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Abstract

The centralization of web information raises legal and ethical concerns, particularly in social, healthcare, and education
applications. Decentralized architectures offer a promising alternative by keeping data closer to its source, yet efficient
query processing remains a significant challenge. Link Traversal Query Processing (LTQP) enables querying across
decentralized networks, however, it often suffers from long execution times and high data transfer costs due to the large
number of HTTP requests involved. In many scenarios, queries are highly selective with respect to the data model
objects distributed across the network. For example, in a social media application where users store heterogeneous
data, a query may focus solely on the posts and comments created by users, without requiring any of their additional
user information. We refer to such queries as data-model selective. We propose a shape-based pruning approach that
relies on shape indexes and a query-shape subsumption algorithm to reduce the search space and, consequently,
the number of HTTP requests for such queries. We formalize this approach as a link pruning mechanism for LTQP
and evaluate its effectiveness on social media queries using the SolidBench benchmark across multiple evaluation
metrics. Our results show that shape-based pruning substantially improves query execution time, first-result arrival
time, diefficiency, and network usage for data-model selective queries, while having unsignificative impact on non-
selective data-model queries. These gains come at the cost of only a minor increase in the number of triples per shape-
index instance. Moreover, our approach is resilient, retaining performance benefits even in networks where some data
providers do not supply shape-index information. This work demonstrates that shape-based metadata can significantly
optimize LTQP in decentralized knowledge graphs for an important class of queries. By exposing such metadata, data
providers not only enhance data quality and interoperability but also improve the efficiency of traversal-based query
processing.
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Introduction The main difficulty of LTQP is the large domain of
exploration, which leads to a high number of HTTP
requests as demonstrated by Hartig and Ozsu [34]. From
another perspective, it has been shown that in Decentralized
Environments with Structural Properties (DESPs), it is
possible to attain query completeness for various types of
practical queries with acceptable execution times for the
context of social media applications [60, 46]. Structural
properties ensure data discoverability, which in turn helps

guarantee result completeness.

Multiple studies have highlighted that social web applica-
tions relying on highly centralized data management sys-
tems give rise to problems of ownership, threats to democ-
racy, reinforcement of inequality, and antagonism between
users and owners [65, 15, 54, 41]. Yet, several authors
consider decentralizing data over the web an insufficient
solution [41, 15], although it is an integral component of
initiatives focused on data sovereignty. Linked Data and
knowledge graphs (KG) [36] can be considered technical
contributions toward the development of a decentralized web
of data. However, SPARQL, the standard query language
for RDF knowledge graphs, is predominantly performed in
centralized environments, partly due to the more mature
understanding of query optimization in such settings.

Link Traversal Query Processing (LTQP) [32] is a query
paradigm designed for querying non-indexed, Decentralized
Knowledge Graphs (DKGs) on the web, by leveraging
the descriptive power of IRI dereferencing. LTQP involves
recursively dereferencing IRIs, dynamically discovering and

In practice, DESPs emerge in various contexts, such as
social networks [60] and the publication of sensor data [64],
among others. The work on the topic of DESPs for LTQP [60,
9] suggests that various optimizations are feasible for LTQP
in decentralized environments with structural properties, in

"Department of Electronics and Information Systems, Ghent University
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storing triples from the documents associated with those
IRIs in an internal triple store, thereby expanding the
engine’s underlying knowledge base during query execution.
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Figure 1. The goal of our work is to minimize the number of
query-irrelevant sources (unchecked green circle) that are
dereferenced by a link traversal query engine. White circles

represent resources that are not dereferenced by the engine.
Checked green circles are followed and query-relevant.
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contrast to the more pessimistic conclusion of Hartig and
Ozsu [34].

In general, data on the World Wide Web lack a structure
that query engines can exploit for optimization. Any
document can be published anywhere, with no standard
index or trust mechanism to guide discovery. Thus, for the
vast majority of queries, traversal query engines dereferences
a large proportion of resources that are not query-relevant,
as depicted in Figure 1. However, within specific subwebs,
defined as subsections of the web controlled by particular
data providers, implicit or explicit data structures may
emerge, which query engines can leverage [9]. In this
work, we extend a dataset summarization approach for
decentralized environments known as the shape index [63].
We apply this approach to enable link pruning within
LTQP, removing links that are not relevant to the query,
based on an analysis of RDF data shapes and the user’s
query. The analysis is performed by conducting a query-
shape subsumption check to determine whether a resource
conforming to a given shape is relevant to a query. Our
approach assumes a DKG composed of subwebs, each hosted
by data providers and containing shape indexes. A subweb
that exposes a shape index enables the query engine to
narrow its search domain by identifying resources that are
certainly non-query-relevant. This is particularly useful
when only a subset of a subwebs is relevant to a given
query, for example, in social media applications where
it is rare to query all information about a user. An
example of such a query is one that requests messages
within a user’s subweb over a specified date range, while
also incorporating contextual information from outside the
subweb. We describe this category of network-tied queries as
data-model selective. In this context, data-model objects are
templates of concepts represented in RDF, such as messages,
posts, or proteins. Accordingly, we consider RDF data shapes
to be formal descriptions of these data-model objects. For
the purposes of this paper, we define a data-model selective

Prepared using sagej.cls

query as a query whose evaluation requires fewer than 20%
of the data-model objects within the network. In this work,
we do not aim to optimize queries that retrieve a large
proportion of a subweb’s data model objects. For instance,
queries that request all user information published after
a given date are outside the scope of our optimization;
however, we attempt to ensure that the performance of such
queries is not degraded.
Our contributions are as follows:

(i) An introduction and formalization of link pruning for
LTQP

(i) A web specification for the shape index data summary

(iii) A novel shape-based pruning approach for LTQP using
RDF data shapes

(iv) A novel network abstractions of subwebs and
decentralized knowledge graphs (DKGs) for LTQP,

(v) A novel query-shape subsumption algorithm for
assessing data source relevance

(vi) An open-source implementation in the Comunica
SPARQL query engine [62]

(viil) An extensive experimental evaluation using the
SolidBench benchmark.

In this work, we ask the following research question:
Can LTQP use shape-based pruning in DKG networks
to reduce query execution time while preserving result
completeness? To address this question, we propose the
following hypotheses:

H1 The shape indexes approach reduce the number of
non-contributing data sources retrieved and the query
execution time of data-model selective queries, while
preserving result completeness.

H2 The shape indexes approach does not affect the query
execution time of non-data-model selective queries.

H3 The execution time of a query-shape subsumption
algorithm is negligible compare to the query execu-
tion.

H4 Stricter shape constraints lead to a greater reduction in

HTTP requests.

HS Querying a network with more complete shape indexes
results in faster query execution.

H6 Performance gains can be achieved even in networks
with partial shape index coverage, demonstrating that
the method provides significant improvements without
requiring all network participants to adopt shape
indexes.

H7 There is a linear relationship between the reduction
in the number of HTTP requests and the decrease in
query execution time.

The remainder of this paper is organized as follows: we
first review the related work and introduce the preliminaries.
Next, we present our approach, followed by a description
of the experimental setup and a discussion of the results.
Finally, we conclude the paper.
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Related Work

In this section, we review related work on LTQP, RDF data
shapes, and source selection in decentralized querying.

Link Traversal Query Processing

LTQP is a SPARQL querying paradigm that answers
queries by exploring the Web using the follow-your-nose
principle [34]. It belongs to the family of decentralized
SPARQL querying paradigms. LTQP fundamentally differs
from federated querying because the “federation” is formed
during querying and it expands dynamically as the query
is processed. Thus, many optimization techniques used in
federated querying either do not work in the context of LTQP
or remain unexplored. LTQP also differs from querying
Linked Data Fragments (LDF) interfaces [5, 6, 31], as
LDF operates over fragments of a known, local, finite KG,
whereas LTQP dynamically discovers new, remote KGs
during query processing. In summary, LDF methods such as
Triple Pattern Fragments (TPF) [66] focus on the efficient
partitioning of a known dataset, while LTQP focuses on the
efficient discovery of an unknown dataset.

The main challenge of LTQP is the Web’s open-ended
nature leading to large search spaces. Completeness in LTQP
is defined by the traversal of a well-defined set of links [32].
The first method used to define this set was the reachability
criteria [32], boolean functions that determine whether a
given link should be dereferenced. In practice, the query
engine iterates over all triples in its internal data source
and applies the reachability criteria to each IRI appearing
in those triples. These criteria are defined internally by the
engine, giving designers considerable freedom in how they
are implemented and which links are dereferenced. However,
there is currently no standard mechanism for users to specify
them, nor for query engine developers to adopt a common
approach. Building on this, the theoretical query language
LDQL [35] was introduced, which separates the traversal
definition from the query definition. It provides a standard
mechanism for query engines to define their traversal logic,
while opening the possibility for users to provide a traversal
policy alongside their queries. Further advancements include
the Subweb Specifications Language (SWSL) [9], which
allows data providers to define how their DKG should be
traversed. Inspired by SWSL, traversal-based querying has
utilized the Linked Data Platform (LDP) and the Type Index
specification [60]. LDP traversal follows all links within a
data space, while Type Index traversal uses mappings from
RDF types to relevant resources [70], allowing queries to
prioritize implicitly relevant data sources. Link prioritization
has also been studied, however, it has been shown to not
improve query execution time [34], even in DESPs [21].
These contributions are centered on guiding the engine in
selecting links to follow in a discovery process. However,
they do not explicitly address the restriction or pruning
of links after the discovery process based on information
acquired during traversal. Such pruning could significantly
reduce the query search domain when information about the
DKG data model is available. For instance, the structural
properties of a subweb could inform the query engine that
certain web sections follow a specific data model, allowing a
set of IRIs to be pruned from those selected during discovery.
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In contrast, when LTQP models DKGs as Linked Open
Data, the web is not divided into subsections with structural
properties; thus, data model information cannot be inferred.
To the best of our knowledge, no prior work has explored the
use of a pruning mechanism to optimize LTQP, and it is this
research gap that the present study aims to address.

RDF Data Shapes

RDF data shapes (in this paper, we also refer to
them as shapes) are used for validating, describing, and
communicating data structures, as well as generating data
and driving user interfaces [24, 27]. The two most well
known RDF data shape formalisms are SHACL [26] and
ShEx [27]. For common use cases, they are equally
expressive and interchangeable [25]. RDF data shapes have
already been used in the literature for querying centralized
KGs [49, 17]. Shape Trees [55] are an index structure for
validating and organizing decentralized knowledge graphs
(DKGs). However, to the best of our knowledge Shape
Trees have not been used for query optimization. Due to
their virtual hierarchy [55], it can be challenging for a
query engine to efficiently capture the relationship between
aresource IRI and its corresponding shape. Moreover, Shape
Trees are not yet widely adopted; therefore, for the purposes
of this work, we use the Shape Index specification [63]
to facilitate the mapping between shapes and knowledge
graphs. Additionally, automatic generation of RDF data
shapes from KGs [23] and shape-based data integration [39]
have been studied and can support shape-based summary
approaches for DKGs.

Source Selection

Source selection is a crucial challenge in decentralized
querying [37, 30]. Link pruning in LTQP is closely
related to source selection, as it can be viewed as a
dynamic form of source selection. Methods such as basic
statistics on triple counts, VoID descriptions, and histogram
techniques have been explored in the context of federated
querying [37, 30, 43]. However, most of those source
selection methods face the limitation of assuming a small
number of data sources [30], leaving their suitability for
LTQP uncertain. Bloom filters [18] are also a mechanism
that has shown success for federated DKGs, yet in the
context of LTQP, it has been show that bloom filters have
little effect on performance [29]. Schema-based indexing
using ontologies [58] has also been explored for source
selection of SPARQL queries. It has been shown that this
approach is sensitive to the high reuse of vocabulary terms
in RDF [30], which is exacerbated in the context of LTQP.
The use of implicit RDF schemas for query optimization has
been explored through the concept of characteristic sets [44,
42, 43]. However, their applicability to LTQP has not been
investigated, and they assume that the entire dataset resides
in memory, which is not the case for LTQP.

Preliminaries
RDF Knowledge Graphs and SPARQL Queries

Our work focuses on the union of conjunctive queries over
RDF knowledge graphs (KG) using the SPARQL query
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language [68]. The fundamental building blocks of KGs and
SPARQL queries are triples and triple patterns, respectively,
as defined in Definition | and Definition 2.

Definition 1. Triple. RDF triples t = (s,p,0) are tuples
formed with three terms. A subject where s € TUDB, a
predicate p € T and an object o € TU B U L. Where L, B,
L, are respectively the set of every possible IRI, blank node,
literal. For simplicity, we denote the union of these sets by
concatenating their symbols, so that T U B is written as IB.

Definition 2. Triple pattern.  Triple patterns tp =
(Stp, Pip, Otp) are similar to triples, where sy, € BV, pyy, €
IV and an object term oy, € LBVL. Where V is the set of
every possible variable.

We also define two access functions to respectively get
the subject and object term of a triple or a triple pattern
while ignoring literals, S : (ZBV,IV,ZBVL) — IBYV and
O : (IBV,IV,IBVL) — IBY. We denote [Q]¢ as the
evaluation of a query ) over a KG G [3].

Reachability Criteria

LTQP defines completeness on the traversal of links instead
of the query results [32]. To formalize the completeness
of queries, Reachability criteria [32] have been formalized.
Reachability criteria are boolean functions (c;) restricting the
dereferencing of links from the internal data source of the
query engine. They take as parameters an RDF triple ¢ from
an internal triple store, a dereferenceable IRI ir: from ¢, and
a union of conjunctive queries Q. If ¢; returns ¢true, the query
engine must dereference iri. More formally

ci(t,iri, Q) — {true, false} (1)

Decentralized Knowledge Graphs and Subweb

We define a DKG as a KG G materialized in a network of
resources R. A resource r; € R is mapped to a KG g; C
G, which is a set of triples [50]. We denote this mapping
r; =g g;- A resource is mapped and exposed by an IRI iri;
denoted by iri; —x r;. The network forms a graph where
the resources r; are the nodes and the iri; are directed edges
starting from r; to 7;. The iri; are RDF terms in the triples
in g;. G is formed by the union of all the g; mapped to a
resource in the network. A subweb is a (sub)DKG defined
by the KG derived from a set of IRIs controlled by a data
provider.

Data-model Selectiveness

Data-model selectiveness is an ordering of queries over
networks. A data-model object is a well-defined template
of sub-KGs. By well-defined, we mean that there exist
explicit rules which deterministically specify the constraints
on the triples within the data-model object, as well as its
boundary within a larger KG. In this work, we assume that
data-model objects are described using RDF data shapes,
however, they could also be described using vocabularies
or other formalisms. We define DM as the set of the data-
model objects present in the networks. We define a function
to determine all the relevant data-model objects for a given

query:
P(Q)={D | (D € DM) is query relevant for Q}. (2)
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A query @; is more data-model selective than another query
Q; if and only if
P(Q)] < [P(Q)). 3)
For practical use cases, we may consider only the data
models present in subwebs of a network and replace DM
by DM?, with the associated function becoming P*(Q).
Furthermore, for practical designation, we say that a query
is data-model selective (in absolute terms) if

[P*(Q)]
DAz 502 )

that is, if fewer than 20% of the data-model objects are
potentially relevant to the query.

Approach

This section defines result-based completeness in LTQP,
introduces shape indexes, and shows how they enable
pruning via a query-shape subsumption algorithm.

To illustrate this approach, we present the example in
Figure 2, which depicts a network of three social media user
subwebs, each with its own shape index, as well as resources
located outside these subwebs. The feature query aims to
retrieve posts from Subweb 3, along with all associated
replies. Our pruning strategy allows the query engine to
explore only the relevant parts of the network, guided by
the shapes associated with the resources and the structure of
the query. The process begins with the engine dereferencing
the shape index of Subweb 3 and performing a query-shape
subsumption check, which determines that only resources
containing posts needs to be accessed in this subweb. It then
checks the shape index of Subweb 1 due to the existing link
towards it, where the subsumption check reveals no resources
relevant to the query. Next, it examines the shape index of
Subweb 2 and identifies resources containing comments (i.e.,
replies) which are relevant. Finally, the engine dereferences
all reachable resources outside the subwebs that are linked to
these relevant comments.

Result-Based Completeness in LTQP

Our approach of pruning in LTQP focuses on ensuring result
completeness, assuming traversal completeness is already
defined using reachability criteria. By concentrating on result
completeness, we explore strategies to optimize the search
space of link traversal queries through pruning of irrelevant
resources. We formalize result-based completeness in LTQP
as follows. A query is executed over a DKG G formed by the
union of all the g in a network R. The query engine has to
build a KG G’ using a reachability criterion C’ in its internal
data store from the KGs g by dereferencing resources
irt =g r € R. We formulate an optimization problem to
minimize the size of G’, where the query engine constructs a
knowledge graph G C G’, potentially smaller, by defining
a reachability criterion C”. We focus on maintaining the
same result completeness, so when using C” the following
equation must hold

[Q1¢" = [Q]¢ )
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PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-
syntax-ns#>

PREFIX snvoc: <http://example.org/vocabulary/>
PREFIX subweb3: <http://example/3>

SELECT * WHERE {
?message snvoc:hasCreator subweb3:card;
snvoc:content ?messageContent;
rdf:type snvoc:Post.
?linkedMessage snvoc:reply ?message;
rdf:type snvoc:Comment.

}

__RVEN

Corresponding |
shapes

1

[T — — — —

Figure 2. When resources of a DKG are indexed with a shape index, a query engine can dereference a subset of the network. The
nodes represent RDF resources, while the edges represent IRIs linking one resource to another. Each subweb has a shape index
that maps shapes, represented by icons, to RDF resources by embedding the icon within the node. The query engine starts its
query at Subweb 3, and the relevant query resources in a subweb are identified with a black node.

for any network R. Since each g € G” is obtained by
dereferencing resources r € R, a smaller G compared
to G’ implies that fewer HTTP requests were needed to
answer the query. Query execution is generally faster with
a smaller KG instance, and HTTP requests, being slow and
unpredictable [34], can dominate execution time. Therefore,
reducing HTTP requests provides a twofold benefit: fewer
resources to process and faster query execution.

Shape Index

Pruning in LTQP requires knowledge of the data models of
dereferenced resources. However, obtaining complete, up-
to-date, and detailed information for each resource in a
large decentralized network is impractical. To address this,
we introduce the shape index as a mapping between RDF
document sets and RDF data shapes that describes a subweb
controlled by a data provider. Unlike triple statistics, shapes
are independent of the KG’s size or updates that remain
compliant, making them a more cost-effective solution for
use cases with stable data models.
We formalize a shape index as follows:

SI={sy— IRI1s3+— IRI5--- ,s, — IRI,}  (6)
where s; is a shape and IRI; is a set of IRI given n
entries. The subweb described by the index is defined by
Dsr = Urrecodomain(sr) I121. We denote a shape index as
complete when every shape s; € dom(SI) has a closed
world assumption [26, 27] or incomplete otherwise.
A mapping between a shape and a set of IRIs has
implications in the distribution of the data in Dg;. When
a shape s is mapped to an IRI, then the KG targeted by
the mapping, G = {g | Viri € Dgr(iri —r r Ar —g g)},
satisfies s. Given that the shape is closed, then every set of
triples in the resource mapped to an #ri € Dgy satisfying
the shape must be in a resource mapped to an iri € IRI.
We provide a complete description of the shape index in
an online specification " and an example of serialization in
Figure 3.
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RDF data shapes use fargets to identify the set of nodes
or entities in a KG to validate. In this work, we assume all
entities in a KG associated with a shape index follow the
same RDF data shape. We call these entities graph stars,
an extension of the RDF star patterns concept [38]. Defined
in Definition 4, graph star(s) (patterns) serve two purposes:
defining targets for validation and capturing relationships
between triple patterns and shape entities. Star patterns
consist of triples with the same subject. We extend this
concept by linking star patterns such that the objects of
triples in one star pattern act as subjects in others, forming
a graph structure. For example, a user linking to their posts
with recursive replies can be captured with a root star pattern
for the user and nested patterns for the posts and replies.
Thus, the targets of the shapes in the shape index correspond
to the subject of each root star pattern when a KG is divided
into graph stars with no shared partial graph stars. Figure 3
illustrates an example of a graph star pattern.

Definition 3. Star Pattern. Given a query @), we define a
star pattern Qgiqr as a set of tp € Q [38] with the same
subject such that given a builder function

BQstm‘(S) = {tpz S Q | S(tpz) = 3}
with s € ZBY then Qstar = BQstar(5).

Definition 4. Graph Star Pattern (GSP) and Graph Star.
We define a GSP Qsiorc as the union between a root star
pattern Qsiqr, and the star patterns having as subject term
an object term of another star pattern in Qstqrc. We define
a function Ogpqr : q € Q — (ZBV)? that returns every non-
literal object terms of a star pattern.

We then define Qsiorc given a set of partial GSP Q siorcT

QstarG = U q (8)

GEQstarGT

(N

where Qsiarar IS formed with a root Q siqr, by

*We also refer to those shapes as closed.
fhttps://constraintautomaton.github.io/
shape-index-specification/

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

403

404

405

406

407

408

411

412

413

414

416

417

418


https://constraintautomaton.github.io/shape-index-specification/
https://constraintautomaton.github.io/shape-index-specification/

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

Journal Title XX(X)

<http://subweb/>
<https://shapeindex.com#>.

@prefix sw:
@prefix si:

sw:shapeIndex si:shapelIndexLocation si:
shapeIndex;
a si:Shapelndex;
si
si

rentry _ ruser;

rentry _ :Post.

si:shape sw:user_shape;

:subweb "http://subweb/user/{info
.

si:shape sw:post_shape;

:subweb sw:posts.

_:user
si

_:Post
si

PREFIX ex: <http://example.com/>
SELECT * WHERE ({

?comment ex:creator ex:user;
ex:content ?content;
ex:reply ?message.

?message ex:hasTopic ?topic;
ex:forum ?forum.

?forum ex:name ?name.

}

Figure 3. On the left, an example illustrates a shape index that maps a set of IRIs, represented using a URI template [28], to a user
shape, and a specific IRl to a post shape. On the right, an example illustrates of a graph star pattern where the main subject is
?comment and is linked to the ?message and ? forum star patterns.

ifi=1

OstaT‘(Q)} le >1
)
q — IBYV returning the

{{Qstars}
qi =

{BQstar(O) lo€ quQstarGTi,

1

We also define a function Ssiqr :
subjects of the q; of a Q starG-

We propose a similar definition for the context of KGs
where we replace the query Q@ by a KG G. We denote this
structure a graph star.

Practical Considerations for Shape Indexes The construc-
tion and maintenance of shape indexes are beyond the scope
of this work. Although not evaluated here, shape indexes
seem to require less effort to generate than VoID descrip-
tions [10], as they do not include detailed statistics such
as triple counts. Nonetheless, VoID descriptions have been
successfully employed for query optimization in federated
queries [43].

Exposed schemas can also enhance interoperability, which
is important in many application domains [52, 8, 7, 51].
Thus, data publishers may have incentives to expose a shape
index not only to improve query engine performance but also
to satisfy other domain-specific requirements.

RDF data shapes can be prescriptive or descriptive.
For descriptive shape indexes, automatic RDF data shape
generation methods [23] can facilitate their creation. Entries
in shape indexes correspond to sets of IRIs, which can
be structured using URI templates [28], reducing the
need for exhaustive redefinition. For prescriptive shapes,
contributions in shape-based data integration [39] can help
prevent the generation of invalid resources.

Overall, shape indexes are lightweight metadata that can
be maintained with relatively low effort, especially compared
to statistical summaries such as VoID. Publishing them not
only benefits query optimization but also contributes to FAIR
data principles [69] by enhancing machine-actionability and
interoperability. Future work should investigate construction
and maintenance strategies for shape indexes in practical
deployment scenarios.
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Link Pruning Using Shape Indexes

In this section, we establish the connection between shape
indexes and link pruning in LTQP as a means to reduce
the search domain. In our method, rather than traversing the
entire DKG D associated with a shape index, the engine
traverses a subgraph D’ C D, effectively ignoring resources
that are knowably irrelevant to the query. Our approach
involves dynamically constructing new reachability criteria
during traversal that are more selective as we discover and
analyze shape indexes. These criteria are designed so that
they will always produce the same completeness of results
as the one that was defined at the beginning of the traversal.

To define more selective reachabilities, we propose
extending the reachability criteria by formalizing a chain of
criteria in a concept called composite reachability criteria. In
this form, a reachability criterion cp; is said to prune links,
and cd; is said to discover links. Equation 10 formalizes a
composite reachability criterion C'. where Cd is the set of
every cd;(t,iri, Q) and Cp the set of every cp;(t,iri, Q)
used by the engine.

C(t,iri, Q) = \/ cd(t,iri, Q) A /\ ep(t,iri, Q)

cdeCd cpeCp

(10)
To perform pruning in LTQP with shape indexes, an
initial reachability criterion Cj is defined. This criterion
must include a discovery reachability criterion cdshape index
that leads to a shape index document. After dereferencing
a shape index SI;, the query engine creates a set of links
IRI, containing the links to prune. The links to prune are
identified by evaluating the shape index to find IRIs that are
not relevant to the query, such that Equation 5 holds, given
that G’ is produced using Cy. This is done by performing
a query-shape subsumption check (E,5), defined in the next
section.
We define, given a query @),

IRI, = {U STi(s5)|Q Lgs 5§ N sj € dom(SIZ-)}

From this sets of links we define a pruning reachability
criteria;

cpsi(t,iri, Q) =iri ¢ IRI, (11
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The new reachability C; is created by taking the C'd and C'p
of C;_1 and adding cpg; to Cp.

This approach has three main limitations. First, it
assumes that data providers maintain up-to-date shape
indexes; outdated indexes may lead to incomplete results.
A similar criticism could be leveraged against the
method exploiting VoID descriptions [43]. Second, if the
query-shape subsumption check requires dereferencing all
documents, it becomes ineffective and may slow down
query execution. Third, the approach does not consider cases
where querying irrelevant documents could uncover relevant
ones via additional reachability criteria. Addressing this
would require translating these criteria into queries, which
is beyond the scope of this paper.

Query-Shape Subsumption

To determine whether the contents of a resource conforming
to a shape is query-relevant, we define a query-shape
subsumption problem denoted as @) T, S, meaning @) is
subsumed by S. A common approach for validating shapes
over an RDF graph is to translate shapes into SPARQL
queries ¥ 140, 14, 67, 17]. We denote the transformation
of a shape S into a query as 7'(S), which yields a query
@s. We transform open shapes as queries over the entire
KG, since they impose only the minimal constraints required
of a KG. When the problem is expressed as GSP T, (s,
we say that a GSP is subsumed by S if every result of
the GSP can be extended to a result of (s, and every
triple pattern in a GSP is equivalent to or a specialization
of those in the @s. Thus, the problem diverges from
traditional query containment and query subsumption [56,
48] under set semantics. Query-shape subsumption does not
consider only the set of solution mappings but also the
constraints of the queries. ¥ The complexity of the problem
is reduced by the fact that (), has a GSP structure where
predicates are always IRIs. This structure arises because
shapes describe constraints on predicate and object terms
of sets of triple. By exploiting this structure, it is possible
to design an algorithm with polynomial-time complexity.
Moreover, empirical studies suggest that real-world queries
tend to be relatively small [19, 11], making this algorithm
applicable in practice.

More formally, for a S to subsume a shape GSP, we
consider the queries Q and @Qs, where @), is the query
translated from S, and both are of the form

Qi = Qbody > Qunions

where Qpogy denote the Basic Graph Pattern (BGP) of
the query, and Qunions = |J Q.. represent the Union Graph
Patterns (UGPs) [68] expressed in normal form, meaning
each ), is of the form ¢; U g;, where each ¢ is a BGP contain
no union statements.

Algorithm We define the function subsumsSeraphstar N
Algorithm 1 to evaluate whether a GSP with a root
star pattern Qsiar, from Qsiarg, 1S sumbsumed by Q.
The algorithm also takes a set Evalgstq, to track which
partial graph star patterns have already been evaluated. The
algorithm iterates over each triple pattern in the root star
pattern )44, and uses the match function to check if there
exists a triple pattern in the BGP of Q5 whose domain of
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matched triples is a superset of that of the current pattern. If
the triple pattern cannot be found in the BGP, the algorithm
then looks into the UGPs of (). If an equivalent triple pattern
is found, the algorithm checks whether the object of the
triple pattern is the subject of a partial graph star pattern
in Qstarq,;. In this case, the algorithm recursively applies
the same procedure to this partial GSP. To avoid cycles
and redundant evaluations we maintain a set of evaluated
answers in Evalgq,. To solve Q@ &4 S, we need to consider
the number of GSP from the BGP with their number of
segments in the UGP and the number of BGPs in the UGPs.
This procedure is detailed in Algorithm 2. The following
paragraphs analyze the time complexity of the algorithm.

Time Complexity Analysis

Worst-case per Qstar Let ngsiqr denote the number
of distinct Qstar € Qstarc,- For each node Qstqr, the
algorithm iterates over its triple patterns (line 4 to 25),
resulting in a time complexity of O(nyy,, , ). For each triple
pattern that does not match the shape body (Qsboay), the
algorithm iterates over all union branches in Qsynion (line 7
to 11), making at most 7.5y,,0n, recursive calls. The algorithm
traverses the g, s graph however each q,s € Qsunion cannot
contain a Union Graph Pattern (UGP), and is therefore
always of the form Qs = Qsboay, making this branch (line
5 to 15) of the algorithm after a first execution not the worst
case with a complexity of O(nfp o Nsunion )-

After the first execution, the worst-case scenario becomes
one in which the triple patterns matches a pattern in Q) sbody,
and the condition O(tp) € Sstar(Qstarc,) holds (line 17 to
22). In such cases, the algorithm recursively explores the
corresponding partial Graph Star Pattern (GSP) by executing
SubsUMSgraphstar> following a graph traversal paradigm.

Tree Traversal Argument Although Qstarc, 1S a graph,
the algorithm avoids cycles due to “caching”, once a node
Qstar 18 evaluated, its result is stored in Fvals,,.. Therefore,
each node is visited at most once, and the overall traversal is
equivalent to a tree traversal of size ngstar < |Qstara, |-

Total Complexity Letnyy,,, , —denote the number of triple
patterns in a particular Q) s44,, and let ny, be the total number
of triple patterns across all nodes, so

=)

Qstar€Qstara;

nthstar

Then the total number of recursive operations over all
nodes is bounded by:

Ngstar
O § Nsunion * n?
PQstar;
i=1

o (nsum’on

*We only consider shapes that can be transformed into a single SELECT
SPARQL query [14].

8In this sense, it bears some similarity to query containment under bag
semantics, particularly through the notion of “goals-onto” containment
mappings [13, 2].

Ngstar
2
. n

i=1
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Algorithm 1 Check if a GSP is subsumed by Qs (subsumsgraphstar)

Input: Qstar, Qstara, Qs = stody > Q sunions> Bvalstar

Output: true or false whether the root of a graph star pattern @Q s¢4. Subsumes a shape.

10 if M(Sstar(Qstar)) € Bvalsiar then
2 return M (Ssiar(Qstar))

3: endif

4: forall tp € Qstqr do

5: if not match(tp, Qsbody ) then
6: hasOnePath <« false

7 forall g5 € Qsunions do

8 if subsumsgraphstar (Qstar, QstarG, qus, Evalstar) then
9: hasOnePath < true

10: end if

11: end for

12: if not hasOnePath then

13: Evalsiar < Evalsiar U (M (Sstar(Qstar)) — false)
14: return false

15: end if

16: else

17: if O(tp) € Sstar(Qstarc) then

18: Evalstar < Evalstar U (M (Sstar(Qstar)) — true)
19: if not SUbsu"nSgraphstar(Qsta,ro(tp) € Qstarc, Qstara, Qs, E'Ualstar) then
20: Evalsiar < Evalsiar U (M(Sstar(Qstar)) — false)
21: return false

22: end if

23: end if

24: end if

25: end for

26: return true

Ngstar

>

i=1,j=1,i#j

. 2 — .
O | Msunion * | T "PQarar;  MPQutar,

0] (nsunion . n?p)

Algorithm 2 Check if a query ) subsumes a @,
(subsumsq)

Input: Q, Qs and Evalsiar
Output: true or false whether the shape subsumes Q.
for all Qsrarc, € Q do
forall Qstar, € Qstarc, do
if subsumsgraphstar (Qstars s QstarG, ?) then
return true
end if
end for
end for
return false

Time Complexity of the subsumsq Algorithm The time
complexity of the subsumsq algorithm is straightforward to
derive, as it consists of iterating over the GSP of the query
and applying the subsumsgrapnstar algorithm. Thus, the time
complexity is given by:

0 (nsunion : ntmeaw "NQstarman aner) (12)

Where, ngp,,.. is the maximum number of triple patterns
in any QstarGs NQ.1a,,,,, 18 the maximum number of Qsar
patterns in any Qgtqra, and ng_,,, . is the number of Graph
Pattern Structures (GPS) in the query Q.1

Experimental Evaluation

We implemented our approach using the LTQP version of
the Comunica query engine [62]. We chose Comunica due to
its modularity [61] and its established use in several LTQP
studies [9, 60, 20, 29, 22, 63]. All implementations are
open-source and are provided in the supplementary material.
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Similarly to other LTQP studies, we used SolidBench [60],
which is based on the LDBC social network benchmark [4],
to evaluate our contribution. Furthermore, SolidBench was
developed because no LTQP benchmark existed prior to its
creation [33, 60], and, to the best of our knowledge, no other
benchmarks have been introduced since. We created an open-
source module to generate shape indexes in SolidBench,
based on user-provided mappings between ShEx shapes and
data model objects. The shape-annotated portion of the data
model includes posts, comments on posts, user profiles, user
settings, varia data (unstructured data), cities, and likes. The
datasets are Solid Pods [53, 16]. In this paper, we consider
a Solid Pod as a web-based file system that follows the
LDP specification [57]. Each Solid Pod, alongside contains
its data, a shape index and separate resources for each
shape definition. Some shapes are nested within others.
For example, user profiles are associated with cities, and
comments are associated with posts. Depending on the pod
instance, certain data model objects are materialized in a
single file, while others are distributed across multiple files.
The benchmark provides queries that simulate typical read
actions in social media use cases, such as retrieving replies to
posts or identifying users connected to a given user. Queries
may range from being highly selective with small result sets
to broad with larger result sets, and in some cases can also be
characterized as data-model selective. The datasets contained
approximately 4,200,000 triples and 1,528 subwebs, which,
in this context, are Solid Pods. The shape indexes contain 13
triples each, while the largest shapes have up to 150 triples.
This can be considered insignificant, particularly because the
number of triples does not scale with the size of the subwebs.
The entire data model and query templates are available in
the supplementary material.

9 Sharing the evaluation results Evalssq, from SubSUMSgraphstar could
reduce execution time and potentially the algorithm’s complexity.
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To evaluate our approach, we conducted the following
experiments:

* We measured the execution time and results of our
query-shape subsumption algorithm using the shapes
from the study.

* We then compared our shape index approach to state-
of-the-art Solid Pod network traversal algorithms:
one leveraging the type index specification [60], and
another using the LDP specification [60], in a network
where each Solid Pod provides a complete shape
index.

* We analyze the relationship between the number of
HTTP requests and query execution time, drawing on
data collected across all experiments.

Subsequently, we assessed the resilience of our approach
by gradually reducing the shape index information across the
network by performing the following experience:

* We measured query execution time in networks where
0%, 20%, 50%, and 80% of Solid Pods expose a shape
index.

* We measured query execution time in networks where
20%, 50%, and 80% shape indexes are complete.

* We measured query execution time in networks having
shapes that incorporate only data from the Solid Pods
and shapes providing a minimal dataset description
where the object constraints are always an IRI or a
literal.

We conducted the experiment using queries from five
different instantiations of SolidBench query templates,
varying the starting pods in a random yet reproducible
manner. Experiments were repeated 50 times with a 2 minute
timeout per query execution. They were conducted on an
Ubuntu 20.04.6 LTS machine with a 2x Hexacore Intel
E5645 CPU and 24GB RAM.

Evaluation Against Other Approaches

Analysis of the Query Execution Time Figure 4 demon-
strates that the shape index approach performs queries faster
than or comparable to state-of-the-art Solid Pod network
traversal algorithms across all query templates except S4.
In the appendix Figure 16 present the ratio of execution
time between the type index approach and the shape index
approach. Table 2 presents the statistical significance by
query templates. The shape index approach allows for suc-
cessful termination of S7 template queries, which other
approaches cannot complete due to timeouts resulting from
an excessive number of HTTP requests. Query processing
with the shape index approach requires as little as 13% of the
execution time needed by the type index approach, achieving
up to 7-fold performance improvement for S1 queries. The
queries that perform the best are those in which the number
of HTTP requests decreased the most, as can be inferred
from the analysis of Table 1. This table presents the average
percentage of query-relevant resources per query template,
derived from the where-provenance [12] of the query results
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and the number of HTTP requests. Queries with a high
decrease of the number of HTTP request are known to be
data-model selective due to the query-shape subsumption
algorithm. In our context, a query that requests a single data
model object is classified as data-model-selective, since in
our benchmark the subwebs contain at most five distinct
data model objects. From the analysis of the queries, those
derived from templates D1, D4, S1, and S3 (S3 is a template
that cannot complete the execution before the timeout) are
identified as data-model-selective and, as expected, exhibit a
reduction in both the number of HTTP requests and the query
execution time. Figure 5 shows the distribution of query
execution times for each instance of the S1 query template.
The distributions for all query templates are provided in the
supplementary material. Queries from templates D6 and D7
show no reduction because they require nearly every data
model objects in the datasets to be processed by the engine,
making our approach ineffective in these cases. Figure 6
shows the distribution of query execution times of queries
of the D7 templates. We notice that queries from template
S4 with the shape index performed worse in every instance,
with an increase in query execution time of up to 2.80 times
as shown in Figure 7. This is further illustrated in Table 1,
which shows that for these queries, the type index traversal
algorithm achieves a ratio of query-relevant resources deref-
erenced of 100% or 50%, compared to only 6% with the
shape index approach. The poor performance is due to the
fact that the links acquired by the other approaches were
selected based on reachability criteria that did not leverage
the structural properties of the dataset, such as in the case of
Cmatch [34], a reachability criterion based on the structure
of the query. In contrast, the shape index approach always
enforces the use of these properties, resulting in additional
HTTP requests and increased processing time. However,
those queries were already efficient, with the type index
traversal approach completing in only about 0.30% of the
maximum allowed execution time. Nonetheless, these results
still highlight a category of queries and networks for which
our approach is not well-suited. Those results mostly validate
H1 and H2 however the shape index approach can drastically
increase the execution time when the structural properties are
not used.

Temporal Analysis To further our analysis, we compare
three temporal metrics: the arrival time of the first results,
the termination time, defined as the duration between the
arrival of the last result and the end of query execution,
and the waiting time, which we define as the accumulated
time gaps exceeding one second between the reception
of consecutive results. We choose a 1 second threshold
for waiting time based on research in responsive system
design. These waiting time guidelines are derived from
the field of neuropsychology and are considered stable
regardless of technological expectation for human users [47,
45]. A waiting time below 0.1 seconds is perceived as
instantaneous, a delay of up to 1 second preserves a seamless
flow of thought, while delays exceeding 10 seconds tend to
cause user attention to drift [45]. We additionally computed

It should be noted that the type index and shape index approach are
extensions of the LDP approach.
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Figure 4. Performance comparison of different methods for query execution. The shape index performs better than both the type
index and LDP for data-model selective queries. The shape index is also able to answer a query from template S7 which was not
possible with the other approaches. For non-data-model selective queries, execution time differences are not statistically significant,
as shown in Table 2. An exception occurs with queries of template S4, which do not leverage the structure of the publication
environment. Results are presented by query template, leading to a multimodal distribution; therefore, variance analysis does not

indicate statistical significance.

Approach/ Query Template | D1 D2 D3 D4 D5 D6 D7 S1 S4 S5
shape index (%) 1422 | 3891 | 5252 | 1520 | 933 | 187! | 83! | 1212 | 6§ | 103"
type index (%) 4§ | 3585 | 515% | 93° | 83% | 2082 | 923 | 4§ | 80130 | 33

Table 1. The percentage of query-relevant resources. For most queries, the percentage of query-relevant resources is low (cell
values are shown as avg">). Shape index generally matches or outperforms the type index, except for templates D6, D7, and S4.

min

The difference for S4 is more pronounced, reaching 100% with the Type Index compared to only 6% with the shape index.
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Figure 5. Distribution of query execution times (sample size:
50) for queries derived from the S1 template. The results show
that the execution time of data-model selective queries is
significantly reduced when using the shape index approach.

the diefficiency metric in relation to time (dief@r) [1], at
the previously mentioned time intervals: 0.1s, 1s, and the
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Figure 6. Distribution of query execution times (sample size:
50) for queries derived from the D7 template. The results show
that the execution time of non-data-model selective queries is
not significantly affected by the shape index approach.

arrival time of the final result. We did not choose 10 s as the
threshold, because queries that terminate complete in under
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Figure 7. Distribution of query execution times (sample size:
50) for queries derived from the S4 template. Queries that do
not exploit the structural properties of the dataset are
significantly negatively impacted by the shape index approach.
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L

Figure 8. The first result distribution by query template.
The shape index approach tends to produce the first results
earlier than the type index approach, particularly for queries
where the shape index achieves shorter total execution times.

10s. Tables 3 and 4 in the Appendix present the average
results for the metrics presented above.

For Most Queries, the Shape Index Approach Tends to
Produce the First Results Faster Figure 8 presents the time
of arrival of the first results for all query instances, grouped
by query templates. The plot indicates that, for most queries,
the shape index approach tends to produce results faster, as
shown by distributions concentrated around lower first result
arrival times. Templates D1, D2, D5, and S1 exhibit the
most significant improvements in first-result latency when
using the shape index. Surprisingly, although queries from
templates D2 and D5 sometimes performed worse with
the shape index approach, as shown in Figure 4, they still
produced the first result faster than with the type index
approach. This suggests that, although the shape index does
not explicitly prioritize early result generation, the pruning
it performs may implicitly favor faster first results arrival
with some queries and networks. This implicit prioritization
does not apply uniformly across all templates. For example,
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Figure 9. The termination time distribution by query
template. With the exception of queries from templates D6 and

D7, which have similar execution times, the shape index either
maintains or improves query termination time.

queries from template D3 exhibit faster execution times
across most instances when using the shape index. However,
as shown in Figure 8, the shape index also results in a
higher mean and a longer tail for the time to first result. This
difference arises from the structure of the subwebs targeted
by D3 queries. In some cases, a result can be obtained from
a document located one link away from the seed document.
The direct dereferencing using the type index approach can
exploit this proximity, enabling early result generation. In
contrast, the shape index approach may delay first result
production because it relies on discovering the shape index
documents before exploring the rest of the subweb.

The Shape Index Approach Can Reduce the Termina-
tion Time Figure 9 presents the termination times for the
query execution instances, grouped by template. For queries
where execution time improved and termination time was
non-zero, such as those from templates D1, S1, and S5,
the shape index approach significantly reduces termination
time. This improvement aligns with the substantial increase
in the percentage of query-relevant resources dereferenced
when using the shape index, as shown in Table 1. A long
termination time generally indicates that, toward the end of
execution, a large number of non-query-relevant resources
are being dereferenced. Although Table 1 does not show
the temporal progression of this percentage it still give
us information about the quantity of non-query-relevant
resources being dereferenced. For templates D5 and D6, the
termination-time distributions for the shape index approach
have a similar shape but exhibit a longer tail, particularly
D6, which can take up to one second longer to terminate.
In these cases, Table 1 shows that the proportion of query-
relevant resources dereferenced using the shape index is
within +1% of that obtained with the type index. A similar
situation is observed for template D3, although in this case
the type index achieves a termination time of zero. The
longer termination times for D5 and D6 may be attributed
to the additional dereferencing of shape index documents.
Notably, for template D6 in Figure 4, an outlier query
increases execution time by approximately a ratio of 1.2,
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Figure 10. The waiting time distribution by query template.
Except for queries from template D1, the shape index approach
tends to either maintain or worsen the waiting time.

shape index
— type index
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0.000

D1 D2 D3 D4 D5 D6 D7 S1 S4 S5 S7
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Figure 11. The dief@0.1s distribution by query template. At
0.1 second, the value is zero for every query template except
S4. This is expected, as for all other templates the first result
arrives after 0.1 seconds.

which could explain the extended tail and the additional
second of termination time.

The Shape Index Approach Generally Increases the
Waiting Time Figure 10 presents the waiting time for the
query instances, grouped by template. With the exception
of queries from the D1 template, which show a decrease in
waiting time, the shape index approach generally increases
the waiting time for queries that experience a delay before
producing results. This increase is likely due to the additional
dereferencing of shape index documents that must occur
before relevant results can be generated. Such dereferencing
can introduce a gap before the first results appear, even
when the total query execution time is reduced or remains
unchanged.

The Shape Index Approach Improve Can Improve
the Diefficiency Metric Figures 11, 12, and 13 show the
dief@t values measured at 0.1 seconds (dief@0.Is), 1 second
(dief@1s), and at the time of the last result (dief@Ir).”* The
dief@0.1s results show that, except for S4, no approach is
able to produce instantaneous results, which aligns with the
observations in Figure 8. Overall, this indicates that, with the
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Dl D2 D3 D4 D5 D6 D7 S1 S4 S5 S7
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Figure 12. The dief@1s distribution by query template. At 1
second, the shape index approach shows a higher dief@1s
(higher is better), indicating that more results can be obtained
by users while maintaining a seamless flow of thought.
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Figure 13. The dief@ir distribution by query template. At
the time of the last result, the shape index approach tends to
exhibit a similar dief@t (higher is better).

current approaches and benchmark, producing instantaneous
results is not feasible. The dief@ Is results indicate that the
shape index approach generally produces a higher number
of early results, except for queries from templates S4 and
S5. This result is expected for S4 as the performance
with the shape index is drastically reduced as shown in
Figure 4 however with S5 it is less expected as it is a
query template that perform better with the shape index.
It would be expected to see a performance improvement
in terms of dief@t¢ at the last results for S5, however, the
values are zero or close to zero. This is because these queries
produce only a single result, so dief@¢ naturally tends toward
0 unless there is a very large difference in execution time
between the two approaches. =+ These results suggest that,
for fast early result arrival, the shape index approach tends
to performs better. This finding is particularly relevant in
the context of social media applications, where it is often

**This means that if, for a given query, the shape index approach produces
the last result at 5 seconds and the type index at 5.10 seconds, then the
dief@t metric will be computed at 5.10 seconds.
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more important to obtain fast, relevant results to maintain
interactivity than to retrieve complete results. The dief@Ir
show a similar behavior but with lesser performance gain
compare to dief@ s (see Table 3 to compare the average
values).

Query-Shape Subsumption Evaluation

The empirical evaluation of the query-shape subsumption
algorithm shows that its execution time with the more
detailed shapes from our experiment is negligible, with a
maximum execution time of 5Sms (0.0039% of the timeout).
Table 5 present these results. This outcome is expected, as the
algorithm has polynomial time complexity, and the shapes
and queries in the experiments are small and not deeply
nested. This result validates H3.

Evaluation of the Resilience of the approach

The final part of the results analysis focuses on the resilience
of the shape index approach. In this analysis, we examine
the impact of reducing the shape index information in the
network and compare the results with a network in which
all pods are exposed to detailed, complete shape indexes.
Figure 14 presents three plots that illustrate the results of
our evaluation of the approach’s resilience. The plot on the
left shows the variation in the availability of shape indexes
across the network. As expected, we observe that queries
that performed better in Figure 4 tend to perform worse
with reduced shape index information, while queries that
performed poorly improved.

The plot in the middle shows the variation in the
percentage of shape index entries using closed shapes. The
results here are more nuanced. While there is a general
trend for query evaluations with a lower percentage of
closed shapes to behave similarly to the plot on the left,
we also observe both performance gains for some query
templates and a drastic performance loss for the queries of S1
when 80% of the shape entries are closed. The performance
gain occurs because not every entry needs to be closed
to prune the query irrelevant documents. Entries mapped
to an open shape are always considered relevant because
the shape translates to a query fetching the whole KG. If
the subsumption check leads to the same conclusion, then,
given a closed entry, the execution will be more expensive
because when shapes are nested, the nested shapes need
to be dereferenced to solve the query-shape subsumption
algorithm. For the queries of S1, with 80% of closed shape
entries, the performance lost was due to random chance, as
the discriminatory entries were provided with open shapes in
multiple instances when looking at the raw data.

The right plot shows the variation in the level of detail
of the shapes by reducing their detail. Since the shapes are
closed in this experiment the level of detail was varied by
changing the constraint of the object terms. Most queries
tend to perform similarly or better, except for those of
S1. Upon analyzing the output of our query subsumption
algorithm, we observe that the additional information to
the shape provided in our base approach does not affect
the algorithm’s results. However, in the baseline shape
index experiment, the engine must dereference more shapes,
potentially increasing execution time. Queries of template
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S1 are the only ones where the added information can
discriminate multiple parts of the datasets’ domain leading
to worse performance. This indicates that in some situations,
adding more information can be beneficial. This sensitivity
of the quantity of the information in the index also helps to
explain the results for S1 queries in the middle plot. In that
case, the engine still had to dereference shapes from each
dataset, and the information available was likely insufficient
to significantly discriminate between resources.

These results show that H4 and HS are rejected: reducing
information is not always detrimental to query execution.
It becomes detrimental only when the omitted information
is critical for determining the query relevance of resources.
Therefore, the outcome is dependent on both the query
and the network. Moreover, the completeness of shape
indexes has a smaller impact on performance than their
presence or absence. H6 is accepted; it is possible to retain
performance gains even in networks with reduced shape-
index information.

Relationship Between HTTP Request and
Query Execution Time

To study the relationship between the number of HTTP
request and the query execution time, the ratio of HTTP
request of the different approaches and the ratio of query
execution time was calculated in relation to the type index
approach. Figure 15 presents our analysis. The relationship
between HTTP request and query execution time can be
divided into two regimes. In the first regime (left figure),
where the shape index approach reduces the number of
HTTP requests, we notice a positive linear correlation with
a Pearson correlation coefficient (PCC) of 0.84 and a high
statistical significance (< 0.01). We can notice that toward
the end, the curve appears to exhibit a more exponential
behavior. Evaluating an R? score with an exponential best
fit curve we get a score of 0.72 and 0.71 for a linear curve.
Above a ratio of approximately 0.85 of HTTP requests, the
shape index approach did not guarantee a reduction in query
execution time. There can be multiple explanations for this
behavior. First, the methods have some overhead due to the
query-shape subsumption algorithm and the state retention of
the pruning reachability criteria. However, the query-shape
subsumption algorithm execution time is negligeable for one
execution and the state retentation has a polynomial time
complexity, thus it should not have a high impact on the
execution time. Another explanation is the number of HTTP
requests that are performed in parallel. The LTQP version
of Comunica performs 10 HTTP requests in parallel, thus,
we would expect that with a low number and ratio of HTTP
requests, the performance would remain largely unchanged
or slightly worse, which is what can be observed in the curve.

In the second regime (right figure), the shape index
increases the number of HTTP requests. We notice a
moderate positive linear correlation with a PCC of 0.44.
The overall correlation between reducing HTTP requests and
query execution time is positively linear, with a moderate
linear correlation with a PCC of 0.56 and a high statistical
significance. The correlation is more linear than exponential
with R? scores respectively of 0.31 and 0.24, however due
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to the low score it is difficult to determine the nature of the
distribution.

Explaining the two behavioral regimes observed in the
data is challenging. One possible explanation for the poorer
performance of the shape index approach in certain cases
could be the low number of samples. However, we also
observe that the relationship between the two variables
differs significantly across the regimes. In the first regime,
the relationship is close to one-to-one, with a slope of
approximately 0.91. In contrast, the second regime shows a
much flatter slope of around 0.08, suggesting that the ratio
of HTTP requests has a weaker influence. This disparity
indicates that the explanation may be more complex than just
a sample size issue. The increased number of HTTP requests
can be attributed to queries executed using the D6, D7,
and S4 templates, with the S4 template causing the largest
increase. Queries from the S4 template typically require only
1 or 2 HTTP requests, so when running with 10 concurrent
requests, the impact on performance is limited. On the other
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hand, queries using the D6 and D7 templates, executed with
the type index traversal algorithm, required 26, 23, and 129
HTTP requests. This significantly higher number of HTTP
requests explains why the increase in HTTP requests had a
greater impact on query execution time.

These results partially validate H7, as a linear relationship
is observed when there are a sufficient number of HTTP
requests and a significant reduction ratio, taking concurrent
requests into account.

Conclusion

In this article, we introduced a pruning mechanism for
LTQP, extending the concept of reachability criteria and
leveraging shape indexes. Using the SolidBench benchmark,
we demonstrate that our approach significantly reduces the
number of HTTP requests without degrading performance,
particularly when queries exploit the structural properties of
the dataset. In the best-case scenario, query execution time
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improved by up to 7 times, and a previously unexecutable
query completed successfully. On average, performance
improved by a factor of 1.76. In the worst case, execution
time increased by 2.8 times for a query that did not exploit
the network structure; however, this query was already highly
efficient, consuming only 0.30% of the maximum allowed
execution time. Our method also handles scenarios with
partial or reduced shape index information in networks,
making it relevant for decentralization efforts that allow
third-party clients to efficiently query large, heterogeneous
datasets.

The approach imposes minimal overhead on servers,
requiring only the serving of small static shape index files.
This approach has the potential to benefit linked data-
driven decentralization efforts such as the Solid ecosystem
and support standardization efforts such as the Linked
Web Storage Working Group ¥ by improving query
processing throughout these networks without requiring
the maintenance of large centralized indexes between data
providers. This work opens a new line of research in
integrating data models directly into decentralized query
execution, particularly for non-indexed networks. Future
work could focus on supporting filter expressions in the
query-subsumption algorithm, enhancing query planning
in LTQP [59] with RDF data shapes, maintaining and
developing shape indexes, and exploring other low-cost, low-
maintenance indexing structures.

Supplemental Material Statement: All source code,
benchmark queries, datasets, raw results, and supplementary
analyses are available online.
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Figure 16. Comparison of query execution time with the type index approach. The ratio represents how the execution time of each

method compares to that of the type index. A ratio greater than 1 indicates a slower execution time (lower is better). The shape

index approach performs similarly or better than the other methods, except in the case of S4.

query template | relation execution time | p-value average ratio HTTP request
Dl lesser 1.14E-36 0.57
D2 lesser 4.42E-04 0.88
D3 similar 7.47E-01 (RH) | 0.97
D4 lesser 2.07E-17 0.65
D5 lesser 5.58E-03 0.88
D6 similar 2.56E-01 (RH) | 1.12
D7 similar 7.83E-01 (RH) | 1.12
S1 lesser 1.12E-83 0.33
S4 greater 3.76E-22 13.00
S5 lesser 3.12E-17 0.44

Table 2. Table comparing the shape index approach to the state-of-the-art. RH, indicate that the p-value is associated to the
rejected hypothesis. Every query performs better or similarly to the state-of-the-art with the shape index approach except for

interactive-short-4. One might expect the average ratio of HTTP requests for D6 and D7 to be one. In our implementation, however,
the query subsumption algorithm naively retrieved nested shapes, leading to some shapes being dereferenced multiple times. This

is an implementation artifact rather than an inherent property of the method. Even in this worst case, the impact on the number of
HTTP requests is small and does not affect the overall conclusions, especially given that requests are sent in parallel.
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20 Journal Title XX(X)
Template Shape Index Type Index LDP
IT (n x ms) | SFT (n x ms) | LRT (n x ms) || IT (n x ms) | SFT (n x ms) | LRT (n x ms) || IT (n x ms) | SFT (n x ms) | LRT (n x ms)

D1 0.00 1.70 16.96 0.00 0.22 11.22 0.00 0.21 10.67

D2 0.00 1.91 119.54 0.00 0.31 119.75 0.00 0.23 124.94
D3 0.00 0.00 85.14 0.00 0.00 97.01 0.00 0.00 85.78

D4 0.00 0.36 10.25 0.00 0.06 1.92 0.00 0.07 1.75

D5 0.00 1.03 13.82 0.00 0.74 12.18 0.00 0.74 12.16

D6 0.00 0.08 16.08 0.00 0.08 20.04 0.00 0.08 18.88

D7 0.00 0.08 0.28 0.00 0.07 0.20 0.00 0.07 0.21

S1 0.00 0.68 1.25 0.00 0.18 0.28 0.00 0.18 0.27

S4 0.00 0.49 0.00 0.01 0.66 0.04 0.01 0.66 0.04

S5 0.00 0.25 0.05 0.00 0.34 0.10 0.00 0.37 0.13

S7 0.00 0.00 0.00 - -

Table 3. Table showing the average diefficiency metric for different approaches across query templates, measured at three time

thresholds: instantaneous time (IT, 0.1s), seamless flow time (SFT, 1s), and at the time of the last result (LRT). The diefficiency is
expressed as the number of results (n) per millisecond (ms). For most queries, diefficiency at IT is 0, as no results are produced
quickly enough. At SFT, the shape index approach generally yields better performance, while at LRT, results tend to converge
across approaches.

Template Shape Index Type Index LDP
FT(s) | TT(s) | WT (s) || FT(s) | TT (s) | WT (s) || FT (s) | TT (s) | WT (s)

D1 0.66 0.11 0.23 1.51 1.09 0.21 1.55 1.02 0.21
D2 1.25 0.00 0.78 1.91 0.00 0.39 1.88 0.00 0.38
D3 3.74 0.00 0.00 3.67 0.00 0.00 3.77 0.00 0.00
D4 1.74 0.00 0.00 3.14 0.00 0.00 3.17 0.00 0.00
D5 0.49 0.03 0.22 1.17 0.04 0.01 1.18 0.04 0.00
D6 1.42 0.02 0.58 1.40 0.04 0.49 1.45 0.07 0.49
D7 1.48 1.19 0.00 1.56 1.12 0.00 1.55 1.11 0.00
S1 0.32 0.00 0.00 1.30 0.09 0.00 1.31 0.09 0.00
S4 0.51 0.01 0.00 0.34 0.01 0.00 0.34 0.01 0.00
S5 0.91 0.00 0.00 0.78 0.68 0.00 0.75 0.76 0.00
S7 - - 0.00 - - - - - -

Table 4. Continuous performance metrics showing First Result Arrival Time (FT), Termination Time (TT), and Waiting Time (WT).
FT refers to the time taken for the first result to be delivered. TT captures the delay between the last result and the termination of
the query engine. WT represents the total time the user waited more than one second between consecutive results, indicating
interruptions in the seamless flow experience.

Query Template | avg (ms) | std (ms) | max (ms)
D1 0.062 0.073 0.539
D2 0.106 0.461 4.655
D3 0.040 0.034 0.133
D4 0.043 0.068 0.672
D5 0.015 0.015 0.025
D6 0.068 0.039 0.174
D7 0.041 0.101 1.005
D8 0.033 0.045 0.426
S1 0.074 0.064 0.560
S2 0.309 0.327 2.791
S3 0.072 0.069 0.650
S4 0.042 0.032 0.144
S5 0.043 0.057 0.551
S6 0.132 0.343 3473
S7 0.176 0.158 0.971

Table 5. Query-Shape containment computation time (100 samples) is negligeable with the most restrictive shapes of our
experiments.
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