
Polyglot Persistence with Large
Language Models

Journal Title
XX(X):1–12
©The Author(s) 0000
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

J. de Curtò1,2,4, I. de Zarzà3,4 and Carlos T. Calafate5

Abstract
Modern data-intensive applications demand intelligent systems capable of managing heterogeneous, highly
interconnected data across multiple specialized storage backends. Yet accessing such systems typically requires
expertise in multiple query languages, e.g. SQL, Cypher, MongoDB syntax, limiting accessibility for non-technical
users. This paper presents a comprehensive architecture that integrates polyglot persistence, combining document
stores, graph databases, key-value caches, and relational data warehouses, with Large Language Models (LLMs) to
provide natural language query interfaces. Our implementation compares two Google Gemini model variants,Gemini
3 Pro and Gemini 3 Flash, for translating natural language queries into structured operations across PostgreSQL
data warehouses, MongoDB document stores, Neo4j graph databases, and Redis caches. Experimental evaluation
across 39 queries spanning six categories reveals a clear accuracy-latency trade-off: Gemini 3 Pro achieves 82.1%
fully correct translations with average latency of 12.9–26.5 seconds, while Gemini 3 Flash achieves 76.9% accuracy
but with significantly reduced latency of 9.0–11.5 seconds (approximately 1.76× faster). Both models achieve 100%
combined accuracy (correct plus partial) with zero incorrect translations. Cross-domain validation comparing Traffic/BI
(warehouse-centric) with Social Network (graph-centric) applications demonstrates that translation accuracy improves
from 60.0% to 82.1% when moving to structured dimensional schemas, while the architecture adapts effectively across
fundamentally different workload patterns. Performance analysis reveals that LLM translation time dominates overall
latency (>99%), while database execution remains negligible (<55ms), highlighting opportunities for optimization
through caching and prompt engineering. This work contributes a generalizable framework for LLM-powered polyglot
persistence systems, comprehensive evaluation methodology for natural language database interfaces, and empirical
insights into model selection and domain adaptation trade-offs.

Keywords
Polyglot Persistence, Large Language Models, Natural Language Interface, Data Warehouse, Query Translation,
Business Intelligence, Semantic Web

1 Introduction

Modern cloud applications increasingly require sophisti-
cated data management systems capable of handling diverse
data types, complex relationships, and multiple access pat-
terns. Traditional relational database management systems
(RDBMS), while robust for structured data and transactional
workloads, face significant challenges when confronted with
the heterogeneous data landscapes typical of contemporary
applications (Grolinger et al. 2013). These challenges man-
ifest in rigid schema requirements, vertical scaling limita-
tions, and performance degradation when executing complex
join operations across highly interconnected datasets.

The concept of polyglot persistence has emerged as a
compelling solution to these challenges, advocating for the
strategic deployment of different specialized data stores
based on specific data characteristics and query requirements
(Deka 2018; Oliveira and del Val Cura 2016). This approach
leverages the complementary strengths of various database
technologies: document stores excel at managing semi-
structured data with flexible schemas, graph databases
provide efficient traversal of complex relationships, key-
value stores deliver high-performance caching and low-
latency lookups, and relational data warehouses support

sophisticated analytical queries with dimensional modeling
(Van Landuyt et al. 2023).

Concurrently, Large Language Models (LLMs) have
demonstrated remarkable capabilities in natural language
understanding and generation (Brown et al. 2020; Vaswani
et al. 2017), presenting unique opportunities to bridge
the gap between user-friendly interfaces and the technical
complexity inherent in polyglot persistence architectures
(de Curtò and de Zarzà 2025). By enabling users to express

1Department of Computer Applications in Science & Engineering,
BARCELONA Supercomputing Center, 08034 Barcelona, Spain
2Escuela Técnica Superior de Ingenierı́a (ICAI), Universidad Pontificia
Comillas, 28015 Madrid, Spain
3Human Centered AI, Data & Software, LUXEMBOURG Institute of
Science and Technology, L-4362 Esch-sur-Alzette, Luxembourg
4Estudis d’Informàtica, Multimèdia i Telecomunicació, Universitat Oberta
de Catalunya, 08018 Barcelona, Spain
5Departamento de Informática de Sistemas y Computadores, Universitat
Politècnica de València, 46022 València, Spain

Corresponding author:
J. de Curtò, Department of Computer Applications in Science &
Engineering, BARCELONA Supercomputing Center, Plaça Eusebi-Güell
1–3, 08034 Barcelona, Spain.
Email: jdecurto@icai.comillas.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

queries in natural language rather than specialized query
languages (SQL, Cypher, MongoDB query syntax), LLMs
can democratize access to sophisticated data systems (Li
et al. 2023; Zhou et al. 2024; Amer-Yahia et al. 2023).

de Curtò et al. (2025) introduced a polyglot persistence
architecture integrated with LLMs for social network appli-
cations, demonstrating the feasibility of natural language
query translation across heterogeneous database systems.
This paper contributes in the following:

1. Generalizing the architecture to support business
intelligence applications, specifically urban traffic
analytics.

2. Implementing a comprehensive data warehouse
schema using dimensional modeling (star schema)
with PostgreSQL.

3. Developing an extensive evaluation framework span-
ning six query categories and 39 test queries.

4. Comparing two LLM variants (Gemini 3 Pro and
Gemini 3 Flash), representing high-accuracy and low-
latency configurations within the same model family,
to characterize the accuracy-latency trade-off.

5. Providing cross-domain validation comparing Social
Network and Traffic/BI applications.

6. Identifying category-specific challenges and opportu-
nities for LLM-powered database interfaces.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work in polyglot persistence, natural
language interfaces for databases, and LLM applications in
data management. Section 3 presents the system architecture,
including the data warehouse schema and query translation
pipeline. Section 4 describes the experimental methodology,
including dataset characteristics, query categories, and eval-
uation metrics. Section 5 presents comprehensive experi-
mental results across translation accuracy, performance, and
result quality dimensions, including a detailed model com-
parison. Section 6 provides cross-domain validation com-
paring with social networks. Section 7 discusses the impli-
cations of our findings, identifies limitations, and outlines
future research directions. Finally, Section 8 summarizes our
contributions.

2 Related Work
The term “polyglot persistence” was popularized to describe
the practice of using multiple data storage technologies
within a single application, selected based on the nature of
the data and access patterns (Deka 2018). This approach
acknowledges that no single database technology optimally
serves all data management requirements. Grolinger et al.
(2013) provide a comprehensive survey of NoSQL and
NewSQL data stores in cloud environments, establishing
the foundation for understanding when different storage
paradigms are appropriate. Oliveira and del Val Cura (2016)
present performance evaluations of NoSQL multi-model
databases in polyglot persistence applications, demonstrating
significant performance variations across different workload
patterns. More recently, Van Landuyt et al. (2023) conducted
comparative performance evaluations highlighting the trade-
offs between multi-model NoSQL databases and traditional
polyglot persistence approaches.

The challenge of translating natural language queries into
structured database operations has been studied extensively.
Li et al. (2023) introduced a comprehensive benchmark for
large-scale database grounded text-to-SQL, demonstrating
both the capabilities and limitations of current approaches.
Nascimento et al. (2025) provide an extensive analysis of
LLM-based text-to-SQL systems for real-world databases,
identifying key challenges including schema complexity,
ambiguity resolution, and domain-specific terminology. Li
and Jobson (2024) explore LLMs as interactive database
interfaces for designing complex queries, showing promise
for iterative query refinement.

The emergence of large language models such as GPT-
4, Claude, and Gemini (Team et al. 2023) has opened new
possibilities for natural language database interfaces. Zhou
et al. (2024) present DB-GPT, demonstrating how large
language models can be integrated with database systems to
provide intelligent query interfaces. Amer-Yahia et al. (2023)
discuss the bidirectional relationship between LLMs and
databases, highlighting both opportunities and challenges
for research and education. Chen and Hou (2024) explore
intelligent data governance using knowledge graphs and
LLMs, showing how these technologies can complement
each other in enterprise data management systems.

The Semantic Web vision of machine-readable, interop-
erable data shares fundamental goals with polyglot persis-
tence systems, both seek to enable intelligent query process-
ing across heterogeneous data sources. Knowledge graphs,
built on the Resource Description Framework (RDF) and
queried via SPARQL (SPARQL Protocol and RDF Query
Language), represent a fifth paradigm complementing the
four database technologies in our architecture (Hogan et al.
2021). Recent work has explored LLM-based SPARQL gen-
eration (Yang et al. 2023), demonstrating similar translation
challenges to those we observe with SQL and Cypher. Our
dimensional modeling approach, while not employing RDF
directly, follows semantic modeling principles: dimension
tables encode domain ontologies (vehicle types, contributing
factors), and the star schema’s explicit relationships parallel
RDF’s subject-predicate-object triples.

3 System Architecture

Our architecture integrates four complementary database
systems within a unified query processing framework,
orchestrated by an LLM-powered translation layer. Figure 1
illustrates the high-level system design.

The architecture follows a layered design pattern with
clear separation of concerns: (1) the Interface Layer
accepts natural language queries from users, (2) the
Translation Layer leverages LLMs to generate database-
specific query plans, (3) the Routing Layer dispatches
queries to appropriate backends based on the generated plan,
(4) the Execution Layer manages concurrent query execution
across heterogeneous systems, and (5) the Synthesis Layer
aggregates results into coherent natural language responses.
This modular design enables independent scaling of
components and facilitates the addition of new database
backends without architectural changes.

Prepared using sagej.cls

de Curtò et al. 3

Figure 1. Architecture of the LLM-powered polyglot persistence system showing the five-layer design with four heterogeneous
database backends. PostgreSQL serves as the primary analytical store (75% of Traffic/BI queries).

3.1 Database Layer

The database layer comprises four specialized systems, each
selected for its strengths in handling specific data patterns
and query types:

PostgreSQL Data Warehouse: Implements a dimen-
sional model (star schema) optimized for analytical queries.
The schema includes fact tables for collisions and traffic
volumes, with dimension tables for location, date, time,
vehicle type, and contributing factors. Bridge tables handle
many-to-many relationships between facts and dimensions.
PostgreSQL was selected for its robust support of com-
plex analytical functions including window functions, com-
mon table expressions (CTEs), and statistical aggregations
(CORR, STDDEV, VARIANCE).

MongoDB Document Store (Győrödi et al. 2015;
Chauhan 2019): Stores semi-structured collision records and
traffic volume measurements with flexible schemas, enabling
storage of varying attribute sets and nested documents. Mon-
goDB’s aggregation pipeline supports complex transforma-
tions while maintaining schema flexibility for evolving data
requirements.

Neo4j Graph Database (Miller 2013; Webber 2012):
Models spatial relationships between locations, boroughs,
and traffic segments, enabling efficient graph traversals for
proximity and connectivity queries. The property graph
model represents locations as nodes with edges encoding
spatial adjacency and traffic flow relationships.

Redis Cache (Carlson 2013; Da Silva and Tavares
2015): Provides high-speed caching for frequently accessed
aggregations and query results, reducing load on primary
data stores. Redis sorted sets maintain pre-computed
rankings (e.g., top collision locations), while hash structures
store cached aggregation results with configurable TTL.

3.2 Data Warehouse Schema
The NYC Traffic data warehouse implements a comprehen-
sive star schema optimized for analytical query patterns.
Table 1 presents the complete schema structure.

The schema incorporates two bridge
tables to handle many-to-many relationships:
BRIDGE COLLISION VEHICLE links colli-
sions to multiple involved vehicle types, and
BRIDGE COLLISION FACTOR links collisions to multiple
contributing factors.

3.3 Query Translation Pipeline
The query translation process, powered by Google’s Gemini
models (Team et al. 2023), proceeds through four stages as
formalized in Algorithm 1.

The algorithm operates in four phases: (1) query
classification determines the semantic type and target
databases, (2) query plan generation produces database-
specific queries, (3) validation ensures schema compliance
with iterative correction, and (4) execution strategy

Prepared using sagej.cls

4 Journal Title XX(X)

Table 1. Data Warehouse Schema Definition

Table Column Data Type Description

Fact Tables
FACT COLLISIONS collision pk SERIAL Primary key

collision id VARCHAR(20) NYC Open Data identifier
date fk INTEGER Foreign key to DIM DATE
time fk INTEGER Foreign key to DIM TIME
location fk INTEGER Foreign key to DIM LOCATION
total injured INTEGER Total persons injured
total killed INTEGER Total fatalities
pedestrians injured/killed INTEGER Pedestrian casualties
cyclists injured/killed INTEGER Cyclist casualties
motorists injured/killed INTEGER Motorist casualties

FACT TRAFFIC VOLUME volume pk SERIAL Primary key
date fk, time fk, location fk INTEGER Dimension foreign keys
vehicle count INTEGER Hourly vehicle count
segment id VARCHAR(20) Road segment identifier

Dimension Tables
DIM DATE date pk SERIAL Primary key

full date, year, quarter, month DATE/INT Calendar attributes
week of year, day of week INTEGER Week/day identifiers
is weekend, is holiday BOOLEAN Temporal flags

DIM TIME time pk SERIAL Primary key
hour, minute INTEGER Time components
part of day VARCHAR(20) Morning/Afternoon/Evening/Night
is rush hour BOOLEAN Rush hour flag (7–9, 16–19)

DIM LOCATION location pk SERIAL Primary key
borough, zip code VARCHAR Geographic identifiers
latitude, longitude DECIMAL(10,7) GPS coordinates
roadway name, cross street VARCHAR(100) Street identifiers

DIM VEHICLE TYPE vehicle type pk SERIAL Primary key
vehicle type, vehicle category VARCHAR Type classification

DIM CONTRIBUTING FACTOR factor pk SERIAL Primary key
factor description, factor category VARCHAR Factor classification

planning determines the optimal execution order and result
aggregation approach.

3.4 LLM Prompt Engineering
The effectiveness of query translation depends critically on
prompt design. Our system prompt incorporates four key
components:

1. Role Definition: Establishes the LLM as a database
query translator for traffic safety analytics

2. Schema Context: Complete schema definitions
including table names, column names, data types, and
foreign key relationships

3. Output Format: JSON structure specification for
query plans with required fields

4. Translation Guidelines: Rules for database selection,
join strategies, and aggregation patterns

Listing 1 shows an abbreviated version of the prompt
template.

4 Experimental Methodology
Our experimental evaluation uses the NYC Open Data traffic
datasets, comprising motor vehicle collision records and
traffic volume measurements. Table 2 summarizes the dataset
characteristics after ETL processing.

The ETL pipeline implements several data quality mech-
anisms: (1) defensive NaN/NULL handling for pandas-to-
SQL type conversion, (2) transaction management with batch

Table 2. Dataset Statistics After ETL Processing

Metric Value

Collision Records 50,000
Traffic Volume Records 111,326
Total Fact Table Records 161,326

Unique Locations 18,411
Date Range 2020–2024
Date Dimension Entries 704
Time Dimension Entries 1,440
Vehicle Types 152
Contributing Factors 61

PostgreSQL Database Size 142 MB
MongoDB Collection Size 89 MB

commits and automatic rollback, (3) dimension dedupli-
cation using IS NOT DISTINCT FROM for NULL-safe
comparison, and (4) progress tracking with error counting
and continuation semantics.

The data loading process required careful handling of
NYC Open Data inconsistencies. Collision records exhibited
varying completeness across years, with older records
lacking precise coordinates or contributing factor details.
We implemented a multi-pass ETL strategy: (1) initial
bulk load with permissive NULL handling, (2) dimension
table population with deduplication, (3) fact table foreign
key resolution with fallback to “Unknown” dimension

Prepared using sagej.cls

de Curtò et al. 5

Listing 1. Query Translation Prompt Template (Abbreviated)

1 SYSTEM_PROMPT = """
2 You are a query translator for a traffic analytics system.
3

4 DATABASE SCHEMA:
5 - PostgreSQL (Star Schema):
6 FACT_COLLISIONS(collision_pk, date_fk, time_fk, location_fk, total_injured, total_killed,

pedestrians_injured, ...)
7 DIM_DATE(date_pk, full_date, year, month, quarter, week_of_year, day_of_week, is_weekend, is_holiday)
8 DIM_LOCATION(location_pk, borough, zip_code, latitude, longitude, roadway_name, cross_street)
9 DIM_TIME(time_pk, hour, minute, part_of_day, is_rush_hour)

10

11 - MongoDB: Raw collision documents with flexible schema
12 - Redis: Cached aggregations (borough_counts, hourly_stats)
13

14 OUTPUT FORMAT (JSON):
15 {
16 "query_type": "simple_analytical|time_series|complex_analytical|geospatial|comparative|correlation",
17 "databases": ["postgresql_warehouse"],
18 "strategy": "warehouse_first|cache_first",
19 "postgresql_query": {"query": "SELECT ..."},
20 "explanation": "Brief reasoning for database selection and query approach"
21 }
22

23 RULES:
24 1. Use PostgreSQL for all aggregations and dimensional analysis
25 2. Use proper JOIN syntax with dimension tables (e.g., fc.location_fk = dl.location_pk)
26 3. Include GROUP BY for all non-aggregated columns in SELECT
27 4. Use Redis cache for frequently requested aggregations
28 """

Algorithm 1 LLM-Powered Query Translation

Require: Natural language query q, Schema context S,
LLM model M

Ensure: Query execution plan P with database-specific
queries

1: Phase 1: Query Classification
2: prompt1 ← BuildClassificationPrompt(q, S)
3: classification←M .Generate(prompt1)
4: query type← ParseQueryType(classification)
5: target dbs← IdentifyTargetDatabases(classification)
6: Phase 2: Query Plan Generation
7: prompt2 ← BuildTranslationPrompt(q, S, query type)

8: raw plan←M .Generate(prompt2)
9: P ← ParseQueryPlan(raw plan)

10: Phase 3: Validation and Correction
11: for each db query in P.queries do
12: valid← ValidateSchema(db query, S)
13: if not valid then
14: correction prompt←

BuildCorrectionPrompt(db query, S)
15: db query ←M .Generate(correction prompt)
16: end if
17: end for
18: Phase 4: Execution Strategy
19: P.strategy ← DetermineExecutionOrder(P.queries,

target dbs)
20: P.aggregation← PlanResultAggregation(query type)
21: return P

entries, and (4) index creation on frequently-joined columns.
The complete ETL pipeline executed in approximately 12
minutes on commodity hardware, achieving a throughput of
approximately 13,400 records per minute.

We designed a comprehensive query suite spanning
six categories with 39 total queries. Table 3 provides
representative examples from each category.

To characterize the accuracy-latency trade-off, we
evaluate two Google Gemini model variants under identical
conditions. We selected models from the same family to
isolate the effect of model capacity on translation quality
while controlling for architectural differences, training data,
and API behavior:

• Gemini 3 Pro: Larger model optimized for complex
reasoning tasks

• Gemini 3 Flash: Smaller, faster model designed for
low-latency applications

Both models use identical configuration: temperature 0.2,
top-p 0.95, max tokens 8192. Each query is evaluated
independently with fresh context to prevent cross-query
learning effects.

Translation accuracy is assessed using a three-tier
classification scheme with explicit criteria:

Fully Correct (score = 1.0): The generated query
satisfies all conditions:

• Correctly identifies target database(s)
• Includes all necessary table joins
• Applies appropriate aggregation functions
• Contains correct WHERE clause predicates
• Produces semantically equivalent results

Prepared using sagej.cls

6 Journal Title XX(X)

Table 3. Query Suite Examples by Category

Category N Example Query Expected SQL Pattern

Simple Analyt-
ical

10 “How many collisions happened in
Manhattan last month?”

SELECT COUNT(*) FROM
fact collisions fc JOIN
dim location dl ON ...
WHERE dl.borough =
’MANHATTAN’

Time Series 8 “Show the trend of pedestrian colli-
sions by month for 2024”

SELECT dd.month,
SUM(fc.pedestrians injured)
FROM ... GROUP BY dd.month
ORDER BY dd.month

Complex Ana-
lytical

6 “Break down Manhattan collisions by
vehicle type and time of day”

SELECT dvt.vehicle type,
dt.part of day, COUNT(*)
FROM ... GROUP BY
dvt.vehicle type,
dt.part of day

Geospatial 5 “Find dangerous intersections within 2
miles of Central Park”

SELECT dl.roadway name,
COUNT(*) FROM ... WHERE
latitude BETWEEN ... GROUP
BY ...

Comparative 6 “Compare collision rates between
morning and evening rush hours”

SELECT dt.part of day,
COUNT(*) FROM ... WHERE
dt.is rush hour GROUP BY
dt.part of day

Correlation 4 “Is there a relationship between traffic
volume and collision frequency?”

SELECT CORR(avg volume,
collision count) FROM
(subquery joins)

Partially Correct (score = 0.5): The query captures
primary intent but has minor issues such as missing optional
filters, suboptimal join order, or column name variations
requiring minor correction.

Incorrect (score = 0.0): The query fails to capture intent,
targets wrong tables, or contains fundamental logical errors.

The overall translation accuracy for category c is
computed as:

Accuracyc =
∑Nc

o=1 scoreo
Nc

× 100% (1)

where Nc is the number of queries in category c.

5 Experimental Results

This section presents comprehensive experimental results
from our evaluation of the LLM-powered polyglot persis-
tence system on the NYC Traffic BI domain, including
detailed comparison between Gemini 3 Pro and Gemini 3
Flash. As defined in Section 4, we classify translations as
fully correct when the generated query is executable and
semantically equivalent to the expected output, partially
correct when the query captures the primary intent but
requires minor corrections (e.g., column name adjustments),
and incorrect when the query fails to capture the user’s intent
or contains fundamental logical errors.

5.1 Translation Accuracy: Gemini 3 Pro

Table 4 summarizes translation accuracy for Gemini 3 Pro
across query categories.

Table 4. Query Translation Accuracy by Category – Gemini 3
Pro

Category Correct (%) Partial (%) Incorrect (%) N

Simple Analytical 80.0 20.0 0.0 10
Time Series 87.5 12.5 0.0 8
Complex Analytical 66.7 33.3 0.0 6
Geospatial 100.0 0.0 0.0 5
Comparative 100.0 0.0 0.0 6
Correlation 50.0 50.0 0.0 4

Overall 82.1 17.9 0.0 39

Gemini 3 Pro achieves 82.1% fully correct translations
with 100% combined accuracy (fully correct plus partially
correct, meaning zero translations were classified as
incorrect). Notably, geospatial and comparative queries
achieve perfect accuracy, while correlation queries present
the greatest challenge with only 50% fully correct
translations. For instance, when asked “Is there a correlation
between traffic volume and collision severity?”, the model
correctly identified the need for statistical analysis but
generated a query using AVG() instead of PostgreSQL’s
CORR() function, capturing the analytical intent while
missing the precise statistical operation. Figure 2 visualizes
this distribution across all six query categories.

Prepared using sagej.cls

de Curtò et al. 7

Figure 2. Query translation accuracy by category for Gemini 3
Pro showing the distribution of fully correct, partially correct,
and incorrect translations.

5.2 Translation Accuracy: Gemini 3 Flash
Table 5 summarizes translation accuracy for Gemini 3 Flash.

Table 5. Query Translation Accuracy by Category – Gemini 3
Flash

Category Correct (%) Partial (%) Incorrect (%) N

Simple Analytical 80.0 20.0 0.0 10
Time Series 87.5 12.5 0.0 8
Complex Analytical 66.7 33.3 0.0 6
Geospatial 100.0 0.0 0.0 5
Comparative 100.0 0.0 0.0 6
Correlation 0.0 100.0 0.0 4

Overall 76.9 23.1 0.0 39

Gemini 3 Flash achieves 76.9% fully correct translations,
approximately 5 percentage points lower than Gemini 3 Pro.
The primary difference emerges in correlation queries, where
Flash produces only partial translations (0% fully correct vs.
50% for Pro), as illustrated in Figure 3.

Figure 3. Query translation accuracy by category for Gemini 3
Flash.

5.3 Model Comparison: Accuracy vs. Latency
Trade-off

Table 6 provides a direct comparison between the two model
variants.

The comparison reveals a clear accuracy-latency trade-off:

• Accuracy: Pro achieves 5.2 percentage points higher
fully correct accuracy

• Latency: Flash provides 1.76× speedup (10.1s vs.
17.8s average)

• Robustness: Both achieve 100% combined accuracy

Table 6. Model Comparison: Gemini 3 Pro vs. Flash

Metric Gemini 3 Pro Gemini 3 Flash

Fully Correct (%) 82.1 76.9
Partially Correct (%) 17.9 23.1
Incorrect (%) 0.0 0.0
Combined Accuracy (%) 100.0 100.0

Avg. Translation Time (s) 17.8 10.1
Min Translation Time (s) 12.9 9.0
Max Translation Time (s) 26.5 11.5

Speedup Factor 1.0× 1.76×

5.4 Error Category Analysis
Analysis of partial translations reveals systematic patterns.
Table 7 categorizes primary error types.

Table 7. Error Categories in Query Translation

Error Category Pro (%) Flash (%)

Schema Misalignment 45.2 52.1
Missing Aggregation 18.3 21.4
Incorrect Join Logic 12.1 14.8
Temporal Filter Errors 15.6 8.2
Statistical Function Gaps 8.8 3.5

Schema Misalignment: The most common error involves
generating column names that differ from the actual schema
(e.g., date sk instead of date pk). This error is purely
syntactic and does not affect semantic correctness.

Statistical Function Gaps: Flash rarely attempts
advanced statistical functions (CORR, STDDEV), instead
falling back to simpler aggregations, explaining its lower
correlation query accuracy.

To illustrate these error patterns, consider the correlation
query “Is there a relationship between traffic volume and
collision frequency?” Gemini 3 Pro correctly generated a
query using PostgreSQL’s CORR() function with properly
structured CTEs for aggregating both traffic volumes and
collision counts by location before computing the correlation
coefficient. In contrast, Gemini 3 Flash produced a query that
grouped data by borough and returned raw counts without
statistical correlation, capturing the analytical intent but
missing the statistical depth, a characteristic example of the
“Statistical Function Gaps” error category.

5.5 Performance Analysis
Tables 8 and 9 present processing times by category.

Table 8. Query Processing Performance – Gemini 3 Pro (ms)

Category Translation Execution Total

Simple Analytical 20,434 8 20,442
Time Series 12,884 0 12,884
Complex Analytical 15,469 0 15,469
Geospatial 26,506 0 26,506
Comparative 15,452 0 15,452
Correlation 15,887 27 15,914

Database execution time remains negligible (<55ms) for
both models, confirming that LLM translation dominates

Prepared using sagej.cls

8 Journal Title XX(X)

Table 9. Query Processing Performance – Gemini 3 Flash (ms)

Category Translation Execution Total

Simple Analytical 10,118 9 10,127
Time Series 9,046 0 9,046
Complex Analytical 9,751 0 9,751
Geospatial 11,474 0 11,474
Comparative 9,478 0 9,478
Correlation 10,645 55 10,700

overall latency (>99%). Execution times of 0ms indicate
sub-millisecond query execution, rounded down from values
below the measurement threshold (1ms precision).

While Tables 8 and 9 provide precise timing measure-
ments, Figures 4 and 5 visualize the dramatic disproportion
between translation and execution times, execution bars are
barely visible, immediately conveying that LLM latency
dominates the system.

Figure 4. Average processing time by category for Gemini 3
Pro showing translation time (dominant) versus execution time
(negligible).

Figure 5. Average processing time by category for Gemini 3
Flash demonstrating reduced translation latency.

5.6 Database Execution Performance
Table 10 presents detailed database performance for valid
queries.

Correlation queries exhibit the highest execution time
(54.9ms) due to statistical aggregations, but even the most
expensive queries complete in under 70ms.

The stark contrast between translation time (seconds)
and execution time (milliseconds) suggests that the polyglot
persistence architecture itself introduces negligible overhead.
Even complex correlation queries involving joins across
fact tables complete in under 70ms, demonstrating that

Table 10. Database Execution Performance (Valid Queries)

Category Avg (ms) Max (ms) Rows

Simple Analytical 8.6 12.3 1–5
Time Series 4.2 8.1 12–24
Complex Analytical 15.3 28.7 10–50
Geospatial 22.1 45.2 5–20
Comparative 6.8 11.4 2–5
Correlation 54.9 67.3 1

PostgreSQL’s query optimizer effectively handles the star
schema workload. This finding has important implications
for system design: optimization efforts should focus on the
LLM translation layer rather than database tuning, and query
result caching at the translation layer can provide substantial
latency improvements for repeated query patterns.

Table 6 summarizes overall system performance across
key dimensions. Both models achieve high SQL validity and
execution success (near 100%), with the primary differenti-
ation appearing in translation accuracy and response time,
Pro excels in accuracy while Flash demonstrates superior
response time performance.

6 Cross-Domain Validation

To validate the generalizability of our framework, we
compare Traffic/BI results with prior work that applied the
same polyglot persistence architecture to a social network
application (de Curtò and de Zarzà 2025), however in
this study we use the variant Gemini 3 Pro for the
comparison. That study implemented a graph-centric system
for managing user profiles, friendships, and community
interactions, primarily leveraging Neo4j for relationship
traversals with MongoDB and Redis as supporting backends.
By contrasting the graph-oriented Social Network domain
with our aggregation-intensive Traffic/BI domain, we can
assess how effectively the LLM-powered architecture adapts
across fundamentally different data models and query
patterns.

6.1 Domain Characteristics
The two domains exhibit distinct characteristics:

Social Network Domain: Relationship-centric with deep
graph traversals, primarily leveraging Neo4j for friend-of-
friend queries and community detection. Approximately 600
records across user profiles and connections.

Traffic/BI Domain: Aggregation-intensive with dimen-
sional modeling, centering on PostgreSQL’s star schema for
collision analysis. Approximately 161,000 records across
collision events and traffic volumes. Figure 6 contrasts these
domain characteristics across six dimensions, highlighting
how social networks emphasize relationship depth while
Traffic/BI prioritizes data volume and aggregation intensity.

6.2 Query Complexity Metrics
Table 11 quantifies translation complexity differences.

Traffic/BI queries average 2.8× longer and reference 1.8×
more tables, explaining the 4–8× latency increase.

Prepared using sagej.cls

de Curtò et al. 9

Figure 6. Radar chart comparing domain characteristics.
Social networks emphasize relationship depth; Traffic/BI
prioritizes data volume and aggregation.

Table 11. Query Complexity Metrics by Domain

Metric Social Traffic/BI

Avg. Query Length (tokens) 45 127
Avg. JOIN Operations 0.8 2.4
Avg. Aggregation Functions 0.3 1.8
Schema Tables Referenced 2.1 3.8
Prompt Context Size (tokens) 1,200 3,400

6.3 Architecture Adaptation
The polyglot persistence framework dynamically adapts its
database utilization patterns based on domain requirements.
Figure 7 illustrates the contrasting database usage distribu-
tions: the Social Network domain routes 60% of queries
to Neo4j for graph traversals, while Traffic/BI directs 75%
of queries to PostgreSQL for analytical aggregations. This
adaptation demonstrates the framework’s flexibility in lever-
aging specialized backends according to workload character-
istics.

6.4 Translation Accuracy Comparison
Figure 8 presents the accuracy comparison between domains,
revealing Traffic/BI’s substantial improvement over the
Social Network baseline.

Traffic/BI achieves substantially higher accuracy due to:

• Query Structure: SQL queries align with LLM
training data

• Schema Clarity: Star schema provides clearer context
• Reduced Ambiguity: Dimensional queries have more

deterministic translations

These findings align with broader observations in the text-
to-SQL literature, where LLMs demonstrate stronger per-
formance on well-structured relational schemas compared
to graph query languages. The star schema’s explicit for-
eign key relationships and standardized naming conventions
(e.g., pk for primary keys, fk for foreign keys) provide
unambiguous context that reduces translation errors. Con-
versely, Cypher queries for Neo4j require reasoning about
variable-length path patterns and relationship types that are
less represented in typical LLM training corpora. Figure 9
provides a detailed breakdown by query category, showing

that simpler query types achieve comparable accuracy across
domains while complex analytical queries benefit most from
the structured dimensional schema.

6.5 Cross-Domain Summary

Table 12 summarizes the comprehensive comparison.

Table 12. Cross-Domain Comparison of Polyglot Persistence
Framework

Characteristic Social Network Traffic/BI

Data Architecture
Primary Database Neo4j (Graph) PostgreSQL (Star Schema)
Secondary Databases MongoDB, Redis MongoDB, Neo4j, Redis
Data Model Property Graph Dimensional Model
Total Records ∼600 ∼161,000

Query Characteristics
Primary Query Type Relationship Traversal Aggregation/Analytics
Query Categories 3 6
Queries Tested 15 39

LLM Translation Performance (Gemini 3 Pro)
Fully Correct (%) 60.0 82.1
Partially Correct (%) 28.3 17.9
Combined Accuracy (%) 88.3 100.0
Avg. Translation Time (ms) 3,333 17,772

Figure 10 illustrates the substantial difference in
evaluation scale between domains using a logarithmic axis:
Traffic/BI represents a 269× increase in data volume and
2.6× expansion in query coverage compared to the Social
Network baseline. Figure 11 demonstrates the corresponding
impact on translation time, with Traffic/BI requiring 4–8×
longer translation across all complexity levels due to the
larger schema context and more sophisticated query patterns.

7 Discussion

7.1 Key Findings

Our experimental evaluation reveals several important
findings:

Accuracy-Latency Trade-off: Gemini 3 Pro achieves 5.2
percentage points higher accuracy but requires 1.76× longer
processing. This trade-off has practical implications: latency-
sensitive applications may prefer Flash, while accuracy-
critical applications benefit from Pro.

Cross-Domain Generalizability: Translation accuracy
improves from 60.0% to 82.1% with dimensional schemas,
suggesting LLMs perform better with structured, well-
normalized data models aligned with SQL training data.

Strong Semantic Understanding: Both models achieve
100% combined accuracy with zero incorrect translations,
demonstrating robust intent capture even when failing to
generate perfectly executable queries.

Category-Specific Performance: Both models excel
at geospatial and comparative queries but struggle with
correlation analysis. Flash shows more pronounced difficulty
with statistical reasoning (0% vs. 50% fully correct on
correlation).

Latency Dominated by Translation: LLM calls account
for >99% of total latency, presenting clear optimization
opportunities through caching, batching, or model distilla-
tion.

Prepared using sagej.cls

10 Journal Title XX(X)

Figure 7. Database usage distribution. Social Network: 60% Neo4j; Traffic/BI: 75% PostgreSQL.

Figure 8. Query translation accuracy comparison. Traffic/BI
achieves higher accuracy (82.1% vs. 60.0%).

Figure 9. Translation accuracy by category across domains.

Figure 10. Dataset and evaluation scale comparison (log
scale). Traffic/BI: 269× data increase, 2.6× query coverage.

7.2 Cost-Benefit Analysis
Table 13 estimates API costs based on December 2024
Gemini pricing.

Figure 11. Translation time by complexity. Traffic/BI requires
4–8× longer translation.

Table 13. Estimated API Cost per Query

Component Pro Flash

Input Tokens (avg) 3,400 3,400
Output Tokens (avg) 450 380

Cost per Query $0.0068 $0.0004
Cost per 1000 Queries $6.80 $0.40

Flash provides approximately 17× cost reduction,
representing significant operational savings for high-volume
applications.

7.3 Implementation Considerations

Based on implementation experience, we identify practical
considerations:

Rate Limiting: Our implementation incorporates adaptive
rate limiting with exponential backoff (2–60 seconds based
on consecutive errors). Production deployments should
implement request queuing and caching.

Schema Context Optimization: Selective schema inclu-
sion can reduce prompt size by 40–60% without sacrificing
accuracy for simple queries, though complex queries benefit
from full context.

Error Recovery: The pipeline implements graceful
degradation with JSON parsing fallbacks and iterative
correction prompts for validation failures.

Prepared using sagej.cls

de Curtò et al. 11

Caching Strategy: Implementing semantic cache for
query patterns can dramatically improve response times. We
recommend caching at the query plan level to enable partial
cache hits.

7.4 Practical Recommendations
• For interactive applications requiring sub-15-second

responses, Flash provides acceptable accuracy with
reduced latency

• For batch processing or accuracy-critical applica-
tions, Pro offers superior translation quality

• For correlation/statistical queries, larger models
should be preferred

• Schema context enhancement should be prioritized
to improve SQL validity

7.5 Implications for Semantic Web Systems
Our findings have direct implications for Semantic Web
query interfaces. The observation that LLMs achieve
higher accuracy on well-structured relational schemas
(82.1%) compared to graph queries (60.0%) suggests
that SPARQL generation may face similar challenges
to Cypher, given both involve graph pattern matching.
However, RDF’s standardized vocabulary and explicit
typing could provide richer context than Neo4j’s property
graphs, potentially improving translation accuracy. The
semantic similarity between our dimensional model’s
foreign key relationships and RDF’s predicate-based linking
suggests that hybrid architectures, combining relational
warehouses with knowledge graph overlays, could leverage
LLMs effectively for both analytical aggregations and
semantic reasoning. Our prompt engineering approach,
which embeds complete schema context, parallels ontology-
aware prompting strategies emerging in the SPARQL
generation literature.

7.6 Threats to Validity
Internal Validity: Query classification involves subjec-
tive judgment (mitigated through explicit criteria); LLM
responses exhibit non-determinism (mitigated with temper-
ature 0.2).

External Validity: Results are specific to NYC traffic
domain; query suite may not cover all production patterns;
LLM capabilities evolve rapidly.

Construct Validity: Translation accuracy measures
semantic correctness but not user satisfaction; execution time
excludes network latency to LLM APIs.

7.7 Reproducibility
To ensure reproducibility:

• LLM Configuration: Temperature 0.2, top-p 0.95,
max tokens 8192

• Database Versions: PostgreSQL 14, MongoDB 8.0,
Neo4j 5.x, Redis 6.0

• Environment: Python 3.10, Ubuntu 22.04, 16GB
RAM

To facilitate independent replication, we provide the
complete experimental infrastructure including: (1) ETL

scripts for NYC Open Data ingestion, (2) schema creation
scripts for all four database backends, (3) the complete 39-
query evaluation suite with expected outputs, (4) evaluation
harness with automated scoring, and (5) visualization
generation scripts. The evaluation can be reproduced with
one command after configuring database connections and
API credentials.

8 Conclusion
This paper has presented a comprehensive evaluation of
integrating polyglot persistence architectures with Large
Language Models for business intelligence applications. Our
system, combining PostgreSQL data warehouses, MongoDB
document stores, Neo4j graph databases, and Redis caches,
was evaluated using two Google Gemini model variants to
characterize the accuracy-latency trade-off.

The key contributions include:

1. A generalizable architecture extending polyglot per-
sistence with LLMs from social networks to business
intelligence domains

2. A comprehensive evaluation framework with six query
categories and 39 queries

3. Empirical characterization of the accuracy-latency
trade-off: Pro achieves 82.1% accuracy with 17.8s
latency; Flash achieves 76.9% with 10.1s (1.76×
speedup)

4. Cross-domain validation demonstrating improved
accuracy (60.0% to 82.1%) with dimensional schemas
and 269× data scale increase

5. Evidence that both models achieve 100% combined
accuracy with zero incorrect translations

6. Identification of challenges (schema alignment, cor-
relation queries) and optimization opportunities
(caching, prompt engineering, hybrid routing)

As LLM capabilities advance, we anticipate the accuracy-
latency trade-off will become less pronounced, enabling
real-time natural language database interfaces without
sacrificing quality. The architecture and methodology
presented here provide a foundation for continued research
toward accessible sophisticated data analysis.

8.1 Future Directions
Several promising directions emerge from this work.
First, fine-tuning smaller models on domain-specific query
translation tasks could achieve Flash-level latency with Pro-
level accuracy, reducing both cost and latency. Second,
hybrid routing strategies could dynamically select between
Pro and Flash based on detected query complexity, using
Flash for simple aggregations and Pro for statistical analyses.
Third, schema-aware prompt compression techniques could
reduce context size while preserving translation accuracy,
addressing the 3,400-token prompt overhead observed
in our experiments. Finally, query plan caching with
semantic similarity matching could enable partial cache
hits for semantically similar but lexically different queries,
dramatically reducing average response times for production
workloads.

Prepared using sagej.cls

12 Journal Title XX(X)

Acknowledgements

The authors thank the BARCELONA Supercomputing Center for
access to MareNostrum 5 and technical support. This research
was supported by the LUXEMBOURG Institute of Science and
Technology (LIST) through the projects “ADIALab-MAST” and
“LLMs4EU”. The LLMs4EU project is co-funded by the European
Union under the Digital Europe Programme, Grant Agreement No
101198470. Additional support was provided by the BARCELONA
Supercomputing Center through the project “TIFON”, funded by
the Centre for the Development of Industrial Technology (CDTI)
with the support of the Spanish Ministry of Science and Innovation
under file number MIG-20232039, and by the Agencia Estatal de
Investigación (AEI).

Declaration of conflicting interests

The authors declare no conflict of interest.

Supplemental material

Implementation available at: https://github.com/

drdecurto/polyglot-persistence-llm

References

Amer-Yahia S, Bonifati A, Chen L, Li G, Shim K, Xu J and Yang X
(2023) From large language models to databases and back: A
discussion on research and education. ACM SIGMOD Record
52(3): 49–56.

Brown T, Mann B, Ryder N et al. (2020) Language models are few-
shot learners. In: Advances in Neural Information Processing
Systems, volume 33. pp. 1877–1901.

Carlson J (2013) Redis in action. Simon and Schuster.
Chauhan A (2019) A review on various aspects of mongodb

databases. International Journal of Engineering Research &
Technology (IJERT) 8(05): 90–92.

Chen H and Hou J (2024) Intelligent data governance: building
an enterprise data management system using kg and llm. In:
Proceedings of the 2024 International Conference on Cloud
Computing and Big Data. pp. 266–271.

Da Silva MD and Tavares HL (2015) Redis Essentials. Packt
Publishing Ltd.

de Curtò J and de Zarzà I (2025) Llm-driven social influence for
cooperative behavior in multi-agent systems. IEEE Access 13:
44330–44342. DOI:10.1109/ACCESS.2025.3548451.

de Curtò J, de Zarzà I and Calafate CT (2025) Integrating
polyglot persistence with large language models for scalable
social network applications. Procedia Computer Science 270:
733–743. DOI:https://doi.org/10.1016/j.procs.2025.09.193.
URL https://www.sciencedirect.com/science/

article/pii/S1877050925028637. 29th International
Conference on Knowledge-Based and Intelligent Information
& Engineering Systems (KES 2025).

Deka GC (2018) Nosql polyglot persistence. In: Advances in
Computers, volume 109. Elsevier, pp. 357–390.

Grolinger K, Higashino WA, Tiwari A and Capretz MA (2013) Data
management in cloud environments: Nosql and newsql data
stores. Journal of Cloud Computing: advances, systems and
applications 2: 1–24.

Győrödi C, Győrödi R, Pecherle G and Olah A (2015) A
comparative study: Mongodb vs. mysql. In: 2015 13th

international conference on engineering of modern electric
systems (EMES). IEEE, pp. 1–6.

Hogan A, Blomqvist E, Cochez M, d’Amato C, Melo GD, Gutierrez
C, Kirrane S, Gayo JEL, Navigli R, Neumaier S et al. (2021)
Knowledge graphs. ACM Computing Surveys (Csur) 54(4): 1–
37.

Li J, Hui B, Qu G, Yang J, Li B, Li B, Wang B, Qin B, Geng
R, Huo N et al. (2023) Can llm already serve as a database
interface? a big bench for large-scale database grounded text-
to-sqls. Advances in Neural Information Processing Systems
36: 42330–42357.

Li Y and Jobson D (2024) Llms as an interactive database interface
for designing large queries. In: Proceedings of the 2024
Workshop on Human-In-the-Loop Data Analytics. pp. 1–7.

Miller JJ (2013) Graph database applications and concepts with
neo4j. In: Proceedings of the southern association for
information systems conference, Atlanta, GA, USA, volume
2324. pp. 141–147.

Nascimento ER, Garcı́a G, Izquierdo YT, Feijó L, Coelho GM,
de Oliveira AR, Lemos M, Garcia RL, Leme LAP and
Casanova MA (2025) Llm-based text-to-sql for real-world
databases. SN Computer Science 6(2): 130.

Oliveira FR and del Val Cura L (2016) Performance evaluation
of nosql multi-model data stores in polyglot persistence
applications. In: Proceedings of the 20th International
Database Engineering & Applications Symposium. pp. 230–
235.

Team G, Anil R, Borgeaud S, Alayrac JB, Yu J, Soricut R,
Schalkwyk J, Dai AM, Hauth A, Millican K et al. (2023)
Gemini: a family of highly capable multimodal models. arXiv
preprint arXiv:2312.11805 .

Van Landuyt D, Benaouda J, Reniers V, Rafique A and Joosen W
(2023) A comparative performance evaluation of multi-model
nosql databases and polyglot persistence. In: Proceedings of
the 38th ACM/SIGAPP Symposium on Applied Computing. pp.
286–293.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser Ł and Polosukhin I (2017) Attention is all you
need. In: Advances in Neural Information Processing Systems,
volume 30. pp. 5998–6008.

Webber J (2012) A programmatic introduction to neo4j. In:
Proceedings of the 3rd annual conference on Systems,
programming, and applications: software for humanity. pp.
217–218.

Yang S, Teng M, Dong X and Bo F (2023) Llm-based sparql
generation with selected schema from large scale knowledge
base. In: China conference on knowledge graph and semantic
computing. Springer, pp. 304–316.

Zhou X, Sun Z and Li G (2024) Db-gpt: Large language model
meets database. Data Science and Engineering 9(1): 102–111.

Prepared using sagej.cls

https://github.com/drdecurto/polyglot-persistence-llm
https://github.com/drdecurto/polyglot-persistence-llm
https://www.sciencedirect.com/science/article/pii/S1877050925028637
https://www.sciencedirect.com/science/article/pii/S1877050925028637

	Introduction
	Related Work
	System Architecture
	Database Layer
	Data Warehouse Schema
	Query Translation Pipeline
	LLM Prompt Engineering

	Experimental Methodology
	Experimental Results
	Translation Accuracy: Gemini 3 Pro
	Translation Accuracy: Gemini 3 Flash
	Model Comparison: Accuracy vs. Latency Trade-off
	Error Category Analysis
	Performance Analysis
	Database Execution Performance

	Cross-Domain Validation
	Domain Characteristics
	Query Complexity Metrics
	Architecture Adaptation
	Translation Accuracy Comparison
	Cross-Domain Summary

	Discussion
	Key Findings
	Cost-Benefit Analysis
	Implementation Considerations
	Practical Recommendations
	Implications for Semantic Web Systems
	Threats to Validity
	Reproducibility

	Conclusion

