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Abstract
The centralization of web information raises legal and ethical concerns, particularly in social, healthcare, and education
applications. Decentralized architectures offer a promising alternative by keeping data closer to its source, yet efficient
query processing remains a significant challenge. Link Traversal Query Processing (LTQP) enables querying across
decentralized networks, however, it often suffers from long execution times and high data transfer costs due to the large
number of HTTP requests involved. In many scenarios, queries are highly selective with respect to the data model
objects distributed across the network. For example, in a social media application where users store heterogeneous
data, a query may focus solely on the posts and comments created by users, without requiring any of their additional
user information. We refer to such queries as data-model selective. We propose a shape-based pruning approach that
relies on shape indexes and a query-shape subsumption algorithm to reduce the search space and, consequently,
the number of HTTP requests for such queries. We formalize this approach as a link pruning mechanism for LTQP
and evaluate its effectiveness on social media queries using the SolidBench benchmark across multiple evaluation
metrics. Our results show that shape-based pruning substantially improves query execution time, first-result arrival
time, diefficiency, and network usage for data-model selective queries, while having unsignificative impact on non-
selective data-model queries. These gains come at the cost of only a minor increase in the number of triples per shape-
index instance. Moreover, our approach is resilient, retaining performance benefits even in networks where some data
providers do not supply shape-index information. This work demonstrates that shape-based metadata can significantly
optimize LTQP in decentralized knowledge graphs for an important class of queries. By exposing such metadata, data
providers not only enhance data quality and interoperability but also improve the efficiency of traversal-based query
processing.
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Introduction1

Multiple studies have highlighted that social web applica-2

tions relying on highly centralized data management sys-3

tems give rise to problems of ownership, threats to democ-4

racy, reinforcement of inequality, and antagonism between5

users and owners [65, 15, 54, 41]. Yet, several authors6

consider decentralizing data over the web an insufficient7

solution [41, 15], although it is an integral component of8

initiatives focused on data sovereignty. Linked Data and9

knowledge graphs (KG) [36] can be considered technical10

contributions toward the development of a decentralized web11

of data. However, SPARQL, the standard query language12

for RDF knowledge graphs, is predominantly performed in13

centralized environments, partly due to the more mature14

understanding of query optimization in such settings.15

Link Traversal Query Processing (LTQP) [32] is a query16

paradigm designed for querying non-indexed, Decentralized17

Knowledge Graphs (DKGs) on the web, by leveraging18

the descriptive power of IRI dereferencing. LTQP involves19

recursively dereferencing IRIs, dynamically discovering and20

storing triples from the documents associated with those21

IRIs in an internal triple store, thereby expanding the22

engine’s underlying knowledge base during query execution.23

The main difficulty of LTQP is the large domain of 24

exploration, which leads to a high number of HTTP 25

requests as demonstrated by Hartig and Özsu [34]. From 26

another perspective, it has been shown that in Decentralized 27

Environments with Structural Properties (DESPs), it is 28

possible to attain query completeness for various types of 29

practical queries with acceptable execution times for the 30

context of social media applications [60, 46]. Structural 31

properties ensure data discoverability, which in turn helps 32

guarantee result completeness. 33

In practice, DESPs emerge in various contexts, such as 34

social networks [60] and the publication of sensor data [64], 35

among others. The work on the topic of DESPs for LTQP [60, 36

9] suggests that various optimizations are feasible for LTQP 37

in decentralized environments with structural properties, in 38
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Network

Figure 1. The goal of our work is to minimize the number of
query-irrelevant sources (unchecked green circle) that are
dereferenced by a link traversal query engine. White circles
represent resources that are not dereferenced by the engine.
Checked green circles are followed and query-relevant.

contrast to the more pessimistic conclusion of Hartig and39

Özsu [34].40

In general, data on the World Wide Web lack a structure41

that query engines can exploit for optimization. Any42

document can be published anywhere, with no standard43

index or trust mechanism to guide discovery. Thus, for the44

vast majority of queries, traversal query engines dereferences45

a large proportion of resources that are not query-relevant,46

as depicted in Figure 1. However, within specific subwebs,47

defined as subsections of the web controlled by particular48

data providers, implicit or explicit data structures may49

emerge, which query engines can leverage [9]. In this50

work, we extend a dataset summarization approach for51

decentralized environments known as the shape index [63].52

We apply this approach to enable link pruning within53

LTQP, removing links that are not relevant to the query,54

based on an analysis of RDF data shapes and the user’s55

query. The analysis is performed by conducting a query-56

shape subsumption check to determine whether a resource57

conforming to a given shape is relevant to a query. Our58

approach assumes a DKG composed of subwebs, each hosted59

by data providers and containing shape indexes. A subweb60

that exposes a shape index enables the query engine to61

narrow its search domain by identifying resources that are62

certainly non-query-relevant. This is particularly useful63

when only a subset of a subwebs is relevant to a given64

query, for example, in social media applications where65

it is rare to query all information about a user. An66

example of such a query is one that requests messages67

within a user’s subweb over a specified date range, while68

also incorporating contextual information from outside the69

subweb. We describe this category of network-tied queries as70

data-model selective. In this context, data-model objects are71

templates of concepts represented in RDF, such as messages,72

posts, or proteins. Accordingly, we consider RDF data shapes73

to be formal descriptions of these data-model objects. For74

the purposes of this paper, we define a data-model selective75

query as a query whose evaluation requires fewer than 20% 76

of the data-model objects within the network. In this work, 77

we do not aim to optimize queries that retrieve a large 78

proportion of a subweb’s data model objects. For instance, 79

queries that request all user information published after 80

a given date are outside the scope of our optimization; 81

however, we attempt to ensure that the performance of such 82

queries is not degraded. 83

Our contributions are as follows: 84

(i) An introduction and formalization of link pruning for 85

LTQP 86

(ii) A web specification for the shape index data summary 87

(iii) A novel shape-based pruning approach for LTQP using 88

RDF data shapes 89

(iv) A novel network abstractions of subwebs and 90

decentralized knowledge graphs (DKGs) for LTQP, 91

(v) A novel query-shape subsumption algorithm for 92

assessing data source relevance 93

(vi) An open-source implementation in the Comunica 94

SPARQL query engine [62] 95

(vii) An extensive experimental evaluation using the 96

SolidBench benchmark. 97

In this work, we ask the following research question: 98

Can LTQP use shape-based pruning in DKG networks 99

to reduce query execution time while preserving result 100

completeness? To address this question, we propose the 101

following hypotheses: 102

H1 The shape indexes approach reduce the number of 103

non-contributing data sources retrieved and the query 104

execution time of data-model selective queries, while 105

preserving result completeness. 106

H2 The shape indexes approach does not affect the query 107

execution time of non-data-model selective queries. 108

H3 The execution time of a query-shape subsumption 109

algorithm is negligible compare to the query execu- 110

tion. 111

H4 Stricter shape constraints lead to a greater reduction in 112

HTTP requests. 113

H5 Querying a network with more complete shape indexes 114

results in faster query execution. 115

H6 Performance gains can be achieved even in networks 116

with partial shape index coverage, demonstrating that 117

the method provides significant improvements without 118

requiring all network participants to adopt shape 119

indexes. 120

H7 There is a linear relationship between the reduction 121

in the number of HTTP requests and the decrease in 122

query execution time. 123

The remainder of this paper is organized as follows: we 124

first review the related work and introduce the preliminaries. 125

Next, we present our approach, followed by a description 126

of the experimental setup and a discussion of the results. 127

Finally, we conclude the paper. 128
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Related Work129

In this section, we review related work on LTQP, RDF data130

shapes, and source selection in decentralized querying.131

Link Traversal Query Processing132

LTQP is a SPARQL querying paradigm that answers133

queries by exploring the Web using the follow-your-nose134

principle [34]. It belongs to the family of decentralized135

SPARQL querying paradigms. LTQP fundamentally differs136

from federated querying because the “federation” is formed137

during querying and it expands dynamically as the query138

is processed. Thus, many optimization techniques used in139

federated querying either do not work in the context of LTQP140

or remain unexplored. LTQP also differs from querying141

Linked Data Fragments (LDF) interfaces [5, 6, 31], as142

LDF operates over fragments of a known, local, finite KG,143

whereas LTQP dynamically discovers new, remote KGs144

during query processing. In summary, LDF methods such as145

Triple Pattern Fragments (TPF) [66] focus on the efficient146

partitioning of a known dataset, while LTQP focuses on the147

efficient discovery of an unknown dataset.148

The main challenge of LTQP is the Web’s open-ended149

nature leading to large search spaces. Completeness in LTQP150

is defined by the traversal of a well-defined set of links [32].151

The first method used to define this set was the reachability152

criteria [32], boolean functions that determine whether a153

given link should be dereferenced. In practice, the query154

engine iterates over all triples in its internal data source155

and applies the reachability criteria to each IRI appearing156

in those triples. These criteria are defined internally by the157

engine, giving designers considerable freedom in how they158

are implemented and which links are dereferenced. However,159

there is currently no standard mechanism for users to specify160

them, nor for query engine developers to adopt a common161

approach. Building on this, the theoretical query language162

LDQL [35] was introduced, which separates the traversal163

definition from the query definition. It provides a standard164

mechanism for query engines to define their traversal logic,165

while opening the possibility for users to provide a traversal166

policy alongside their queries. Further advancements include167

the Subweb Specifications Language (SWSL) [9], which168

allows data providers to define how their DKG should be169

traversed. Inspired by SWSL, traversal-based querying has170

utilized the Linked Data Platform (LDP) and the Type Index171

specification [60]. LDP traversal follows all links within a172

data space, while Type Index traversal uses mappings from173

RDF types to relevant resources [70], allowing queries to174

prioritize implicitly relevant data sources. Link prioritization175

has also been studied, however, it has been shown to not176

improve query execution time [34], even in DESPs [21].177

These contributions are centered on guiding the engine in178

selecting links to follow in a discovery process. However,179

they do not explicitly address the restriction or pruning180

of links after the discovery process based on information181

acquired during traversal. Such pruning could significantly182

reduce the query search domain when information about the183

DKG data model is available. For instance, the structural184

properties of a subweb could inform the query engine that185

certain web sections follow a specific data model, allowing a186

set of IRIs to be pruned from those selected during discovery.187

In contrast, when LTQP models DKGs as Linked Open 188

Data, the web is not divided into subsections with structural 189

properties; thus, data model information cannot be inferred. 190

To the best of our knowledge, no prior work has explored the 191

use of a pruning mechanism to optimize LTQP, and it is this 192

research gap that the present study aims to address. 193

RDF Data Shapes 194

RDF data shapes (in this paper, we also refer to 195

them as shapes) are used for validating, describing, and 196

communicating data structures, as well as generating data 197

and driving user interfaces [24, 27]. The two most well 198

known RDF data shape formalisms are SHACL [26] and 199

ShEx [27]. For common use cases, they are equally 200

expressive and interchangeable [25]. RDF data shapes have 201

already been used in the literature for querying centralized 202

KGs [49, 17]. Shape Trees [55] are an index structure for 203

validating and organizing decentralized knowledge graphs 204

(DKGs). However, to the best of our knowledge Shape 205

Trees have not been used for query optimization. Due to 206

their virtual hierarchy [55], it can be challenging for a 207

query engine to efficiently capture the relationship between 208

a resource IRI and its corresponding shape. Moreover, Shape 209

Trees are not yet widely adopted; therefore, for the purposes 210

of this work, we use the Shape Index specification [63] 211

to facilitate the mapping between shapes and knowledge 212

graphs. Additionally, automatic generation of RDF data 213

shapes from KGs [23] and shape-based data integration [39] 214

have been studied and can support shape-based summary 215

approaches for DKGs. 216

Source Selection 217

Source selection is a crucial challenge in decentralized 218

querying [37, 30]. Link pruning in LTQP is closely 219

related to source selection, as it can be viewed as a 220

dynamic form of source selection. Methods such as basic 221

statistics on triple counts, VoID descriptions, and histogram 222

techniques have been explored in the context of federated 223

querying [37, 30, 43]. However, most of those source 224

selection methods face the limitation of assuming a small 225

number of data sources [30], leaving their suitability for 226

LTQP uncertain. Bloom filters [18] are also a mechanism 227

that has shown success for federated DKGs, yet in the 228

context of LTQP, it has been show that bloom filters have 229

little effect on performance [29]. Schema-based indexing 230

using ontologies [58] has also been explored for source 231

selection of SPARQL queries. It has been shown that this 232

approach is sensitive to the high reuse of vocabulary terms 233

in RDF [30], which is exacerbated in the context of LTQP. 234

The use of implicit RDF schemas for query optimization has 235

been explored through the concept of characteristic sets [44, 236

42, 43]. However, their applicability to LTQP has not been 237

investigated, and they assume that the entire dataset resides 238

in memory, which is not the case for LTQP. 239

Preliminaries 240

RDF Knowledge Graphs and SPARQL Queries 241

Our work focuses on the union of conjunctive queries over 242

RDF knowledge graphs (KG) using the SPARQL query 243
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language [68]. The fundamental building blocks of KGs and244

SPARQL queries are triples and triple patterns, respectively,245

as defined in Definition 1 and Definition 2.246

Definition 1. Triple. RDF triples t = (s, p, o) are tuples247

formed with three terms. A subject where s ∈ I ∪ B, a248

predicate p ∈ I and an object o ∈ I ∪ B ∪ L. Where I, B,249

L, are respectively the set of every possible IRI, blank node,250

literal. For simplicity, we denote the union of these sets by251

concatenating their symbols, so that I ∪ B is written as IB.252

Definition 2. Triple pattern. Triple patterns tp =253

(stp, ptp, otp) are similar to triples, where stp ∈ IBV , ptp ∈254

IV and an object term otp ∈ IBVL. Where V is the set of255

every possible variable.256

We also define two access functions to respectively get257

the subject and object term of a triple or a triple pattern258

while ignoring literals, S : (IBV, IV, IBVL) → IBV and259

O : (IBV, IV, IBVL) → IBV . We denote [[Q]]G as the260

evaluation of a query Q over a KG G [3].261

Reachability Criteria262

LTQP defines completeness on the traversal of links instead263

of the query results [32]. To formalize the completeness264

of queries, Reachability criteria [32] have been formalized.265

Reachability criteria are boolean functions (ci) restricting the266

dereferencing of links from the internal data source of the267

query engine. They take as parameters an RDF triple t from268

an internal triple store, a dereferenceable IRI iri from t, and269

a union of conjunctive queries Q. If ci returns true, the query270

engine must dereference iri. More formally271

ci(t, iri,Q) → {true, false} (1)272

Decentralized Knowledge Graphs and Subweb273

We define a DKG as a KG G materialized in a network of274

resources R. A resource ri ∈ R is mapped to a KG gi ⊆275

G, which is a set of triples [50]. We denote this mapping276

ri 7→G gi. A resource is mapped and exposed by an IRI irii277

denoted by irii 7→R ri. The network forms a graph where278

the resources ri are the nodes and the irij are directed edges279

starting from ri to rj . The irij are RDF terms in the triples280

in gi. G is formed by the union of all the gi mapped to a281

resource in the network. A subweb is a (sub)DKG defined282

by the KG derived from a set of IRIs controlled by a data283

provider.284

Data-model Selectiveness285

Data-model selectiveness is an ordering of queries over286

networks. A data-model object is a well-defined template287

of sub-KGs. By well-defined, we mean that there exist288

explicit rules which deterministically specify the constraints289

on the triples within the data-model object, as well as its290

boundary within a larger KG. In this work, we assume that291

data-model objects are described using RDF data shapes,292

however, they could also be described using vocabularies293

or other formalisms. We define DM as the set of the data-294

model objects present in the networks. We define a function295

to determine all the relevant data-model objects for a given296

query:297

P (Q) = {D | (D ∈ DM) is query relevant for Q}. (2)298

A query Qi is more data-model selective than another query 299

Qj if and only if 300

|P (Qi)| < |P (Qj)| . (3) 301

For practical use cases, we may consider only the data 302

models present in subwebs of a network and replace DM 303

by DMs, with the associated function becoming P s(Q). 304

Furthermore, for practical designation, we say that a query 305

is data-model selective (in absolute terms) if 306

|P s(Q)|
|DMs|

≤ 0.2, (4) 307

that is, if fewer than 20% of the data-model objects are 308

potentially relevant to the query. 309

Approach 310

This section defines result-based completeness in LTQP, 311

introduces shape indexes, and shows how they enable 312

pruning via a query-shape subsumption algorithm. 313

To illustrate this approach, we present the example in 314

Figure 2, which depicts a network of three social media user 315

subwebs, each with its own shape index, as well as resources 316

located outside these subwebs. The feature query aims to 317

retrieve posts from Subweb 3, along with all associated 318

replies. Our pruning strategy allows the query engine to 319

explore only the relevant parts of the network, guided by 320

the shapes associated with the resources and the structure of 321

the query. The process begins with the engine dereferencing 322

the shape index of Subweb 3 and performing a query-shape 323

subsumption check, which determines that only resources 324

containing posts needs to be accessed in this subweb. It then 325

checks the shape index of Subweb 1 due to the existing link 326

towards it, where the subsumption check reveals no resources 327

relevant to the query. Next, it examines the shape index of 328

Subweb 2 and identifies resources containing comments (i.e., 329

replies) which are relevant. Finally, the engine dereferences 330

all reachable resources outside the subwebs that are linked to 331

these relevant comments. 332

Result-Based Completeness in LTQP 333

Our approach of pruning in LTQP focuses on ensuring result 334

completeness, assuming traversal completeness is already 335

defined using reachability criteria. By concentrating on result 336

completeness, we explore strategies to optimize the search 337

space of link traversal queries through pruning of irrelevant 338

resources. We formalize result-based completeness in LTQP 339

as follows. A query is executed over a DKG G formed by the 340

union of all the g in a network R. The query engine has to 341

build a KG G′ using a reachability criterion C ′ in its internal 342

data store from the KGs g by dereferencing resources 343

iri 7→R r ∈ R. We formulate an optimization problem to 344

minimize the size of G′, where the query engine constructs a 345

knowledge graph G′′ ⊆ G′, potentially smaller, by defining 346

a reachability criterion C ′′. We focus on maintaining the 347

same result completeness, so when using C ′′ the following 348

equation must hold 349

[[Q]]G
′′
= [[Q]]G

′
(5) 350
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#>
PREFIX snvoc: <http://example.org/vocabulary/>
PREFIX subweb3: <http://example/3>

SELECT * WHERE {
  ?message snvoc:hasCreator subweb3:card;
    snvoc:content ?messageContent;
    rdf:type snvoc:Post.
  ?linkedMessage snvoc:reply ?message;
    rdf:type snvoc:Comment.
}

Corresponding 
shapes

∪

subweb 1

Decentralized Knowledge Graph (DKG)

subweb 2

subweb 3

 Shape index

 Shape index

 Shape index

Figure 2. When resources of a DKG are indexed with a shape index, a query engine can dereference a subset of the network. The
nodes represent RDF resources, while the edges represent IRIs linking one resource to another. Each subweb has a shape index
that maps shapes, represented by icons, to RDF resources by embedding the icon within the node. The query engine starts its
query at Subweb 3, and the relevant query resources in a subweb are identified with a black node.

for any network R. Since each g ∈ G′′ is obtained by351

dereferencing resources r ∈ R, a smaller G′′ compared352

to G′ implies that fewer HTTP requests were needed to353

answer the query. Query execution is generally faster with354

a smaller KG instance, and HTTP requests, being slow and355

unpredictable [34], can dominate execution time. Therefore,356

reducing HTTP requests provides a twofold benefit: fewer357

resources to process and faster query execution.358

Shape Index359

Pruning in LTQP requires knowledge of the data models of360

dereferenced resources. However, obtaining complete, up-361

to-date, and detailed information for each resource in a362

large decentralized network is impractical. To address this,363

we introduce the shape index as a mapping between RDF364

document sets and RDF data shapes that describes a subweb365

controlled by a data provider. Unlike triple statistics, shapes366

are independent of the KG’s size or updates that remain367

compliant, making them a more cost-effective solution for368

use cases with stable data models.369

We formalize a shape index as follows:370

SI = {s1 7→ IRI 1s2 7→ IRI 2 · · · , sn 7→ IRI n} (6)371

where si is a shape and IRI i is a set of IRI given n372

entries. The subweb described by the index is defined by373

DSI =
⋃

IRI∈codomain(SI) IRI . We denote a shape index as374

complete when every shape si ∈ dom(SI) has a closed375

world assumption [26, 27] * or incomplete otherwise.376

A mapping between a shape and a set of IRIs has377

implications in the distribution of the data in DSI . When378

a shape s is mapped to an IRI , then the KG targeted by379

the mapping, G = {g | ∀iri ∈ DSI(iri 7→R r ∧ r 7→G g)},380

satisfies s. Given that the shape is closed, then every set of381

triples in the resource mapped to an iri ∈ DSI satisfying382

the shape must be in a resource mapped to an iri ∈ IRI .383

We provide a complete description of the shape index in384

an online specification † and an example of serialization in385

Figure 3.386

RDF data shapes use targets to identify the set of nodes 387

or entities in a KG to validate. In this work, we assume all 388

entities in a KG associated with a shape index follow the 389

same RDF data shape. We call these entities graph stars, 390

an extension of the RDF star patterns concept [38]. Defined 391

in Definition 4, graph star(s) (patterns) serve two purposes: 392

defining targets for validation and capturing relationships 393

between triple patterns and shape entities. Star patterns 394

consist of triples with the same subject. We extend this 395

concept by linking star patterns such that the objects of 396

triples in one star pattern act as subjects in others, forming 397

a graph structure. For example, a user linking to their posts 398

with recursive replies can be captured with a root star pattern 399

for the user and nested patterns for the posts and replies. 400

Thus, the targets of the shapes in the shape index correspond 401

to the subject of each root star pattern when a KG is divided 402

into graph stars with no shared partial graph stars. Figure 3 403

illustrates an example of a graph star pattern. 404

Definition 3. Star Pattern. Given a query Q, we define a 405

star pattern Qstar as a set of tp ∈ Q [38] with the same 406

subject such that given a builder function 407

BQstar(s) = {tpi ∈ Q | S(tpi) = s} (7) 408

with s ∈ IBV then Qstar = BQstar(s). 409

Definition 4. Graph Star Pattern (GSP) and Graph Star. 410

We define a GSP QstarG as the union between a root star 411

pattern Qstars and the star patterns having as subject term 412

an object term of another star pattern in QstarG. We define 413

a function Ostar : q ∈ Q → (IBV)2 that returns every non- 414

literal object terms of a star pattern. 415

We then define QstarG given a set of partial GSP QstarGT 416

QstarG =
⋃

q∈QstarGT

q (8) 417

where QstarGT is formed with a root Qstars by 418

∗We also refer to those shapes as closed.
†https://constraintautomaton.github.io/
shape-index-specification/
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@prefix sw: <http://subweb/> .
@prefix si: <https://shapeindex.com#>.

sw:shapeIndex si:shapeIndexLocation si:
shapeIndex;
a si:ShapeIndex;
si:entry _:user;
si:entry _:Post.

_:user si:shape sw:user_shape;
si:subweb "http://subweb/user/{info

}".
_:Post si:shape sw:post_shape;

si:subweb sw:posts.

PREFIX ex: <http://example.com/>

SELECT * WHERE {
?comment ex:creator ex:user;
ex:content ?content;
ex:reply ?message.

?message ex:hasTopic ?topic;
ex:forum ?forum.

?forum ex:name ?name.
}

Figure 3. On the left, an example illustrates a shape index that maps a set of IRIs, represented using a URI template [28], to a user
shape, and a specific IRI to a post shape. On the right, an example illustrates of a graph star pattern where the main subject is
?comment and is linked to the ?message and ?forum star patterns.

qi =

{
{Qstars} if i = 1{
BQstar(o) | o ∈

⋃
q∈QstarGTi−1

Ostar(q)
}

if i > 1

(9)419

We also define a function Sstar : q → IBV returning the420

subjects of the qi of a QstarG.421

We propose a similar definition for the context of KGs422

where we replace the query Q by a KG G. We denote this423

structure a graph star.424

Practical Considerations for Shape Indexes The construc-425

tion and maintenance of shape indexes are beyond the scope426

of this work. Although not evaluated here, shape indexes427

seem to require less effort to generate than VoID descrip-428

tions [10], as they do not include detailed statistics such429

as triple counts. Nonetheless, VoID descriptions have been430

successfully employed for query optimization in federated431

queries [43].432

Exposed schemas can also enhance interoperability, which433

is important in many application domains [52, 8, 7, 51].434

Thus, data publishers may have incentives to expose a shape435

index not only to improve query engine performance but also436

to satisfy other domain-specific requirements.437

RDF data shapes can be prescriptive or descriptive.438

For descriptive shape indexes, automatic RDF data shape439

generation methods [23] can facilitate their creation. Entries440

in shape indexes correspond to sets of IRIs, which can441

be structured using URI templates [28], reducing the442

need for exhaustive redefinition. For prescriptive shapes,443

contributions in shape-based data integration [39] can help444

prevent the generation of invalid resources.445

Overall, shape indexes are lightweight metadata that can446

be maintained with relatively low effort, especially compared447

to statistical summaries such as VoID. Publishing them not448

only benefits query optimization but also contributes to FAIR449

data principles [69] by enhancing machine-actionability and450

interoperability. Future work should investigate construction451

and maintenance strategies for shape indexes in practical452

deployment scenarios.453

Link Pruning Using Shape Indexes 454

In this section, we establish the connection between shape 455

indexes and link pruning in LTQP as a means to reduce 456

the search domain. In our method, rather than traversing the 457

entire DKG D associated with a shape index, the engine 458

traverses a subgraph D′ ⊆ D, effectively ignoring resources 459

that are knowably irrelevant to the query. Our approach 460

involves dynamically constructing new reachability criteria 461

during traversal that are more selective as we discover and 462

analyze shape indexes. These criteria are designed so that 463

they will always produce the same completeness of results 464

as the one that was defined at the beginning of the traversal. 465

To define more selective reachabilities, we propose 466

extending the reachability criteria by formalizing a chain of 467

criteria in a concept called composite reachability criteria. In 468

this form, a reachability criterion cpi is said to prune links, 469

and cdi is said to discover links. Equation 10 formalizes a 470

composite reachability criterion C. where Cd is the set of 471

every cdi(t, iri,Q) and Cp the set of every cpi(t, iri,Q) 472

used by the engine. 473

C(t, iri,Q) =
∨

cd∈Cd

cd(t, iri,Q) ∧
∧

cp∈Cp

cp(t, iri,Q)

(10) 474

To perform pruning in LTQP with shape indexes, an 475

initial reachability criterion C0 is defined. This criterion 476

must include a discovery reachability criterion cdshape index 477

that leads to a shape index document. After dereferencing 478

a shape index SIi, the query engine creates a set of links 479

IRIp containing the links to prune. The links to prune are 480

identified by evaluating the shape index to find IRIs that are 481

not relevant to the query, such that Equation 5 holds, given 482

that G′ is produced using C0. This is done by performing 483

a query-shape subsumption check (⊑qs), defined in the next 484

section. 485

We define, given a query Q,

IRIp =
{⋃

SIi(sj)|Q ̸⊑qs sj ∧ sj ∈ dom(SIi)
}

From this sets of links we define a pruning reachability 486

criteria; 487

cpsi(t, iri,Q) = iri /∈ IRIp (11) 488
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The new reachability Ci is created by taking the Cd and Cp489

of Ci−1 and adding cpsi to Cp.490

This approach has three main limitations. First, it491

assumes that data providers maintain up-to-date shape492

indexes; outdated indexes may lead to incomplete results.493

A similar criticism could be leveraged against the494

method exploiting VoID descriptions [43]. Second, if the495

query-shape subsumption check requires dereferencing all496

documents, it becomes ineffective and may slow down497

query execution. Third, the approach does not consider cases498

where querying irrelevant documents could uncover relevant499

ones via additional reachability criteria. Addressing this500

would require translating these criteria into queries, which501

is beyond the scope of this paper.502

Query-Shape Subsumption503

To determine whether the contents of a resource conforming504

to a shape is query-relevant, we define a query-shape505

subsumption problem denoted as Q ⊑qs S, meaning Q is506

subsumed by S. A common approach for validating shapes507

over an RDF graph is to translate shapes into SPARQL508

queries ‡ [40, 14, 67, 17]. We denote the transformation509

of a shape S into a query as T (S), which yields a query510

Qs. We transform open shapes as queries over the entire511

KG, since they impose only the minimal constraints required512

of a KG. When the problem is expressed as GSP ⊑qs Qs,513

we say that a GSP is subsumed by S if every result of514

the GSP can be extended to a result of Qs, and every515

triple pattern in a GSP is equivalent to or a specialization516

of those in the Qs. Thus, the problem diverges from517

traditional query containment and query subsumption [56,518

48] under set semantics. Query-shape subsumption does not519

consider only the set of solution mappings but also the520

constraints of the queries. § The complexity of the problem521

is reduced by the fact that Qs has a GSP structure where522

predicates are always IRIs. This structure arises because523

shapes describe constraints on predicate and object terms524

of sets of triple. By exploiting this structure, it is possible525

to design an algorithm with polynomial-time complexity.526

Moreover, empirical studies suggest that real-world queries527

tend to be relatively small [19, 11], making this algorithm528

applicable in practice.529

More formally, for a S to subsume a shape GSP, we
consider the queries Q and Qs, where Qs is the query
translated from S, and both are of the form

Qi = Qbody ▷◁ Qunions

where Qbody denote the Basic Graph Pattern (BGP) of530

the query, and Qunions =
⋃
Qu represent the Union Graph531

Patterns (UGPs) [68] expressed in normal form, meaning532

each Qu is of the form qi ∪ qj , where each q is a BGP contain533

no union statements.534

Algorithm We define the function subsumsgraph star in535

Algorithm 1 to evaluate whether a GSP with a root536

star pattern Qstari from QstarGi
is sumbsumed by Qs.537

The algorithm also takes a set Evalstar to track which538

partial graph star patterns have already been evaluated. The539

algorithm iterates over each triple pattern in the root star540

pattern Qstari and uses the match function to check if there541

exists a triple pattern in the BGP of Qs whose domain of542

matched triples is a superset of that of the current pattern. If 543

the triple pattern cannot be found in the BGP, the algorithm 544

then looks into the UGPs of Qs. If an equivalent triple pattern 545

is found, the algorithm checks whether the object of the 546

triple pattern is the subject of a partial graph star pattern 547

in QstarGi . In this case, the algorithm recursively applies 548

the same procedure to this partial GSP. To avoid cycles 549

and redundant evaluations we maintain a set of evaluated 550

answers in Evalstar. To solve Q ⊑qs S, we need to consider 551

the number of GSP from the BGP with their number of 552

segments in the UGP and the number of BGPs in the UGPs. 553

This procedure is detailed in Algorithm 2. The following 554

paragraphs analyze the time complexity of the algorithm. 555

Time Complexity Analysis 556

Worst-case per Qstar Let nqstar denote the number 557

of distinct Qstar ∈ QstarGi . For each node Qstar, the 558

algorithm iterates over its triple patterns (line 4 to 25), 559

resulting in a time complexity of O(ntpQstar
). For each triple 560

pattern that does not match the shape body (Qsbody), the 561

algorithm iterates over all union branches in Qsunion (line 7 562

to 11), making at most nsunion recursive calls. The algorithm 563

traverses the qus graph however each qus ∈ Qsunion cannot 564

contain a Union Graph Pattern (UGP), and is therefore 565

always of the form Qs = Qsbody, making this branch (line 566

5 to 15) of the algorithm after a first execution not the worst 567

case with a complexity of O(n2
tpQstar

· nsunion). 568

After the first execution, the worst-case scenario becomes 569

one in which the triple patterns matches a pattern in Qsbody, 570

and the condition O(tp) ∈ Sstar(QstarGi) holds (line 17 to 571

22). In such cases, the algorithm recursively explores the 572

corresponding partial Graph Star Pattern (GSP) by executing 573

subsumsgraphstar, following a graph traversal paradigm. 574

Tree Traversal Argument Although QstarGi
is a graph, 575

the algorithm avoids cycles due to “caching”, once a node 576

Qstar is evaluated, its result is stored in Evalstar. Therefore, 577

each node is visited at most once, and the overall traversal is 578

equivalent to a tree traversal of size nqstar ≤ |QstarGi |. 579

Total Complexity Let ntpQstar
denote the number of triple

patterns in a particular Qstar, and let ntp be the total number
of triple patterns across all nodes, so

ntp =
∑

Qstar∈QstarGi

ntpQstar

Then the total number of recursive operations over all
nodes is bounded by:

O

(
nqstar∑
i=1

nsunion · n2
tpQstari

)

O

(
nsunion ·

nqstar∑
i=1

n2
tpQstari

)

‡We only consider shapes that can be transformed into a single SELECT
SPARQL query [14].
§In this sense, it bears some similarity to query containment under bag
semantics, particularly through the notion of “goals-onto” containment
mappings [13, 2].
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Algorithm 1 Check if a GSP is subsumed by Qs (subsumsgraphstar)
Input: Qstar , QstarG, Qs = Qsbody ▷◁ Qsunions, Evalstar

Output: true or false whether the root of a graph star pattern Qstar subsumes a shape.
1: if M(Sstar(Qstar)) ∈ Evalstar then
2: return M(Sstar(Qstar))
3: end if
4: for all tp ∈ Qstar do
5: if not match(tp,Qsbody) then
6: hasOnePath← false
7: for all qus ∈ Qsunions do
8: if subsumsgraphstar(Qstar, QstarG, qus, Evalstar) then
9: hasOnePath← true

10: end if
11: end for
12: if not hasOnePath then
13: Evalstar ← Evalstar ∪ (M(Sstar(Qstar)) 7→ false)
14: return false
15: end if
16: else
17: if O(tp) ∈ Sstar(QstarG) then
18: Evalstar ← Evalstar ∪ (M(Sstar(Qstar)) 7→ true)
19: if not subsumsgraphstar(QstarO(tp)

∈ QstarG, QstarG, Qs, Evalstar) then
20: Evalstar ← Evalstar ∪ (M(Sstar(Qstar)) 7→ false)
21: return false
22: end if
23: end if
24: end if
25: end for
26: return true

O

nsunion ·

n2
tp −

nqstar∑
i=1,j=1,i̸=j

ntpQstari
· ntpQstarj


O
(
nsunion · n2

tp

)
Algorithm 2 Check if a query Q subsumes a Qs

(subsumsQ)
Input: Q, Qs and Evalstar

Output: true or false whether the shape subsumes Q.
for all QstarGs ∈ Q do

for all Qstars ∈ QstarGs do
if subsumsgraphstar(Qstars , QstarGs , ∅) then

return true
end if

end for
end for
return false

Time Complexity of the subsumsQ Algorithm The time580

complexity of the subsumsQ algorithm is straightforward to581

derive, as it consists of iterating over the GSP of the query582

and applying the subsumsgraphstar algorithm. Thus, the time583

complexity is given by:584

O
(
nsunion · n2

tpmax
· nQstarmax

· nQstarG

)
(12)585

Where, ntpmax is the maximum number of triple patterns586

in any QstarG, nQstarmax
is the maximum number of Qstar587

patterns in any QstarG, and nQstarG
is the number of Graph588

Pattern Structures (GPS) in the query Q.¶589

Experimental Evaluation590

We implemented our approach using the LTQP version of591

the Comunica query engine [62]. We chose Comunica due to592

its modularity [61] and its established use in several LTQP593

studies [9, 60, 20, 29, 22, 63]. All implementations are594

open-source and are provided in the supplementary material.595

Similarly to other LTQP studies, we used SolidBench [60], 596

which is based on the LDBC social network benchmark [4], 597

to evaluate our contribution. Furthermore, SolidBench was 598

developed because no LTQP benchmark existed prior to its 599

creation [33, 60], and, to the best of our knowledge, no other 600

benchmarks have been introduced since. We created an open- 601

source module to generate shape indexes in SolidBench, 602

based on user-provided mappings between ShEx shapes and 603

data model objects. The shape-annotated portion of the data 604

model includes posts, comments on posts, user profiles, user 605

settings, varia data (unstructured data), cities, and likes. The 606

datasets are Solid Pods [53, 16]. In this paper, we consider 607

a Solid Pod as a web-based file system that follows the 608

LDP specification [57]. Each Solid Pod, alongside contains 609

its data, a shape index and separate resources for each 610

shape definition. Some shapes are nested within others. 611

For example, user profiles are associated with cities, and 612

comments are associated with posts. Depending on the pod 613

instance, certain data model objects are materialized in a 614

single file, while others are distributed across multiple files. 615

The benchmark provides queries that simulate typical read 616

actions in social media use cases, such as retrieving replies to 617

posts or identifying users connected to a given user. Queries 618

may range from being highly selective with small result sets 619

to broad with larger result sets, and in some cases can also be 620

characterized as data-model selective. The datasets contained 621

approximately 4,200,000 triples and 1,528 subwebs, which, 622

in this context, are Solid Pods. The shape indexes contain 13 623

triples each, while the largest shapes have up to 150 triples. 624

This can be considered insignificant, particularly because the 625

number of triples does not scale with the size of the subwebs. 626

The entire data model and query templates are available in 627

the supplementary material. 628

¶Sharing the evaluation results Evalstar from subsumsgraphstar could
reduce execution time and potentially the algorithm’s complexity.
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To evaluate our approach, we conducted the following629

experiments:630

• We measured the execution time and results of our631

query-shape subsumption algorithm using the shapes632

from the study.633

• We then compared our shape index approach to state-634

of-the-art Solid Pod network traversal algorithms:635

one leveraging the type index specification [60], and636

another using the LDP specification [60], in a network637

where each Solid Pod provides a complete shape638

index. ||
639

• We analyze the relationship between the number of640

HTTP requests and query execution time, drawing on641

data collected across all experiments.642

Subsequently, we assessed the resilience of our approach643

by gradually reducing the shape index information across the644

network by performing the following experience:645

• We measured query execution time in networks where646

0%, 20%, 50%, and 80% of Solid Pods expose a shape647

index.648

• We measured query execution time in networks where649

20%, 50%, and 80% shape indexes are complete.650

• We measured query execution time in networks having651

shapes that incorporate only data from the Solid Pods652

and shapes providing a minimal dataset description653

where the object constraints are always an IRI or a654

literal.655

We conducted the experiment using queries from five656

different instantiations of SolidBench query templates,657

varying the starting pods in a random yet reproducible658

manner. Experiments were repeated 50 times with a 2 minute659

timeout per query execution. They were conducted on an660

Ubuntu 20.04.6 LTS machine with a 2x Hexacore Intel661

E5645 CPU and 24GB RAM.662

Evaluation Against Other Approaches663

Analysis of the Query Execution Time Figure 4 demon-664

strates that the shape index approach performs queries faster665

than or comparable to state-of-the-art Solid Pod network666

traversal algorithms across all query templates except S4.667

In the appendix Figure 16 present the ratio of execution668

time between the type index approach and the shape index669

approach. Table 2 presents the statistical significance by670

query templates. The shape index approach allows for suc-671

cessful termination of S7 template queries, which other672

approaches cannot complete due to timeouts resulting from673

an excessive number of HTTP requests. Query processing674

with the shape index approach requires as little as 13% of the675

execution time needed by the type index approach, achieving676

up to 7-fold performance improvement for S1 queries. The677

queries that perform the best are those in which the number678

of HTTP requests decreased the most, as can be inferred679

from the analysis of Table 1. This table presents the average680

percentage of query-relevant resources per query template,681

derived from the where-provenance [12] of the query results682

and the number of HTTP requests. Queries with a high 683

decrease of the number of HTTP request are known to be 684

data-model selective due to the query-shape subsumption 685

algorithm. In our context, a query that requests a single data 686

model object is classified as data-model-selective, since in 687

our benchmark the subwebs contain at most five distinct 688

data model objects. From the analysis of the queries, those 689

derived from templates D1, D4, S1, and S3 (S3 is a template 690

that cannot complete the execution before the timeout) are 691

identified as data-model-selective and, as expected, exhibit a 692

reduction in both the number of HTTP requests and the query 693

execution time. Figure 5 shows the distribution of query 694

execution times for each instance of the S1 query template. 695

The distributions for all query templates are provided in the 696

supplementary material. Queries from templates D6 and D7 697

show no reduction because they require nearly every data 698

model objects in the datasets to be processed by the engine, 699

making our approach ineffective in these cases. Figure 6 700

shows the distribution of query execution times of queries 701

of the D7 templates. We notice that queries from template 702

S4 with the shape index performed worse in every instance, 703

with an increase in query execution time of up to 2.80 times 704

as shown in Figure 7. This is further illustrated in Table 1, 705

which shows that for these queries, the type index traversal 706

algorithm achieves a ratio of query-relevant resources deref- 707

erenced of 100% or 50%, compared to only 6% with the 708

shape index approach. The poor performance is due to the 709

fact that the links acquired by the other approaches were 710

selected based on reachability criteria that did not leverage 711

the structural properties of the dataset, such as in the case of 712

Cmatch [34], a reachability criterion based on the structure 713

of the query. In contrast, the shape index approach always 714

enforces the use of these properties, resulting in additional 715

HTTP requests and increased processing time. However, 716

those queries were already efficient, with the type index 717

traversal approach completing in only about 0.30% of the 718

maximum allowed execution time. Nonetheless, these results 719

still highlight a category of queries and networks for which 720

our approach is not well-suited. Those results mostly validate 721

H1 and H2 however the shape index approach can drastically 722

increase the execution time when the structural properties are 723

not used. 724

Temporal Analysis To further our analysis, we compare 725

three temporal metrics: the arrival time of the first results, 726

the termination time, defined as the duration between the 727

arrival of the last result and the end of query execution, 728

and the waiting time, which we define as the accumulated 729

time gaps exceeding one second between the reception 730

of consecutive results. We choose a 1 second threshold 731

for waiting time based on research in responsive system 732

design. These waiting time guidelines are derived from 733

the field of neuropsychology and are considered stable 734

regardless of technological expectation for human users [47, 735

45]. A waiting time below 0.1 seconds is perceived as 736

instantaneous, a delay of up to 1 second preserves a seamless 737

flow of thought, while delays exceeding 10 seconds tend to 738

cause user attention to drift [45]. We additionally computed 739

∥It should be noted that the type index and shape index approach are
extensions of the LDP approach.
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Figure 4. Performance comparison of different methods for query execution. The shape index performs better than both the type
index and LDP for data-model selective queries. The shape index is also able to answer a query from template S7 which was not
possible with the other approaches. For non-data-model selective queries, execution time differences are not statistically significant,
as shown in Table 2. An exception occurs with queries of template S4, which do not leverage the structure of the publication
environment. Results are presented by query template, leading to a multimodal distribution; therefore, variance analysis does not
indicate statistical significance.

Approach/ Query Template D1 D2 D3 D4 D5 D6 D7 S1 S4 S5
shape index (%) 1442

6 3891
11 5262

37 1520
3 913

2 18417 8112 1212
12 666 1011

4

type index (%) 464 35868 516136 9153 8122 2042
8 913

2 481 80100
50 342

Table 1. The percentage of query-relevant resources. For most queries, the percentage of query-relevant resources is low (cell
values are shown as avgmax

min ). Shape index generally matches or outperforms the type index, except for templates D6, D7, and S4.
The difference for S4 is more pronounced, reaching 100% with the Type Index compared to only 6% with the shape index.

Figure 5. Distribution of query execution times (sample size:
50) for queries derived from the S1 template. The results show
that the execution time of data-model selective queries is
significantly reduced when using the shape index approach.

the diefficiency metric in relation to time (dief@t) [1], at740

the previously mentioned time intervals: 0.1 s, 1 s, and the741

Figure 6. Distribution of query execution times (sample size:
50) for queries derived from the D7 template. The results show
that the execution time of non-data-model selective queries is
not significantly affected by the shape index approach.

arrival time of the final result. We did not choose 10 s as the 742

threshold, because queries that terminate complete in under 743
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Figure 7. Distribution of query execution times (sample size:
50) for queries derived from the S4 template. Queries that do
not exploit the structural properties of the dataset are
significantly negatively impacted by the shape index approach.

Figure 8. The first result distribution by query template.
The shape index approach tends to produce the first results
earlier than the type index approach, particularly for queries
where the shape index achieves shorter total execution times.

10 s. Tables 3 and 4 in the Appendix present the average744

results for the metrics presented above.745

For Most Queries, the Shape Index Approach Tends to746

Produce the First Results Faster Figure 8 presents the time747

of arrival of the first results for all query instances, grouped748

by query templates. The plot indicates that, for most queries,749

the shape index approach tends to produce results faster, as750

shown by distributions concentrated around lower first result751

arrival times. Templates D1, D2, D5, and S1 exhibit the752

most significant improvements in first-result latency when753

using the shape index. Surprisingly, although queries from754

templates D2 and D5 sometimes performed worse with755

the shape index approach, as shown in Figure 4, they still756

produced the first result faster than with the type index757

approach. This suggests that, although the shape index does758

not explicitly prioritize early result generation, the pruning759

it performs may implicitly favor faster first results arrival760

with some queries and networks. This implicit prioritization761

does not apply uniformly across all templates. For example,762

Figure 9. The termination time distribution by query
template. With the exception of queries from templates D6 and
D7, which have similar execution times, the shape index either
maintains or improves query termination time.

queries from template D3 exhibit faster execution times 763

across most instances when using the shape index. However, 764

as shown in Figure 8, the shape index also results in a 765

higher mean and a longer tail for the time to first result. This 766

difference arises from the structure of the subwebs targeted 767

by D3 queries. In some cases, a result can be obtained from 768

a document located one link away from the seed document. 769

The direct dereferencing using the type index approach can 770

exploit this proximity, enabling early result generation. In 771

contrast, the shape index approach may delay first result 772

production because it relies on discovering the shape index 773

documents before exploring the rest of the subweb. 774

The Shape Index Approach Can Reduce the Termina- 775

tion Time Figure 9 presents the termination times for the 776

query execution instances, grouped by template. For queries 777

where execution time improved and termination time was 778

non-zero, such as those from templates D1, S1, and S5, 779

the shape index approach significantly reduces termination 780

time. This improvement aligns with the substantial increase 781

in the percentage of query-relevant resources dereferenced 782

when using the shape index, as shown in Table 1. A long 783

termination time generally indicates that, toward the end of 784

execution, a large number of non-query-relevant resources 785

are being dereferenced. Although Table 1 does not show 786

the temporal progression of this percentage it still give 787

us information about the quantity of non-query-relevant 788

resources being dereferenced. For templates D5 and D6, the 789

termination-time distributions for the shape index approach 790

have a similar shape but exhibit a longer tail, particularly 791

D6, which can take up to one second longer to terminate. 792

In these cases, Table 1 shows that the proportion of query- 793

relevant resources dereferenced using the shape index is 794

within ±1% of that obtained with the type index. A similar 795

situation is observed for template D3, although in this case 796

the type index achieves a termination time of zero. The 797

longer termination times for D5 and D6 may be attributed 798

to the additional dereferencing of shape index documents. 799

Notably, for template D6 in Figure 4, an outlier query 800

increases execution time by approximately a ratio of 1.2, 801
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Figure 10. The waiting time distribution by query template.
Except for queries from template D1, the shape index approach
tends to either maintain or worsen the waiting time.

Figure 11. The dief@0.1s distribution by query template. At
0.1 second, the value is zero for every query template except
S4. This is expected, as for all other templates the first result
arrives after 0.1 seconds.

which could explain the extended tail and the additional802

second of termination time.803

The Shape Index Approach Generally Increases the804

Waiting Time Figure 10 presents the waiting time for the805

query instances, grouped by template. With the exception806

of queries from the D1 template, which show a decrease in807

waiting time, the shape index approach generally increases808

the waiting time for queries that experience a delay before809

producing results. This increase is likely due to the additional810

dereferencing of shape index documents that must occur811

before relevant results can be generated. Such dereferencing812

can introduce a gap before the first results appear, even813

when the total query execution time is reduced or remains814

unchanged.815

The Shape Index Approach Improve Can Improve816

the Diefficiency Metric Figures 11, 12, and 13 show the817

dief@t values measured at 0.1 seconds (dief@0.1s), 1 second818

(dief@1s), and at the time of the last result (dief@lr).** The819

dief@0.1s results show that, except for S4, no approach is820

able to produce instantaneous results, which aligns with the821

observations in Figure 8. Overall, this indicates that, with the822

Figure 12. The dief@1s distribution by query template. At 1
second, the shape index approach shows a higher dief@1s
(higher is better), indicating that more results can be obtained
by users while maintaining a seamless flow of thought.

Figure 13. The dief@lr distribution by query template. At
the time of the last result, the shape index approach tends to
exhibit a similar dief@t (higher is better).

current approaches and benchmark, producing instantaneous 823

results is not feasible. The dief@1s results indicate that the 824

shape index approach generally produces a higher number 825

of early results, except for queries from templates S4 and 826

S5. This result is expected for S4 as the performance 827

with the shape index is drastically reduced as shown in 828

Figure 4 however with S5 it is less expected as it is a 829

query template that perform better with the shape index. 830

It would be expected to see a performance improvement 831

in terms of dief@t at the last results for S5, however, the 832

values are zero or close to zero. This is because these queries 833

produce only a single result, so dief@t naturally tends toward 834

0 unless there is a very large difference in execution time 835

between the two approaches. ** These results suggest that, 836

for fast early result arrival, the shape index approach tends 837

to performs better. This finding is particularly relevant in 838

the context of social media applications, where it is often 839

∗∗This means that if, for a given query, the shape index approach produces
the last result at 5 seconds and the type index at 5.10 seconds, then the
dief@t metric will be computed at 5.10 seconds.
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more important to obtain fast, relevant results to maintain840

interactivity than to retrieve complete results. The dief@lr841

show a similar behavior but with lesser performance gain842

compare to dief@1s (see Table 3 to compare the average843

values).844

Query-Shape Subsumption Evaluation845

The empirical evaluation of the query-shape subsumption846

algorithm shows that its execution time with the more847

detailed shapes from our experiment is negligible, with a848

maximum execution time of 5ms (0.0039% of the timeout).849

Table 5 present these results. This outcome is expected, as the850

algorithm has polynomial time complexity, and the shapes851

and queries in the experiments are small and not deeply852

nested. This result validates H3.853

Evaluation of the Resilience of the approach854

The final part of the results analysis focuses on the resilience855

of the shape index approach. In this analysis, we examine856

the impact of reducing the shape index information in the857

network and compare the results with a network in which858

all pods are exposed to detailed, complete shape indexes.859

Figure 14 presents three plots that illustrate the results of860

our evaluation of the approach’s resilience. The plot on the861

left shows the variation in the availability of shape indexes862

across the network. As expected, we observe that queries863

that performed better in Figure 4 tend to perform worse864

with reduced shape index information, while queries that865

performed poorly improved.866

The plot in the middle shows the variation in the867

percentage of shape index entries using closed shapes. The868

results here are more nuanced. While there is a general869

trend for query evaluations with a lower percentage of870

closed shapes to behave similarly to the plot on the left,871

we also observe both performance gains for some query872

templates and a drastic performance loss for the queries of S1873

when 80% of the shape entries are closed. The performance874

gain occurs because not every entry needs to be closed875

to prune the query irrelevant documents. Entries mapped876

to an open shape are always considered relevant because877

the shape translates to a query fetching the whole KG. If878

the subsumption check leads to the same conclusion, then,879

given a closed entry, the execution will be more expensive880

because when shapes are nested, the nested shapes need881

to be dereferenced to solve the query-shape subsumption882

algorithm. For the queries of S1, with 80% of closed shape883

entries, the performance lost was due to random chance, as884

the discriminatory entries were provided with open shapes in885

multiple instances when looking at the raw data.886

The right plot shows the variation in the level of detail887

of the shapes by reducing their detail. Since the shapes are888

closed in this experiment the level of detail was varied by889

changing the constraint of the object terms. Most queries890

tend to perform similarly or better, except for those of891

S1. Upon analyzing the output of our query subsumption892

algorithm, we observe that the additional information to893

the shape provided in our base approach does not affect894

the algorithm’s results. However, in the baseline shape895

index experiment, the engine must dereference more shapes,896

potentially increasing execution time. Queries of template897

S1 are the only ones where the added information can 898

discriminate multiple parts of the datasets’ domain leading 899

to worse performance. This indicates that in some situations, 900

adding more information can be beneficial. This sensitivity 901

of the quantity of the information in the index also helps to 902

explain the results for S1 queries in the middle plot. In that 903

case, the engine still had to dereference shapes from each 904

dataset, and the information available was likely insufficient 905

to significantly discriminate between resources. 906

These results show that H4 and H5 are rejected: reducing 907

information is not always detrimental to query execution. 908

It becomes detrimental only when the omitted information 909

is critical for determining the query relevance of resources. 910

Therefore, the outcome is dependent on both the query 911

and the network. Moreover, the completeness of shape 912

indexes has a smaller impact on performance than their 913

presence or absence. H6 is accepted; it is possible to retain 914

performance gains even in networks with reduced shape- 915

index information. 916

Relationship Between HTTP Request and 917

Query Execution Time 918

To study the relationship between the number of HTTP 919

request and the query execution time, the ratio of HTTP 920

request of the different approaches and the ratio of query 921

execution time was calculated in relation to the type index 922

approach. Figure 15 presents our analysis. The relationship 923

between HTTP request and query execution time can be 924

divided into two regimes. In the first regime (left figure), 925

where the shape index approach reduces the number of 926

HTTP requests, we notice a positive linear correlation with 927

a Pearson correlation coefficient (PCC) of 0.84 and a high 928

statistical significance (< 0.01). We can notice that toward 929

the end, the curve appears to exhibit a more exponential 930

behavior. Evaluating an R2 score with an exponential best 931

fit curve we get a score of 0.72 and 0.71 for a linear curve. 932

Above a ratio of approximately 0.85 of HTTP requests, the 933

shape index approach did not guarantee a reduction in query 934

execution time. There can be multiple explanations for this 935

behavior. First, the methods have some overhead due to the 936

query-shape subsumption algorithm and the state retention of 937

the pruning reachability criteria. However, the query-shape 938

subsumption algorithm execution time is negligeable for one 939

execution and the state retentation has a polynomial time 940

complexity, thus it should not have a high impact on the 941

execution time. Another explanation is the number of HTTP 942

requests that are performed in parallel. The LTQP version 943

of Comunica performs 10 HTTP requests in parallel, thus, 944

we would expect that with a low number and ratio of HTTP 945

requests, the performance would remain largely unchanged 946

or slightly worse, which is what can be observed in the curve. 947

In the second regime (right figure), the shape index 948

increases the number of HTTP requests. We notice a 949

moderate positive linear correlation with a PCC of 0.44. 950

The overall correlation between reducing HTTP requests and 951

query execution time is positively linear, with a moderate 952

linear correlation with a PCC of 0.56 and a high statistical 953

significance. The correlation is more linear than exponential 954

with R2 scores respectively of 0.31 and 0.24, however due 955
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Figure 14. Shape index approaches tend to perform less effectively with limited network information and comparatively better
where the baseline shape index underperforms. A higher ratio indicates a longer query execution time compared to a network with
complete shape index information (lower is better).
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Figure 15. The data show two regimes in the relation between the number of HTTP requests and the execution time, we see a
more linear correlation on the up figure than on the down figure.

to the low score it is difficult to determine the nature of the956

distribution.957

Explaining the two behavioral regimes observed in the958

data is challenging. One possible explanation for the poorer959

performance of the shape index approach in certain cases960

could be the low number of samples. However, we also961

observe that the relationship between the two variables962

differs significantly across the regimes. In the first regime,963

the relationship is close to one-to-one, with a slope of964

approximately 0.91. In contrast, the second regime shows a965

much flatter slope of around 0.08, suggesting that the ratio966

of HTTP requests has a weaker influence. This disparity967

indicates that the explanation may be more complex than just968

a sample size issue. The increased number of HTTP requests969

can be attributed to queries executed using the D6, D7,970

and S4 templates, with the S4 template causing the largest971

increase. Queries from the S4 template typically require only972

1 or 2 HTTP requests, so when running with 10 concurrent973

requests, the impact on performance is limited. On the other974

hand, queries using the D6 and D7 templates, executed with 975

the type index traversal algorithm, required 26, 23, and 129 976

HTTP requests. This significantly higher number of HTTP 977

requests explains why the increase in HTTP requests had a 978

greater impact on query execution time. 979

These results partially validate H7, as a linear relationship 980

is observed when there are a sufficient number of HTTP 981

requests and a significant reduction ratio, taking concurrent 982

requests into account. 983

Conclusion 984

In this article, we introduced a pruning mechanism for 985

LTQP, extending the concept of reachability criteria and 986

leveraging shape indexes. Using the SolidBench benchmark, 987

we demonstrate that our approach significantly reduces the 988

number of HTTP requests without degrading performance, 989

particularly when queries exploit the structural properties of 990

the dataset. In the best-case scenario, query execution time 991
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improved by up to 7 times, and a previously unexecutable992

query completed successfully. On average, performance993

improved by a factor of 1.76. In the worst case, execution994

time increased by 2.8 times for a query that did not exploit995

the network structure; however, this query was already highly996

efficient, consuming only 0.30% of the maximum allowed997

execution time. Our method also handles scenarios with998

partial or reduced shape index information in networks,999

making it relevant for decentralization efforts that allow1000

third-party clients to efficiently query large, heterogeneous1001

datasets.1002

The approach imposes minimal overhead on servers,1003

requiring only the serving of small static shape index files.1004

This approach has the potential to benefit linked data-1005

driven decentralization efforts such as the Solid ecosystem1006

and support standardization efforts such as the Linked1007

Web Storage Working Group †† by improving query1008

processing throughout these networks without requiring1009

the maintenance of large centralized indexes between data1010

providers. This work opens a new line of research in1011

integrating data models directly into decentralized query1012

execution, particularly for non-indexed networks. Future1013

work could focus on supporting filter expressions in the1014

query-subsumption algorithm, enhancing query planning1015

in LTQP [59] with RDF data shapes, maintaining and1016

developing shape indexes, and exploring other low-cost, low-1017

maintenance indexing structures.1018
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Figure 16. Comparison of query execution time with the type index approach. The ratio represents how the execution time of each
method compares to that of the type index. A ratio greater than 1 indicates a slower execution time (lower is better). The shape
index approach performs similarly or better than the other methods, except in the case of S4.

query template relation execution time p-value average ratio HTTP request
D1 lesser 1.14E-36 0.57
D2 lesser 4.42E-04 0.88
D3 similar 7.47E-01 (RH) 0.97
D4 lesser 2.07E-17 0.65
D5 lesser 5.58E-03 0.88
D6 similar 2.56E-01 (RH) 1.12
D7 similar 7.83E-01 (RH) 1.12
S1 lesser 1.12E-83 0.33
S4 greater 3.76E-22 13.00
S5 lesser 3.12E-17 0.44

Table 2. Table comparing the shape index approach to the state-of-the-art. RH, indicate that the p-value is associated to the
rejected hypothesis. Every query performs better or similarly to the state-of-the-art with the shape index approach except for
interactive-short-4. One might expect the average ratio of HTTP requests for D6 and D7 to be one. In our implementation, however,
the query subsumption algorithm naively retrieved nested shapes, leading to some shapes being dereferenced multiple times. This
is an implementation artifact rather than an inherent property of the method. Even in this worst case, the impact on the number of
HTTP requests is small and does not affect the overall conclusions, especially given that requests are sent in parallel.
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Template Shape Index Type Index LDP
IT (n×ms) SFT (n×ms) LRT (n×ms) IT (n×ms) SFT (n×ms) LRT (n×ms) IT (n×ms) SFT (n×ms) LRT (n×ms)

D1 0.00 1.70 16.96 0.00 0.22 11.22 0.00 0.21 10.67

D2 0.00 1.91 119.54 0.00 0.31 119.75 0.00 0.23 124.94

D3 0.00 0.00 85.14 0.00 0.00 97.01 0.00 0.00 85.78

D4 0.00 0.36 10.25 0.00 0.06 1.92 0.00 0.07 1.75

D5 0.00 1.03 13.82 0.00 0.74 12.18 0.00 0.74 12.16

D6 0.00 0.08 16.08 0.00 0.08 20.04 0.00 0.08 18.88

D7 0.00 0.08 0.28 0.00 0.07 0.20 0.00 0.07 0.21

S1 0.00 0.68 1.25 0.00 0.18 0.28 0.00 0.18 0.27

S4 0.00 0.49 0.00 0.01 0.66 0.04 0.01 0.66 0.04

S5 0.00 0.25 0.05 0.00 0.34 0.10 0.00 0.37 0.13

S7 0.00 0.00 0.00 - - - - - -

Table 3. Table showing the average diefficiency metric for different approaches across query templates, measured at three time
thresholds: instantaneous time (IT, 0.1s), seamless flow time (SFT, 1s), and at the time of the last result (LRT). The diefficiency is
expressed as the number of results (n) per millisecond (ms). For most queries, diefficiency at IT is 0, as no results are produced
quickly enough. At SFT, the shape index approach generally yields better performance, while at LRT, results tend to converge
across approaches.

Template Shape Index Type Index LDP
FT (s) TT (s) WT (s) FT (s) TT (s) WT (s) FT (s) TT (s) WT (s)

D1 0.66 0.11 0.23 1.51 1.09 0.21 1.55 1.02 0.21

D2 1.25 0.00 0.78 1.91 0.00 0.39 1.88 0.00 0.38

D3 3.74 0.00 0.00 3.67 0.00 0.00 3.77 0.00 0.00

D4 1.74 0.00 0.00 3.14 0.00 0.00 3.17 0.00 0.00

D5 0.49 0.03 0.22 1.17 0.04 0.01 1.18 0.04 0.00

D6 1.42 0.02 0.58 1.40 0.04 0.49 1.45 0.07 0.49

D7 1.48 1.19 0.00 1.56 1.12 0.00 1.55 1.11 0.00

S1 0.32 0.00 0.00 1.30 0.09 0.00 1.31 0.09 0.00

S4 0.51 0.01 0.00 0.34 0.01 0.00 0.34 0.01 0.00

S5 0.91 0.00 0.00 0.78 0.68 0.00 0.75 0.76 0.00

S7 - - 0.00 - - - - - -
Table 4. Continuous performance metrics showing First Result Arrival Time (FT), Termination Time (TT), and Waiting Time (WT).
FT refers to the time taken for the first result to be delivered. TT captures the delay between the last result and the termination of
the query engine. WT represents the total time the user waited more than one second between consecutive results, indicating
interruptions in the seamless flow experience.

Query Template avg (ms) std (ms) max (ms)
D1 0.062 0.073 0.539
D2 0.106 0.461 4.655
D3 0.040 0.034 0.133
D4 0.043 0.068 0.672
D5 0.015 0.015 0.025
D6 0.068 0.039 0.174
D7 0.041 0.101 1.005
D8 0.033 0.045 0.426
S1 0.074 0.064 0.560
S2 0.309 0.327 2.791
S3 0.072 0.069 0.650
S4 0.042 0.032 0.144
S5 0.043 0.057 0.551
S6 0.132 0.343 3.473
S7 0.176 0.158 0.971

Table 5. Query-Shape containment computation time (100 samples) is negligeable with the most restrictive shapes of our
experiments.
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