.

(Hardness) For EXPTIME-hardness, since we al-
ready saw in subsection 4.1 that with appropriate BRs
and triple patterns one can simulate an alternating
turing machine. The proof can slightly be modified
to simulate an EXPTIME deterministic turing ma-
chine (DTM). The steps in the proof is same as the
one in Dantsin et al. [23], where EXPTIME hard-
ness of function-free Horn logic programs (Datalog) is
shown.

5.1. Restricted Horn Quad-Systems

We call those quad-systems with BRs of form (4) with
a fixed bound on n as restricted Horn quad-systems.
They can be further classified as linear, quadratic, cu-
bic,..., quad-systems, when n = 1, 2, 3, ..., respec-
tively.

Theorem 5.4. Data complexity of CCQ entailment
over restricted Horn quad-systems is P-complete.

Proof. The proof is same as in theorem 5.2, since the
size of BRs are fixed to constant.

Theorem 5.5. Combined complexity of CCQ en-
tailment over restricted Horn quad-systems is NP-
complete.

Proof. Let the decision problem of determining if
QSC |= CQ() be called DP.

(Membership) for any QSC whose rules are of re-
stricted Horn-type, by lemma 5.1, its chase(QSC)
can be computed in PTIME in the size of QSC and
chase(QSC) has a polynomial number of constants.
Hence, if we guess an assignment µ for all the ex-
istential variables in CCQ CQ(), to the set of con-
stants in chase(QSC). Then, one can evaluate the CCQ
by checking if c : (s, p, o) ∈ chase(QSC), for each
c : (s, p, o) ∈ CQ()[µ], which can be done in time
O(|CQ| ∗ |chase(QSC)|), and is hence in PTIME.
Hence, a machine that can make a non-deterministic
guess can decide DP in polynomial time. Hence DP is
in NP.

(Hardness) We show that DP is NP-hard, by reduc-
ing the well known NP-hard problem, 3-colorability,
to DP. Given a graph G = 〈V,E〉, where V =
{v1, ..., vn} is the set of nodes, E ⊆ V × V is the set
of edges, 3-colorability problem, is to decide if there
exists a labeling function l : V → {r, b, g} that as-
signs each v ∈ V to an element in {r, b, g} such that
the condition: (v, v′) ∈ E → l(v) 6= l(v′), for each
(v, v′) ∈ E, is satisfied.

One can construct a quad-system QSc = 〈Qc, ∅〉,
where graphQc

(c) has the following triples:
{(r, edge, b), (r, edge, g), (b, edge, g), (b, edge, r),
(g, edge, r), (g, edge, b)}
Let CQ be the boolean CCQ: ∃v1, ...., vn

∧
(v,v′)∈E

[ c : (v, edge, v′) ∧ c : (v′, edge, v)]. Then, it can be
seen that G is 3-colorable, iff QSc |= CQ.

6. Related Work

Contexts and Distributed Logics The work on con-
texts began in the 80s when McCarthy [1] proposed
context as a solution to the generality problem in
AI. After this various studies about logics of contexts
mainly in the field of KR was done by Guha [15],
Distributed First Order Logics by Ghidini et al. [14]
and Local Model Semantics by Giunchiglia et al. [9].
Primarily in these works contexts are formalized as a
first order/propositional theory and bridge rules were
provided to inter-operate the various theories of con-
texts. Some of the initial works on contexts relevant to
semantic web were the ones like Distributed Descrip-
tion Logics [5] by Borgida et al., E-connections [19]
by Kutz et al., and Context-OWL [8] Bouqet et al., and
the recent work of CKR [11,10] by Serafini et al. These
were mainly logics based on DLs, which formalized
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contexts as OWL KBs, whose semantics is given using
a distributed interpretation structure with additional
semantic conditions that suits varying requirements.
Compared to these works, the bridge rules we consider
are much more expressive with conjunctions and exis-
tential variables that supports value-creation or blank
node creation. Also, none of the above works are fo-
cused on the query answering problem, which is main
focus of our work.

Temporal RDF/Annotated RDF Studies in extending
standard RDF with dimensions such as time and an-
notations has already been accomplished. Gutierrez et
al. in [38] tried to add a temporal extension RDF and
defines the notion of a ‘temporal rdf graph’, in which a
triple is augmented to a quadruple of form t : (s, p, o),
where t is a time point. Whereas annotated extensions
to RDF and querying annotated graphs has been stud-
ied in Udrea et al. [39] and Straccia et al. [40]. Un-
like the case of time, here the quadruple has the form:
a : (s, p, o), where a is an annotation. The authors pro-
vide semantics, inference rules and query language
that allows to express temporal/annotated queries. Al-
though these approaches, in a way address contexts by
means of time and annotations, the main difference in
our work is that we provide the means to specify ex-
pressive bridge rules for inter-operating the reasoning
between the various contexts.

Existential rules, TGDs, Datalog+- rules Query an-
swering over rules with universal-existential quanti-
fiers in the context of databases, where these rules are
called Datalog+- rules/tuple generating dependencies
(TGDs), was done by Beeri and Vardi [12] even in the
early 80s, where the authors show that the query en-
tailment problem in general is undecidable. However,
recently many classes of such rules have been identi-
fied for which query answering is decidable. Some of
these works that guarantees a finite chase is focused
on techniques that detects ‘acyclicity conditions’ that
guarantees chase termination by analyzing the infor-
mation flow between rules have been proposed. Weak
acyclicity [21,22], was one of the first such notions,
and was extended to joint acyclicity [36] and super
weak acyclicity [35]. The main approach used in these
techniques is to exploit the structure of the rules and
use a dependency graph that models the propagation
path of constants across various predicates in the rules,
and restricting the dependency graph to be acyclic.
However, it is well known that these approaches pro-
duces a large number of false alarms, i.e. it is often
the case that although dependency graph is cyclic, the

chase is finite. Although these approaches can be em-
ployed in our scenario, if one translates a quad-system
to a set of TGDs, this will inherit all the inherent draw-
backs of the approaches based on dependency graphs.
Hence, more recently, techniques other than the ones
based on weak acyclicity has been proposed. These
includes fragments of TGDs such that the resulting
models have bounded tree widths by Baget et al. [13],
Weakly guarded rules [6], and ‘sticky’ rules by cali
et al. [34]. The approach used for query answering in
these works is to rewrite the input query w.r.t. to the
TGDs to another query that can be evaluated directly
on the set of instances, such that the answers for the
former query and latter query coincides. The approach
is called the query rewriting approach. Also compared
to our approach, for which the chase is finite, these ap-
proaches do not enjoy the finite chase property, and is
hence not conducive to materialization/forward chain-
ing based query answering.

Data integration Studies in query answering on in-
tegrated heterogeneous databases with expressive in-
tegration rules in the realm of data integration is pri-
marily studied in the following two settings: (i) Data
exchange [21], in which there is a source database
and target database that are connected with existential
rules, and (ii) Peer-to-peer data management systems
(PDMS) [16], where there are an arbitrary number of
peers that are interconnected using existential rules.

The approach based on dependency graph, for in-
stance, is used by Halevi et al. in the context of peer-
peer data management systems [16], and decidability
is attained by not allowing any kind cycles in the peer
topology. Whereas in the context of Data exchange,
weak acyclicity is used in [21] to assure decidabil-
ity, and the recent work by Marnette [35] employs
the super weak acyclicity to ensure decidability. It can
straightforwardly noted that our notion of safety is a
generalization of these acyclicity based approaches.
This is because when a quad-system is unsafe, requires
skolem blank-node generated in a (set of) context(s)
to be a sub-blank-node of another blank-node gener-
ated in the same set of context(s). This means that
the former blank-node should propagate back to con-
text(s) where it was generated, and hence needs cyclic
dependency paths. Because of this, our approach can
straightforwardly be employed in these systems.

DL+rules Works on extending DL KBs with Data-
log like rules was studied by Horrocks et al.[27] giving
rise to the SWRL[27] language. The related initiatives
proposes a formalism using which one can mix a DL
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ontology with the Unary/Binary Datalog RuleML sub-
languages of the Rule Markup Language, and hence
enables horn-like rules to be combined with an OWL
KB. Since SWRL is undecidable in general, studies on
computable sub-fragments gave rise to works like De-
scription Logic Rules [37], where the authors deal with
rules that can be totally internalized by a DL knowl-
edge base, and hence if the DL considered is decid-
able, then also is a DL+rules KB. The authors give
various fragments of the rule bases like SROIQ rules,
EL++ rules etc. and show that certain new constructs
that are not expressible by plain DL can be expressed
using rules although they are finally internalized into
DL KBs. Unlike in our scenario, these works consider
only horn rules with out existential variables.

7. Summary and Conclusion

In this paper, we study the problem of query answer-
ing over contextualized RDF knowledge. We show that
the problem in general is undecidable, and present
few decidable classes of quad-systems. Table 1 dis-
plays the complexity results of chase computation and
query entailment for the various fragments of quad-
systems, we have derived. We can show that the notion
of safety, introduced in section 4 can be used to extend
the currently established tools for contextual reasoning
to give support for expressive bridge rules with conjuc-
tion and existential quantifiers with decidability guar-
antees. We view the semantics and the results obtained
in this paper as a general foundation for contextual rea-
soning and query answering over contextualized RDF
knowledge formats such as Quads, and can straight-
forwardly be used to extend existing knowledge stores
like Sesame/4store.
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Appendix

A. RDF and Tractable OWL Extensions:
Overview

Let U be the set of URIs, B the set of blank nodes
and L the set of literals. The set C = U ∪ B ∪ L
are called the set of (RDF) constants. Any (s, p, o) ∈
C × C × C is called a generalized RDF triple (from
now on, just triple). A graph is defined as a set of
triples. RDF(S) [29], and OWL-Horst [24] are popu-
lar languages with semantics that gives special mean-
ing to the terms in their vocabularies, and can be
used for reasoning over graphs. By logical expres-
sivity, these languages are grouped into the follow-
ing hierarchy: RDF ⊆ RDFS ⊆ OWL-Horst. OWL-
Horst, is a semantic extension to RDFS that defines a
set of semantic conditions to a subset of terms in the
OWL vocabulary. These include class assertions such
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as OWL restrictions (universal, existential, value re-
strictions), disjointness of classes and properties, prop-
erty assertions like symmetricity, transitivity, function-
ality, inverse relations of properties and assertions in-
volving owl:sameAs and owl:differentFrom.
Like RDF(S), any ontology serialized as a graph can be
reasoned using the OWL-Horst semantics. An OWL-
Horst interpretation structure is a tuple 〈IR, IP, IC,
IEXT, ICEXT, IS, LV〉, where IR is the object do-
main, IP ⊆ IR is the property domain, IC ⊆ IR is
the class domain, IEXT, the property extension func-
tion, ICEXT, the class extension function, IS, the term
interpretation function, and LV ⊆ IR, are the set of
literal values, a list of with additional semantic re-
strictions [24]. The class of OWL-Horst interpreta-
tion structures are a subset of the class of RDFS in-
terpretation structures, as an OWL-Horst interpreta-
tion structure is an extension of a standard RDFS in-
terpretation structure with additional semantic restric-
tions. OWL-Horst has a set of inference rules that
are sound and complete w.r.t. its semantics, such that
for any OWL-Horst graph g, its deductive closure,
owl-horst-closure(g), can be computed by repeat-
edly running the set of OWL-Horst inference rules on
g until a fixpoint is reached. OWL-Horst reasoning for
a graph can be characterized with the help of an OWL-
Horst canonical model, which is an OWL-Horst model
that represents all the OWL-Horst models of a graph,
and is defined as:

Definition A.1 (OWL-Horst Canonical Model). For
any OWL-Horst graph g, its canonical model
canowl-horst(g) = 〈IRc(g), IPc(g), ICc(g), IEXTc(g),
ICEXTc(g), ISc(g), LVc(g)〉 is an OWL-Horst interpre-
tation structure, constructed as follows:

– LVc(g) = {l|l is a plain literal and l occurs in
owl-horst-closure(g)} ∪ {dv(l)|l is a datatyped
literal occuring in owl-horst-closure(g), where
dv(l) is the data value of l }

– IPc(g) = {P |(P,rdf:type,rdf:Property)
∈ owl-horst-closure(g)}

– ICc(g) = {C|(C,rdf:type,rdfs:Class) ∈
owl-horst-closure(g)}

– IRc(g) = LVc(g) ∪ IPc(g) ∪ ICc(g) ∪ {a|(a,
rdf:type, rdfs:Resource ) ∈
owl-horst-closure(g)}

– ISc(g) = {(a, a)|a is any URI, blank node, or
Plain literal that occurs in owl-horst-closure(g)}
∪ (l, dv(l))|l is a datatyped literal occuring in
owl-horst-closure(g), where dv(l) is the data
value of l }

– for every P ∈ IPc(g), IEXTc(g)(P ) = {(s, o)|(s,
P , o) ∈ owl-horst-closure(g)}

– for every C ∈ ICc(g), ICEXTc(g)(C) = {a|(a,
rdf:type, C) ∈ owl-horst-closure(g)}

Consistency, as defined in [24] for an OWL-Horst
graph, determines if the graph have any clashes or
not. A clash, denoted by the symbol FALSE can re-
sult from invalid datatyped literals, and also from the
presence of statements like (a,owl:sameAs, b) and
(a,owl:differentFrom, b). Any graph, g, is said
to be OWL-Horst inconsistent, if g |=owl-horst FALSE,
and otherwise said to be OWL-Horst consistent, where
|=owl-horst is the OWL-Horst entailment relation. We
denote by `owl-horst the derivability relation between a
graph and a (set of) triple(s) using OWL-Horst infer-
ence rules. For any two OWL-Horst consistent graphs
g, h, the following are true:

– canowl-horst(g) |=owl-horst g
– canowl-horst(g) can be computed in PTIME
– g |=owl-horst h iff canowl-horst(g) |=owl-horst h.

The proofs of the above facts can be found in [24].
OWL 2 RL RDF rules [30] is a partial axiomatiza-
tion of OWL 2 RDF based semantics. These set of
rules provides axiomatizations for OWL constructs
like owl:intersectionOf, owl:unionOf,
owl:complementOf which are not provided by
OWL-Horst. Although deductive closure w.r.t these
rules for any graph g can be computed in PTIME, the
set of rules are incomplete for the OWL 2 RL frag-
ment of OWL for reasoning tasks such as computing
subsumptions, which is co-NP Hard [31].

B. Proofs of Section 3

Lemma 3.1. Let r ∈ R be a BR, such that for any
other r′ ∈ R, |r′| ≤ |r|, i.e. r is the BR in R,
with the highest number of quad-patterns, and let
l = |r|. (i) r can be applied on chasei−1(QSC) by
grounding variables in r to the set of constants in
chasei−1(QSC), the number of such groundings is of
the order O(|chasei−1(QSC)|l). Hence, |r(chasei−1(
QSC))|=O(l∗|chasei−1(QSC)|l) and |R(chasei−1(
QSC)| = O(R∗|chasei−1(QSC)|l). Since chasei(QSC
) = owl-horst-closure(S), where S = chasei−1(QSC)
∪R(chasei−1(QSC)). Since |S| = O(R∗ |chasei−1(
QSC)|l), and each member of the set S is a quad,
the number of constants in S,C(S) = 4 ∗ O(R ∗
|chasei−1(QSC)|l). Since each s, p, o, such that c : (s,
p, o) ∈ owl-horst-closure(S) is from the set C(S),
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|chasei(QSC)| ≤ |C| ∗ 64 ∗ R3 ∗ |chasei−1(QSC)|3l.
Since |C| ≤ |QSC |, |chasei(QSC)| = O(|QSC |4 ∗
|chasei−1(QSC)|l. Since l ≤ |R|, |chasei(QSC)| is
of the order O(|QSC | ∗ |chasei−1(QSC)||R|.

(ii) From (i) we know that |R(chasei−1(QSC))| =
O(R ∗ |chasei−1(QSC)|l). Since, no new constant
is introduced in any of the non-generating itera-
tions i + 1, ..., i + j, the set of constants in itera-
tion i + j is: C(chasei+j(QSC)) = C(S), where
S = R(chasei−1(QSC)) ∪ chasei−1(QSC). Since,
we already saw in (i) that |C(S)| = 4 ∗ O(R ∗
|chasei−1(QSC)|l), |C(chasei+j(QSC))| = 4 ∗
O(R ∗ |chasei−1(QSC)|l). Since each s, p, o, such
that c : (s, p, o) ∈ chasei+j(QSC) is from the set
C(chasei+j(QSC)), |chasei+j(QSC)| ≤ |C| ∗ 64 ∗
R3∗|chasei−1(QSC)|3l. Since |C| ≤ |QSC |, |chasei+j(
QSC)| = O(|QSC |4 ∗ |chasei−1(QSC)|l). Since l ≤
|R|, |chasei(QSC)| is of the orderO(|QSC |∗|chasei−1(
QSC)||R|).

Proposition B.1. There exists unrestricted quad-
systems whose dChase is infinite.

Proof. Consider an example of a quad-system QSc =
〈Qc, r〉, where graphQc

(c) = {a, rdf:type, C},
and the BR r = c1: (x,rdf:type, C) → c1 : (x,
P , f(x)), c1: (f(x), rdf:type, C). The dChase
computation starts with dChase0(QSc) = {c : (a,
rdf:type, C)}, now the rule r is applicable, and
its application leads to dChase1(QSc) = {c : (a,
rdf:type,C), c : (a, P, f(a)), c : (f(a), rdf:type,
C)}, which again is applicable by r for c : (f(a),
rdf:type, C). For any i ≥ 0, dChasei(QSc) con-
tains c : (f i(a),rdf:type, C) which in turn is appli-
cable by r. Hence dChasei(QSc) does not have a fi-
nite fix-point, and hence dChase(QSc) is infinite.

Theorem 3.2. We show that CCQ entailment is un-
decidable for unrestricted quad-systems, by showing
that the well known undecidable problem of “non-
emptiness of intersection of context-free grammars” is
reducible to the CCQ answering problem.

Given an alphabet Σ, string ~w is a sequence of sym-
bols from Σ. A language L is a subset of Σ∗, where
Σ∗ is the set of all strings that can be constructed from
the alphabet Σ, and also includes the empty string ε.
Grammars are machineries that generate a particular
language. A grammar G is a quadruple 〈V, T, S, P 〉,
where V is the set of variables, T , the set of terminals,

S ∈ V is the start symbol, and P is a set of production
rules (PR), in which each PR r ∈ P , is of the form:

~w → ~w′

where ~w, ~w′ ∈ {T ∪ V }∗. Intuitively application of a
PR r of the form above on a string ~w1, replaces every
occurrence of the sequence ~w in ~w1 with ~w′. PRs are
applied starting from the start symbol S until it results
in a string ~w, with ~w ∈ Σ∗ or no more production rules
can be applied on ~w. In the former case, we say that
~w ∈ L(G), the language generated by grammarG. For
a detailed review of grammars, we refer the reader to
Harrison et al. [32]. A context-free grammar (CFG)
is a grammar, whose set of PRs P , have the following
property:

Property B.2. For a CFG, every PR is of the form
v → ~w, where v ∈ V , ~w ∈ {T ∪ V }∗.

Given two CFGs, G1 = 〈V1, T, S1, P1〉 and G2 =
〈V2, T, S2, P2〉, where V1, V2 are the set of variables, T
such that T∩(V1∪V2) = ∅ is the set of terminals. S1 ∈
V1 is the start symbol of G1, and P1 are the set of PRs
of the form v → ~w, where v ∈ V , ~w is a sequence of
the formw1...wn, wherewi ∈ V1∪T . Similarly s2, P2

is defined. Deciding whether the language generated
by the grammars L(G1) and L(G2) have non-empty
intersection is known to be undecidable [32].

Given two CFGs, G1 = 〈V1, T, S1, P1〉 and G2 =
〈V2, T, S2, P2〉, we encode grammars G1, G2 into a
quad-system of the formQSc = 〈Qc, R〉, with a single
context identifier c. Each PR r = v → ~w ∈ P1 ∪ P2,
with ~w = w1w2w3..wn, is encoded as a BR of the
form:

c : (x1, w1, x2), c : (x2, w2, x3), ..., c : (xn, wn, xn+1)

→ c : (x1, v, xn+1) (5)

where x1, .., xn+1 are variables. W.l.o.g. we assume
that the set of terminal symbols T is equal to the set
of terminal symbols occurring in P1 ∪ P2. For each
terminal symbol ti ∈ T , R contains a BR of the form:

c : (x,rdf:type, C)→ ∃y c : (x, ti, y),

c : (y,rdf:type, C) (6)

and Qc contains only the triple:

c : (a,rdf:type, C)



Joseph et al. / Query Answering over Contextualized RDF/OWL Knowledge with Expressive Bridge Rules: Decidable Classes 21

We in the following show that:

QSc |= ∃y c : (a, S1, y) ∧ c : (a, S2, y)↔

L(G1) ∩ L(G2) 6= ∅ (7)

Claim (1) For any ~w = t1, ..., tp ∈ T ∗, there ex-
ists b1, ...bp, such that c : (a, t1, b1), c : (b1, t2, b2), ...,
c : (bp−1, tp, bp), c : (bp,rdf:type, C) ∈ dChase(
QSc).

we proceed by induction on the |~w|.

base case suppose if |~w| = 1, then ~w = ti, for
some ti ∈ T . But Since by construction c : (a,
rdf:type, C) ∈ dChase0(QSc), on which
rules of the form (6) is applicable. Hence, there
exists an i such that dChasei(QSc) contains
c : (a, ti, bi), c : (bi,rdf:type, C), for each
ti ∈ T . Hence, the base case.

hypothesis for any ~w = t1...tp, if |~w| ≤ p′, then
there exists b1, ..., bp, such that c : (a, t1, b1),
c : (b1, t2, b2), ..., c : (bp−1, tp, bp), c : (bp,
rdf:type, C) ∈ dChase(QSc).

inductive step suppose ~w = t1...tp+1, with |~w| ≤
p′ + 1. Since ~w can be written as ~w′tp+1, where
~w′ = t1...tp, and by hypothesis, there exists
b1, ..., bp such that c : (a, t1, b1), c : (b1, t2, b2),
..., c : (bp−1, tp, bp), c : (bp,rdf:type, C) ∈
dChase(QSc). Also since rules of the form (6)
are applicable on c : (bp, rdf:type, C), and
hence produces triples of the form c : (bp, ti, b

i
p+1),

c : (bip+1), rdf:type, C), for each ti ∈ T .
Since tp+1 ∈ T , the claim follows.

For a grammar G = 〈V, T, S, P 〉, whose start symbol
is S, and for any ~w ∈ {V ∪ T}∗, for some Vj ∈ V ,
we denote by Vj →i ~w, the fact that ~w was derived
from Vj by i production steps, i.e. there exists steps
Vj → r1, ..., ri → ~w, which lead to the production of
~w. For any ~w, ~w ∈ L(G), iff there exists an i such
that S →i ~w. For any Vj ∈ V , we use Vj →∗ ~w to
denote the fact that there exists an arbitrary i, such that
Vj →i ~w.

Claim (2) For any ~w = t1...tp ∈ {V ∪ T}∗, and
for any Vj ∈ V , if Vj →∗ ~w and there exists
b1, ..., bp+1, with c : (b1, t1, b2), ..., c : (bp, tp, bp+1) ∈
dChase(QSc), then c : (b1, Vj , bp+1) ∈ dChase(QSc).

We prove this by induction on the size of ~w.

base case Suppose |~w| = 1, then ~w = tk, for
some tk ∈ T . If there exists b1, b2 such that
c : (b1, tk, b2). But since there exists a PR Vj →
tk, by transformation given in (5), there exists a
BR c : (x1, tk, x2)→ c : (x1, Vj , x2) ∈ R, which
is applicable on c : (b1, tk, b2) and hence the quad
c : (b1, Vj , b2) ∈ dChase(QSc).

hypothesis For any ~w = t1...tp, with |~w| ≤ p′,
and for any Vj ∈ V , if Vj →∗ ~w and there
exists b1, ...bp, bp+1, such that c : (b1, t1, b2), ...,
c : (bp, tp, bp+1) ∈ dChase(QSc), then c : (b1,
Vj , bp+1) ∈ dChase(QSc).

inductive step Suppose if ~w = t1...tp+1, with |~w| ≤
p′ + 1, and Vj →i ~w, and there exists b1, ...bp+1,
bp+2, such that c : (b1, t1, b2), ..., c : (bp+1, tp+1,
bp+2) ∈ dChase(Qc). Also, one of the follow-
ing holds (i) i = 1, or (ii) i > 1. Suppose
(i) is the case, then it is trivially the case that
c : (b1, Vj , bp+2) ∈ dChase(QSc). Suppose if
(ii) is the case, one of the two sub cases holds (a)
Vj →i−1 Vk, for some Vk ∈ V and Vk →1 ~w
or (b) there exist a Vk ∈ V , such that Vk →∗
tq+1...tq+l, with 2 ≤ l ≤ p, where Vj →∗
t1...tqVktp−l+1...tp+1. If (a) is the case, triv-
ially then c : (b1, Vk, bq+2) ∈ dChase(QSc), and
since by construction there exists c : (x0, Vk, x1)
→ c : (x0, Vk+1, x1), ..., c : (x0, Vk+i, x1) →
c : (x0, Vj , x1) ∈R, c : (b1, Vj , bq+2) ∈ dChase(
QSc). If (b) is the case, then since |tq+1...tq+l| ≥
2, |t1...tqV2tp−l+1...tp+1| ≤ p′. This implies that
c : (b1, Vj , bp+2) ∈ dChase(QSc).

Similarly, by construction of dChase(QSc), the fol-
lowing claim can straightforwardly be shown to hold:

Claim (3) For any ~w = t1...tp ∈ {V ∪ T}∗, and
for any Vj ∈ V , if there exists b1, ..., bp, bp+1, with
c : (b1, t1, b2), ..., c : (bp, tp, bp+1) ∈ dChase(QSc)
and c : (b1, Vj , bp+1) ∈ dChase(QSc), then Vj →∗ ~w.

(a) For any ~w = t1...tp ∈ T ∗, if ~w ∈ L(G1) ∩ L(G2),
then by claim 1, since there exists b1, ..., bp, such that
c : (a, t1, b1), ..., c : (bp−1, tp, bp) ∈ dChase(QSc).
But since ~w ∈ L(G1) and ~w ∈ L(G2), S1 → ~w and
S2 → ~w. Hence by claim 2, c : (a, S1, bp), c : (a, S2, bp)
∈ dChase(QSc), which implies that dChase(QSc)
|= ∃y c : (a, s1, y) ∧ c : (a, s2, y). Hence, QSc |= ∃y
c : (a, s1, y) ∧ c : (a, s2, y).
(b) Suppose if QSc |= ∃y c : (a, S1, y) ∧ c : (a, S2, y),
then this implies that there exists bp such that c : (a,
S1, bp), c : (a, S2, bp) ∈ dChase(QSC). Then it is
the case that there exists ~w = t1...tp ∈ T ∗, and
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b1, ..., bp such that c : (a, t1, b1), ..., c : (bp−1, tp, bp),
c : (a, S1, bp), c : (a, S2, bp) ∈ dChase(QSc). Then
by claim 3, S1 →∗ ~w, S2 →∗ ~w. Hence, w ∈
L(G1) ∩ L(G2).

By (a),(b) it follows that there exists ~w ∈ L(G1) ∩
L(G2) iff QSc |= ∃y c : (a, s1, y) ∧ c : (a, s2, y). As
we have shown that the intersection of CFGs, which
is an undecidable problem, is reducible to the problem
of query entailment on unrestricted quad-system, the
latter is undecidable.

C. Proofs of Section 4

Lemma 4.7. (i) Any c : (s, p, o) ∈ dChase(QSC)
is such that s, p, o ∈ C(dChase(QSC)). Also C(
dChase(QSC)) = U( dChase(QSC)) ∪B(dChase(
QSC)) ∪ L(dChase(QSC)), and U( dChase(QSC))
= U(QSC), L(dChase(QSC)) = L(QSC). Also
B(dChase(QSC)) = B(QSC)∪Bsk(dChase(QSC)).
Since C(chase(QSC), L(chase(QSC)), and B(QSC)
are part of the input, the set Bsk(dChase(QSC)) de-
termines the incremental part of the chase(QSC). Note
that each b ∈ Bsk(dChase(QSC)) is a skolem blank
node, whose descendance graph can be unraveled into
a tree that satisfies the set of constraints given in prop-
erty 4.6. Since every non-leaf node from a path from
the root to the leaf node has a distinct set of ori-
gin Contexts, the depth of any such tree is bounded
by 2|C|. Also since order of the tree is bounded by
m = max{ar(fi)|fi is a skolem function symbol oc-
curring in sk(R)}, any such tree has at-most m2|C|

leaf nodes and m2|C|
non-leaf nodes. Let F be the

set of function skolem symbols occurring in R. Since
each leaf node is a constant in C(QSC), and each
non-leaf node is an element in F , the number of
possible descendance trees is bounded by |F |m2|C|

∗
|C(QSC)|m

2|C|

, which is triple exponential in |QSC |
as |F |,m, |C|, |C(QSC)| are polynomially bounded
by fixed input size |QSC |. Hence, the number of
skolem blank nodes Bsk(dChase(QSC)) are finitely

bounded by O(222|QSC|

). Hence, |C(dChase(QSC)|
is bounded by O(222|QSC|

), and |dChase(QSC)| =

O(222|QSC|

).
(ii) From (i) |dChase(QSC)| is triply exponential in

|QSC |, and since each iteration add at-least one quad to
its dChase, the number of iterations are bounded triple
exponentially in |QSC |. Also, by lemma 3.1 any itera-
tion i can be done in time O(|dChasei−1(QSC)||R|).

Since, using (i) |dChasei−1(QSC)| = O(222|QSC|

),

each iteration i can be done in time O(2|R|∗2
2|QSC|

).
Also, as number of iterations is triple exponential,
computing dChase(QSC) is in 3EXPTIME.

(iii) Since |R| is fixed to a constant, the set of skolem
function symbols F in sk(R), the arity of any f ∈ F ,
and set of origin contexts are constants. Because of
this, the number of tree structures of skolem blank-
nodes generated is a constant z. Hence, the number of
inner nodes and leaves of any such tree, which can be
taken by any constant in C(QSC). Hence, the number
of skolem blank nodes generated is O(|C(QSC)|z).
Hence, the set of constants in dChase(QSC) is a poly-
nomial in |QSC |, and also is |dChase(QSC)|.

Also, since in any dChase iteration except the final
one, atleast one quad should be produced and the fi-
nal dChase can have atmost O(|QSC |z) triples, the to-
tal number of iterations are bounded by O(|QSC |z)
(†). Since, any dChase iteration i involves only the fol-
lowing two operations (a) owl-horst-closure and (b)
computing R(dChasei−1(QSC)). (a) can be done in
time polynomial w.r.t. its input [24]. Since, we already
saw in (ii) that the time required for (b) is given by
|dChasei−1(QSC)||R|, and since |R| is a constant, this
time required for (b) is a polynomial in the size its in-
put. Hence, any dChase iteration can be performed in
polynomial time w.r.t. its input (‡). From (†) and (‡),
it can be concluded that dChase can be computed in
PTIME.

Lemma C.1 (Soundness). For any quad-system,QSC =
〈QC , R〉, if the constant unSafe ∈ dChasesafe(QSC),
then QSC is unsafe.

Proof. In order to prove the theorem, we first prove
a few supporting claims. The following claim shows
that any triple c : (s, p, o) with c ∈ C is derived in safe
dChase, is also derived in its standard dChase. In this
way, safe dChase do not generate any unsound triples
in any context c ∈ C.

Claim (1) For any quad c : (s, p, o), where c ∈ C,
if c : (s, p, o) ∈ dChasesafe(QSC), then c : (s, p, o) ∈
dChase(QSC).

We prove this claim by induction on the number of
iterations of dChasei(QSC) and dChasesafe

i (QSC).

base case i = 0, trivially holds, since by construction
graphdChase0(QSC)(c) = graphdChasesafe

0 (QSC)(c),
for any c ∈ C.
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hypothesis for any i ≤ k, c ∈ C, if c : (s, p, o) ∈
dChasesafe

i (QSC), then c : (s, p, o) ∈ dChasei(
QSC).

inductive step If c : (s, p, o) ∈ dChasesafe
k+1(QSC)

and c ∈ C, then either (i) c : (s, p, o) ∈ dChasesafe
k (

QSC) or (ii) c : (s, p, o) 6∈ dChasesafe
k (QSC). If

(i) is the case, then by our hypothesis c : (s, p, o) ∈
dChasek(QSC), and by construction of dChase,
c : (s, p, o) ∈ dChasek+1(QSC). Else if (ii) is
the case, then by construction of the safe dChase,
there exists a quad-graph S, such that for any
c′ : (s′, p′, o′) ∈ S, either (a) c′ : (s′, p′, o′) is
in dChasesafe

k (QSC) or (b) c′ : (s′, p′, o′) is ob-
tained by application of some r ∈ aug(R) from
dChasesafe

k (QSC), and S `horst c : (s, p, o). If
(a) is the case, then by hypothesis c′ : (s′, p′, o′) ∈
dChasek+1(QSC), and if (b) is the case, then
then there exists µ ∈ M , and r = body(r) →
head(r) ∈ aug(R), such that body(r)[µ] ∈
dChasesafe

k , and c′ : (s′, p′, o′) ∈ head(r)[µ].
By construction, for any r ∈ aug(R), there ex-
ists r′ ∈ R, such that r = aug(r′). Since,
body(r) = body(r′), and any triple pattern
c′′ : (s′′, p′′, o′′) ∈ body(r) is such that c′′ ∈ C, if
there exists µwith body(r)[µ] ∈ dChasesafe

k (QSC),
then body(r′)[µ]∈ dChasek(QSC) (follows from
induction hypothesis). Also, since any triple pat-
tern that are in head(r) \ head(r′) are triple-
patterns of the form cc : (s, p, o), such that cc 6∈
C. Hence, c′ : (s′, p′, o′) ∈ head(r)[µ] implies
that c′ : (s′, p′, o′) ∈ head(r′)[µ]. Hence, it
follows that S ⊆ dChasek+1(QSC). Also,
since dChasek+1(QSC) is closed w.r.t. OWL-
Horst rules, and since S `owl-horst c : ( s, p, o),
c : (s, p, o) ∈ dChasek+1(QSC).

The following claim shows that the set of origin con-
text triples are also sound.

Claim (2) If there exists quad cc : (b, originContext, c)
∈ dChasesafe(QSC), then c ∈ originContexts(b).

If cc : (b, originContext, c) ∈ dChasesafe(QSC), there
exists i ∈ N, such that cc : (b, originContext, c)
∈ dChasesafe

i (QSC), there exists no j < i with
cc : (b,originContext, c) ∈ dChasesafe

j (QSC). But if
cc : (b, originContext, c) ∈ dChasesafe

i (QSC) implies
that there exists an r = body(~x, ~z) → head(~x, ~f(~x))
∈ aug(R), with cc : (fi(~x), originContext, c) ∈
head(~x, ~f(~x)), and µ ∈M , such that cc : (b, originC-
-ontext, c) was generated due to application of µ
on aug(r), with b = fi(~x)[µ]. This implies that c

∈ cScope(fi(~x), head(~x, ~f(~x)) (By construction of
aug(r)). This implies that there exists c : (s, p, o) ∈
head(~x, ~f(~x)), with s = fi(~x) or p = fi(~x) or
o = fi(~x). Since according to our assumption i is
the first iteration in which cc : (b, originContext, c)
is generated, it follows that i is the first iteration in
which c : (s, p, o) is also generated. This implies that
c ∈ orginContexts(b).
In the following claim we prove the soundness of the
descendant triples generated in a safe dChase.

Claim (3) For any two distinct blank nodes b, b′ in
dChasesafe(QSC), if cc : (b′, descendantOf, b) ∈
dChasesafe(QSC) then b′ is a descendant of b.

Since any quad of the form cc : (b′, descendantOf, b)
∈ dChasesafe(QSC) is not an element of QC , and can
only be introduced by an application of a BR r ∈
aug(R), any quad of the form cc : (b′, descendantOf,
b) can only be introduced, earliest in the first iter-
ation of dChasesafe(QSC). Suppose cc : (b′, descen-
dantOf, b) ∈ dChasesafe(QSC), then there exists an it-
eration i ≥ 1 such that cc : (b′, descendantOf, b) ∈
dChasesafe

j (QSC), for any j ≥ i. We apply induction
on i for the proof.

base case suppose cc:(b′, descendantOf, b)∈ dChase1(
QSC) and since b 6= b′, then there exists a BR r
∈ aug(R), ∃µ ∈ M , such that body(r)(~x, ~z)[µ]
∈ dChasesafe

i (QSC), and cc : (b′, descendantOf,
b) ∈ head(r)(~x, ~f(~x))[µ]. Then by construction
of aug(r), it follows that b = fi(µ(~x)), for some
fi(~x) ∈ ~f(~x). Also since b′ 6= b, b′ = µ(xi), for
some xi ∈ ~x. But since b = fi(µ(~x)), which can
be rewritten as b = fi(µ(x1), ..., µ(xn)). Hence
b′ is a descendant of b (by definition).

hypothesis if cc : (b′, descendantOf, b) ∈ dChasei(
QSC), for 1 ≤ i ≤ k, then b′ is a descendant of b

inductive step suppose cc : (b′, descendantOf, b) ∈
dChasek+1(QSC), then either (i) cc : (b′, de-
scendantOf, b) ∈ dChasek(QSC) or (ii) cc : (b′,
descendantOf, b) 6∈ dChasek(QSC). Suppose
(i) is the case, then by hypothesis, b′ is a de-
scendant of b. If (ii) is the case, then either (a)
cc : (b′, descendantOf, b) is the result of the ap-
plication of a BR r ∈ R on dChasesafe

k (QSC) or
(b) there exists blank-node b′′ 6= b, b′, such that
cc : (b′′, descendantOf, b) is the result of applica-
tion of a BR r ∈ R and cc : (b′ descendantOf, b′′)
∈ dChasek(QSC). If (a) is the case, then similar
to what we saw in the base case, it follows that
b′ is a descendant of b, where as if (b) is the case
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then similar to what we saw in the base case, b′′ is
a descendant of b, and from hypothesis b′ is a de-
scendant of b′′. Also since, by definition, relation
‘descendant of’ is transitive, b′ is a descendant of
of b.

Suppose the constant unSafe ∈ dChasesafe(QSC),
then this implies that there exists an iteration i such
that the function unSafeTest onR and dChasesafe

i (QSC)
returns True. This implies that, there exists r =
body(r)(~x, ~z) → head(r)(~x, ~f(~x)) ∈ aug(R), µ ∈
M , b, b′ ∈ B, fi(~x) ∈ ~f(~x), such that body(r)(~x, ~z)[µ]
∈ dChasesafe

i (QSC), b ∈ µ(~x), cc : (b′, descendantOf, b)
∈ dChasesafe

i (QSC) and {c | cc : (b′, originContext, c)
∈ dChasesafe

i (QSC)} = cScope(fi(~x), head(r)( ~x,
~f(~x))). Then one of the following subcases holds: (a)
b = b′ and (b) b 6= b′.

Suppose if (a) is the case, then as a result of µ be-
ing applied to r, leads to the generation of a blank
node b′′ = fi(µ(~x)), such that originContexts(b′′)
= cScope(fi(~x), head(r)(~x, ~f(~x)). Also since b ∈
µ(~x) and by definition of unSafeTest, it follows that
{c | cc : (b, originContext, c) ∈ dChasesafe

i (QSC)}
= originContexts(b′′). By claim 2, it follows that
originContexts(b) = originContexts(b′′) (♣). Also,
trivially b is a descendant of b′′ (♥). Also from
claim 1, since body(r)(~x, ~z)[µ] ∈ dChasesafe

i (QSC),
body(r)(~x, ~z)[µ] is also in dChasej(QSC) for some it-
eration j, and hence r is applicable on dChasej(QSC)
for µ, and since applying µ on head(r)[~x, ~f(~x)], pro-
duces a skolem quad in which b′′ occurs, and hence
b′′ ∈ Bsk(dChase(QSC)). Also since b ∈ µ(~x), im-
plies that b ∈ Bsk(dChase(QSC)). Hence b, b′′ ∈
Bsk(dChase(QSC))(♠). By (♣), (♥), (♠), all the
prerequisites of an unsafe quad-system is satisfied, and
hence QSC is unsafe.

Suppose if (b) is the case, then as a result of µ be-
ing applied to r, leads to the generation of a blank
node b′′ = fi(µ(~x)), such that originContexts(b′′)
= cScope(fi(~x), head(r)(~x, ~f(~x)). Also since b ∈
µ(~x), and b′′ = fi(µ(~x), b is a descendant of b′′.
Also since, by assumptions of unSafeTest, cc : (b′, de-
scendantOf, b) ∈ dChasesafe

i (QSC), by claim 3, it
follows that b′ is a descendant of b and by transi-
tivity, it follows that b′ is a descendant of b′′ (♥).
Also by assumptions of unSafeTest, it follows that
{c | cc : (b′, originContext, c) ∈ dChasesafe

i (QSC)}
= originContexts(b′′). By claim 2, it follows that
originContexts(b′) = originContexts(b′′) (♣). Also
from claim 1, since body(r)(~x, ~z)[µ] ∈ dChasesafe

i (
QSC), body(r)(~x, ~z)[µ] is also in dChasej(QSC)

for some iteration j, and hence r is applicable on
dChasej(QSC) for µ, and since applying µ on head(r

)(~x, ~f(~x)), produces a skolem quad in which b′′ oc-
curs, and hence b′′ ∈ Bsk(dChase(QSC)). Also by
claim 1, it follows that b, b′ ∈ Bsk(dChase(QSC)).
By definition of unsafe quad-systems and by (♣), (♥),
(♠), QSC is unsafe.

Lemma C.2 (Completeness). For any quad-system,
QSC = 〈QC , R〉, if QSC is unsafe then unSafe ∈
dChasesafe(QSC).

Proof. We first prove a few supporting claims in order
to prove the theorem. The following claim shows that,
for safe quad-systems its standard dChase is contained
in its safe dChase.

Claim (1) Suppose unSafe 6∈ dChasesafe(QSC), then
dChase(QSC) ⊆ dChasesafe(QSC). We approach the
proof by induction on the iterations needed during the
dChase computation.

base case since dChase0(QSC) =QC , dChase0(QSC)
⊆ dChasesafe

0 (QSC).
hypothesis for any i ≤ k, if unSafe 6∈ dChasei(QSC),

then dChasei(QSC) ⊆ dChasesafe
i (QSC).

inductive step since dChasek+1(QSC) =
owl-horst-closure(dChasek(QSC)) ∪
R(dChasek( QSC))), and dChasesafe

k+1(QSC) =

owl-horst-closure (dChasesafe
k (QSC)∪ aug(R)

(dChasesafe
k (QSC))), and since by induction hy-

pothesis, dChasek(QSC)⊆ dChasesafe
k (QSC), it

follows that dChasesafe
k+1(QSC) ⊇

owl-horst-closure( dChasek(QSC) ∪ aug(R)(
dChasek(QSC))). Also since by construction, if
a BR r is applicable on an dChasek(QSC), then
also aug(r) is applicable as both r and aug(r)
have the same head part. Also aug(r) augments
more quad-patterns to the head part, application
of aug(r) produces at least as many triples as
r produces. Hence, we can rewrite the expres-
sion derived before as: dChasesafe

k+1(QSC) ⊇
owl-horst-closure(dChasek(QSC) ∪
R(dChasek(QSC))), which can again be rewrit-
ten as: dChasesafe

k+1(QSC) ⊇ dChasek+1(QSC).

Claim (2) For any skolem blank-node b generated
in dChasesafe(QSC), and for any c ∈ C, if c ∈
originContexts(b), then there exists a quad cc : (b,
originContext, c) ∈ dChasesafe(QSC).
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Since, the only way a skolem blank node b gets
generated in any iteration i of dChasesafe(QSC), is
by the application of a BR r ∈ aug(r), i.e. when
there ∃r = body(r)(~x, ~z) → head(r)(~x, ~f(~x)) ∈
aug(R),∃µ ∈ M, such that body(r)(~x, ~z)[µ] ∈
dChasesafe

i−1(QSC), and there exists fi(~x) ∈ ~f(~x),
with b = fi(µ(~x)). But by construction of aug(r),
head(r)( ~x, ~f(~x)) also has a quad-pattern of the form
cc : (fi(~x), origin-context, c), for every c ∈
cScope(fi(~x), dChasesafe

i−1(QSC)), and hence also a
triple of the form cc : (fi(µ(~x)), origin-context,
c) gets generated, on the application of µ on head(r)(

~x, ~f(~x). Since origin context of b = fi(µ(~x)) is the set
cScope(fi(~x), dChasesafe

i−1(QSC)), the claim follows.
For the claim below, we introduce the concept of

the sub-distance. For any two blank nodes, their sub-
distance is inductively defined as:

Definition C.3. For any two blank nodes b, b′, sub-
distance(b, b′) is defined inductively as:

– sub-distance(b, b′) = ∞, if b is not a descendant
of b′;

– sub-distance(b, b′) = 1, if b′ = f(t1, ..., tn) and
b = ti;

– sub-distance(b, b′) = min{sub-distance(b, ti)}+
1, if b′ = f(t1, ..., tn) and b 6= ti and b is a de-
scendant of b′.

Claim (3) For any two skolem blank nodes b, b′ in
dChasesafe(QSC), if b is a descendant of b′ then there
exists a quad of the form cc : (b, descendantOf, b′) ∈
dChasesafe(QSC)

Since, from the definition of sub-distance, it can
be seen that if b is a descendant of b′, then sub-
distance(b, b′) ∈ N. We approach the proof by induc-
tion on sub-distance(b, b′).

base case Suppose sub-distance(b, b′) = 1, then this
implies that b′ = f(t1, ..., tn) and b = ti. Since
by construction, the only way b′ is generated,
in any iteration i of dChasesafe(QSC), is by
the application of a BR, i.e. when there ∃r =
body(r)(~x, ~z) → head(r)(~x, ~f(~x)) ∈ aug(R),
∃µ ∈ M body(r)(~x, ~z)[µ] ∈ dChasesafe

i (QSC),
and there exists an fi(~x) ∈ ~f(~x) with b′ =
fi(µ(~x)) and b ∈ µ(xi), for some xi ∈ ~x.
But by construction of aug(r), head(r)(~x, ~f(~x)),
also has a quad-pattern of the form cc : (xi,
descendantOf, fi(~x)). Hence application of µ
on head(r)(~x, ~f(~x)), also produces quads of

the form cc : (µ(xi), descendantOf, fi(µ(~x))),
which means that cc : (b, descendantOf, b′) ∈
dChasesafe( QSC).

hypothesis Suppose sub-distance(b, b′) ≤ k, for some
1 ≤ k ∈ N, then cc : (b, descendantOf, b′) ∈
dChasesafe(QSC).

inductive step Suppose sub-distance(b, b′) = k + 1,
then there exists a b′′ 6= b, such that b′ =
f(t1, ..., tn), and tj = b′′, for some 1 ≤ j ≤ n,
and b is a descendant of b′′. This implies that sub-
distance(b′′, b′) = 1, and sub-distance(b, b′′) =
k, and hence by hypothesis cc : (b, descendantOf,
b′′) ∈ dChasesafe(QSC), and cc : (b′′, descen-
dantOf, b′) ∈ dChasesafe(QSC), and since by
construction cc : ( descendantOf, rdf:type,
owl:TransitiveProperty) ∈ dChasesafe(
QSC). Hence, cc(b,descendantOf, b′) ∈
dChasesafe(QSC).

Suppose QSC is unsafe, then by definition, there ex-
ists a blank nodes b, b′ in Bsk( dChase(QSC)), such
that b is descendant of b′, and originContexts(b) =
originContexts(b′). By contradiction, if unSafe 6∈
dChasesafe(QSC), then by claim 1, dChase(QSC) ⊆
dChasesafe(QSC). Since by claim 2, for any c ∈
originContexts(b), there exists quads of the form
cc : (b, origin-context, c) ∈ dChasesafe(QSC)
and for every c′ ∈ originContexts(b′), there ex-
ists cc : (b′, originContext, c′) ∈ dChasesafe( QSC).
Since originContexts(b) = originContexts( b′), it
follows that {c | cc : (b, origin-context, c) ∈
dChasesafe(QSC)}= {c′ | cc : (b′, origin-context,
c′) ∈ dChasesafe(QSC)} Also by claim 3, since b is
a descendant of b′, there exists a quad of the form
cc : (b, descendantOf, b′) in dChasesafe(QSC). But
by construction of dChasesafe(QSC), there should ex-
ist a b′′ ∈ Bsk(dChasesafe(QSC)), r ∈ aug(R),
µ ∈ M , such that cc : (b, descendantOf, b′′) ∈
dChasesafe(QSC) and b′′ ∈ µ(xi), and b′ = fi(µ(~x))
and since {c | cc : (b, origin-context, c) ∈
dChasesafe(QSC)}= {c′|cc : (b′, origin-context,
c′) ∈ dChasesafe(QSC)}, the method unSafeTest(
dChasesafe

i (QSC), R) should return True, for some i.
Hence, it should be the case that unSafe∈ dChasesafe(
QSC), which is a contradiction to our assumption.
Hence, unSafe ∈ dChasesafe(QSC), if dChase(QSC)
is unsafe.

Theorem 4.11. Follows from lemma C.1 and lemma
C.2.


