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Abstract
With the adoption of the Findable, Accessible, Interoperable and Reusable (FAIR) principles for data by researchers, an
increasing amount of datasets have been made available online, supporting research investigations. In order to ease
dataset interoperability, the I-ADOPT framework has been proposed by the scientific community as a means to capture
the subtleties and nuance of scientific variables in a structured manner. However, creating machine readable variable
representations requires significant expertise and manual effort, given the wealth of variable types in use by different
communities. In this paper we explore the use of Large Language Models (LLMs) to aid addressing this manual step.
We propose the I-ADOPT Benchmark, an expert annotated corpus and task designed to measure the performance of
LLMs in the different stages of automatically creating a machine readable scientific variable. Our corpus includes more
than 100 scientific variables as structured knowledge graphs, and our results show that even models of large size (32B)
struggle in creating these representations accurately (< 50% F1 score).
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Introduction

The Findable, Accessible, Interoperable, and Reusable
principles for data (Wilkinson et al., 2016) have made
datasets first class citizens in scientific research in order
to support the findings reported in research publications.
Datasets (and other digital objects such as software (Chue
Hong et al., 2022)) are now demanded by journals1,
conferences2 and funding bodies alike.3

FAIR compliance in research is therefore increasingly
expected at a large scale. However, applying the FAIR
principles remains a challenging task, requiring effort and
time by researchers. In addition, making data FAIR does
not always ensure interoperability, given the large number
of formats and domain-specific practices used by scientific
communities.

Achieving true interoperability between datasets requires
deliberate implementation efforts and alignment across their
variable representations. However, creating unambiguous,
machine-readable representations of the scientific variables
present in a dataset is not trivial, as variables may need
qualifiers and constraints that are key for data integration.
For example, the variable ‘Systolic blood pressure”, which
measures the pressure in the arteries when the heart beats
and pumps blood, can be decomposed in the following
description components: pressure as the main property,
the systolic state as a constraint on pressure, blood as
the object of interest and human as the context to
define in which body it was measured.

The I-ADOPT ontology4 is a Research Data Alliance
initiative designed as a potential solution to address scientific
variable representation. In I-ADOPT each variable is
represented as a knowledge graph, providing a specification

to systematically represent variables in a structured and
domain-agnostic way while also ensuring sufficient precision
for interpretation by both humans and machines.

However, modeling scientific variables as I-ADOPT
variables is not a trivial process for two main reasons: (i)
researchers may have differing (but correct) perspectives
when representing similar concepts and restrictions over
a variable, and (ii) the process requires time to agree
on a common representation, along with expertise on
the Semantic Web technologies (RDF, OWL) and domain
expertise on the variables themselves. Therefore, scaling
up variable generation requires semi-automated services for
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generating variable candidates, along with a human-in-the-
loop approach for their validation.

In order to address this issue, in this paper we assess the
viability of Large Language Models (LLMs) for automated
scientific variable generation following the I-ADOPT
framework. LLMs have shown promise in knowledge
representation tasks, such as the creation of structured
representations from text (Mo et al., 2025) or the generation
of ontologies from competency questions (Saeedizade &
Blomqvist, 2024). Therefore, our goal is to leverage LLMs
to generate machine-readable variables starting from the
variable definition in text. The main contributions of this
paper are:

• A corpus composed of 102 I-ADOPT machine-
readable variables in domains ranging from Physical
and Chemical Sciences to Social sciences. The
corpus is validated by domain experts and built
using a specific methodology, in order to become
a ground truth to assess automated systems for
variable representation. The corpus is available online
(Magagna and Chalk, 2025).

• A comparative study of the performance of Large
Language Models (ranging from 3 to 32 billion
parameters, with both open and closed models) easily
deployable at a large scale. All the evaluation details
are available online (Rastegar et al., 2025).

• A detailed analysis of the errors introduced by
LLMs, identifying the parts of the variables that are
particularly difficult to represent.

The remainder of the paper is structured as follows.
The Related Work section provides an overview of existing
approaches for representing scientific variables in a struc-
tured manner, along with efforts to automatically convert
them into knowledge graphs. Next, the Background: The I-
ADOPT Framework section provides more information on
the model used in this paper. The The I-ADOPT Corpus
describes how we designed the gold standard, while the
section I-ADOPT Benchmark: Evaluation of automated vari-
able decomposition using LLMs describes the benchmark
design and evaluation results. Finally, sections Discussion
and Conclusions outline the existing challenges faced in the
benchmark, as well as areas of future work.

Related Work
This section provides an overview of available frameworks
for representing scientific variables, together with common
methods for transforming these variables into Knowledge
Graphs.

A Brief History on Scientific Variable
Representation
Measurements, observations, and simulations are funda-
mental in scientific research. Proper interpretation of their
results requires knowledge about contextual aspects, includ-
ing what, how, when, and where the data acquisition took
place. A number of standards have been designed to address
this need, such as OBOE (Madin et al., 2007), Semantic
Sensor Network ontology (SSNO) (Haller et al., 2018)

and SAREF (J. Moreira et al., 2020). In its current ver-
sion5, the SSN Ontology is modularised and includes sev-
eral modules that provide explicit alignments with Obser-
vations, Measurements, and Samples (OMS, also known
as ISO 19156:2023) (Open Geospatial Consortium, 2023),
PROV (Moreau & Groth, 2022), SAREF (J. L. Moreira et al.,
2017), DOLCE (Borgo et al., 2022), and IDO6, supporting
interoperable use across communities. Via its core model
SOSA Observation, SSNO defines an observation as an act
of observing a single Property of a single Feature of Interest.
In cases where direct observations are not possible, Samples
are used as proxies. However, this model alone is insuf-
ficient to provide consistent and reusable representations
of observed properties across domains. The Climate and
Forecast Metadata (CF) Conventions (Eaton et al., 2003)
addresses this challenge by using standard names to con-
sistently describe variables captured in NetCDF data files.
While widely adopted, these descriptions are not FAIR, as
they lack formal, machine-interpretable semantics.

The Scientific Variable Ontology (SVO) Framework (Sto-
ica & Peckham, 2019) goes a step further by providing
formal, machine-readable rules for composing complex con-
cepts from elementary ones and is used for semantic media-
tion within the interdisciplinary MINT framework (Gil et al.,
2021)7. More recently, ML Commons Croissant (Akhtar
et al., 2024) has emerged as a standard for describing
dataset used in machine learning training. Croissant pro-
vides a lightweight, machine-readable skeleton that can
be easily integrated into ML pipelines. However, it cur-
rently lacks the deep, domain-specific semantics needed
for cross-disciplinary reuse. Croissant relies on schema.org8

to describe datasets, and schema:measuredVariable offers a
hook for systematically linking to richer contextual repre-
sentations of variables.

To leverage these complementary strenghts while address-
ing existing gaps, representants of SVO, CF and terminology
providers initiated a collaboration under the umbrella of
RDA as the I-ADOPT Working Group9 to define a com-
mon, lightweight approach for representing variables that
is understandable by both humans and machines, while
fully aligning with the FAIR principles. Endorsed by RDA
in 2022, the I-ADOPT recommendations (Magagna et al.,
2022) are meanwhile discussed as candidate Open Geospa-
tial Consortium (OGC) standard to complement the OGC
Observations, Measurements and Samples (OMS) Specifica-
tion (Open Geospatial Consortium, 2023) to provide a rich
and FAIR definition of the observable property concept in
the OMS/SOSA model.

The initiative is widely supported since its beginning
by environmental research infrastructures (Magagna et
al., 2021) such as the eLTER RI (Integrated European
Long-Term Ecosystem, Critical Zone and Socio-Ecological

5https://w3c.github.io/sdw-sosa-ssn/ssn/, version 2023
6https://rds-staging.posccaesar.org/ido/
7http://mint-project.info/
8https://schema.org/
9https://www.rd-alliance.org/groups/interoperable-descriptions-observable-
property-terminology-wg-i-adopt-wg/activity/
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Research Infrastructure)10 with its Envthes vocabulary11,
LifeWatch ERIC12, ACTRIS (Aerosols, Clouds, and Trace
Gases Research Infrastructure)13 with its ACTRIS vocab-
ulary14 and the OZCAR Resarch Infrastructure with its
vocabulary15 as discussed in (Coussot et al., 2024), by data
centers like PANGAEA (Diepenbroek et al., 2017), Aus-
tralia’s Terrestrial Ecosystem Research Network TERN16

and the British Oceanography Centre17, and by terminology
providers such as the OntoPortal Alliance (Jonquet et al.,
2025) and NERC Vocabulary Server (NVS)18.

Automated Extraction of Scientific Variables
from text
Generating structured knowledge representations from
unstructured text has been extensively studied in the
knowledge graph (KG) community. This task involves
extracting entities, identifying relationships, and organizing
information according to predefined schemas or ontologies.
A survey by Zhong et al. (2023) summarizes 300 methods for
automatic KG construction based on the three steps required
to generate a KG: knowledge acquisition, refinement, and
evolution. These methods focus not only on the extraction
of entities but also on the extraction of the relations between
them. A collection of KG databases is provided to evaluate
the methods. This survey highlights the heterogeneity of the
available solutions.

A more recent survey, Choi and Jung (2025) explores
KG generation across three core dimensions: Extraction,
Learning Paradigm, and Evaluation Methodology. Extraction
involves the processes used to collect and transform raw
data into structured information. Learning refers to the use
of ML techniques to identify relational patterns within KGs.
Evaluation examines the frameworks and metrics employed
to assess KG quality. This survey reviews more than 4000
papers related to KGs and shows a growing interest in
multimodal and domain-specific extraction approaches.

In the Extraction dimension, we find concepts such as
Named Entity Recognition (NER) and Relation Extraction
(RE). NER employs advanced models, including BERT-
based architectures (Devlin et al., 2019), Bi-LSTM (Graves,
2012), CRF (Lafferty et al., 2001), and graph-driven
approaches, to identify entities and align them with pre-
defined ontologies. RE uses dependency parsing, semantic
feature modeling, and attention mechanisms to identify sub-
ject–relation–object triples from unstructured text. Further-
more, multimodal and domain-adapted extraction techniques
incorporate heterogeneous data sources such as text, images,
and sensor inputs to improve the accuracy and relevance of
knowledge extraction.

KG learning comprises a diverse set of methods
designed to support link prediction, relational inference, and
structured data analysis. Early embedding models such as
TransEBordes et al., 2013 provide efficient representations of
entities and relations, while GNN-based approaches capture
complex, heterogeneous graph interactions for tasks like
node classification and link prediction. Transformer-based
models further integrate textual and structural information
through self-attention mechanisms, enhancing relational
consistency by combining graph topology with logical
constraints.

The emergence of generative models has encouraged their
use to generate triples directly. In generating triples, we
face three challenges: (i) producing a correct decomposition
of the entities identified in the text, (ii) generating triples
that conform to a given ontology, and (iii) performing
entity linking, that is, associating each entity with a specific
vocabulary concept. Each of these challenges represents a
step in the KG generation pipeline and can introduce errors
that may propagate.

I-ADOPT variable generation shares similarities with
KG construction—both require parsing text, extracting
semantic components, and mapping them to ontological
structures. However, I-ADOPT presents unique challenges:
variables can be correctly modeled in multiple ways,
components must be precisely typed (property, constraint,
matrix, etc.), and domain expertise is required to interpret
scientific terminology. These characteristics make I-ADOPT
variable generation a specialized structured extraction task
that tests LLMs’ ability to perform fine-grained semantic
decomposition within constrained frameworks.

As for the evaluation of text to KG approaches, existing
datasets such as WEBNLG (Gardent et al., 2017) and
NYT (Riedel et al., 2010) provide mainly triples for different
domains, but they do not include an ontology-based schema.
That is, they lack a formal declaration of entities and
relations.

Other comprehensive evaluation frameworks such
as Text2Bench (Mihindukulasooriya et al., 2023) and
OSKG (Wang & Iwaihara, 2025) exist. Text2Bench includes
three main metrics: Accuracy of the facts extraction,
ontology conformance, and hallucinations. Fact Extraction
Accuracy assesses how well the language model (LLM)
captures factual information by comparing its output triples
to ground truth triples using precision, recall, and F1
score, where higher values indicate better performance.
Ontology conformance (OC) measures the proportion of
LLM-generated triples that adhere to the input ontology,
considering a triple conforming if its relation matches one
of the ontology’s canonical relations. This metric can be
extended to validate domain, range or other axioms. Finally,
hallucination metrics quantify non-sensical or unfaithful
output through subject (SH), relation (RH) and object (OH)
hallucination rates, determined by checking whether the
elements of each triple are present in the source sentence or
ontology.

The OSKGC framework provides a benchmark for
constructing KGs from text based on an ontology schema.
Within this framework, different prompts are defined
for each step of the process: Joint Extraction, Entity
Recognition, Entity Typing, and Relation Extraction. The
authors propose an evaluation metric called Structural

10https://elter-ri.eu/
11https://vocabs.lter-europe.net/EnvThes/en/
12https://www.lifewatch.eu/
13https://www.actris.eu/
14https://vocabulary.actris.nilu.no/skosmos/actrisvocab/en/
15https://in-situ.theia-land.fr/skosmos/theiaozcarthesaurus/en/
16https://www.tern.org.au/
17https://www.bodc.ac.uk/
18https://vocab.nerc.ac.uk/searchnvs/
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Figure 1. Core classes of the I-ADOPT ontology

Similarity (SS) to measure the degree of alignment between
the schema of the constructed knowledge graph and the
predefined ontology.

As can be observed in the analyzed frameworks, there
is a lack of corpora focused on the representation of
scientific variables, as well as a lack of benchmarks designed
to evaluate the ability of decomposition, rather than the
generation of triples. This gap highlights the necessity of
resources such as the I-ADOPT corpus and its associated
benchmark, which enable a systematic evaluation for the
semantic decomposition of scientific variables.

Background: The I-ADOPT Framework
In our work, we use the I-ADOPT Framework to create
machine-readable representations of scientific variables.
According to I-ADOPT, a variable should explicitly capture
the context needed to understand what the values of the
digital object it represents mean. Information that needs
to be preserved and carried with both the data and
the metadata throughout their lifecycle. Current practices
often contrast with this requirement by providing sloppy
annotations that reduce the information to either the
property or the measured phenomenon, or by providing
only abbreviations or community-specific notations. This
hinders the interoperable data reuse, as it remains unclear
whether the data can be integrated for aggregation or analysis
purposes. The objective, initially focused on environmental
research, has been extended to specify a lingua franca
that allows for a domain-agnostic representation that is
understandable by both humans and machines, while also
enabling the contextualization and accuracy required by
individual scientific domains.

In I-ADOPT (see Figure 1), a Variable is understood
as a compound concept consisting of at least one entity
having the role of the ObjectofInterest and its Property and
additional entities providing metadata, like the embedding
medium or the body in which it is contained, as the Matrix
or other relevant information as the ContextObject. The
entity playing the role of ObjectOfInterest can be either
an object or a process being observed. All entities used in
the definition of the variable can be constrained to provide
precision about their condition, state, or limitation. I-ADOPT
focuses on what has been observed, measured, or simulated,

independently of the exact geographical position, timestamp
and the method applied. As a consequence, also the unit
of measurement is omitted, as the same variable can be
expressed in various units, making the variable concept
reusable in different settings.

The framework was tested by semantic modelers during
two organized challenges in 202419 based on a common
set of 30 variables from various domains. This effort
revealed some weaknesses of the model, including multiple
possible representations as well as the inability to capture
some complex scenarios. The challenges were followed by
two modeling workshops in 202520 involving 25 experts
in oceanography, atmospheric composition, biodiversity,
ecosystem research and ontology engineering to address the
shortcomings and discuss solutions. As a result, the ontology
was refined, and its version 1.1.0 provides capabilities
to describe fluxes and complex systems. Systems can be
either symmetric (when entities have the same roles as
parts of the system) or asymmetric (with entities having
either the role of numerator/denominator, normally used for
ratios like concentrations (see its application in Figure 2
or source/target used for representing flows in the matrix
slot). The extension now also includes statistical modifiers
to represent aggregations and makes it possible to apply
constraints on all description components allowing for more
flexible modeling (see Figure 1).

I-ADOPT is about providing triple statements to enrich
the description of a scientific variable. The starting point
is a human-readable description provided by a user. This
might be a single sentence or an abstract from a paper.
Applying I-ADOPT for the definition of a variable involves
the splitting of the description into atomic information units,
identifying their roles in the description and subsequently
annotating them using semantic concepts from community-
agreed terminologies.

Figure 2 shows the application of I-ADOPT for a
biochemistry example, representing the concentration of a
contaminant originating from the degradation of a pesticide
in the body of a mollusc. Using this example, we try

19https://i-adopt.github.io/challenge.html
20https://i-adopt.github.io/workshops.html
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Figure 2. Example of a machine-readable variable21 applying the I-ADOPT framework22

to illustrate how the description of a variable can be ’I-
ADOPTed’.

1. Clarify the meaning of the provided definition. In the
example given, the definition is: ’Mass concentration
of endosulfane sulfate in wet flesh of ostrea edulis,
measured in µg kg−1’. The unit µg kg−1 indicates
that this is a mass fraction in strict metrology terms.
Mass concentrations are defined as mass per volume,
but sometimes they are also used for indicating mass
concentrations per unit mass. The clarified sentence
results in: ’Mass fraction of endosulfane sulfate in wet
flesh of ostrea edulis, measured in µg kg−1’.

2. Exclude information that is not relevant for the
variable description. Here we need to exclude the
second part of the sentence, which refers to the unit.
The cleaned sentence reads like this: ’Mass fraction of
endosulfane sulfate in wet flesh of ostrea edulis’.

3. Split the clarified sentence into atomic units of
information, ensuring to keep the original meaning of
the terms: mass fraction, endosulane sulfate, wet, flesh,
and ostrea edulis.

4. Assign a specific role to atomic units in the descrip-
tion, selecting the appropriate predicates in the RDF
statement: iop:hasProperty refers to the object
mass fraction, iop:hasObjectOfInterest
points to an asymmetric system of two entities
where iop:hasNumerator links to the substance
endosulfane sulfate and iop:hasDenominator to
flesh, iop:hasMatrix refers to the species ostrea
edulis, in which the substance was determined. Lastly,
iop:hasConstraint is applied to the flesh: wet
to define the state.

5. Annotate each description with a semantic concept
using a chosen community terminology (QUDT
(Quantities, Units, Dimensions and Data Types
Ontologies) is a reference ontology providing
standardized definitions for quantities and units
of measure. NERC vocabularies are often
used for marine biochemstry variables): mass
fraction: qudt:MassFraction23, endosulfane sulfate:
s27:CS00362524; flesh: s12:S121425; ostrea edulis:
MS747226; wet: pato:PATO 000182327.

6. Provide a correct syntax for constraints, which should
be typed (here using the type state):

iop:hasConstraint
[ a iop:Constraint, pato:PATO0001823
;
rdfs:label "state: wet" ;
iop:constrains s12:S1214 ;

] .

This process, typically conducted by a semantic expert
in collaboration with a domain expert, is time-consuming.
Leveraging an LLM-enabled service to support this process
would allow researchers to document their variables in
a FAIR-compliant and machine-readable way immediately
upon dataset availability, without requiring the assistance of
semantic experts.

23http://qudt.org/vocab/quantitykind/MassFraction
24http://vocab.nerc.ac.uk/collection/S27/current/CS003625/
25http://vocab.nerc.ac.uk/collection/S12/current/S1214/
26http://vocab.nerc.ac.uk/collection/P21/current/MS7472/
27http://purl.obolibrary.org/obo/PATO0001823
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Figure 3. Variable distribution by domain of the I-ADOPT
Corpus

The I-ADOPT Corpus
The I-ADOPT Corpus includes 102 scientific variables
in multiple domains, represented in machine-readable
manner and curated by experts. This section outlines the
methodology and overview of the corpus, explaining the
process and rationale of its inception.

Corpus Development Methodology
To create a domain-independent corpus that extends beyond
the original focus on environmental domains, variables
from a range of different areas were selected. First, a
semantic expert redefined the thirty challenge variables
according to the extended I-ADOPT ontology. We then
added variables from different domains, collaborating with
diverse communities: the EuroGOOS High Frequency Radar
Working Group28, PARC (Chemical Risk Assessment)29, the
Atmospheric Composition Standard Names Group30, eLTER
RI, Climate Change Adaptation (Horizon Europe project
FAIR2Adapt31).

In total, we collected 102 variables from these areas (also
compare to Figure 3:

• Physical and Chemical Sciences (25)
• Earth and Environmental Sciences (40)
• Life and Health Sciences (16)
• Engineering and Technology (6)
• Social and Risk Sciences (15)

The procedure for creating the corpus involved the
following steps:

1. The participating communities suggested variables
from their domains and provided detailed definitions.
Complex variables were prioritized, in order to assess
the I-ADOPT framework’s representation capabilities

2. A semantic expert modeled the variables following a
systematic design process

3. 15 domain experts evaluated the variable decomposi-
tions following an evaluation scheme

4. A semantic expert refined the variable models
following suggestions provided by domain experts
until a consensus was reached while keeping aligned
with the discovered design patterns

Systematic design process. To ensure consistency in
modeling all variables, design patterns were developed
by identifying recurring structures in the decomposition

and the analysis of the frequency of combinations among
the associated description components. The modeling
approach was guided by the principle of delivering
generic, domain-independent representations via the I-
ADOPT framework, alongside detailed, community-specific
descriptions achieved through typed constraints and design
patterns co-developed with domain experts in each field.
The number of patterns applied was minimized during
development to favor simple representations while still
allowing for complex ones when needed. To ensure
alignment with the I-ADOPT framework, the I-ADOPT
Visualizer (Schindler, 2025b) was used, which only
renders upon successful validation according to the I-
ADOPT SHACL rules32 . Moreover, the Visualizer allows
for interactive modification of graphical elements and
immediate adjustments in the turtle file, making the
modeling process more intuitive and user-friendly. Finally,
the description components were annotated using Wikidata
concepts wherever possible, and only in cases of missing
coverage, concepts from other terminologies were used.
Constraint annotations were omitted for the same reason.

Once modeled, the turtle files for the variable represen-
tations were published on a dedicated GitHub repository
(https://w3id.org/iadopt/corpus). The corpus variables are
presented in a browsable catalog (Schindler, 2025a) that
illustrates their decomposition to facilitate human readabil-
ity. Each variable page is linked to its underlying turtle file
and to GitHub issues, where the modeling was discussed
with the domain experts involved in the evaluation process.
As a result of additional online meetings, not all interactions
are formally documented.

Expert evaluation scheme. For the assessment of
the variable representations, 15 invited domain experts
(acknowledged in Magagna and Chalk, 2025 were asked,
after a basic introduction to the basic I-ADOPT rules, to
evaluate the representations of the variables by rating the
following questions using these options: yes, fully / yes,
partially / no, barely / not at all / I am not able to answer
the question):

• Correct: Is the representation capturing the variable
correctly?

• Generic: Are the entity labels for Object of Interest and
Matrix generic enough to be reusable for other variable
decompositions?

• Complete: Is the representation explicit and compre-
hensive enough to cover the relevant parts of the
variable description?

• Concise: Does the representation of the variable
include only I-ADOPT relevant descriptions without
redundancies in terms of methods and units, etc?

• Understandable: Is the representation, including
its decomposition into atomic elements, easy to
understand?

28https://eurogoos.eu/task-teams/high-frequency-radar/
29https://www.eu-parc.eu/
30https://ui.adsabs.harvard.edu/abs/2024AGUFMA41L.1731S
31https://fair2adapt-eosc.eu/
32https://github.com/SirkoS/iadopt-schema/blob/main/shacl/iadopt.sh.ttl
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Table 1. Evaluation responses to questions assessing the fulfillment of modeling criteria

Fully Partially Barely Not at all Not able to
answer

Correct 46 44 6 1 5
Generic 76 25 0 0 1
Complete 69 27 3 0 3
Concise 78 14 2 0 8
Understandable 65 26 0 0 11

Table 1 shows the results of our evaluators. For variables
for which the evaluators were unable to answer, two other
domain experts were asked. In addition, the evaluators were
requested to suggest changes to improve the representation
when they considered it useful. 34 variables were fully
accepted without changes and 77 required adjustments.
These suggestions were incorporated, where feasible, in
the refinement process and re-discussed in GitHub issues
until a consensus aligned with the design principles could
be achieved. This evaluation process demonstrated that
correct decomposition of the variable description requires the
involvement of domain experts because original descriptions
may contain implicit knowledge and, therefore, can be
misinterpreted.

Corpus Overview
The I-ADOPT Corpus consists of 102 expert-curated I-
ADOPT variables spanning different scientific domains, with
an uneven distribution. Earth and Environmental Science
variables predominate, reflecting the disciplinary focus of the
original contributing community to the I-ADOPT Working
Group.

Table 2. Required adjustments to variable descriptions prior to
decomposition

Percentage of 102 variables
Refined definition 46.32
Added Matrix 26.32
Added Constraint 9.47
Parts omitted 23.16

We summarize two structural characteristics that strongly
influence the decomposition difficulty and evaluation.

Constraints. A variable is counted as having constraints
if it includes a hasConstraint relation, regardless of
the number of individual constraints. In the corpus, 85
variables contain hasConstraint, and 16 do not. Among
the constrained variables, 29 contain exactly one constraint.

Matrices. A variable is counted as having a matrix if it
contains a hasMatrix relation, whether represented as a
simple entity or as a system of entities. In total, 61 variables
contain hasMatrix, and 40 do not. Among the variables
with matrices, 34 are represented via a simple entity and 27
use systems (26 asymmetric and 1 symmetric system).

These counts provide context for interpreting per-
component results and error patterns, particularly for
Constraint and Entities having the role of Matrix (as
used in Figure 2, which are more difficult to infer reliably
from short natural-language definitions.

Of the 102 variables, only 21 could be decomposed
directly. In fact, many variables had to be interpreted before

they could be decomposed. This included refinements of the
definition, additions of matrices or constraints, or omissions
of parts in the definition in case it included I-ADOPT
irrelevant content, such as methods or instruments. In
Table 2 the percentage of variables that require adjustments
according to these criteria is provided (units are not counted
as omissions, as they are required for proper interpretation of
the property).

Overall, the I-ADOPT Corpus can serve as a gold standard
for benchmarking analyses. It spans multiple domains,
extending beyond its original focus on environmental
domains, and has been reviewed by domain experts.

I-ADOPT Benchmark: Evaluation of
automated variable decomposition using
LLMs
Variable decomposition and linking is a time consuming
manual step requiring assistance and validation by experts.
In order to aid this process, this section explores how large
language models (LLMs) may be used to automatically
decompose scientific variable definitions into structured
representations aligned with the I-ADOPT ontology.

In I-ADOPT, a variable is described through a set of
slots, where each slot corresponds to a specific description
component, such as Property, ObjectOfInterest, Matrix,
or Constraint—that captures a distinct semantic aspect of
the variable. Automated variable interpretation therefore
consists of identifying and populating these slots from
natural-language definitions and, where applicable, linking
their values to concepts in controlled vocabularies.

This section describes the benchmark methodology used
to evaluate this process. We introduce the decomposition
and linking tasks, outline the input and output assumptions,
describe the prompting strategy and JSON-based interaction
format, and present the evaluation protocol and experimental
setup. Results are reported using aggregated metrics as well
as per-slot analyses, reflecting performance at the level of
individual I-ADOPT description components.

All benchmark code, prompts, schemas, and evaluation
scripts are archived and publicly available (Rastegar et al.,
2025).

Benchmark development methodology
Definition of tasks. Given a scientific variable expressed

as an uncurated natural-language definition, the primary
task assigned to the LLM is to generate a structured I-
ADOPT representation by populating the corresponding
slots. Each slot is filled with a textual or structured value
inferred directly from the definition text, and each variable
is processed independently.
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In addition to slot population, a secondary task consists
of linking the extracted slot values to entities from
external controlled vocabularies. This linking step supports
semantic interoperability but is evaluated separately from the
decomposition task.

Although the I-ADOPT ontology includes the
ContextObject role, this slot is rarely populated in
the corpus variables and is therefore excluded from the
quantitative results reported in results subsection. The role
is retained in the methodology description for completeness
but is omitted from result tables due to sparsity.

Input and output assumptions. In the current version of
the benchmark evaluation variable descriptions are assumed
to be complete, i.e., each LLM is instructed to rely
exclusively on the provided variable definition text and to
refrain from introducing information that is not explicitly
stated. This restriction is imposed to minimize hallucination
and to enforce ontology alignment at the schema level rather
than through implicit background knowledge. As a result,
mismatches are expected when the expert-curated ground
truth relies on domain knowledge or preferred formulations
that are not literally present in the definition text.

For each run, the model receives: (i) a fixed set of
prompt rules corresponding to one of the prompt variants
described in the following prompt variants paragraph, (ii)
a JSON Schema derived from the I-ADOPT ontology, (iii)
zero, one, three, or five example decompositions depending
on the shot setting, and (iv) the target variable definition
to be decomposed. The model does not receive ontology
serializations (TTL), SHACL constraints, or controlled
vocabulary identifiers.

The model is required to output a single JSON object that
exactly conforms to the provided schema. If a slot cannot
be populated based solely on the definition text, the model is
instructed to leave the slot empty (using an empty string or an
empty list, as appropriate) rather than attempting to infer or
guess missing information. This design choice ensures that
the evaluation reflects extraction fidelity rather than implicit
reasoning.

We use JSON as an intermediate interaction and
serialization format for variable decomposition because prior
work has shown that large language models can effectively
generate structured outputs when constrained by explicit
schemas and fixed output formats (Shorten et al., 2024).

In this workflow, JSON serves as a schema-aligned
interface between the natural-language variable definition
and the ontology-based representation defined by I-ADOPT.
The explicit slot structure enables automatic validation of
model outputs, ensures consistency across prompt variants
and models, and supports fine-grained, slot-level evaluation
of decomposition performance.

Importantly, JSON is used solely as an interaction and
evaluation format for the language model. It does not
replace or reinterpret the underlying ontology semantics. All
generated representations are ultimately converted back into
ontology-aligned structures for comparison with the expert-
curated corpus.

Prompt variants. We evaluate three prompt variants that
differ in how they structure the decomposition task and guide
the extraction of I-ADOPT description components:

• strict minimal: a minimal instruction set that
emphasizes extraction strictly from explicitly stated
text. The model is instructed to leave slots empty when
the required information is not clearly supported by the
variable definition.

• constraint decision tree: a stepwise prompt
structure that enforces an explicit extraction order.
In this variant, constraint extraction is deferred
until after core components have been identified,
and constraints are explicitly required to reference
previously extracted slots.

• matrix decision tree: a decision-oriented
prompt that prioritizes distinguishing matrix-related
phrases (e.g., materials or media) from conditions that
should instead be modeled as constraints.

These prompt variants are designed to test how different
levels of structural guidance affect decomposition quality,
particularly for components that are frequently ambiguous
in natural-language definitions, such as matrices and
constraints.

All prompts are handcrafted and iteratively refined using a
small set of explicit, expert-informed heuristics derived from
the I-ADOPT modeling guidelines. These heuristics include
enforcing a fixed extraction order, restricting extraction
to information explicitly stated in the variable definition,
distinguishing matrix-like contexts from constraints, and
requiring empty outputs when a component cannot be
supported by the text. Aside from the variable definition
itself and the number of example decompositions provided
(shot setting), prompts are fixed, task-agnostic, and reused
unchanged across all variables and model configurations.
The complete prompt templates used in the experiments are
provided in Appendix section .

Schema-driven validation and retries. Generated JSON
outputs are validated against the JSON Schema provided
in Appendix section . If an output is not schema-valid, the
request is retried, and the same prompt is reissued to the
model, without modification, up to a maximum of three
attempts. Retries occur only due to schema non-conformance
(not because an output is low-quality but valid). In practice,
retries are rarely required. Only schema-valid JSON outputs
are retained for evaluation. Valid LLM JSON outputs are
compared with the corpus representation.

Component-based evaluation. Evaluation is performed
at the level of I-ADOPT components, where a component
corresponds to one role in the description of a variable (e.g.,
Property, ObjectOfInterest, Matrix, Constraint). For each
variable, the model-generated representation is compared to
the expert-curated gold standard (in the corpus) separately
for each component.

Systems are treated as representations occupying a
slot, rather than as standalone entity, in accordance
with the I-ADOPT ontology. Mandatory components are
hasProperty and hasObjectOfInterest. All other
components are evaluated only when applicable.

The ObjectOfInterest and Matrix slots may be
represented either as simple entities or as system entities. A
system can be asymmetric, when the entities involved have
different roles, or symmetric, when the entities involved
have the same role. When these slots are represented
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as systems, their evaluation follows system-specific rules
described below. Otherwise, they are evaluated using string
comparison.

Simple and system-valued components. For compo-
nents such as hasProperty, hasContextObject, and
hasStatisticalModifier, evaluation is based on
string comparison between the gold standard and the gen-
erated representation:

• a correct match yields a full True Positive (TP = 1.0),
• an incorrect value yields a full False Positive (FP =

1.0),
• missing values yield a False Negative (FN = 1.0),
• correctly omitted non-applicable components yield a

True Negative (TN = 1.0).

Constraint components. Constraints are represented as
instances of hasConstraint, each associated with
a human-readable label and linked via the predicate
constrains to the component it restricts.

For evaluation, constraints are compared based on their
label and constrained target. The order of constraints is
ignored. Each constraint contributes a fractional score based
on the proportion of correctly matched elements.

Asymmetric systems. Asymmetric systems may occur
as representations in the ObjectOfInterest or Matrix slots.
When present, they are evaluated by comparing all
required parts (e.g., hasSource and hasTarget, or
hasNumerator and hasDenominator). Order is not
ignored for asymmetric systems. Each part contributes
equally to the final score, and partial correctness results in
fractional TP and FP values.

Symmetric systems. Symmetric systems may occur as
representations in the ObjectOfInterest or Matrix slots. They
are evaluated based on their hasPart elements. The order
of parts is ignored. Each part contributes equally to the total
score.

Structural mismatches. If the slot specifies a system
representation and the generated output provides a simple
entity representation (or vice versa), the prediction is treated
as a structural mismatch. In such cases, the component
is evaluated as incorrect, even if partial textual overlap
exists, because the representation structure is semantically
significant in I-ADOPT.

Exact and close matching. Two matching strategies are
used:

• Exact match: ignores capitalization and leading/trail-
ing whitespace. If the normalized strings are identical,
similarity is 1.0. Otherwise, it is 0.0.

• Close match: uses cosine similarity between sentence
embeddings (model all-MiniLM-L6-v2). A simi-
larity score of 0.8 or higher is considered a match.

The embedding model is chosen as a lightweight and
widely used sentence encoder that provides stable semantic
representations and is suitable for large-scale, reproducible
evaluation (Galli et al., 2024). A similarity score of 0.8
or higher is considered a match, reflecting a conservative
threshold intended to capture clear semantic equivalence
while avoiding overly permissive matches.

Metric computation. For each component, we compute
True Positive (TP), False Positive (FP), False Negative (FN),
and True Negative (TN). Fractional values are permitted for
composite representations such as constraints and systems.
Precision, Recall, and F1-score are computed per component
and aggregated over all test variables.

These metrics are widely used for evaluating structured
extraction and classification tasks and are standard in
knowledge graph construction and information extraction
evaluations (Bhatt et al., 2024).

Linking to controlled vocabularies. After schema
validation and component-level evaluation, generated
variable representations are semantically enriched by
linking each slot defined by the I-ADOPT ontology—
such as hasProperty, hasObjectOfInterest,
hasMatrix, or hasConstraint—to persistent
identifiers from controlled vocabularies. This step ensures
interoperability and supports FAIR principles by enabling
machine-readable, domain-agnostic representations.

For each slot, we take the textual value produced
during decomposition and query the Wikidata Search API
(wbsearchentities33) using that term as the search
string. The API returns a list of candidate entities with:

• label: the entity’s preferred name in Wikidata,
• description: a short textual description provided by

Wikidata.

We use the default API behavior without limiting the number
of candidates beyond what the API returns.

Since the goal of this paper is not to propose a state-
of-the-art entity linker but to provide an efficient baseline
in terms of computational cost and performance, we first
compare a naive approach—selecting the top result returned
by Wikidata—with an improved baseline that leverages
reranking. Specifically, we explore whether incorporating
the variable definition as contextual information can
enhance candidate selection. For this purpose, we evaluate
two cross-encoder models: a widely used lightweight option
(cross-encoder/ms-marco-MiniLM-L6-v2) and
a more advanced reranking model based on the smallest
Qwen3 variant (Qwen3-Reranker-0.6B). For the first
model, we use a simple prompt template: Definition
of "{term}" in context: "{context}"
+ label: "{label}", description:
"{description}", whereas for the second model
we adopt the following prompt adapted to the Qwen3
architecture:� �
<|im_start|>system
Judge whether the Document meets the

requirements based on the Query and the
Instruct provided. Note that the answer
can only be "yes" or "no".

<|im_end|>
<|im_start|>user
<Instruct>: Given a web search query,

retrieve relevant passages that answer
the query

<Query>: Definition of "{term}" in context:
"{context}"

33https://www.wikidata.org/w/api.php?action=help&modules=wbsearchentities
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<Document>: label: "{label}", description:
"{description}"

<|im_end|>
<|im_start|>assistant
<think>

</think>� �
Here:

• term = the slot value from the decomposition,
• context = the full variable definition,
• label, description = values returned by

Wikidata for the candidate entity.

The model returns a binary decision internally converted
into a confidence score. Candidates are ranked by this
score, and the top candidate is selected. No type checks or
additional filtering are applied.

To evaluate entity linking independently, we use the
ground truth variable decomposition as the starting point,
removing the Wikidata links before performing entity linking
and reserving them as ground truth for this specific task. As
a metric, we report the average accuracy per variable. When
computing accuracy, only cases where the ground truth entity
is linked to Wikidata are considered, and a prediction is
counted as correct only if the predicted link exactly matches
the expected one.

Results
This subsection reports the results of evaluating multiple
LLM configurations on the I-ADOPT corpus. Performance
is assessed using aggregated Exact and Close matching
metrics across all description roles, complemented by per-
slot analyses that reveal differences in component-level
behavior.

Evaluation split and comparability across shot settings.
To ensure comparability across prompting strategies, a fixed
set of five variables is reserved as the few-shot example pool
and excluded from evaluation in all runs, including the 0-
shot setting. Consequently, every experimental configuration
is evaluated on the same set of 97 variables (102 total
variables minus the five held-out examples), guaranteeing
fair comparison across different shot settings.

Shot settings. We evaluate 0-shot, 1-shot, 3-shot, and 5-
shot prompting strategies, where the number of example
decompositions included in the prompt corresponds to the
shot setting. The results indicate that the optimal number
of shots is model-dependent. While larger models such as
Qwen-32B benefit from additional examples and achieve
their best performance under 5-shot prompting, most smaller
models reach peak performance in the 0–1 shot regime. This
suggests that few-shot prompting is not universally beneficial
and that its effectiveness depends on model capacity and
robustness.

Model selection. The evaluated models represent a
selected subset of language models chosen to reflect
realistic deployment scenarios for automated variable
decomposition services. Selection criteria prioritized open-
source instruction-tuned models that can be executed on
institutional HPC or on-premise infrastructure, ensuring
that the benchmark remains reproducible and practically

applicable in typical research environments. Models were
therefore chosen to span different parameter scales while
remaining feasible for local deployment. In addition, a
lightweight proprietary model (GPT-4o-mini) was included
as a reference point to contextualize the performance
of open-source models against a commonly used closed
alternative.

Grid search strategy. A grid search is used to identify
well-performing configurations. The following parameters
are explored:

• model choice (open-source and proprietary),
• temperature,
• prompt instructions (strict minimal,
constraint decision tree,
matrix decision tree),

• number of shots (0, 1, 3, 5).

The search is performed in two stages. First, the set
of example variables is fixed while varying models,
temperatures, prompts, and number of shots. Once these
parameters are selected, the parameter selection is held
constant, and the example variable set that is given to the
model changes to find the best set of examples.

Aggregated results across description roles. Table 3
summarizes the best-performing configuration for each
evaluated model using aggregated Exact and Close Precision,
Recall, and F1-score across all I-ADOPT description roles.

Overall, Qwen-32B (Team, 2025) shows the highest
scores among the evaluated models, reaching an F1exact of
0.45 and an F1close of 0.46 under the reported configuration.
This configuration combines a larger model size with few-
shot prompting, which coincides with higher aggregated
performance in this benchmark setting.

Among the smaller open-source models, Qwen-8B and
LLaMA-3-8B achieve comparable results, particularly in
low-shot configurations. In contrast, GPT-4o-mini, included
as a lightweight proprietary reference model, attains
lower aggregated scores in this evaluation, highlighting
performance differences across model families under
identical schema constraints.

Across all models, Close matching yields consistently
higher scores than Exact matching. This reflects cases where
generated slot values are semantically similar to the corpus
annotations but differ at the lexical level.

Effect of prompt variants and shot settings. Table 4
reports the effect of the three prompt variants across different
shot settings for Qwen-32B, selected as a representative
large model. Results are reported using Exact and Close F1-
scores aggregated across all evaluated description roles. This
analysis illustrates how prompt structure and the number
of provided examples affect decomposition performance.
Qwen-32B is chosen due to its strong overall performance
and stable behavior across configurations.

Overall, performance improves consistently as the number
of shots increases across all prompt variants, confirming
the benefit of providing example decompositions. The
strict minimal prompt achieves the highest overall
performance, reaching the best Exact and Close F1-scores
in the 5-shot setting. The constraint decision tree based
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Table 3. Aggregated Exact and Close Precision, Recall, and F1-score across all I-ADOPT description roles. For each model, the
best-performing configuration is reported.

Model Type Prompt Shots Temp Pexact Rexact F1exact Pclose Rclose F1close

Qwen-
32B

Open-
source
(large)

strict minimal 5 0.5 0.29 0.49 0.45 0.33 0.52 0.46

Qwen-8B Open-
source
(small)

strict minimal 0 0.5 0.22 0.43 0.38 0.26 0.46 0.42

LLaMA-
3-8B

Open-
source
(small)

constraint tree 1 0.0 0.26 0.34 0.36 0.29 0.36 0.40

Mistral-
7B

Open-
source
(small)

strict minimal 0 0.0 0.21 0.35 0.29 0.24 0.38 0.32

GPT-4o-
mini

Proprietary strict minimal 0 0.5 0.19 0.23 0.23 0.22 0.26 0.25

prompts show competitive results, particularly in the 3-
shot and 5-shot configurations, but do not surpass the
strict minimal variant. Differences between prompt variants
are most pronounced in the 0-shot setting, where more
structured prompts provide slightly better Close F1-scores,
while these differences narrow as more examples are
introduced.

Per-slot performance analysis. Table 5 reports per-
slot Exact and Close F1-scores for the main I-ADOPT
description roles evaluated in this study, namely Property,
ObjectOfInterest, Matrix, and Constraint. These slots
represent the core semantic components required to
characterize scientific variables and occur sufficiently often
in the benchmark to support quantitative analysis.

The ObjectOfInterest and Matrix slots are evaluated at
the slot level regardless of whether their representations
are simple entities or system entities. Differences in
internal representation structure (simple vs. system) are
handled internally by the evaluation rules described in the
methodology subsection and are not reflected as separate
result categories. The ContextObject role is excluded from
this analysis due to its low frequency in the benchmark.

Both models perform best on the Property component,
achieving high recall and the highest F1-scores, indicating
that core physical or chemical properties are reliably
extracted from variable definitions. Performance decreases
for ObjectOfInterest, and drops further for Matrix and
Constraint, which remain the most challenging components.
The larger Qwen3-32B model consistently outperforms
Qwen3-8B across all components, with the largest gains
observed for ObjectOfInterest and Constraint. Across all
slots, recall is generally higher than precision, suggesting
that models tend to over-generate candidate components
rather than miss relevant ones.

Errors Analysis. Table 6 shows the summary of the
error analysis we performed on our results. Although
ContextObject is excluded from the main performance tables
due to sparsity, we include it here for completeness in
hallucination/conformance diagnostics.

We have observed that some representations in the
variable decomposition exhibit very low values; therefore,

we decided to study the predicted values and the ground truth
values in greater depth. We use three main metrics:

• Hallucination. This metric measures whether the
model is overly verbose; that is, whether it generates
non-empty predictions when the corresponding slot in
the benchmark is empty.

• Ground Truth (GT) conformance. A metric that
evaluates whether, in the ground truth, annotators use
text that is not present in the definition slot. This
indicates whether the model needs to include new text
or not.

• Predictive conformance (PRED). A metric that
evaluates whether, in the predictive results, the model
uses text that is not present in the definition slot.

We observe that the impact of hallucination on the
predicted results is minimal for most slots, except for
hasMatrix, where it reaches approximately 20%. In this
case, the model tends to include values even when they are
not present in the ground truth, suggesting that it struggles
to handle this field appropriately. Hallucination levels are
consistent across all prompts, with no significant variation.

Regarding text conformance in GT, we observe that
for most fields, the text used in the annotations is not
present in the field of definition of the ground truth. This
complicates the decomposition task as the model must
introduce additional text that is not included in the input
provided to it. An interesting case is hasMatrix: although
this field exhibits higher hallucination rates than the others, it
also shows high text conformance, which at first glance may
appear contradictory.

The results indicate that conformance in the predicted
values is higher than in the ground truth, suggesting that the
model predominantly relies on text present in the definition.
This behavior is consistent with the analyzed prompts and
helps explain the overall low scores.

Linking to controlled vocabularies. Table 7 provides
a summary of the entity linking results. We observe
that the naı̈ve model alone achieves relatively strong
performance, and that applying reranking further improves
this baseline. In particular, the Qwen3-based model delivers
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Table 4. Effect of prompt variants and number of shots on Qwen-32B performance. Exact and Close F1-scores are aggregated
across all I-ADOPT description roles.

Shots strict minimal constraint decision tree matrix decision tree

F1exact F1close F1exact F1close F1exact F1close
0-shot 0.27 0.31 0.24 0.27 0.30 0.35
1-shot 0.39 0.43 0.36 0.39 0.36 0.39
3-shot 0.40 0.42 0.40 0.45 0.40 0.44
5-shot 0.45 0.46 0.42 0.44 0.42 0.44

Table 5. Per-slot Exact and Close Precision, Recall, and F1-scores for the best-performing large and small models. Both
Qwen3-8B and Qwen3-32B are evaluated using the strict minimal prompt with temperature 0.5. Qwen3-8B uses 0-shot
prompting and Qwen3-32B uses 5-shot prompting, corresponding to their best-performing configurations reported in Table 3.

I-ADOPT Component Qwen3-8B Qwen3-32B

Pexact Rexact F1exact Pclose Rclose F1close Pexact Rexact F1exact Pclose Rclose F1close

Property 0.38 1.00 0.55 0.38 1.00 0.55 0.51 1.00 0.68 0.52 1.00 0.69
ObjectOfInterest 0.13 0.86 0.22 0.15 0.88 0.26 0.22 1.00 0.36 0.24 1.00 0.39
Matrix 0.14 0.21 0.17 0.18 0.26 0.21 0.20 0.29 0.24 0.22 0.31 0.26
Constraint 0.15 0.11 0.13 0.32 0.20 0.25 0.30 0.28 0.29 0.43 0.35 0.39

Table 6. Error Analysis of the Qwen3-32B Model Results. Hall. denotes hallucination, GT. denotes text conformance in the GT. and
PRED. denotes text performance in the predictive values. StatMod = hasStatisticalModifiers, ObjInt = hasObjectOfInterest, CtxObj =
hasContextObject, Constr = hasConstraints.

strict minimal matrix decision tree constraint decision tree

Field Hall. GT. PRED. Hall. GT. PRED. Hall. GT. PRED.

StatMod 0.01 – – 0.01 – – 0.02 – –
Prop 0.00 0.59 0.78 0.00 0.59 0.81 0.00 0.59 0.84
ObjInt 0.00 0.38 0.85 0.00 0.38 0.88 0.00 0.38 0.92
Matrix 0.19 0.92 0.98 0.20 0.92 0.99 0.19 0.92 0.98
CtxObj 0.00 – – 0.02 – – 0.01 – –
Constr 0.00 0.32 0.7 0.00 0.32 0.65 0.00 0.32 0.72

an improvement of approximately ten percentage points in
accuracy compared to the naı̈ve approach.

Table 7. Results of entity linking evaluation: average accuracy
per variable for cases with Wikidata ground truth links.

Model URI accuracy

naı̈ve 0.656
cross-encoder/ms-marco-MiniLM-L6-v2 0.716
tomaarsen/Qwen3-Reranker-0.6B-seq-cls 0.759

Expert assessment
Using the best-performing configuration—Qwen3-32B with
the strict minimal prompt, 5-shot prompting, and tem-
perature 0.5, as identified by the highest aggregated Exact
and Close F1-scores against the benchmark, expert semantic
analysis was conducted on the generated decompositions.
The semantic correctness of alternative outputs, as compared
to the gold standard, can ultimately be evaluated only by
a semantic expert who contributed to the creation of the I-
ADOPT Corpus. The following grades were assigned (see
table 8):

• Good, if the decomposition is identical to the corpus,
allowing for synonymous terms

• Correct, if the decomposition can be mapped to the
corpus

• Weak, if the decomposition includes correct compo-
nents, but fails to capture some important aspects

• Wrong, if the decomposition misses essential aspects
or is syntactically invalid

Allowed mappings include:

• unconstrained Entity versus Entity plus
Constraint

• ObjectOfInterest plus Matrix versus
AsymmetricSystem (hasNumerator/hasDenomi-
nator) for the ObjectOfInterest for representing
ratios

A weak grade is assigned when aspects of the
variable description that are relevant for the correct
interpretation of the variable are omitted, while the
representation still correctly captures the Property and the
ObjectOfInterest.

Essential aspects refer to concepts related to Property
and the ObjectOfInterest; if these are missing, the
overall representation is considered wrong. Syntactically
invalid representations were identified with respect to the
constraints: in some cases, constraints applied to entities
that were not detected in the decomposition, and in other
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cases, constraints were themselves constrained, which is not
permitted by the I-ADOPT Ontology.

Table 8. Semantic expert analysis of the best-performing
configuration—Qwen3-32B for all 102 variables, reported as
percentages

Percentage
Good 10.53
Acceptable 25.26
Weak 31.58
wrong 32.63

Because slightly different representations can be automat-
ically mapped to the gold standard, good and acceptable
assignments can be aggregated. The results show an approx-
imately equal distribution between correct, weak, and wrong
decompositions, with a slight predominance of correct ones.
Good classification results are associated with variables that
did not require any refinement of their definitions.

Discussion
Variable descriptions following the I-ADOPT ontology
exhibit a key characteristic that affects their automatic
generation: the current version of the ontology allows
multiple valid representations for the same variable. I-
ADOPT provides a minimal set of core classes that serve as
a baseline for decomposing a variable description; however,
the concepts used to annotate the components in the different
slots are not constrained.

The richness of natural language and the diversity of
terminologies used to describe variables therefore make the
consistent use of concepts inherently difficult. As a result,
automatic generation can only reflect this heterogeneity,
although it has the potential to reduce subjectivity in the
selection of appropriate terms.

For improved results, additional knowledge support
should be provided to guide the decomposition process.
Consistent construction of the I-ADOPT Corpus benefited
from following recurring best decomposition practices,
which can be formalized as reusable patterns. Since
observations in different domains adhere to specific schemas,
the resulting patterns are also to a large extent domain-
specific.

Combining these patterns with decision trees to guide the
process, LLMs are expected to perform better.

An additional challenge arises from implicit domain-
expert knowledge, present in more than 46% of the variables
(see Table 2), which is difficult for both non-experts and
LLMs to capture. This knowledge has to be extracted in order
to lead to a refined definition from which the decomposition
should start. This process may reveal the need to introduce
concepts for a matrix or additional constraints, and, in some
cases, the omission of irrelevant information (like sensors
and geographical positions). This explains the low precision
values in the automatic metrics, since LLMs were instructed
to stick to the definition as is.

Improvements were observed when refining the few-shot
examples, particularly for the categories hasProperty
and hasObjectOfInterest, where the additional
contextual guidance helped the model produce more accurate
variable representations.

Some slots, such as hasMatrix and
hasConstraints, exhibited consistently low
performance (see Table 5). The low performance related to
the Matrix slot can be explained by the system representation
for entities, as analysis of the semantic evaluation results
shows that complex representations involving systems of
entities are not captured naturally by the LLM without
additional guidance. The system representation for entities
was used only once in the ObjectOfInterest slot (29
occurrences in the corpus) and twice in the Matrix slot (7
occurrences in the corpus), with only one of these uses
being correct. While ratios can be represented using simple
Entities for ObjectOfInterest plus Matrix, flows
cannot be represented without an asymmetric system at the
Matrix slot, thus the flow concept is largely absent within
the LLM-generated representations.

Recall, for both exact and close matches, is consistently
higher than precision. Higher recall suggests that the number
of false negative entities present in the corpus that are not
detected by the model is relatively low. However, the models
appear to be overly verbose, often generating incorrect
values and thereby introducing noise into the decomposition.
In particular, these effects persist even when the prompts
explicitly instruct the models to avoid such behavior.

In addition, we did not observe significant differences (see
Table 5) in performance between large and small models,
with a difference of only about 4%. This raises the question
of whether the use of smaller models is justified, especially
when considering additional metrics such as processing time,
memory consumption, and overall computational cost.

The hasMatrix slot exhibits a particular behavior: it
shows higher hallucination rates than the other slots while
still maintaining a high degree of text conformance with
the variable definition. This finding appears to contradict
the previous result, in which a higher text conformance
was associated with improved precision. We hypothesize
that this effect may be due to the specific characteristics
of the hasMatrix field. As observed in the ground truth,
hasMatrix is an ambiguous slot and may be subject to
multiple interpretations. This ambiguity may result in lower
performance, even when the model relies on the text present
in the definition.

When comparing the two evaluations, it may appear
surprising that the semantic evaluation yields lower values.
The key difference is that the semantic evaluation was based
on a complete LLM output assessment, rather than per
individual slot.

In the automatic evaluation, each slot (e.g. Property,
ObjectOfInterest, Matrix, Constraint) is scored indepen-
dently, and precision, recall, and F1-scores are subsequently
aggregated. As a result, a variable may still achieve a rela-
tively high score even if one important slot is incorrect.

In contrast, the expert analysis evaluates each variable as
an integrated whole. Classifications of Good or Acceptable
indicate that the entire LLM-generated output is correct
across all slots. Conversely, Weak or Wrong classifications
are assigned whenever at least one critical slot (such
as Property or ObjectOfInterest) is incorrect, even if the
remaining slots are correct.

For this reason, the expert evaluation applies a substan-
tially stricter criterion. The lower percentages observed in the
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expert evaluation compared to the automatic F1-scores are
therefore expected. In the automatic evaluation, a variable
with three correct slots out of four may still score well
overall, whereas in the expert review a single incorrect but
essential slot leads to a downgrade of the entire variable.

This difference in evaluation granularity also explains
why per-component results are not directly comparable. For
example, the automatic evaluation reports a hasProperty
precision of approximately 38%, while the expert review
yields an overall hasProperty accuracy of around 72%. These
figures reflect different evaluation questions:

• Automatic metrics: How often is this individual slot
correctly generated?

• Expert review: Is this variable acceptable for use as a
whole?

Consequently, the expert analysis does not contradict the
automatic evaluation, rather, it complements it by applying a
human, end-to-end correctness criterion, which is necessarily
more stringent.

Conclusions
Unambiguously representing scientific variables in datasets
to improve interoperability remains challenging. The I-
ADOPT Framework, intended as a domain-independent
lingua franca, must be inherently flexible while maintaining
sufficient precision to capture domain-specific requirements.
This approach faces two key issues: (i) interpretability,
since a variable can have multiple semantically correct
representations, and (ii) scalability in generating I-ADOPT
variables.

This paper proposes a corpus of 102 annotated multi-
domain variables that can be used for two purposes: (i) as
a benchmark to evaluate AI models capable of automatically
generating I-ADOPT variables and (ii) as a training corpus
for both AI models but also for human experts who intend
to apply the framework. In this paper, we focus on the first
approach, comparing the performance of different LLMs and
analyzing the errors produced.

On the basis of the experimental results and the discussion,
the following conclusions can be drawn.

Variability in I-ADOPT representations is the main
challenge

Multiple valid representations—arising from the inherent
complexity of the observed natural phenomena and their
interpretation by humans—pose a fundamental challenge
for the automatic generation of I-ADOPT variables. This
issue is illustrated by the differences between the evaluation
performed using the corpus and the validation performed by
the expert. The discrepancy in the results indicates that there
are multiple valid solutions beyond those represented in the
corpus.

Prompt engineering improves performance, but not across
slots

There is a discrepancy in the results in the different
slots. The best results are observed for hasProperty and
hasObjectOfInterest, indicating a better understanding of
these slots by the models analyzed.

I-ADOPT slots remain intrinsically difficult for language
models

Some slots, such as hasMatrix and hasConstraints, exhibit
very low values. This indicates that the LLMs analyzed do
not fully understand what text should be included in these
slots. This is a common result across the models and prompts
analyzed.

High difference in precision and recall
A higher recall compared to precision indicates that the

models rarely miss relevant entities but introduce incorrect
values. This verbosity persists despite explicit instructions to
avoid it, suggesting some structural bias not identified.

Implicit knowledge may penalize the results
When refinements were required in the definitions in the

I-ADOPT Corpus, the models failed in the decomposition,
as demonstrated in the error analysis. In this benchmark
study, models were required to adhere to the definition of the
variable, without introducing any interpretations. The results
show that slots with high conformance, when using text
from definitions, generally achieve better F1-scores, with
the exception of hasMatrix. High conformance implies that
models do not need to add information to slots that is not
present in the definition, a task that would require a deeper
understanding of the slot semantics.

The use of larger models does not significantly improve the
results.

As demonstrated in the experiments, the performance gain
obtained by using larger models (32B) compared to smaller
models (8B) is below 4%, indicating that increasing model
size alone has a limited impact on performance for this task
and that more targeted methodological improvements may be
required.

Ambiguity in the variable descriptions constrains automa-
tion

The results indicate that improving model performance
will require not only better prompts, but also additional
supporting instructions on how to interpret and streamline
ambiguous variable descriptions and on how to use the
different slots including system of entities. These might
be provided by formalized patterns in combination with
decision trees to train the models to capture the required
semantics in the different slots more accurately.

Based on these conclusions, we propose the following
research directions as next steps:

• The documentation of formalized patterns to reduce
the ambiguity of I-ADOPT variables. These patterns
will help researchers create more uniform I-ADOPT
variables and can also be used by LLMs to produce
better results.

• The creation of additional variables to be added to the
corpus. This will help to train more accurate models. In
addition, the corpus can serve as a reference database
for researchers to create new variables and converge
toward consistent solutions.

• The application of additional model families and sizes
beyond those used in this study will be explored. In
particular, we plan to investigate BERT based models,
such as SciBERT, including their fine tuning to apply
them to some specific slots.
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Appendix: Prompts used in the experiments

This appendix lists the prompt templates used for automated
I-ADOPT variable decomposition. Prompts are identical
across all variables and model configurations, except for the
number of few-shot examples provided.

strict minimal� �
Follow the JSON-Schema exactly. Do not

infer or invent new concepts.

definition must be exactly the same string
as provided.

comment = short summary of the definition.
Do not add new ideas.

hasProperty = the main measurable property
in the definition.

hasObjectOfInterest = the thing that has
this property.

hasMatrix = the medium in which the object
occurs. Never a method or location.

If a required key is not in the definition,
output an empty string for it.

Output only the JSON object.

Additional rules:

Only extract what is explicitly stated in
the definition.

hasProperty = the main measurable
characteristic.
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hasObjectOfInterest = the thing that has
that characteristic.

hasMatrix = medium the object is in, only
if directly stated.

hasConstraint = only conditions explicitly
stated.

If unsure: leave it empty. Do not guess.� �
constraint decision tree� �
Follow the JSON-Schema exactly. Do not

infer or invent new concepts.

definition must be exactly the same string
as provided.

comment = short summary of the definition.
Do not add new ideas.

hasProperty = the main measurable property
in the definition.

hasObjectOfInterest = the thing that has
this property.

hasMatrix = the medium in which the object
occurs. Never a method or location.

If a required key is not in the definition,
output an empty string for it.

Output only the JSON object.

Extraction order:

1. Copy definition exactly.
2. Extract hasProperty (main measurable

characteristic).
3. Extract hasObjectOfInterest (entity with

that property).
4. Extract hasMatrix only if the definition

states a medium.
5. Extract hasConstraint last:

Only explicit limiting phrases.
label = short phrase
on = EXACT string from hasProperty or
an entity

6. Never paraphrase or introduce new
concepts.� �

matrix decision tree� �
Follow the JSON-Schema exactly. Do not

infer or invent new concepts.

definition must be exactly the same string
as provided.

comment = short summary of the definition.
Do not add new ideas.

hasProperty = the main measurable property
in the definition.

hasObjectOfInterest = the thing that has
this property.

hasMatrix = the medium in which the object
occurs. Never a method or location.

If a required key is not in the definition,
output an empty string for it.

Output only the JSON object.

Decision rules:

1. Identify hasProperty first.
2. Identify hasObjectOfInterest:

the entity that carries the property.
3. Identify hasMatrix only if the

definition clearly states
the medium or material the object is
inside.

4. If a phrase describes a condition/state,
not a medium:
put it in hasConstraint.

5. Never use methods, units, instruments,
or locations.� �

JSON-SCHEMA

{
"$schema": "https://json-schema.org/draft
/2020-12/schema",

"$id": "https://example.org/schemas/iadopt
-variable.json",

"title": "I-ADOPT Variable (Decomposed
Form)",

"description": "A single scientific
variable structured according to the I-
ADOPT framework. This compact JSON model
is used for LLM benchmarking and
represents: label, natural-language
definition, cleaned comment, property,
objects/entities, matrices, context
objects, and constraints.",

"type": "object",

"required": ["label", "definition", "
comment", "hasProperty", "
hasObjectOfInterest"],

"properties": {
"label": {
"type": "string",
"description": "Human-readable name of

the variable (rdfs:label)."
},
"definition": {
"type": "string",
"description": "Full natural-language

description."
},
"comment": {
"type": "string",
"description": "Use a short summary of

the definition. Do not add new concepts
."
},
"hasProperty": {
"type": "string",
"description": "The main measurable

property in the definition."
},
"hasStatisticalModifier": {
"type": "string",
"description": "Optional statistical

qualifier (e.g., ’maximum’, ’minimum’, ’
median’)."
},
"hasObjectOfInterest": {

Prepared using sagej.cls



18 Journal Title XX(X)

"$ref": "#/$defs/entityOrSystem",
"description": "The thing that has the

property."
},
"hasMatrix": {

"$ref": "#/$defs/entityOrSystem",
"description": "Medium in which the

object occurs. Not a process or location
."
},
"hasContextObject": {

"$ref": "#/$defs/entityOrSystem",
"description": "Optional contextual

Entity or System that provides
environmental or situational context (e.g
., ’air’, ’atmosphere’)."
},
"hasConstraint": {

"type": "array",
"description": "List of Constraints

describing states, conditions, purity,
normalization, or other limiting
qualifiers and or quantifiers that apply
to the Entity.",

"items": {
"type": "object",
"required": ["label", "on"],
"properties": {

"label": {
"type": "string",
"description": "Short cleaned

phrase describing the restriction (e.g.,
’dry’, ’purity 99.98%’, ’5.00 g sample’,
’per mol’)."

},
"on": {
"type": "string",
"description": "What the

constraint applies to (The name of a
Property or Entity in this variable, e.g.
’distance’, ’mass flux’, ’habitat patch

’, ’organism’)."
}

},
"additionalProperties": false

},
"minItems": 1

}
},

"additionalProperties": false,

"$defs": {
"entityOrSystem": {

"description": "An Entity or System
involved in the variable. It may be a
simple entity (e.g., ’hexanol’, ’air’, ’
soil’) or a structured system (asymmetric
or symmetric).",
"oneOf": [
{ "type": "string",
"description": "A simple entity

label (e.g., ’air’, ’soil’, ’nitrogen’)."
},
{

"$comment": "Asymmetric system,
from A to B",

"type": "object",
"required": [

"AsymmetricSystem",
"hasSource",
"hasTarget",
"hasNumerator",
"hasDenominator"

],
"properties": {
"AsymmetricSystem": { "type": "

string" },
"hasSource": { "type": "

string" },
"hasTarget": { "type": "

string" }
},
"additionalProperties": false

},
{

"$comment": "Symmetric system, A
and B together form a system",

"type": "object",
"required": ["SymmetricSystem", "

hasPart"],
"properties": {
"SymmetricSystem": { "type": "

string" },
"hasPart": {

"type": "array",
"items": { "type": "string" },
"minItems": 1

}
},
"additionalProperties": false

}
]

}
}

}
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