
Evaluating LLMs for KG-Related Tasks 1

Evaluating Large
Language Models for
RDF Knowledge Graph
Related Tasks - The
LLM-KG-Bench-
Framework 3

Journal Title
XX(X):2–37
©The Author(s) 2025
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Lars-Peter Meyer1,2, Johannes Frey1,3, Felix Brei1, Desiree
Heim4,5, Sabine Gründer-Fahrer1, Sara Todorovikj2, Claus
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Abstract
Current Large Language Models (LLMs) can work with structured
information and even assist developing program code, but can they
support working with Knowledge Graphs (KGs) as well? Which LLM
is offering the best capabilities in the field of Semantic Web and
Knowledge Graph Engineering (KGE)? Is it possible to determine
this without manually checking many answers? The LLM-KG-Bench
framework is designed to answer these questions. It consists of an
extensible set of tasks for which the LLM answers are automatically
evaluated, and covers different aspects of working with semantic
technologies.
This article gives a description of the LLM-KG-Bench framework, its
main concepts, and the tasks implemented. In a benchmark run, a
comprehensive dataset has been generated with it, evaluating more
than 40 contemporary open and proprietary LLMs with 26 benchmark
tasks, resulting in interaction logs and evaluations of roughly 45 000
LLM task dialogues. Finally, this dataset is used for an analysis of the
SPARQL-related capabilities of the LLMs tested.
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1 Introduction

The combination of Large Language Models (LLMs) and Knowledge
Graphs (KGs) offers great synergetic potential for various knowledge-
driven applications and is still gaining more traction within the research
community. However, the ongoing rapid development in the field of LLMs
makes it difficult to keep up with the latest developments and put them into
context of prior work. Several initiatives for automated benchmarking, like
BIG-bench1, HELM2, or Chatbot-Arena3, address the need for systematic
evaluation of LLM performance. However, the tasks in scope of these
evaluations are very general and do not address topics specifically related
to KGs.

With the benchmarking framework LLM-KG-Bench, we are particularly
focusing on automatically assessing and comparing LLMs regarding
their capabilities to cope with Semantic Web technologies. This includes
basic capability checks to establish a scientific foundation, as well as
more practical tasks. The existing tasks cover already the Knowledge
Graph Engineering (KGE) areas, RDF KG serialization, KG construction,
SPARQL and KG schema, and the framework is open to support more
tasks. Connectors for many open weight and top-ranking commercial
LLMs are included.

Our investigation has been guided by the following overarching research
questions:
RQ 1. Can KGE-related capabilities of LLMs be evaluated in an
automated way?
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RQ 2. Should specific LLMs be favored for specific tasks or KG data
formats? And if so, to which extent do their capabilities differ and how
can it be measured which LLM fits best for which task?

And specific to SPARQL SELECT queries:

RQ 3. Can LLMs follow the syntactic rules of SPARQL SELECT
queries?

RQ 4. Can LLMs parse the semantics of SPARQL SELECT queries and
act accordingly?

RQ 5. Can LLMs write semantically correct SPARQL SELECT queries
for a given question and KG?

We present here an overview on the current state of the LLM-KG-
Bench framework together with an evaluation dataset on more than 40
current LLMs and an evaluation of their SPARQL-SELECT-query-related
capabilities. The LLM-KG-Bench framework is developed for automated
benchmarking of Knowledge-Graph-related capabilities of LLMs.

The main contribution of this article is threefold:

• We provide a description of the current state of the framework,
including main concepts, its API, supported model connectors and
tasks.

• We present a dataset on the evaluation of more than 40 LLMs. The
dataset includes detailed logs, interaction data and the evaluation
result. This enables other researchers to extend this dataset,
reproduce our analysis or run additional analyses e.g. by updating
the framework code and using the framework’s reevaluation feature.

• As a demonstration of the frameworks’ analytical capabilities and the
generated dataset, we evaluate the SPARQL-SELECT-query-related
capabilities of the selected LLMs.

This is an extended version of previous work by Meyer et al. 20254 with
a similar use case as the one presented in Meyer et al. 20245. The added
contribution of this paper compared to our previous work consists of:

• a unified source of truth for the current state of the LLM-KG-Bench
framework, especially based on current conference and workshop
articles4–6
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• a refined description of capabilities that an LLM needs to have in
order to solve the benchmark tasks

• the enrichment of the previous result dataset by executing the
benchmark framework against several top-ranked LLMs

• grouping and refining of the capability plots together with the
computation and analysis of an aggregated score for the SPARQL-
related capabilities of the LLMs tested

• an improvement of the analysis of using Turtle(TTL) versus JSON-
LD RDF serialization format in tasks by including a per-model as
well as a per-task summary.

2 Related Work

2.1 LLM Evaluation

Attempts on exploring and navigating the vast amount of LLMs are made
in form of several LLM leaderboards, which provide evaluation services
for LLMs in form of selections of benchmarks or workloads. We discuss
here the most relevant ones that we discovered during our research.

Focusing mainly on commercial models, the Chatbot Arena1 3 lists
scores for MMLU2 and MT-bench7, and also calculates its own arena-
score (based on prompts given by users, processed by two models
side-by-side and evaluated by the same user voting for his preferred
answer). For open models, the Open-LLM-Leaderboard 3 provides a list of
benchmark results with over 2,000 tested models and several scores plus a
carbon dioxide emission estimate. The most exhaustive list is provided by
HELM4 2 which includes also domain-specific tests like LegalBench and
MedQA. While a comparison of the individual benchmark suites would
go beyond the scope of this paper, to the best of our knowledge, none
of these general leaderboards addresses Knowledge Graph Engineering
(KGE) tasks.

Moreover, what is generally amiss is a benchmark execution framework
that helps to deal with the particularities of RDF and KG-related
workloads (format parsing, syntax check feedback loops, execution and
evaluation of queries towards KGs, etc.). Although early attempts have
been made by BIG-bench1, it is falling short of building an efficient
base for evaluating LLM capabilities in the context of KGE tasks, due to
insufficiencies of the provided Task API, along with the focus on multiple
choice tasks and scores based on string or document similarities.
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In the face of these issues, our LLM-KG-Bench framework aims
to reduce complexity and facilitate creating, executing, evaluating, and
analyzing KG-related tasks. Its procedures focus on the syntactically and
semantically correct generation of RDF (i.e. in Turtle) and SPARQL.

Current efforts in benchmarking coding capabilities seem more
closely related to characteristics of KGE capabilities benchmarking, at
a conceptual level (e.g., with respect to output format requirements,
instruction complexity, and response evaluation strategies). Several
leaderboards, like the Big Code Models Leaderboard5 for Java,
Javascript,and CPP, or the EvalPlus Leaderboard6 for Python assess the
coding proficiency of LLMs. We included some of the models ranked there
into our test set.

2.2 RDF-related evaluation

In the current literature7 that explores the combination of LLMs and
KGs8–10, several attempts on evaluating the application of LLMs for KG-
related tasks are made. However, these LLM evaluations often focus on
details for a very selective problem in a specific task area, like Text
to RDF (e.g.11,12), Knowledge Base Extraction from LLMs (e.g.13–15),
Knowledge Graph Question Answering (KGQA, e.g.16), Text2SPARQL
(e.g.17–19) or generation of RDF Mapping Language (RML) mappings
(e.g.20). Unfortunately, many of these evaluations have been conducted
manually, which causes scalability issues with respect to more repetitions
and including more or newer models. In case an automated evaluation
has been performed, the underlying code usually lacks adaptability
to encompass new models or task variations. A benchmarking effort
that is related to our interest in studying the JSON-LD capabilities,
is StructuredRAG21. It consists of six tasks designed to assess LLM
capabilities in following response format instructions according to JSON
templates. Table 1 compares several of the mentioned LLM evaluation
approaches with respect to the covered LLMs, addressed KGE tasks and
their evaluation mode. Only the LLM-KG-Bench framework combines
automatic evaluation for many covered LLMs and several KGE topics.

Prepared using sagej.cls



6 Journal Title XX(X)

Table 1. Comparison of some of the LLM evaluation approaches mentioned here. Best
values are marked with bold font. Only the LLM-KG-Bench framework automatically evaluates
several Knowledge Graph Engineering (KGE) tasks and covers many LLMs in a benchmark
run.

LLMs covered KGE topics eval. type

BIG-bench 1 many(about 15) no automatic
HELM 2 many(about 140) no automatic
Chatbot Arena 3 many(about 280) no crowd
ChatGPT KG Experiments 9 some (2) several (Text2Sparql, KG constr., KG exploration) manual
Text2KgBench 11 some (2) Text2KG automatic
AutoKG 12 some (4) Text2KG, Reasoning manual
LLM-KG-Bench 3 many(about 40) several (RDF, KG constr., SPARQL, KG schema) automatic

2.3 Text2Sparql and KBQA

The interpretation and generation of the query language SPARQL, being
a core technology for accessing KGs, is one especially relevant example
of integrating Semantic Technology with LLMs.

Rangel et al.22 introduce a method for fine-tuning OpenLLaMA to gen-
erate SPARQL queries for question answering on life science knowledge
graphs. Their approach leverages data augmentation techniques, such as
the use of meaningful variable names and inline comments, which lead to
improved accuracy in SPARQL query generation.

Bustamante and Takeda23 focus on enhancing the generation of
SPARQL queries from natural language questions. They employ a GPT
model to identify the most challenging aspects of the Text2SPARQL task,
aiming to apply targeted solutions to these difficulties.

Avila et al.24 evaluate ChatGPT’s performance in answering natural
language questions on knowledge graphs. Their method, Auto-
KGQAGPT, explores translating such questions into SPARQL queries
using prompts that include relevant knowledge graph fragments.

Li et al.25 address the performance drop seen in real-world conditions
where high-quality annotated data are lacking. They propose the
FlexKBQA framework, which uses template SPARQL queries that are
converted into natural language questions via LLMs to produce synthetic
training data. This data is used to fine-tune a lightweight SPARQL
generator, further refined with real queries to bridge the gap between
synthetic and real-world inputs.

Diallo et al.26 provide a thorough evaluation comparing pre-trained
language models, non-pre-trained language models, and LLMs, along
with various fine-tuning strategies. Their error analysis reveals that
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incorrect URIs, often caused by hallucinations, are a major source of
failure in generated SPARQL queries. Hirigoyen et al.27 demonstrate that
incorporating a copy mechanism can help mitigate such hallucinations.

Kovriguina et al.17 present SPARQLGEN, a one-shot generation
technique that uses LLMs to produce SPARQL queries. Their method
includes the full context comprising the question, a relevant RDF
subgraph, and an example query within a single prompt.

Pliukhin et al.28 propose a similar approach to SPARQLGEN for query
generation over the ORKG scholarly knowledge graph, enhanced with a
more advanced subgraph extraction method. Zahera et al.18 extend this
by incorporating chain-of-thought prompting and using the GERBIL QA
system16.

Lehmann et al.29 advocate the use of Controlled Natural Language
(CNL) as a user interface due to its proximity to natural language. They
show that CNL can be reliably and unambiguously translated into formal
query languages like SPARQL, significantly reducing the need for large
training datasets.

Diefenbach et al.30 introduce two datasets for training and benchmark-
ing QA systems on Wikidata: One derived from the SimpleQuestions
dataset31, and another based on user logs and feedback.

Dubey et al.32 extend the LC-QuAD dataset and introduce LC-QuAD
2.033, which is compatible with both Wikidata and DBpedia. The dataset
comprises 30,000 questions, including paraphrases and corresponding
SPARQL queries.

Banerjee et al.34 explore various ways to integrate LLMs into standard
knowledge graph workflows. Their focus is on models that can be fine-
tuned with consumer-grade hardware, in contrast to approaches focusing
on large-scale models used without additional training.

Frey et al.35 demonstrate the long-term value of automated
benchmarking through the LLM-KG-Bench platform. They compare
multiple LLM iterations with a focus on their ability to handle RDF
Turtle syntax, preserving responses for future evaluation. Heim et al.6 is
an example of such a separate evaluation.

Hofer et al.20, consistent with the findings by Frey et al.35,36, investigate
LLM-driven RML mapping generation in Turtle. They find that while
syntactic errors occur, most LLMs can correct these mistakes. Given that
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SPARQL is built on Turtle, the authors conduct their experiments as multi-
turn dialogues with feedback loops for error correction.

The recently organized ”First International Text2Sparql Challenge”19

shows the potential of best LLM agent-based approaches37–39 for the
Text2Sparql problem and a specific automatic evaluation approach
roughly similar to the Text2Sparql evaluation used in LLM-KG-Bench.
But it shows as well the open gap, as the best participants reached only
scores of about 0.5.

Nevertheless, none of these existing works reach the goal of automatic
evaluation on many KGE-related tasks as presented here with the LLM-
KG-Bench framework in version 3.

3 The LLM-KG-Bench Framework

Benchmarking LLMs involves significant time, financial costs, organiza-
tional effort, and the evaluation process can often be imprecise. LLM-
KG-Bench is designed to simplify the creation of KG-related assessments
while providing a foundational infrastructure for further development. Its
main features are:

• Modular and Extensible Framework: Supports automated
evaluation tasks using a comprehensive set of KG-extraction and
evaluation-related helper methods.

• Built-in Correction Cycles: Implements dialogue-based correction
cycles, enabling LLMs to revise previous mistakes.

• Data Security: Supports encryption of task data to prevent test data
leakage into LLM training datasets.

• Task Management: Manages task configurations, evaluation
orchestration, logging, and result persistence.

• Result Analysis and Visualization: Provides built-in tools for
analyzing and visualizing evaluation results.

• Broad Model Support: Includes connectors for many contemporary
LLMs.

• Open-Source Codebase: The framework is published as open
source and welcomes extensions and community contributions.

In the following sections, we describe the basic concepts and
infrastructure of the LLM-KG-Bench framework in greater detail.
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Figure 1. Overview on the execution flow of the LLM-KG-Bench framework. A execution
configuration defines some settings and selects LLM connectors as well as evaluation tasks
from a benchmark configuration. In the benchmark execution all given combinations of
evaluation tasks and LLM connectors are executed for the number of iterations each as task
evaluation iteration. In the task evaluation iteration the task provides a prompt which is
answered by the LLM via the LLM connector and the answer is evaluated by the task, maybe
resulting in further Prompt-Answer-Evaluate rounds. All results and logs from the task
executions is stored for later analysis, visualization or reevaluation.
Source: LLM-KG-Bench documentation, updated version of Meyer et al. 40.

3.1 Architecture and Main Concepts

Figure 1 gives an overview on the LLM-KG-Bench framework and its
execution flow. It is build around some main concepts we want to describe
here. We start with the general concept of the Prompt-Answer-Evaluate
loop before going further to LLM connectors, tasks, execution scopes,
configuration, and scores.

Prompt-Answer-Evaluate Loop: The evaluation of LLMs is based on
dialogues, consisting of prompts and answers. This enables tasks to make
use of the chat capability of modern LLMs and their bigger supported
context size to get the answer closer to the correct one in an iterative way.

The Prompt-Answer-Evaluate loop starts with the generation of an
initial prompt that is sent to an LLM. In the next step, the produced answer
is evaluated. Based on the evaluation result, the framework can decide
to start a new Prompt-Answer-Evaluate round or stop the dialogue. The
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(a) The Prompt-Answer-Evaluate loop for
the task — LLM interaction as organized
by the framework. Prompting and
evaluation is covered by the task, the
answer is generated by the LLM.

for i in config.iterations task evaluation execution

for model in config.models

for task in config.tasks          

benchm
ark execution

prompt

answer

ev
al

ua
te

start

end

task evaluation iteration

(b) Different execution scopes: task evaluation iterations
(includes one to many cycles of the Prompt-Answer-Evaluate
loop), task evaluation execution (includes all iterations),
benchmark execution (includes all task executions for all
combinations of tasks and LLM models defined for all
iterations).

Figure 2. Overview of the evaluation workflow and execution scopes.

process from initial prompt to the stop of the dialogue is named a task
evaluation iteration.

The structure of these loops is shown in fig. 2a and an example dialogue
is given in fig. 4. The prompt and evaluate parts are implemented in
evaluation tasks and the answer is organized with the help of LLM
connectors.

LLM Connectors and LLM Connector Classes: The LLM connec-
tors(or model connectors) offer a consistent abstraction layer to interact
with a specific LLM (or model). In the benchmark configuration the
LLM conncectors are defined by parametrizing LLM connector classes for
specific LLMs. Several LLM connector classes classes are implemented
in the LLM-KG-Bench framework as described in section 3.3, adding
support for many different LLMs.

Evaluation Tasks, Task Classes and Parametrized Tasks: The
evaluation tasks (or benchmark tasks) are the main building block of
a benchmark and automatically evaluate the LLM answers. For the
Prompt-Answer-Evaluate loop the tasks provide the prompt and evaluation
functionality.
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Task Classes and Parametrized Tasks: The evaluation tasks can be
defined either direct in task classes or as parametrized task classes derived
in the benchmark configuration from a task class with a task parameters
definition.

Task Parameters: Several task classes support as task parameter
a targeted task size or a serialization format parameter. The targeted
task size task parameter defines the count of characters expected to be
exchanged with the LLM connector in one task iteration.

List Tasks and Task Case Entries: List tasks have a list of task case
entries, where each entry defines a distinct exercise resulting in a specific
prompt and expected answer. For each task iteration one task case entry is
selected from this list. All task case entries are evaluated by the same list
task.

Task Evaluation Iterations: We name one task evaluation loop
consisting of one or more Prompt-Answer-Evaluate rounds a task
evaluation iteration (or a dialog), see also fig. 2b.

Task Evaluation Executions: Since LLM answers are generated
probabilistically, a configurable number of task evaluation iterations is
executed, collectively forming a task evaluation execution for a specific
task and a particular LLM, see also fig. 2b.

Benchmark Executions: A benchmark execution consists of all task
executions for all combinations of tasks and models defined in the
execution configuration, see also fig. 2b.

Result Reevaluation LLM answers recorded in a benchmark execution
can get reevaluated by repeating the task evaluation code with the LLM
connector interactions substituted with the stored interactions. When
looking at the Prompt-Answer-Evaluate loop given in fig. 2a, the evaluate
code is reexecuted but prompt and answer is taken from the recorded
interaction. This makes it possible to reproduce evaluation results and even
offers the chance to run updated evaluation code on given answers without
the need of new maybe costly or differing LLM interactions.

Benchmark Configuration and Execution Configuration: A bench-
mark configuration specifies the tasks and models to be included in a
benchmark run together with the number of iterations per task execution.
A benchmark configuration can be executed as a whole or with a selection
of tasks and models defined by command line parameters.
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LlmKgBench.api.task

AbstractLlmKgBenchInterface TaskExecInfoTaskInfo

AbstractFileListTaskAbstractDialogTaskAbstractSinglePromptTask

AbstractLlmKgBenchImplementation

LlmKgBench.tasks

RdfSyntaxFixRdfFriendCount

...

Figure 3. UML class diagram of the Task API and its reference by some example evaluation
tasks. All evaluation tasks implement the AbstractLlmKgBenchInterface via an inheritance
connection. A task can be described with a TaskInfo object. A TaskExecutionInfo references
this TaskInfo object for the documentation.

Evaluation Scores and Infos: An evaluation task should compute for
each task evaluation iteration a key value dictionary containing one or
more evaluation scores with values in the range of [0..1]. Here 1 should
be the score for an optimal answer. In addition to evaluation scores an
evaluation task can return evaluation infos containing more information
in the form of a key value dictionary, where the values could be anything
usefull about the evaluation of the answers.

3.2 Tasks API

Evaluation tasks are implemented following the Task API as a common
interface between evaluation tasks and the framework. In LLM-KG-Bench
framework Version 3, a major update of the Task API was introduced
together with new helper classes. Figure 3 shows a UML class diagram
of the new Task API.

All evaluation tasks in LLM-KG-Bench implement the interface
AbstractLlmKgBenchTaskInterface. It defines the interface between
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evaluation tasks and the framework, including the method signatures for
Evaluate and Prompt steps as well as task serialization and deserialization.

The following methods defined in the AbstractLlmKgBenchTaskInter-
face are especially important:

getNextPrompt: combines an evaluation and prompting step. If no new
prompt is generated the Prompt-Answer-Evaluate loop ends.

finalizeEvaluation: is called at the end of the Prompt-Answer-Evaluate
loop and creates a final evaluation result for this task evaluation
iteration.

condenseTaskData: creates a serializable representation of this concrete
task case entry. This offers the possibility for later continuation or
reevaluation.

createTaskFromCondensedData: initializes a task from the representa-
tion given by condenseTaskData

The abstract implementation AbstractLlmKgBenchTaskClass helps to
reduce redundant code and eases the concrete task implementation. For
the two main variations of tasks, single-prompt tasks and dialogue-tasks,
specialized abstract classes are provided. The AbstractDialogTask class
helps with handling the score and info values produced by each Prompt-
Answer-Evaluate round and computes mean and max aggregate values
for scores at the end of a task evaluation iteration. Tasks that store
their task data in an encrypted file can benefit from the abstract class
AbstractFileListTaskImplementation.

This task API is inspired by the BIG-bench1 task classes but has a more
detailed abstraction to let the framework orchestrate the tasks Prompt-
Answer-Evaluate loop shown in fig. 2a. Nonetheless the task API should
be similar enough with the common generic benchmarking frameworks
to keep the path of combining them open for the future. The new task
API gives the central framework logic more flexibility in the orchestration,
reduces error possibilities and reduces repeated code in tasks.

3.3 LLM Connectors and Supported Models

LLM connectors are responsible for offering standardized APIs to LLMs.
They are defined similar to the BIG bench model class. The main method
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offered is generate_text(inputs, ...)->str, taking a single
prompt or dialogue and returning the LLM’s answer.

The LLM-KG-Bench framework offers several model connector
classes:

OpenAI / ChatGPT: Connector class for OpenAI-compatible LLMs like
GPT-3.5, GPT-4, GPT-4t, GPT-4o and GPT-o1 via the OpenAI
python library8 and REST API9. Many other LLM providers offer
a compatible REST endpoint. They can be integrated with this
connector as well.

Google / Gemini: Connector class for LLMs from Google like Gemini
1.5 or Gemini 2.0 via the Google python library10 and REST API11.

Anthropic / Claude: Connector class for LLMs from Anthropic from
Claude 1.0 to Claude 3.5. The connector uses the Anthropic REST
API12 using the offered Python library13.

vLLM : Runtime for self-hosted LLMs 14 41. This library is compatible to
many open LLMs and enables serving and inferencing with them.

3.4 Evaluation Tasks and Scores

Several tasks are implemented in the LLM-KG-Bench framework as
described in several articles4,5,35,36,40. The tasks range from basic RDF
capability checks to establish a clean scientific foundation for further
experiments, but include more practical tasks as well.

Here we list all task classes implemented at the moment together with
the most important scores. More details are given in the referenced papers
and in the tasks folder of the code repository 15. Table 2 shows the
relationship between the SPARQL-SELECT-query-related tasks and the
research questions 3 to 5.

RDF-related Tasks:

RdfConnectionExplainStatic: This task asks the LLM to find the
shortest connection between two nodes in a small RDF graph.
The shortest path shall be output as a list of IRIs. Four variations
present the graph in different serialization formats: JSON-LD,
N-Triples, Turtle, and RDF/XML. See also Frey et al.36 and
Meyer et al.4.
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Most important score listTrimF1: F1 measure calculated by
comparison of trimmed given and expected lines.

RdfFriendCount: For a simple RDF graph with, respectively, only
one node and one edge type, the LLM is asked to identify
the node with the most incoming edges. There are several
variations covering on the one hand the different serialization
formats JSON-LD, N-Triples, Turtle and RDF/XML and on
the other hand using different values for the other parameters
size(targeted task size), knowsCount(number of incoming
edges for normal nodes), and specialAddKnowsCount
(number of additional incoming edges for the one special node).
See also Frey et al.36 and Meyer et al.4.
Most important score f1: F1 measure when comparing the given
persons with the correct answer.

RdfSyntaxFixList: The LLM is instructed to correct a syntactically
invalid RDF graph. The variations cover the serialization
formats JSON-LD, N-Triples, and Turtle. For more details, see
Meyer et al.4.
A former version is the TurtleErrorsStatic task36,40, which is
limited to a single turtle test case but implements an evaluation
method optimized for Turtle serialization format.
Most important scores 0_combined and max_combined:
Score combining for the first (0) or best (max) answer
in the dialog a string similarity measure score, a parsable
syntax score, and a f1 measure on the KG content. The
combined scores are calculated as 0.1 · strSimilarity + 0.2 ·
parsableSyntax+ 0.7 · contentF1.

RDF-related Tasks on KG-Construction:
FactExtractStatic: The LLM is instructed to extract facts from a

given textual fact sheet and create a corresponding Turtle KG.
See also Meyer et al.40 and Frey et al.36.
Most important scores norm_f-measure: F1 measure
comparing triples of the normalized graphs given and expected.

TurtleSampleGeneration: In this task, the LLM shall generate
small Turtle knowledge graphs satisfying given requirements.
See also Meyer et al.40 and Frey et al.36.
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Most important score persons_relative_error: Com-
parison of the number of persons in the generated graph with
the expected number.

SPARQL-related Task Classes (for specific tasks see table 3):

Sparql2AnswerList (S2A): Given a small KG and a SPARQL
SELECT query, the LLM shall return the respective result set
for the query. Here, the KG is given in the JSON-LD or Turtle
format. See also Meyer et al.5.
Most important score combinedF1Score: Combination of
several F1 measures comparing the expected and given answer.

Text2AnswerList (T2A): In this task, the LLM is instructed to
return the result set answering a given textual question on
a given KG. While this task is similar to KBQA, we are
here mainly interested scientifically in the variation of the
Sparql2Answer task. We use the same evaluation logic, similar
prompts, and similar task case entries, but replace the SPARQL
SELECT query by the corresponding textual question. Again,
the variations introduce the KG in either the JSON-LD or Turtle
format. For more details, see Meyer et al.5.
Most important score combinedF1Score: See explanation
above.

Text2SparqlList (T2S): Given a KG and its description, the LLM
shall construct a SPARQL SELECT query corresponding to a
given natural language query. The KG is either given completely
or partly as a subgraph. Alternatively, some variations provide
the KG schema instead of the graph itself, thus testing basic
schema read capabilities. The variations are described in table 3
and cover seven different KG datasets. See also table 3 and
Meyer et al.5.
Most important scores 0_combined, max_combined,
0_answerParse and max_answerParse: The answer
parse scores evaluate if the first (0) or best (max) given SPARQL
SELECT query parses syntactically correct. The combined
scores for the first (0) or best (max) given SPARQL SELECT
query are based on the answer parse score and an F1 score
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Bench: Please fix all syntax errors of the following RDF in turtle syntax. Try to stick with the original formatting of the
RDF given and only change as few characters as necessary. To support automated parsing, please answer with just one
markdown fenced code block (start and end with ‘‘‘) containing the rdf, no other text.

‘ ‘ ‘ t u r t l e
. . .
: anne a f o a f : Pe r so n ; f o a f : f i r s t N a m e ”Anne”
. . .
‘ ‘ ‘
Parsing error message: at line 7 of <>: Bad syntax (expected ’.’ or ’}’ or ’]’
at end of statement) at ˆ in: . . .

LLM: A dot (.) is missing

Bench: Please correct your answer following the expected structure(exactly one fenced code block with the RDF, no other
text).

LLM:
‘ ‘ ‘ t u r t l e
. . .
: anne a f o a f : Pe r so n ; f o a f : f i r s t N a m e ”Anne” .
. . .
‘ ‘ ‘

Figure 4. Fictive example dialogue for the RdfSyntaxFixList task with a missing dot in Turtle
syntax. Some text left out is marked with ”. . . ” . The LLM’s first answer is missing the
expected code block with the fixed Turtle which is corrected in the second answer.

comparing the result sets of given and optimal query. The value
is computed as 0.2 · answerParse+ 0.8 · f1measure.

SparqlSyntaxFixingList (SSF): Similar to the RdfSyntaxFixList
task, the LLM gets a SPARQL SELECT query with syntax
errors and shall return a corrected query. See also Meyer et al.5.

Most important scores 0_combined, max_combined,
0_answerParse and max_answerParse: See explanation
above

The prompts used by the tasks are designed in a way that keeps
ambiguity as low as possible. All requirements that we expect the LLM
to respect are stated explicitly, e.g., stick with the original
formatting, or answer with just one markdown fenced
code block ... no other text. At the same time, we avoid
LLM-specific prompt optimization for a fair comparison across different
models. An example dialog is shown in fig. 4.
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Table 2. Mapping of the task types to the different task aspects and research questions
covered. Adopted from Meyer et al. 5

Research Question: RQ 3 RQ 3 RQ 4 RQ 5
Task Aspect: Syntax Read Syntax Create Semantic Read Semantic Create

SPARQL Syntax Fixing (SSF) x x - -
SPARQL to Answer (S2A) x - x -
Text to SPARQL (T2S) - x - x
Text to Answer (T2A) - - - -

3.5 Benchmark Datasets and KGs Used for SPARQL Task
Implementations

There are several benchmark datasets available which contain pairs of
SPARQL SELECT queries and textual natural language questions for
specific knowledge graphs. We selected and implemented benchmark
tasks for a couple of current datasets for smaller and bigger knowledge
graphs. Only English textual questions were used as we focus on SPARQL
here and not language capabilities. A total of five tuples, each consisting
of a question and corresponding SPARQL query, was manually selected
from each dataset. This allows to rerun the tasks more often to reduce the
random noise in the results.

Organizational dataset and KG The smallest KG used is an organiza-
tional KG9. We use it here together with a corresponding dataset16 of
question and SPARQL pairs created by Brei et al.42.

Triples: 29. Identifiers: human readable.

Organizational Numeric We created an additional variant of the
organizational dataset and KG with numerical IRIs (first 3 digits of
hash) and same questions.

Triples: 29. Identifiers: numeric.

CoyPu-Mini dataset and KG Brei et al.42 published another dataset
based on a small subset of the CoyPu KG17. This sub graph is small
enough to fit into the context size of LLMs evaluated here. We added
lists of relevant IRIs and schema information.

Triples: 283. Identifiers: human readable.

Beastiary dataset and KG The Beastiary dataset and KG18 was pre-
sented by Kovriguina et al.17. It offers for each question a relevant
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Table 3. Overview on the different SPARQL-related tasks implemented within
LLM-KG-Bench framework

Task Type Dataset Subset Task KG Info Type KG Info Format

SSF Syntax-Errors SSF-LC-QuAD not needed here not needed here

S2A Organizational S2A-Orga full KG Turtle or JSON-LD

T2S Organizational T2S-Orga full KG Turtle

Organizational-Numeric T2S-OrgaNum full KG + IRIs + Labels Turtle + table

Beastiary T2S-Beast-Graph KG subset Turtle
T2S-Beast-Schema schema Turtle

T2S-Beast-Subschema schema subset Turtle
T2S-Beast-Iris IRIs list

CoyPu-Mini T2S-CoyPu-Graph full KG Turtle or JSON-LD
T2S-Coypu-Schema schema Turtle or JSON-LD

T2S-Coypu-Iris IRIs list

T2A Organizational T2A-Orga full KG Turtle or JSON-LD

sub graph and a list of IRIs. We derived relevant schema information
from these IRI lists.

Triples: 98070. Identifiers: human readable.

SPARQL SELECT Query Syntax Errors We took one question and
SPARQL pair from LC-QuAD and derived 5 tests from it by inserting
different kinds of syntax errors, one error per test.

Triples: ∼ 1billion. Identifiers: numeric.

The list of SPARQL-related benchmark tasks created based on these
resources in the LLM-KG-Bench framework is given in table 3.

3.6 General Task Characterization

For a structured task characterization, we draw from frameworks from
cognitive psychology and educational research. Bloom’s Taxonomy43

was originally developed to classify educational objectives based on
the level of cognitive complexity required. It is based on behavioral
observations of learning processes and was later revised to better fit
modern views of cognitive psychology44. Part of that revision includes the
separation between what is known from what is done with it, leading to
a Knowledge Dimensions framework44. It distinguishes between types of
knowledge required for different tasks. Relational Complexity Theory45

was originally developed in developmental and comparative psychology
and draws the notion of relational arity from formal systems in logic
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Table 4. Task characterization according to Bloom’s Taxonomy 43, the Knowledge
Dimensions framework 44 and Relational Complexity Theory 45.

Task Cognitive Process Knowledge Dimension Relational Complexity

RDF-related:
FactExtractStatic Understand, Create Conceptual, Procedural Medium
RdfConnectionExplainState Understand, Analyze Conceptual Medium
RdfFriendCount Apply Procedural Low
RdfSyntaxFixList Understand, Apply Factual, Procedural Low
TurtleSampleGeneration Understand, Create Conceptual, Procedural Medium

SPARQL-related:
Sparql2AnswerList Understand, Apply Conceptual, Procedural Low
Text2AnswerList Understand, Apply Conceptual, Procedural Low
Text2SparqlList Understand, Create Conceptual, Procedural Low
SparqlSyntaxFixingList Understand, Apply Factual, Procedural Low

and computer science, including relational database theory. It models
task difficulty as a function of the number of simultaneous relations that
must be processed. Together, these models provide a basis for analyzing
the cognitive-inspired and structural demands that the benchmark tasks
impose.

The values in the characterization are assigned based on the minimal
cognitive and structural requirements expected for successful task
completion. Cognitive processes such as Understand are assigned when
tasks require interpreting given information, while Apply corresponds
to the execution of known procedures. Create is used when tasks
involve generating new content and Analyze when tasks require
decomposing and interpreting relations between elements. For knowledge
dimensions, Factual knowledge is assigned when specific syntactic
or terminological information is needed, Conceptual when structural
or relational understanding is necessary and Procedural when correct
application of methods is required. Relational complexity is rated as Low
when tasks involve isolated or simple binary relations, and as Medium
when multiple entities and relations must be coordinated simultaneously.
Note that not all categories across the frameworks are represented, as
the current set of tasks does not span the full theoretical space. The
characterization is shown in table 4.

4 Experiment

We utilized the LLM-KG-Bench framework to evaluate a list of 41
LLMs with a selection of 26 tasks. The results containing the full dialog
and evaluation data for all this about 45 000 LLM task dialogues(task
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Evaluation Iterations) is documented and publicly available for further
analysis including reevaluation. Whenever new LLMs are of interest, their
data can get added to the initial dataset4. An example for a statistical
analysis on existing data generated is presented by Heim et al.6.

In the following section we outline the experiment setup and some
analysis results from this evaluation.

4.1 Experiment Setup

We adopted the default configuration to define the tasks and models
included in this evaluation. As a trade-off between resource usage and
confidence, we have decided to conduct 20 iterations for the proprietary
LLMs and 50 iterations for the open LLMs. For the 41 LLMs selected and
26 selected evaluation tasks this get multiplied to 45 500 task evaluation
iterations.

4.1.1 Selected Tasks The benchmark was executed on the following
26 tasks that are described in section 3.4 and in the code repository:

• RdfSyntaxFixList (3 variations): For Turtle, JSON-LD and N-Triples
as graph format

• RdfConnectionExplainStatic (4 variations): For Turtle, JSON-LD,
RDF/XML and N-Triples as graph format

• RdfFriendCount (8 variations): For Turtle, JSON-LD, RDF/XML
and N-Triples as graph format; 1 and 2 as additional link count

• SparqlSyntaxFixingList (1 variation): For LC-QuAD / Wikidata
• Sparql2AnswerList (1 variation): For Organizational graph
• Text2SparqlList (9 variations): For Organizational, Organizational-

Numeric, Coypu-Mini and Beastiary

4.1.2 Selection of Proprietary LLMs To get an overview on the current
state-of-the-art proprietary models we selected three long-term high-
ranked model families from the Chatbot Arena Leaderboard: OpenAI
GPT, Google Gemini and Anthropic Claude. From these families, we
selected the current models in various sizes and also included the
latest GPT-3.5 for comparability with other results. The selected models
together with their context size are shown in table 5.

4.1.3 Selection of Open LLMs We based our selection of state-of-the-
art open LLMs on the Open LLM Leaderboard46 and used the average
score over all included benchmarks as our reference value. The selection
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criteria were that the model is instruction-finetuned, as required by the
task construction of the LLM-KG-Bench framework, has less than 80B
parameters because of a limited amount of available hardware resources
and is a base model, i.e., not a fine-tuned version of another model. With
the latter requirement, we wanted to stick to mature and popularly used
LLMs that are not just optimized to achieve a slightly higher score on one
or few benchmarks than a base model.

The models fulfilling all our criteria and were among the TOP-4 models
based on the average benchmark scores, disregarding models of the same
family with lower scores, were Qwen2-72B-Instruct, Meta-Llama-3.1-
70B-Instruct, solar-pro-preview-instruct and Phi-3.5-MoE-instruct. Here,
we excluded solar-pro-preview-instruct from our selection since it only
supports a context length of up to 4096 Tokens and not all prompts of
tasks included in the run fitted within this limit. For the remaining three
models, we also included all models of their larger model families that
matched our requirements, i.e., we also tested all models of the Llama347,
Qwen248,49, and Phi350 families fulfilling our requirements.

In addition, we wanted to test open LLMs that are fine-tuned or
explicitly optimized on code since they could potentially better understand
and produce structured data as required for the tasks included in the LLM-
KG-Bench. Here, we consulted the EvalPlus Leaderboard51 and used the
reported models’ Mostly Basic Python Programming (MBPP) Benchmark
score as our reference value to assess the code-producing quality of the
models. Again, we excluded models that were only finetuned versions of
a code-finetuned or -optimized base model, had more than 80B parameters
or were not instruction-finetuned. Moreover, we only searched for models
that are fine-tuned or explicitly optimized on code. Finally, we included
the Top-3 models satisfying the criteria in our runs, namely Qwen2.5-
Coder-32B-Instruct48, DeepSeek-Coder-33B-Instruct52 and OpenCoder-
8B-Instruct53.

After this selection of 37 open LLMs and a first evaluation round end of
2024, we extended the list by the following 4 high ranking LLMs from this
families with later release dates until April 2025: deepseek-R1, deepseek-
chat-v3-0324, Llama-4.0-Maveric and Qwen3.0-235b-a22b.
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Table 5. Details for the models selected for the experiment presented here and the iterations
evaluated per model and task combination. The parameter count of proprietary models is not
documented and marked with a question mark (?) here. Proprietary model families are
OpenAI-GPT, Google-Gemini and Anthropic-Claude.

Family Model Parameter Count Context Iterations

OpenAI-GPT ChatGPT 3.5 turbo ? 16k 20
ChatGPT 4o ? 128k 20

ChatGPT 4o-mini ? 128k 20
ChatGPT o1 ? 128k 20

ChatGPT o1-mini ? 128k 20

Google-Gemini Gemini 2.0 Flash ? 128k–1M 20
Gemini 1.5 Pro ? 128k–2M 20

Gemini 1.5 Flash ? 128k–1M 20

Anthropic-Claude Claude 3.5 Sonnet ? 200k 20
Claude 3.5 Haiku ? 200k 20

Qwen 48,49 Qwen2-0.5B-Instruct 0.5B 32k 50
Qwen2-1.5B-Instruct 1.5B 32k 50
Qwen2-7B-Instruct 7B 128k 50

Qwen2-57B-A14B-Instruct 57B (active: 14B) 64k 50
Qwen2-72B-Instruct 72B 128k 50

Qwen2.5-0.5B-Instruct 0.5B 32k 50
Qwen2.5-1.5B-Instruct 1.5B 32k 50
Qwen2.5-3B-Instruct 3B 32k 50
Qwen2.5-7B-Instruct 7B 128k 50

Qwen2.5-14B-Instruct 14B 128k 50
Qwen2.5-32B-Instruct 32B 128k 50
Qwen2.5-72B-Instruct 72B 128k 50

Qwen2.5-Coder-32B-Instruct 32B 128k 50
Qwen3.0-235b-a22b 235B (active 22B) 41k 50

Meta-Llama 47 Meta-Llama-3-8B-Instruct 8B 8k 50
Meta-Llama-3-70B-Instruct 70B 8k 50

Llama-3.1-8B-Instruct 8B 128K 50
Llama-3.1-70B-Instruct 70B 128K 50
Llama-3.2-1B-Instruct 1B 128K 50
Llama-3.2-3B-Instruct 3B 128K 50
Llama-3.3-70B-Instruct 70B 128K 50

Llama-4.0-Maveric 400B (active: 17B) 1M 50

Microsoft-Phi 50 Phi-3-mini-128k-instruct 3.8B 128k 50
Phi-3-small-128k-instruct 7B 128k 50

Phi-3-medium-128k-instruct 14B 128k 50
Phi-3.5-mini-instruct 3.8B 128k 50
Phi-3.5-MoE-instruct 42B (active: 6.6B) 128k 50

Infly-OpenCoder 53 OpenCoder-8B-Instruct 8B 8k 50

Deepseek-ai 52 deepseek-coder-33b-instruct 33B 16k 50
deepseek-chat-v3-0324 685B (active: 37B) 64K–164K 50

deepseek-r1 671B (active: 37B) 64K–164K 50

4.2 Experiment Results

With the configuration described we generated a dataset containing the
detailed conversations and the evaluations for 20 to 50 iterations per task

Prepared using sagej.cls



24 Journal Title XX(X)

and model. In the following section we show some analysis on tasks,
models and the preference on input KG format.

4.2.1 Task Result Examples For each task, a box plot was generated,
containing the individual values for the most important score for each
model tested. Due to limited space, we show a selection for three tasks
in fig. 5. The rest is available in the dataset repository.

Our evaluation of SPARQL-related capabilities is organized around
the task types SparqlSyntaxFixing (SSF), Sparql2Answer (S2A) and
Text2Sparql (T2S). For SSF and T2S we selected the max_combined
score, which is 0.2 for syntactically correct but wrong queries. Figures 5a
and 5c show several LLMs that seem to have no problem answering with a
syntactically correct SPARQL query with scores ≥ 0.2. As fig. 5b shows,
several LLMs answered correct with the expected result set for the given
SPARQL SELECT queries. In fig. 5c, a box plot for the difficult task T2S
for the Organizational-Numerical dataset is shown. Several semantically
wrong answers were encountered, but Claude 3.5 Haiku & Sonnet, GPT
4o and Gemini 1.5 Pro provide good answers in this special case.

4.2.2 Capability Plots To get a quick overview on LLM models, the
LLM-KG-Bench framework can create capability plots.They aggregate
result scores for each model into categories according to a configuration
file. For the analysis of SPARQL capabilities we use the following
categories:

Syn-1: Working with SPARQL SELECT queries with first answer. This
includes the 0_answerParse scores (first answer per iteration)
from task types SparqlSyntaxFixing (SSF) and Text2Sparql (T2S).

Syn-Max: Working with SPARQL SELECT queries with correction
possibility in dialog. This includes the max_answerParse scores
(best answer per iteration) from the same task types as Syn-1.

Sem-R: Working according to semantics of SPARQL SELECT queries.
This includes the combinedF1 score of the Sparql2Answer (S2A)
task type.

Sem-W-1: Creating semantically correct SPARQL SELECT queries with
first answer. This includes the 0_combined scores (first answer per
iteration) from Text2Sparql (T2S) task types.
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(a) SparqlSyntaxFixing (SSF): max combined score

(b) Sparql2Answer (S2A): combinedF1 score

(c) Text2Sparql (T2S) for Organizational-Numerical dataset: max combined score

Figure 5. Selection of box plots for task score values of the LLMs evaluated. The arithmetic
mean value is indicated with a circle, individual score values for each task iteration are
indicated with crosses.

Sem-W-Max: Creating semantically correct SPARQL SELECT
queries with correction possibility in dialog. This includes
the max_combined scores (best answer per iteration) from
Text2Sparql (T2S) task types.

Figure 6 shows a selection of typical capability plots for LLMs. Plots
for all LLMs evaluated can be found in the supplemental material.
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About a quarter of the models have plots similar to fig. 6a showing
an almost perfect result with only slight problems with the writing of
semantically correct SPARQL SELECT queries. For these models the
framework would benefit from the inclusion of more complex benchmark
datasets.

The rest of the models had more problems with answering the tasks
resulting in plots like figs. 6b and 6c. Moreover, some very small models
from Llama and Qwen family had even worse plots.

Two models, DeepSeek-Coder and OpenCoder revealed strong
problems with the Sparql2Answer Task type resulting in low values for the
Semantic Read capabilities. This is especially interesting, as their results
in the rest of the categories are very good.

Figure 6e shows Llama-3-8B benefits from the correction infos in the
dialog. The first answer was often improved during the dialog. Other
LLMs evaluated here seem to have fewer benefit from the dialog.

Understanding the syntax of SPARQL SELECT queries seems to be
much easier for LLMs than the other capabilities. Most models show
syntax understanding capability scores that are higher than the rest of the
capability scores. Especially small models have a capability plot similar
to fig. 6f, showing a good syntax understanding but big problems with the
other capabilities.

Aside from the capability compasses, we also aggregated all scores in
table 6. Although the values behind these scores have a high variance, the
scores can give a first impression of the SPARQL capabilities. Since the
results are very close together near the top, it is hard to make out a clear
winner. For these runs of experiments, Claude 3.5 Haiku has scored the
best results, closely followed by other large commercial models. In order
to distill a list of highest scoring models, we chose Claude 3.5 Haiku as
our anchor point and conducted pairwise t-tests with each of the models
below it to find the point at which a significant difference in performance
could be observed. In other words, the first test was conducted between
Claude 3.5 Haiku and Claude 3.5 Sonnet, the next test on Claude 3.5
Haiku and Qwen-2.5-Coder-32B, and so forth. We chose α = 0.05 for
these tests as this is a common default. For this series of experiments, the
list of highest scoring models ends with Gemini 1.5 Pro. It is interesting
to see that GPTo1-pre 2024/09 and Qwen-2.5-72B did not make the list,
while Gemini 1.5 Pro did. This can be attributed to the fact that we chose
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(a) very good:
Claude-3.5-Sonnet, and similar
e.g. Qwen-2.5-Coder, GPT 4o,
Gemini-1.5-Pro, Deepseek-R1

(b) some problems:
Qwen-2.5-7B, and similar e.g.,
GPT-3.5, Phi-3.5 MoE

(c) more problems:
Phi-3-Medium, and similar e.g.,
Phi-3-small, Llama-3.1-8B,
Qwen-2.5-3B

(d) some problems with S2A
task: DeepSeek-Coder

(e) high gain from dialog:
Llama-3-8B, and similar
Llama-3.1-8B

(f) Only Syntax good:
Qwen-2.5-1.5B, and similar
e.g., Qwen-2.0-1.5B and
Phi-3-Mini

Figure 6. Selection of typical capability plots for SPARQL-SELECT -query-related capabilities
of the evaluated LLMs. The scores of the models are aggregated along the following
capabilities: Syn-1 = SPARQL Syntax of first answer; Syn-max = SPARQL Syntax of best
answer per iteration; Sem-R = SPARQL Semantic Read; Sem-W-1 = SPARQL Semantic
Write of first answer; Sem-W-max = SPARQL Semantic Write of best answer per iteration.
The black line shows the mean value, the blue area the standard deviation. Scores range
from 0 to best value 1.

a smaller sample size for propietary models, and the higher variance in
scores for Gemini 1.5 Pro compared to the other two makes it harder to
differentiate it from Claude 3.5 Haiku. In a similar vein, Gemini 1.5 Flash
only barely fails this test with a p-value of 0.039, so depending on the α,
it could be included or not. However, starting at GPTo1-mini 2024/09 and
below, the p value drops down to 0.0001 and lower, meaning that below
Gemini 1.5 Flash none of the models would make it into the leader group.
The language models that show no significant difference in performance
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Table 6. Combined scores of the SPARQL-related capabilities of the LLMs tested. The
categories combined into the single score are described in section 4.2.2. Models prefixed with
a star (*) show no significant difference in performance compared to Claude 3.5 Haiku.

ModelName Score ModelName Score

*Claude 3.5 Haiku 0.94 (±0.20) . . .
*Claude 3.5 Sonnet 0.94 (±0.21) GPT3.5 2024/01 0.80 (±0.34)
*Qwen-2.5-Coder-32B 0.93 (±0.22) Phi-3.5-MoE 0.74 (±0.35)
*GPT4o 2024/11 0.91 (±0.22) Qwen-2.5-7B 0.73 (±0.39)
GPTo1-pre 2024/09 0.91 (±0.25) Deepseek-Coder-33B 0.73 (±0.38)
Qwen-2.5-72B 0.91 (±0.25) Qwen-2.0-57B-A14B 0.70 (±0.41)
*Gemini 1.5 Pro 0.90 (±0.27) Qwen-2.0-7B 0.58 (±0.46)
Deepseek-R1 0.90 (±0.27) Qwen-2.5-3B 0.57 (±0.44)
Gemini 1.5 Flash 0.90 (±0.28) OpenCoder-8B 0.55 (±0.45)
Qwen-3-235B 0.89 (±0.28) Phi-3.0-medium-128k 0.50 (±0.44)
GPTo1-mini 2024/09 0.89 (±0.27) Phi-3.5-mini 0.49 (±0.44)
Llama-3.1-70B 0.89 (±0.27) Llama-3.1-8B 0.42 (±0.44)
Llama-4-Maverick 0.87 (±0.29) Llama-3.0-8B 0.41 (±0.44)
Deepseek-Chat-v3 0.87 (±0.29) Phi-3.0-mini-128k 0.39 (±0.41)
GPT4o-mini 2024/07 0.87 (±0.29) Phi-3.0-small-128k 0.39 (±0.43)
Llama-3.0-70B 0.86 (±0.30) Qwen-2.5-1.5B 0.32 (±0.41)
Llama-3.3-70B 0.85 (±0.31) Llama-3.2-3B 0.23 (±0.36)
Qwen-2.0-72B 0.85 (±0.30) Qwen-2.0-1.5B 0.20 (±0.34)
Gemini 2.0 Flash Exp 0.85 (±0.31) Qwen-2.5-0.5B 0.11 (±0.27)
Qwen-2.5-14B 0.81 (±0.34) Llama-3.2-1B 0.03 (±0.14)
Qwen-2.5-32B 0.81 (±0.35) Qwen-2.0-0.5B 0.01 (±0.10)

compared to Claude 3.5 Haiku with our chosen α of 0.05 are highlighted
in bold in table 6

4.2.3 Model Preferences on Input Format After running each task
both on TTL and JSON-LD serializations of the same knowledge graph,
we wanted to find out whether there is a preference for a certain format
(i.e., a higher score when using one format over the other). To that end, we
conducted several t-tests; both on the task level and the model level. The
latter helps us understand if any given model has an overall preference for
a certain input format, while the former gives us a better understanding on
a per-task basis.

Looking at table 7, we can see that seven models have an overall
preference for TTL, while eight models performed overall better on JSON-
LD serializations. In contrast to that, 25 models do not have any kind
of preference, leaving us with the conclusion that there is no universally
preferred format.
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Table 7. Result of two-sided t-tests checking for a preference for Turtle (TTL) vs. JSON-LD
serialization. Preferences are expected if the confidence interval is at least 95%, bold font
indicates 99% or better.

AllTasks

RdfConnectionExplainStatic

RdfFriendCount-1

RdfFriendCount-2

RdfSyntaxFixList

Sparql2AnswerListOrga

Text2AnswerListOrga

Claude 3.5 Haiku TTL JSON TTL TTL - - -
Claude 3.5 Sonnet - - - - - - -
Deepseek-Coder-33B JSON - JSON JSON JSON - -
deepseek-chat-v3-0324 - JSON TTL TTL - - -
deepseek-r1 - - - - - - -
GPT3.5 2024/01 - - JSON JSON - - TTL
GPT4o 2024/11 - - - - JSON - -
GPT4o-mini 2024/07 TTL - - TTL - - TTL
GPTo1-mini 2024/09 - - - - - - -
GPTo1-pre 2024/09 - - - - - - -
Gemini 1.5 Flash TTL - TTL - - - -
Gemini 1.5 Pro - - - - - - -
Gemini 2.0 Flash Exp - - - - - - -
Llama-3.3-70B JSON - JSON JSON JSON - -
Meta-Llama-3-70B JSON - JSON JSON JSON - -
Meta-Llama-3-8B - TTL - - - - -
Meta-Llama-3.1-70B - - - - JSON TTL -
Meta-Llama-3.1-8B JSON - JSON JSON JSON - -
Meta-Llama-3.2-1B JSON - - - JSON - -
Meta-Llama-3.2-3B - JSON TTL TTL JSON - -
llama-4-maverick JSON - JSON JSON - - -
OpenCoder-8B - - - - - TTL -
Phi-3-medium-128k TTL TTL - JSON - - TTL
Phi-3-mini-128k - - - JSON JSON - -
Phi-3-small-128k - JSON - - TTL - -
Phi-3.5-MoE JSON - JSON JSON JSON TTL -
Phi-3.5-mini - TTL JSON - JSON TTL -
Qwen2-0.5B - - - JSON - - -
Qwen2-1.5B JSON TTL JSON JSON JSON - -
Qwen2-7B - JSON - - - - TTL
Qwen2-57B-A14B TTL - - - JSON TTL TTL
Qwen2-72B - - - - JSON - -
Qwen2.5-0.5B - - - - - - -
Qwen2.5-1.5B - - - - JSON - -
Qwen2.5-14B - TTL - - - - TTL
Qwen2.5-32B TTL - TTL TTL JSON JSON -
Qwen2.5-3B - JSON - - JSON - -
Qwen2.5-7B TTL JSON - - - TTL TTL
Qwen2.5-72B - JSON JSON JSON - - TTL
Qwen2.5-Coder-32B TTL - TTL TTL - - -
Qwen-3-235B - - - - - - -

All Models - JSON JSON JSON TTL TTL

Looking at the table 7 as a whole, we can see that preferences for one
format over the other appear roughly equally distributed. However, there
are some clusters like the Llama family of models preferring JSON, or
Qwen leaning more towards TTL.
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This might have to do with the amount of training data that covers TTL
versus that which covers JSON. Unfortunately, as not all training data is
publicly available, we cannot investigate this further.

When looking at the global preferences per task, we find that the
Text2Answer and Sparql2Answer tasks appear to be easier to solve when
operating on a TTL-formatted KG. In contrast to that, counting friends
seems to work better for JSON KGs. This could come from the fact that,
in order to find the person with the most incoming connections, the model
needs to be able to parse the knowledge graph and have some notion
of what an array is and how to count. In contrast, extracting facts (or
answers in that case) may profit from having the desired answers close
to the question subjects , which is a strength of TTL.

Looking at the table, it is important to note that a model having no
preference could mean one of these two things:

1. The model performs equally well on both formats and has no
problem solving the task, no matter what. This is the case for Gemini
1.5 Pro, GPTo1 and some others.

2. The model has big problems solving the task. This is, for instance,
the case for Qwen2 0.5B.

The former is a desired state, as this relieves the user of the burden of
having to choose a serialization that maximizes the quality of the results,
while models having preferences in certain areas indicate that they are
still growing towards that state. To find out whether a model falls into the
former or the latter category, one should cross-reference the table with the
corresponding capability compass.

5 Discussion and Outlook

Coming back to the research questions, the LLM-KG-Bench framework
helps answering them.

RQ1: We showed here and in previous works5,36 the possibilities for
automated evaluation of KGE-related capabilities. The LLM-KG-Bench
framework is open for further development to support additional KGE
task areas.

RQ2: In the analysis of the experiment result and in previous
work5,6,35,36 we could identify ways to distinguish the KGE-related
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capabilities of different LLMs. For SPARQL SELECT queries we propose
here the scores calculated in table 6 as guidance.

RQ3: At least for the tasks evaluating the understanding of SPARQL
SELECT queries syntax seems to be possible most of the time for most
evaluated LLMs as shown in fig. 5a and in Meyer et al.5. Further work is
needed to check this claim for more complex queries and errors.

RQ4: Figure 5b shows at least some LLMs seem to have no problems
with working according to the semantics of SPARQL SELECT queries.

RQ5: At least for the evaluated tasks, the creation of semantically
correct SPARQL SELECT queries seems to be possible most of the time
for some LLMs, when looking at fig. 5c and the good capability plot
type in fig. 6a. However, this also needs to be checked for other more
complex queries. Moreover, it is important to consider that the evaluation
is currently only done based on the answer set, which does not necessarily
mean that the semantic of the SPARQL SELECT query is correct.

Still there are some things to keep in mind. Some of the tasks, like
Sparql2Answer or RdfFriendCount, can be answered with graph databases
much more efficiently and reliable. But the measuring of this RDF-related
capabilities is of a more fundamental scientific interest. On the other side,
the focus on this basis tasks induce a risk of overestimating the KGE-
related capabilities of LLMs, as real world scenarios are often of a more
complex nature.

The answer quality of LLMs can vary even on small changes in prompt
or task. We tested only with a limited amount of tasks and task entries.

The automated evaluation could miss important aspects of the answer.
For example, the SPARQL SELECT queries generated were tested only
extensionally on the result set generated, which does not always imply
that the query was well formulated to match the expected semantics.

Although we tried to hide the benchmark data, we can not guarantee
no LLM is trained with them, as we want to keep the benchmark and its
results open and reproducible.

Further work is needed to include more datasets into the framework,
extend the list of tasks to cover more aspects related to Knowledge
Graphs and extend the analytical capabilities of the framework. The
framework and the evaluation data generated is publicly available to
enable contribution.
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The framework would benefit from more datasets and especially more
evaluation task classes. We see here on the one hand additional topics
like OWL, RML, SHACL, and on the other hand more complex tasks and
analyses like nested SPARQL queries or even the interaction with real
graph databases.

As the number of LLMs published and the size of datasets generated
with the framework grow, new ways to check the results are needed.
Maybe one could utilize another level of LLMs to check on the automated
evaluation results for details missed and highlight these findings for
manual inspection. This way, the evaluation could remain deterministic
and reproducible, but we gain another level of checks and maybe even
insight.
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Supplemental material
The framework source code and generated result datasets are publicly available:

• LLM-KG-Bench Framework Code:
https://github.com/AKSW/LLM-KG-Bench/tree/v3.0.2

(DOI: 10.5281/zenodo.18024503)
• Generated Dataset:
https://github.com/AKSW/LLM-KG-Bench-v3-0-results/tree/

2025-SWJ (DOI: 10.5281/zenodo.18017450)

Notes
1. Leaderboard Chatbot Arena: https://huggingface.co/spaces/lmarena-ai/

chatbot-arena-leaderboard

2. Description MMLU on HELM: https://crfm.stanford.edu/2024/05/01/

helm-mmlu.html

3. Leaderboard Open LLM: https://huggingface.co/spaces/

open-llm-leaderboard/open_llm_leaderboard

4. Leaderboard HELM: https://crfm.stanford.edu/helm/lite/latest/#/

leaderboard
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5. Leaderboard Big Code Models: https://huggingface.co/spaces/bigcode/

bigcode-models-leaderboard

6. Leaderboard EvalPlus: https://evalplus.github.io/leaderboard.html
7. Updated literature overview: https://github.com/zjukg/KG-LLM-Papers
8. Repository OpenAI python: https://github.com/openai/openai-python
9. Description OpenAI REST API: https://platform.openai.com/docs/

api-reference/chat

10. Repository Google Connector for LLMs: https://github.com/google-gemini/
generative-ai-python

11. Description Google API: https://ai.google.dev/api
12. Anthropic REST API description: https://docs.anthropic.com/en/api
13. Repository Anthropic Python: https://github.com/anthropics/

anthropic-sdk-python

14. Webpage vLLM: https://docs.vllm.ai
15. Tasks implemented in LLM-KG-Bench v3.0.2: https://github.com/AKSW/

LLM-KG-Bench/tree/v3.0.2/LlmKgBench/tasks

16. Repository LMs4Text2SPARQL Dataset: https://github.com/AKSW/

LMs4Text2SPARQL/tree/main/datasets

17. Project page CoyPu: https://coypu.org/
18. Repository Beastiary dataset and KG: https://github.com/danrd/sparqlgen
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19. Marx E, do Carmo PV, Gôlo M et al. Preface of the first international text2sparql challenge
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29. Lehmann J, Ferré S and Vahdati S. Language models as controlled natural language semantic

parsers for knowledge graph question answering. In Gal K, Nowé A, Nalepa GJ et al. (eds.)
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