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Abstract. The discovery of new drugs based on natural products is related to the efficient extraction of biochemical
knowledge from scientific literature. Recent studies have introduced several enhancements to the NatUKE benchmark,
improving the performance of knowledge graph embedding methods. These enhancements include refined PDF text
extraction, named entity recognition, and improved embedding techniques. Notably, some approaches have incorporated
large language models (LLMs). Building on these advances, this study explores the fine-tuning of LLMs with similarity
search, exploring both open-source and proprietary models for the automatic extraction of biochemical properties. We
fine-tune the LLMs with similarity search to mitigate textual inconsistencies and enhance the prediction of five target
properties: compound name, bioactivity, species, collection site, and isolation type. Experimental results demonstrate
that similarity search consistently improves the performance, and open-source models can be competitive, occasionally
outperforming proprietary models. We also find that the effectiveness of fine-tuning varies across models and biochemical
properties. Overall, our findings highlight the potential of LLMs, particularly when fine-tuned and augmented with
similarity search, as powerful tools for accelerating the extraction of biochemical knowledge from scientific texts.
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1. Introduction

The search for new drugs remains one of the most important and challenging goals in biomedical research [1].
In this context, natural products have played a central role in drug development due to their structural diversity
and biological relevance, making these compounds promising candidates in drug discovery pipelines [2]. Between
1981 and 2019, approximately 23.4% of all approved drugs were derived from or inspired by natural products [3],
highlighting their ongoing importance in modern pharmacology. However, the identification and characterization
of these compounds continue to be a complex and time-consuming process, performed manually by experts [4].
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Consequently, there is an increasing need for computational approaches that can efficiently explore the vast
body of academic literature to extract relevant biochemical knowledge.

With the growing volume of scientific literature in the field of chemistry containing valuable information
about natural products, new opportunities have emerged for integrating and exploring biochemical knowledge
[5]. A notable example is NUBBE;, a database that compiles Brazilian natural product compounds along
with associated biochemical and biological information extracted from scientific articles [5]. This abundance
of heterogeneous data has motivated the use of knowledge graphs as a promising strategy for integrating and
representing semantic relationships among biochemical entities [6]. In particular, RDF (Resource Description
Framework) representation, structuring nodes and edges in the subject — predicate — object format, enables
knowledge modeling in a flexible, interoperable, and extensible manner, as RDF allows knowledge graphs to be
composed of data from a single domain [7].

To make the NUBBEy;, data semantically integrable, do Carmo et al. [6] developed the NUBBUEy},, which
is a knowledge graph that represents, in RDF format, the entities and relationships present in the database.
This graph serves as a foundation for knowledge mining and machine learning tasks in the domain of natural
products. Based on NUBBE},, the NatUKE benchmark was constructed to evaluate automatic knowledge
extraction methods from scientific literature in chemistry. NatUKE consists of a standardized train-test split (gold
standard), derived from NUBBEy},, aimed at predicting five biochemical properties extracted from scientific
articles: compound name, bioactivity, species, collection site, and isolation type. To enable a robust comparative
evaluation, the benchmark has prior execution of four baseline knowledge graph embedding methods [6].

Several previous studies have explored knowledge graph embedding techniques on NatUKE, employing meth-
ods such as DeepWalk, node2vec, metapath2vec, and EPHEN [6]. More recent strategies have employed BFS-
based searches to enrich the local context before generating embeddings [8]. Other approaches combine named
entity recognition with graph embeddings to improve the semantic anchoring of texts to knowledge graphs
[9]. Techniques integrating language models such as GPT-3.5 have also been applied during the preprocessing
stage of scientific texts for subsequent use with embedding-based methods [10]. Recent advancements, such
as the evolution of the EPHEN method [11], demonstrate that the quality of text extraction and the use of
embeddings derived from Large Language Models (LLMs) can directly impact performance on the NatUKE
benchmark. However, despite the increasing use of LLMs in these pipelines, there remains a lack of approaches
that directly employ these models to extract specific biochemical properties from scientific articles.

We propose utilizing LLMs for biochemical property extraction, exploring both open-source and proprietary
models in various scenarios, including zero-shot and fine-tuning. While fine-tuning contributes to the better
adaptation of models to the biochemical domain, the textual nature of the prediction remains subject to subtle
writing errors, such as orthographic variations or the generation of biochemically similar but incorrect names,
i.e., issues that significantly affect performance evaluation. To overcome these challenges, we propose a semantic
similarity search strategy that can mitigate minor errors and capture conceptually equivalent expressions close to
the gold standard. In this context, we introduce new models resulting from the fine-tuning of LLMs integrated
with similarity search mechanisms, tailored explicitly for the task of extracting biochemical properties from
scientific texts. Based on the conducted experiments in the NatUKE benchmark pipeline, we aim to answer the
following research questions (RQ):

RQ 1. Which method is most effective for biochemical property extraction, achieving SoTA results?
RQ 2. Which biochemical properties yield the best and worst overall results, and why?

RQ 3. How competitive are open-source models compared to proprietary paid models?

RQ 4. What is the impact of fine-tuning LLMs on the biochemical property extraction task?

RQ 5. What is the impact of the similarity search strategy on the quality of extraction?

RQ 6. How does the incremental addition of training data affect the performance of LLMs?

We divide the remainder of the article as follows: Section 2 presents related work on automation extraction,
graph embeddings, knowledge graphs, named entity recognition, and LLMs. Section 3 presents our proposal for
extracting biochemical properties through fine-tuning and similarity search through LLMs. Section 4 presents
the experimental evaluation with information about the dataset, experimental setup, results, and discussion.
Finally, Section 5 presents the study's conclusions and future work.
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2. Related Work

Extracting biochemical information from scientific texts is a challenge in natural language processing (NLP)
and bioinformatics. Many approaches have been proposed to automate biochemical knowledge extraction,
aiming to transform unstructured data into structured representations to enable large-scale analysis [12]. In this
section, we present key advances in areas related to this challenge, with five complementary fronts: automated
extraction methods that support the identification of entities and relations; semantic representations based on
word embeddings and knowledge graph embeddings, which capture latent meanings and complex relationships
between concepts; named entity recognition (NER) techniques, which are essential for the accurate identification
of biochemical entities in domain-specific texts; and large language models, state of the art in NLP [11].

2.1. Automation extraction

Recent advancements in language models and information extraction systems have significantly impacted the
extraction of knowledge from academic literature, with applications spanning various domains. The Plumber
framework [13] represents a significant advancement in this area, providing dynamic information extraction
pipelines that are adaptable to diverse data types. This framework is particularly notable for its ability to
dynamically create pipelines based on input sentences, as evaluated on DBpedia and ORKG, marking a significant
stride in the extraction of structured data. In [14] the authors extended the Plumber framework to 40 reusable
components in extraction subtasks like coreference resolution, entity linking, and relation extraction. With this
new addition Plumber is capable of dynamically generating 432 distinct pipelines for knowledge extraction,
allowing more custom extractions to be automatically tailored.

Complementing Plumber, the T2KG system [15] focuses on transforming unstructured text into structured
Knowledge Graphs (KGs). It employs a novel hybrid approach for predicate mapping, enhancing the organization
and searchability of knowledge bases. In this evolving landscape, the extension of BERT, KG-BERT [16], plays
a pivotal role. BERT's advanced bidirectional representations and fine-tuning capabilities facilitate a deeper
understanding of textual data. KG-BERT extends this by treating KG triples as textual sequences for knowledge
graph completion, demonstrating a significant improvement in triple classification and link prediction tasks.

The Seq2RDF system [17], with its encoder-decoder framework, effectively bridges the gap between natural
language and structured knowledge formats, translating narratives into structured RDF triples. This system
enhances utility in various applications by leveraging attention mechanisms and KG embeddings for effective
translation. On the other hand, starting from knowledge graphs to extract biochemical information, graph
embedding models can also bridge the gap, as they learn representations through graphs.

2.2. Graph embeddings

Word embeddings have witnessed rapid advancements, introducing various methodologies for capturing se-
mantic meaning in both textual and graph-structured data. Word2Vec [18] pioneered the use of neural networks
to generate vector representations of words that encapsulate their semantic meaning. They built up their work
based on the Skip-gram model, a technique for learning distributed vector representations of words that cap-
ture both syntactic and semantic relationships. However, their work is also applicable to the bag-of-words
model. Moreover, Word2Vec introduces extensions to enhance vector quality, including subsampling of frequent
words for speedup and more regular representations. Models could achieve these substantial improvements on
significantly larger datasets with a computationally efficient architecture [18].

DeepWalk [19] extended the concept of WordVec2 to graph structures by employing random walks to generate
node embeddings. The approach exhibits scalability as an online learning algorithm that builds incremental
results and is easily parallelizable. The concept of DeepWalk involves learning the social representations of a
graph’s vertices, which is enabled by modeling a stream of short random walks. DeepWalk can be described as
a generalization of language modeling. Notably, DeepWalk's representations achieved metrics up to 10% higher
than competing methods and, in some cases, outperformed baselines using 60% less training data in 2014.
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Node2Vec [20] advanced the technique by employing another random walk strategy, enabling greater adapt-
ability to various graph structures. This algorithmic framework employs a mapping technique that projects nodes
into a low-dimensional feature space, aiming to optimize the likelihood of preserving the network neighborhoods
of these nodes. They introduce a versatile concept for characterizing a node’s network neighborhood and devise
a biased random walk procedure that adeptly explores various neighborhoods.

Metapath2vec [21] further specializes in heterogeneous networks by utilizing meta-path-based random walks
and skip-gram models to capture nuanced structural and semantic relationships. To employ this approach, they
define the heterogeneous neighborhood function of a node, allowing for the skip-gram-based maximization of
network probability across various node types. Ultimately, they enhance the optimization process by introducing
an effective and efficient heterogeneous negative sampling technique. In the scenario of modeling biochemical
properties in knowledge graphs, these methods can be extended to knowledge graphs [6].

2.3. Knowledge Graph Embeddings

The representation of structured knowledge in vector spaces has been considerably advanced through Knowl-
edge Graph Embeddings. TransD proposes a fine-grained approach [22], which represents a named symbol object
as two vectors: one for the entity and one for the relation. Generalizing existing models, DistMult [23] provides
a framework for learning the representations of entities and relations in knowledge bases and using them to
extract logical rules. Providing a linear model based on Tucker decomposition TuckER [24] subsumes several
tensor factorization approaches for link prediction. ComplEX [25] performs matrix and tensor factorization with
vectors that contain complex values while retaining the mathematical definition of the dot product. Entities in
RotatE [26] are represented by complex vectors, while relations are expressed through rotations.

EPHEN [27] maps textual information about events through embeddings and the detailed relationships
between these events and their components to a low-dimensional vector space. The method is based on graph
regularization to propagate information between events and learn more semantic representations for nodes,
allowing the application of similarity-based strategies to perform tasks such as classification, clustering, and
link prediction. In this sense, do Carmo et al. [6] extend EPHEN for the extraction of biochemical information,
building a knowledge graph (NatUKE Benchmark), and performing link prediction between the article node
and a biochemical property node by the learned semantic embeddings to perform the extraction of biochemical
information. This strategy outperforms results from other graph embedding methods.

In addition, [8] also proposed a knowledge graph embeddings method based on BFS search in the NatUKE
Benchmark. The authors performed a BFS search on the biochemical knowledge graph to generate walks that
are input for training a word2vec model. The results significantly improved the extraction of compound and
species names, but showed lower performance in the other extraction tasks. In addition to knowledge graph
embeddings, named entity recognition methods can be coupled with these methods to enhance information
retrieval performance, as the retrieval of information from biochemical compounds is closely related to named
entity recognition, i.e., the retrieval of information from names. The random walk method was also addapted
for use in RDF Knowledge Graphs in RDF2Vec [28], where the authors implemented a version of Node2vec
capable of being used directly with these KGs.

2.4. Named Entity Recognition

Named Entity Recognition (NER) serves as a backbone for information extraction, categorizing named entities
in textual data. A comprehensive review of NER development from 1996 to 2006 is given in Nadeau et al.'s survey
of named entity recognition and classification [29]. The survey begins with an explanation of the handwritten
rules that are being applied in conjunction with semi-supervised and unsupervised machine learning techniques.
It predicts a significant advance for the fields of biology and genetics. For biomedical texts, the scispaCy [30]
library comes with pre-trained models, offering targeted NER solutions.

Liu et al. [31] propose a hybrid deep learning model based on Bidirectional Encoder Representations from
Transformers (BERT), Bidirectional Long Short-term Memory with Conditional Random Field (BILSTM), multi-
head attention (MHATT), and conditional random field (CRF) to improve the performance of existing models for
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NER. The publication suggests that the use of Transformer over BILSTM should be increased in future projects,
as Transformer has a better ability to extract features and fewer training difficulties during this project. Using
a naive Bayes classifier approach, Tarasova et al. [32] were able to predict token belongings with an invariant
accuracy of 0.96-0.99. For the automatic recognition of entity Marine Natural Products (MNP) published in
MNP domain literature, Ma et al [33] suggest a method based on an inflated convolutional neural network and
a conditional random field to create a named entity recognition model.

In the NatUKE benchmark, [9] proposed an improvement to the EPHEN method, extracting named entities
before representing the texts with the BERT model (initial embedding for article nodes in the EPHEN method).
The authors hypothesized that with sentences containing named entities, the model's embedding would be
able to extract more information, thereby improving the performance of the EPHEN method, rather than using
the first 512 tokens of the article (the default for the BERT method). This strategy showed an improvement
in the extraction of bioactivity and isolation-type properties in the Natuke Benchmark. Although performance
improved in two biochemical properties, there was no progress in the other properties, leaving a gap in the
performance of the methods in the Natuke benchmark. Therefore, this study highlights the need for more
robust NLP methods, such as large language models.

2.5. Large Language Models

The introduction of the Transformer model by Vaswani et al. [34] marked a significant advancement in
large language models (LLMs). This model fundamentally changed sequence transduction by exclusively relying
on attention mechanisms, discarding recurrent and convolutional layers, and leading to streamlined training
processes and enhanced performance in tasks such as machine translation. The architecture of the Transformer
has since been integral to the development of LLMs, facilitating more efficient and effective NLP techniques.

Building upon this, 'Language Models are Few-Shot Learners’ [35] introduced GPT-3, a 175 billion parameter
language model. GPT-3 has been shown to effectively perform various NLP tasks with minimal examples and
without task-specific fine-tuning, representing a significant advancement in the development of adaptable,
general-purpose language systems. "LLaMa: Open and Efficient Foundation Language Models" [36] by Meta Al
represents another notable advancement in LLMs. The LLaMa series, which includes models ranging from 7B to
65B parameters, is unique for being trained exclusively on publicly available data. The 13B parameter model in
this range surpassed GPT-3 in many benchmarks, despite having 162 billion fewer parameters. Its performance
against leading models, such as Chinchilla-70B [37] and PaLM-540B [38], demonstrates the efficacy of public
datasets in achieving high-quality results, thereby contributing to broader access to advanced LLMs.

These LLMs have shown potential to improve the extraction of complex biochemical properties from academic
texts in the NatUKE benchmark [10, 11]. Their ability to process diverse data structures and perform tasks with
minimal supervision aligns with the challenges of distilling specific, high-value information from dense scientific
literature. In this sense, [10] explored GPT-3.5 turbo to preprocess and enrich the text used by the knowledge
graph embedding methods, thereby improving EPHEN, rather than the traditional method (PyMuPDF) used by
EPHEN. The results were improved for the properties’ bioactivity, isolation type, and collection site. In the same
strategy, the study by [11] also evaluated different text extractors from PDFs and the use of LLMs to represent
texts through embeddings. The study concludes that extractors such as Nougat and Grobid generate better
results than PyMuPDF. Additionally, another key finding of the study is that BERT embeddings outperform
those generated by LLMs for the EHPEN method.

Despite the exploration of LLMs in enriching text extracted from PDFs and representing texts through
embeddings, we still highlight the lack of more expressive results for compound names, species names, and
collection site properties. Another gap is the use of LLMs to perform the final task of detecting biochemical
properties in the text of articles. We emphasize that LLMs can play this role [39]. Another example of using
LLMs directly for extraction is found in D'Souza et al. [40], where the authors explore using GPT-4o0 to
directly extract information from species, locations, habitats, and ecosystems to better understand the impact
of movement between environments and prevent damage to native species i.e., invasion biology. This study
presents interesting results, which also motivated our work. Therefore, in the next section, we present our
proposal for biochemical knowledge extraction based on LLMs.
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3. Large Language Models for biochemical Knowledge Extraction

Large Language Models (LLMs) have been successfully utilized to enhance performance in various text
extraction tasks. Some attempts have tried, with limited usage, to integrate LLMs in the task of biochemical
Knowledge Extraction [10, 11]. We believe that LLMs can be used as the center of a biochemical Knowledge
Extraction pipeline to improve the state-of-the-art results in NatUKE. Therefore, we created a new method
based on fine-tuning and similarity search, as we show in Figure 1. We introduce a part of our data to control
the output from the LLM for our task through fine-tuning. In-depth details about our fine-tuning setup are
presented in the Subsection 3.1. Since biochemical Knowledge can present many synonyms and different writing
standards, the LLMs have difficulty in learning the correct output format. Therefore, we apply a similarity search
setup within a common embedding space to transform the LLM output into the closest indexed known answer
for the NatUKE benchmark. Details about our similarity search setup are presented in Subsection 3.2. We chose
Nougat [41] as a PDF extraction (a tool designed for OCR extraction of academic papers) since Nougat has
achieved the state-of-the-art results in the task of biochemical Knowledge Extraction in do Carmo et al. [11].

v /LLM output \
Training Large Language Models _ _ _ ~ _ _ _ _ = _ __ _
examples l’ Llama-3 \ / Qwen | / Phi | /GPT-40 ) OName
[ Il ) | Bioactivity
$:)t(rtaf:::11 > | o » . r ! > species
| [ n N |
PDFs Toxt arom ! i P 1 | [ |Location
[ I L [ \
N ———m - - === = e - - - - - / Isolation Type
LM output ( Final output \
OName O Q O D D D P OName
Bioactivity Similarity 8 O D D I:‘ D Bioactivity
D Species Search? O D D [/\ {> > Species
I:I Location D I:‘ Location
Isolation Type ST Most similar embedding

Similarity Search \ .~ Isolation Type )

Fig. 1. Our proposal: LLMs for biochemical Knowledge Extraction with fine-tuning and similarity search.

3.1. Finetuning

Fine-tuning is a well-established technique for enhancing performance in specific tasks using pre-trained
models. We developed our fine-tuning to better control the output from the LLM and improve the performance.
All the data for evaluation comes from the NatUKE benchmark [6] splits. This benchmark was initially designed
to evaluate graph embedding-based systems, and all splits were randomly selected and considered different tasks.
Therefore, we chose to implement the fine-tuning by training five single-task models [42]. When considering
single-task fine-tuning, the primary advantage is that by focusing on a single task, it can better adjust the
weights and thereby improve performance more consistently. However, it increases the time and computational
effort needed, as the same papers will be analyzed and used for training in different tasks.

In single-task models, every fine-tuning step needs to be executed separately, and it requires specific task
prompts. In Figure 2, we present the prompt templates for our open-source and proprietary LLMs. The templates
are to be modified for each task and filled in for each paper in the training set. The extracted PDF text is
presented in the user prompt. Moreover, the known extractions from the training set are also added to the
assistant prompt. For GPT-4o, the variable [task] is added accordingly, and a JSON format example is provided
with generic answers. For the open-source models, use the [task explanation] variable in the prompt, and it
refers to a customized sentence added for each task, as follows:

— compound name: For each paper, you have to analyze the content (text) to identify the Compound name.
It can be more than one compound name.
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1.

/System prompt:

You are a scientist trained in chemistry. You must extract information from scientific
papers identifying relevant properties associated with each natural product discussed in
the academic publication. For each paper, [task explanation]. Your output should be a list
with the names. Return only the list, without any additional information.

N

User:
[paper text extracted with Nougat]

Assistant:
[Example extracted 1, Example extracted 2]

\m@ 3 Fine-tuning prompt template for Llama, Qwen and Phi

2.
\

System prompt:
You are a chemist expert in natural products. Extract the [task]s from the following text.
Provide the answers in JSON format: [{[task]: [Example extracted 1]}, {[task]: [Example
extracted 2J}]. If the [task]s are not specified, leave it empty like ™.
User:
[paper text extracted with Nougat]
Assistant:
[{[task]: [Example extracted 1, Example extracted 2]}]

@ Fine-tuning prompt template for GPT-40 )

Fig. 2. Fine-tuning prompt templates for system, user, and assistant entries.

— biological activity: For each paper, you have to analyze the content (text) to identify the Biological Activity.
It can be more than one biological activity.

— collection species: For each paper, you have to analyze the content (text) to identify the Collection Species,
i.e., the Species from which natural products were extracted. Provide the scientific name, binomial form.
The family name can be provided. For example, Tithonia diversifolia, Styrax camporum (Styracaceae), or
Colletotrichum gloeosporioides (Phyllachoraceae).

— collection sites: For each paper, you have to analyze the content (text) to identify the collection Site, i.e.,
the place of the collection.

— collection type: For each paper, you have to analyze the content (text) to identify the Collection Type,
i.e., Collection type of the species.

For our three open-source models, we execute fine-tuning through unsloth library®, an open-source framework
for LLM fine-tuning and reinforcement learning. After we transform our prompting template using our training
data, we obtain a stream of messages. Each message then contains the completed system, user, and assistant
prompts. Unsloth then uses the Quantized LoRA (QLoRA) [43] fine-tuning strategy, which is an even more
optimized version of Low-Rank Adaptation (LoRA) [44].

The main idea of the LoRA strategy is to break down the weights matrix into multiple smaller matrices,
allowing the fine-tuning backpropagation to be executed on fewer parameters [44]. Another characteristic of
LoRA is that it does not directly update the model's weights [44]. QLoRA further optimizes the LoRA process by
quantizing the model, allowing memory to flow between CPU and GPU memory to handle memory spikes [43].

Thttps://docs.unsloth.ai
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Quantization is the process of reducing an input to a different format, thereby using less memory. For example,
QLOoRA transforms the 16-bit parameters of the LoRA model into 4-bits [43]. More specifically, QLoRA employs
two techniques for achieving 4-bit fine-tuning: NormalFloat (NF4) quantization and Double Quantization [43].

Since QLoRA is a quantized version of LoRA, it is essential to define the objective function of LoRA, which
allows it to fine-tune a pre-trained language model pg (z|y), where ® represents the parameters. Given a training
set of token context-paris Z = {(;,¥;)i=1,..n }» Where both z; and y; are sequences of tokens. In our case, z;
would represent paper tokens and y; would represent the example manually extracted for the desired task. LoRA
optimizes the fine-tuning process by adopting a parameter-efficient approach using task-specific parameters, kept
in much smaller matrices and identified by the function A®(0), thus making the task of optimizing this smaller
set of parameters dependent on ©:

[yl

mgx Z Zlog(p<I>0+A<b(®)(yt|177y<t))' (1)

(z,y)€Z t=1

The task-specific parameter update through the specialized objective function that allows updating the
weights of the parameters over a task © as to reduce error on the next token prediction task. The task © to
be optimized is applied to a low-rank decomposition of the fixed weights matrix Wy € R4*F represented by
Wo + AW = Wy + BA, where B € R4*" and A € R"** when the rank r» << min(d, k), meaning:

Y = Wyx + BAz, (2)

where BAx represents the weights for the parameters that can be updated by the gradient A®(0) in the next
token prediction optimization.

QLoRA then applies the NF4 and a Double Quantization on the weights matrix Wyz for memory savings,
but needs to dequantize the format back to the original 16-bit parameters, as follows:

YBFI6 = doubleDequant (ciP32 5= WyaNFh) 4 BA2PFI6, (3)

doubleDequant (P32 k=0 WoaxNF4) = dequant(dequant(cf 732, c5=0) Woat =0 = W2 P16 (4)

BF16 FP32 k=bit NF4 and 4=bit represent different quantization formats that can be present in different

where
moments of the QLoRA execution.

For GPT-40, we utilized their Supervised fine-tuning option, which involves providing a training file through
the dashboard containing messages for the system, user, and assistant prompts in a JSONL format. The fine-
tuning then runs in the background for the selected training hyperparameters. However, OpenAl does not

disclose which fine-tuning strategy it uses in its proprietary models.
3.2. Similarity Search

After analyzing the results directly attributed to the LLMs, we noticed that most of the incorrect extractions
output similar answers, albeit with synonyms or slightly different formats, on tasks such as collection site
extraction. Therefore, inspired by NatUKE's original pipeline, which utilizes graph embedding and similarity of
embeddings as link prediction, we decided to implement a new method for similarity search on LLM outputs
for NatUKE.

We conducted experiments with three different open-source LLMs and GPT-40. However, there are some
apparent differences in executing Similarity Search with open-source and proprietary LLMs. The Similarity
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Search pipeline for GPT leverages its implementation of FAISS [45]. Meanwhile, for open-source models, we
constructed a pipeline using Nearest Neighbors for cosine similarity between the previously indexed possible
answers and the LLM output.

One clear difference between our proposed similarity search for open-source and proprietary LLMs and previous
NatUKE implementations [6] is that we aim not to correct the answer, but rather to eliminate formatting errors
from the LLM outputs. In short, all we want to do is find the closest answer to each output by the LLM,
and we do not care, for example, if this answer was already chosen, which adds no performance to a hitsQk
performance metric.

For open-source models, we developed a Nearest-Neighbor cosine similarity search pipeline by indexing possible
answers, and subsequently the LLM outputs in the same embedding space. For all these embedding models,
our Similarity Search pipeline works in the same way as shown in Algorithm 1. Before execution, we indexed all
possible answers as items in I and their embedding vectors V' for each embedding model. The LLM predictions
are stored in P for each task ¢, evaluation stage s, fold f, and evaluated model m,, in their pre-trained
and fine-tuned (m;) forms. We then execute Similarity Search in parallel by dividing P into equal parts of
n__jobs, and the output is saved in a file with the same format as the LLM outputs in a directory named by the
model type my, followed by ss. Each file name is formed by the task, stage, fold, and the embedding model e.

Algorithm 1 Embedding-based Nearest Neighbor Similarity Search

1. function SIMILARITY__RUN(, S, f, My, me, e, I, V, P, n_jobs)
2 Initialize shared return dictionary D

3 Split P into n__jobs parts

4 for each split 7 in parallel do

5: Load embedding model e

6 for all prediction list p; in split do

7 for all prediction p in p; do

8 Upred <— encode(p)

9: Retrieve nearest item using NearestNeighbor

10: end for

11: end for
12: Store results in DJ[i]
13: end for

14: Aggregate predictions from D
15: Write model output to file m;_ss/t_s_f_e
16: end function

For GPT-40, we combined its pre-trained and fine-tuned version with the Facebook Al Similarity Search
(FAISS) [45] library to implement similarity search. FAISS offers several advantages over implementing brute
force similarity search pipelines in terms of performance and scalability. However, in our case, the most interesting
capability was the seamless integration with the OpenAl API. The OpenAl API support was necessary, as we used
the OpenAl embedding model text-embedding-ada-0022 to gauge proprietary performance in the Natural
Product extraction task. We sought a consistent performance assessment of proprietary LLMs in biochemical
Knowledge Extraction, while also aiming to reduce the monetary costs associated with OpenAl API usage.

Like our open-source similarity search pipeline, FAISS also needs an index of possible answers. On the other
hand, FAISS utilizes a Hierarchical Navigable Small World (HNSW) algorithm, which compresses the embedding
vectors, thereby making the search stage more efficient. For the retrieval step, it utilizes Approximate Nearest
Neighbor (ANN) algorithms to achieve further performance gains.

2https:/ /platform.openai.com/docs/models/text-embedding-ada-002

©W 00 N O s W N

O g D s D B D A S D s W W W W W W W W W W NN NNNRNNNN B R R s e s e s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O


https://platform.openai.com/docs/models/text-embedding-ada-002

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

10 P. do Carmo et al. / Leveraging Biochemical Knowledge Extraction from Academic Literature through LLMs

4. Experimental Evaluation

This section presents a comprehensive evaluation of our proposed approach, focusing on three key aspects:
dataset and curation, experimental settings, and result analysis. Our research goal is to demonstrate that
fine-tuning LLMs with similarity search outperforms existing baseline approaches when applied to the NatUKE
benchmark, particularly in the task of extracting biochemical properties from scientific literature. All code, con-
figurations, and scripts used in our experiments are publicly available to ensure transparency and reproducibility
of our results>.

4.1. Dataset and Curation

The NatUKE Benchmark focuses on extracting knowledge about natural products from academic literature
using graph embedding methods. It leverages a dataset derived from over two thousand instances of annotated
biochemical properties of natural products and evaluates four unsupervised graph embedding techniques: Deep-
Walk, Node2Vec, Metapath2Vec, and EPHEN. The benchmark emphasizes the utility of graph embeddings for
retrieving information already embedded in the knowledge graph structure, while also highlighting the need for
context-sensitive data to enhance the quality of extraction. The dataset comprises over two thousand entries,
each manually annotated by domain experts in chemistry [6].

These annotations cover five specific biochemical properties from the NuBBEDB database [5] that are es-
sential for training and prediction: compound name (rdfs:label), bioactivity (nubbe:biologicalActivity), species
from which the natural products were extracted (nubbe:collectionSpecie), collection site of these species
(nubbe:collectionSite), and isolation type (nubbe:collectionType). Table 1 shows the number of distinct values
per biochemical property in the dataset and the number of articles with valid annotations. After curation, the
dataset comprises 143 articles, featuring 448 compound names, 33 bioactivities, 115 species, 51 collection sites,
and five isolation types. Thus, the task consists of predicting one or more values for each of these properties
per article. In this setting, the input is a scientific article in PDF format, and the output corresponds to the
extracted biochemical properties.

Table 1

Overview of the number of distinct values per biochemical property in the dataset.

Property ‘ Compound Names Bioactivities Species Sites Isolations ‘ Articles

Number ‘ 448 33 115 51 5 ‘ 143

4.2. Experimental Settings

The first pioneering methods explored in the Natuke benchmarking were graph embedding methods for
unsupervised knowledge extraction. A knowledge graph with the paper’s DOI as a central node is modeled and
connected to extracted characteristics (e.g., name, bioactivity, etc). Thus, each paper, along with its unique
compound names, bioactivities, species, sites, and isolations, is a node in the knowledge graph. The authors also
extract topics from BERTopic (to connect the graph). To manage BERTopic's token limits, papers are split into
sentences. Four primary graph embedding baselines were: EPHEN, Metapath2Vec, DeepWalk, and Node2Vec
[6]. These methods were evaluated for their effectiveness in extracting specific biochemical properties of natural
products, represented as a knowledge graph with the DOI serving as the central node. We compare our strategy
with these four graph embedding methods due to their capability to generate embeddings without requiring a
complete knowledge graph, predetermined weights, or ontology. After generating the embeddings for all nodes,
the methods explore the task as a link prediction task, considering more than one biochemical property, since
we explore the hits@k metric. The strategy was based on the k-nn similarity. Each article is connected to the

3https://github.com/chemnet-io/ballena

©W 00 N O s W N

O g D s D B D A S D s W W W W W W W W W W NN NNNRNNNN B R R s e s e s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O


https://github.com/chemnet-io/ballena

© 00 N O O W N

g g D DD D D DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s B
= O ©OW 00 N O O P W N = O O 00 N O 0P W N B O O 0 N O O WwWN R, O © 0N O O W N = O

P. do Carmo et al. / Leveraging Biochemical Knowledge Extraction from Academic Literature through LLMs 11

k embedding of similar biochemical properties. The methods are beneficial for real-world applications where
papers are interconnected solely by automatically extracted features [6].

We also compare our methods with the three winning methods from the First International biochemical
Knowledge Extraction Challenge (BiKE), which aimed to advance beyond the baseline results established by
the NatUKE benchmark [46]. These three methods achieved competitive results using different strategies [8-10].
The method proposed by [8] introduces a new knowledge graph embedding approach that leverages breadth-first
search (BFS) over the NatUKE knowledge graph to generate embeddings, following the same link prediction
strategy as EPHEN based on embedding similarity to extract biochemical properties. The method by [10]
employed ChatGPT 3.5-turbo during the preprocessing stage (PDF text extraction), in conjunction with EPHEN.
Finally, the method by [9] incorporated Named Entity Recognition (NER) into the preprocessing pipeline, also
in conjunction with EPHEN. Another method compared with our methods was the improved version of EPHEN.
In [11], the authors developed EPHEN++-, an enhanced variant of EPHEN, by incorporating an alternative PDF
text extractor and exploring the use of LLM-based embeddings. After an extensive experimental evaluation, the
best-performing configuration combined the Nougat PDF extractor with BERT embeddings. We use these best
results in our experimental evaluation.

We selected the open-source models LLaMa 3.1 with 8 billion parameters* [47], Phi 4 with 14 billion param-
eters® [48], and Qwen 2.5 with 14 billion parameters® [49] to perform fine-tuning. Due to hardware constraints,
we limited the input text for fine-tuning to the first 3,000 words of each article. For some folds and biochemical
properties, we needed to decrease this number to 2000 or 1500 to allow the execution to proceed. For the name
property in fold 5 of the LLaMa model and the species property in fold 6 of the Phi model, we used 2000. For
the Qwen model and the type property in fold 0, we executed it with 1500. The rest were executed with 3000.
We utilized the unsloth library to fine-tune our open-source models. The model was fine-tuned with a learning
rate of 5- 10~% over 25 steps. We selected the GPT-40 (snapshot: gpt-40-2024-08-06)7, and fine-tuned this
model with the following parameters: Epochs: 3; Batch size: 1; LR multiplier: 2; Seed: 815. More-
over, we fine-tuned GPT-40 as five different single-task models, since fine-tuning for one task allows for less
configuration tuning, which could rapidly increase the costs.

Regarding the embedding model used for the open-source models’ Similarity Search, we compared perfor-
mance with five trending sentence embedding models on Hugging Face® and report the best result. More
specifically, we collected these models on July 18, 2025. Among the top options, we selected five models
that ran without errors when indexing our possible answers on an Nvidia A2 GPU using default configura-
tions. The chosen embedding models were the following®: (1) sentence-transformers/all-minilM-L6-v2;
(2) Qwen/Qwen3-Embedding-0.6B; (3) BAAI/bge-m3; (4) intfloat/multilingual-e5-large; and (5)
sentence-transformers/paraphrase-multilingual-MinilM-L12-v2.

The metric for performance evaluation is hits@k, customized for each feature to account for its unique
prediction difficulty, i.e., with different & for each biochemical property. We chose Hits@k due to its versatility
in scenarios where k& must be adjusted according to task difficulty. In the case of the Natuke benchmark, it was
observed that certain properties, such as isolation type, are easier to predict, while others, such as compound
name, are significantly more challenging to predict. Therefore, this metric aligns more closely with the evaluation
dynamics of the Natuke benchmark. The hist@k can be defined as:

N
1
Hits@Qk = — I{r; <
its@ N ;Zl {r: <k} (5)

“https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit
Shttps://huggingface.co/unsloth/phi-4-unsloth-bnb-4bit
Shttps://huggingface.co/unsloth/Qwen2.5-14B-Instruct-bnb-4bit
"https://platform.openai.com/docs/models/gpt-40
8https://huggingface.co/models?library=sentence-transformers

9All models can be accessed by typing https://huggingface.co/ followed by the presented name
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where N is the total number of articles. r; is the rank position of the correct answer for the i-th article. I{r; < k}
is the indicator function that equals 1 if the correct answer is within the top-k positions (i.e., r; < k), and 0
otherwise. We follow the rule used in NatUKE [6] to choose the final k values for each biochemical property.
The authors vary k from 1 to 50, considering values multiples of 5. k was increased until it reached 50 or if a
score equal to or greater than 0.50 was achieved.

The evaluation process involves forty stages. First, we vary the train and test sets into four stages. The first
split is 20/80%, the second 40/60%, the third 60/40%, and the fourth 80/20%. We have ten holdouts in each
stage with different seeds. The dataset adheres to the principles of Findable, Accessible, Interoperable, and
Reusable (FAIR) to ensure easy replication and further studies. All experiments and data are publicly accessible
under the Apache License 2.0 at https://github.com/AKSW/natuke. The NatUKE benchmark has a structure
with five prediction tasks, ten training folds, and four evaluation stages, resulting in a scenario of 200 models.
Due to this structure, we trained the LLMs using only the first stage of the benchmark splits. This simplification
was necessary to reduce complexity. Thus, the model is always trained with 20% of the data and predicts 80%
(1st stage), 60% (2nd stage), 40% (3rd stage), and 20% (4th stage). To mitigate this small gap, we performed
an ablation study to demonstrate the impact of training the open-source LLMs across all stages in a single fold.

4.3. Results and Discussion

Considering all our experiments and the NatUKE benchmark, we present Table 2, which contains previous
results and our experiments with open-source and proprietary LLMs. The table is divided in blocks related to
different types of experiments: (i) the original NatUKE benchmark graph embedding results; (ii) the extended
results from the BiKE challenge, and EPHEN increments; (iii) our evaluation of three open-source LLMs with
and without our proposed pipeline; and (iv) our GPT-40 evaluation with and without our proposed pipeline.
For (iii) and (iv), SS means that Similarity Search was applied to a pre-trained LLM output, and FT-SS means
that Similarity Search was applied to a fine-tuned LLM output, i.e., the entire proposed pipeline was evaluated.
Overall, different LLMs obtain the best and second-best performance in all scenarios. Furthermore, we present
an in-depth analysis guided by our proposed Research Questions.

4.3.1. Which method is most effective for biochemical property extraction, achieving SoTA results?

Looking at Table 2, we can see that for different tasks, different models and configurations achieve the best
and second-best performances. Most notably, we can observe that GPT-40 achieves the best and second-best
performance with its SS and FT-SS configurations in the collection species extraction task. However, it would
only achieve third-best performance from the LLMs in its pre-trained output. This indicates that most likely
GPT-40 has seen many species in its pre-trained version and might have made a mistake with species in the
same genus or family, and the similarity search was able to find the correct species for the paper. However,
fine-tuning reduced performance for species extraction, which can be caused by overfitting some specific tokens,
skewing the results down.

GPT-40 also achieved the clear best performance in the collection site, however, with its FT-SS configu-
ration this time. Moreover, its performance was so much better than the other LLMs in this task that its SS
configuration achieved second-best performance. For the collection site, we observe that without our proposed
similarity search approach, the pre-trained LLMs fail to understand the formatting required by Nubbe's annota-
tors, as all LLMs achieve virtually 0 hits@20. After similarity search, they mostly outperform the original graph
embedding-based models from NatUKE.

For compound name, we also achieve a clear new SoTA on Phi-SS, followed by Qwen-SS achieving second-
best results in all but one evaluation stage. The good performance in compound name from open-source LLMs
is an interesting behavior. It is our most challenging extraction due to the high number of options compared to
k = 50, and to the high complexity of scientific names. One clue as to why they achieved such good performance
comparatively is when we look at GPT-40 achieving .00 in all evaluation stages, while all three open-source
LLMs achieved hits@>50 within .05 < x < .10. This behavior indicates the presence of compound names in the
pre-training data of those LLMs, while they might not have been present in GPT-40’s pre-training.

For bioactivity and collection type extraction, our two least challenging extraction tasks, we observe more than
one LLM achieving best and second-best results. Qwen with both its SS and FT-SS variants was only around
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Table 2
Performance of graph embedding methods (first 4 methods), methods that improved EPHEN's performance (next 4 methods),
open-source LLMs (next 12 methods), and proprietary LLM (final 3 methods). We present hits@Fk for all stages and properties.
Best results are in bold and second-best underlined.

Name (k=50) Bioactivity (k=5) Specie (k=50) Site (k=20) Type (k=1)

I1st 2nd 3rd 4th | 1st 2nd 3rd 4th|1st 2nd 3rd 4th|1st 2nd 3rd 4th | 1st 2nd 3rd 4th
DeepWalk [6] .08 .00 .00 .00|.41 .12 .10 .07|.37 .24 27 25|.56 .41 .38 .29|.25 .14 .14 .09
Node2Vec [6] .08 .00 .00 .00|.41 .07 .03 .03|.36 .22 .25 24|.57 36 .28 .23|.10 .07 .05 .01
Metapath2Vec [6] 10 .08 .09 .20|.27 .17 .13 12| .40 .41 .42 44| .40 .42 42 40|.28 .22 .19 .18
EPHEN [6] .09 02 .03 .04|.55 57 60 .64|.36 .24 29 30|.53 .52 b5 55|.71 .66 .75 .75
Zope [8] .09 .19 35 .83|.37 .11 .11 .10|.47 .65 .75 .81|.32 .31 .36 .41|.03 .04 .05 .12
Frohlich [10] .09 00 .00 .00|.62 69 .69 .69|.35 .24 30 .30|.56 .60 .62 .64|.76 .77 .80 .81
Dichte [9] .09 .00 .00 .00|.60 .65 .65 .69 |.34 .23 .27 .29|.55 .58 .60 .57 |.73 .74 .77 .76

EPHEN++ [11] .09 .00 .00 .00|.59 66 .69 .71|.34 23 29 30|.56 .62 .63 .65|.78 .78 .78 .80

LLaMa .05 05 .06 .07|.00 .00 .00 .00|.10 .09 .09 .09|{.01 .01 .01 .01|.00 .00 .00 .00
LLaMa-SS 49 51 50 50|.44 45 44 45|52 52 50 49|.30 31 .32 .31|.81 .82 .83 .84
LLaMa-FT-SS 70 72 73 74|.74 74 .76 .77 |8 .83 .88 .86|.63 .63 .64 .65|.91 .92 .93 .94
Qwen .09 09 .08 .10/.06 .06 .05 .06|.37 .39 .41 .38|.01 .01 .01 .01|.00 .00 .00 .00
Qwen-SS .81 82 81 81|.71 .72 .74 72|.86 .86 .86 .86|.61 .62 .64 .66|.79 .80 .81 .84
Qwen-FT-SS 62 64 65 67|.71 .73 .75 .76|.89 .91 .92 .92|.62 .63 .64 .66|.92 .92 .93 .94
Phi .08 .08 .08 .09|.02 .02 .02 .01|.22 23 .24 23|.01 .01 .01 .01|.00 .00 .00 .00
Phi-SS .85 .87 .87 .89|.72 .74 75 74|90 90 .90 .89|.61 .63 .64 .66|.66 .65 .66 .65
Phi-FT-SS 65 68 69 .70|.73 .74 .75 .74|.83 84 86 .87|.61 .61 .63 .64|.91 .92 .93 .94
GPT-40 .00 .00 .00 .00|.03 .04 .03 .03|.19 .20 .24 .22|.00 .00 .00 .00|.00 .00 .00 .00
GPT-40-SS 70 74 74 81|.74 .77 .76 .76 1.0 1.0 1.0 1.0|.69 .67 .75 .77|.15 .14 .14 .07

GPT-40-FT-SS .60 59 60 .63|.68 .68 .67 .73|.94 96 .94 .92|.82 .77 .84 .92|.92 .92 .93 .96

.02 hits@5 points from the best performers in the bioactivity extraction task. For collection type extraction,
all FT-SS variants from the LLMs achieved = .95 hits@1 score. This behavior suggests that a ceiling for the
LLMs is being reached in these two extraction tasks.

4.3.2. Which biochemical properties yield the best and worst overall results, and why?

When discussing extraction tasks, it is essential first to define the challenges each task poses. In Table 1
we present the number of possible options in the NubbeKG used by the NatUKE benchmark. The higher the
number of distinct possible values, the higher the statistical challenge itself. In the original benchmark, the
authors proposed a rule to choose the k value for the hits@Qk metric, depending on which k value surpassed
0.5 or 0.2 score to try and output representative numbers for each one. Moreover, each task has particular
challenges regarding specific inputs for different reasons, for example:

— compound name: for compound names, they can have complex ways of writing and standards, for example:
IUPAC name or common name;

— bioactivity: bioactivity represents the behavior a certain biochemical compound will have when adminis-
tered in a living being, and there are synonyms that the annotators might have used to standardize the
dataset that are different than the one written in the paper;

— collection species: scientific names of species are standardized and should be written in the same way by
the authors of the paper and the annotators; however, since there are many examples of scientific names,
larger models might have an advantage in identifying them due to having large training data;
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— collection site: for the location where a species was extracted from, annotators have used a particular
formatting for the city and state name, which pre-trained models might use differently;

— collection type: the annotators standardized the collection types into a minimal set of options, so pre-
trained models might not be aware of their standardization.

When looking at Table 2, the first two things we notice are virtually the same collection type extraction
performance value for all FT-SS LLMs; and (2) the 1.0 results for the species extraction task for GPT-40-SS.
The 4-way tie suggests our proposed pipeline most likely reached a ceiling in this task, specially since this is
the single task classified with hits@1 by the most relaxed NatUKE rule (i.e., whenever a hits@Qk surpassed 0.5
evaluation score in the k range of 1 to 50 going up by multiples of 5). Moreover, GPT-40-FT-SS achieved
the clear best hits@20 performance for the collection site extraction task. When considering our open-source
LLMs Phi-SS obtained the best hits@50 performance when extracting the compound name. For bioactivity,
we had a performance tie between LLaMa3-FT-SS and GPT-40-SS, while Phi-SS and Phi-FT-SS achieved
tied second-best performance, suggesting we are also approaching a ceiling in this extraction task. Another
task that LLMs might be reaching a ceiling is on collection species extraction, where GPT-40-SS has the clear
best performance on the collection species task, achieving a 1.0 hits@50 result in all evaluation stages. We
believe two main reasons contribute to this outstanding result, even though the collection species tasks have the
second highest number of distinct values: (i) in the original NatUKE benchmark the collection species achieved
hits@50 by surpassing the 0.5 rule with EPHEN, unlike in the compound name, where the 0.5 scora was not
achieved by any model; and (ii) the large amount of training data and parameters for GPT-40 means that
most likely, all species evaluated in the benchmark have been seen by the model at some point.

4.3.3. How competitive are open-source models compared to proprietary paid models?

Open-source and proprietary performance in the task of biochemical knowledge extraction depends on which
property of task extraction the LLMs are applied to. The open-source LLMs are least competitive in the collection
species and site extraction tasks. For the collection species extraction Qwen-FT-SS had the best open-source
performance by tying GPT-40-FT-SS for second-best in the 4th evaluation stage. However, for collection
site extraction, the open-source models had an even bigger performance gap, where best and second-best
results were achieved by GPT-40's FT-SS and SS variants respectively, and the closest open-source models’
performances were .11 hits@20 behind GPT-40-SS at second-best. Additionally, open-source models showed
minimal performance difference between their SS and FT-SS variants for collection site extraction.

On the other hand, for compound name extraction Phi-SS achieved the best performance at .89 while
GPT-40 only managed .81 hits@50 in the 4th evaluation stage. The gap is even larger at .15 hits@50 in
the 1st evaluation stage, which contains the largest test set. As we discussed, the exceptional performance for
compound name extraction can be explained by the content being present in the pre-training stage for the open-
source LLMs. Moreover, for the bioactivity and collection type extraction task, the open-source LLMs manage
to match the performance of GPT-4o0, tying results for best and second-best throughout all four evaluation
stages.

4.3.4. What is the impact of fine-tuning LLMs on the biochemical property extraction task?

In Figure 3 we present results from our open-source models in their FT and FT-SS configurations. When
looking at the blue bar representing the FT variants from LLaMa, Qwen, and Phi, we can see that it allows the
models to start correctly recognizing extractions without similarity search. More specifically, for the bioactivity,
collection site, and isolation type extraction tasks, FT yields similar performance to the FT-SS variant. These
extraction tasks are particularly noteworthy because they involve a more fixed set of answers standardized by
human annotators from Nubbe. Consequently, fine-tuning proved particularly effective in aligning synonyms and
different formats with the expected answers before the similarity search step. Meanwhile, for the compound
name and collection species extraction tasks, the FT-SS yields significantly more performance than just the FT
variant, and when looking back at Table 2, the SS variant achieves the best results with different LLMs. Another
characteristic of compound name and collection species extraction is the performance of more than 0.00 hitsQk
for pre-trained LLMs, indicating that the alignment between annotated and pre-trained knowledge diminishes
the effectiveness of fine-tuning. Finally, fine-tuning enables more effective real-world application of automatic
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Fig. 3. Fine-tuning versus Fine-tuning with similarity search for each model in the 1st stage.

extraction, as it eliminates the need for a predefined indexed list of options, a limitation of previously evaluated
graph embedding-based systems that rely on similarity search, while maintaining competitive performance within
the NatUKE benchmark.
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4.3.5. What is the impact of the similarity search strategy on the quality of extraction?

Our similarity search stage allows correction of the output according to the items present in the database.
When looking at Table 2 and Figure 3, we can see that performance increased in all extraction tasks. More
specifically, the SS variant achieved the best performance in compound name and collection species extraction
without fine-tuning. Our experiments demonstrated that these extraction tasks are most susceptible to pre-
trained knowledge from LLMs, enabling the correct extraction to be indicated within the hits@k evaluation,
particularly when the LLM selects similar compounds or species from the same genus or family. Alternatively,
we can observe that for extraction tasks where the annotator’s choice of a synonym or format (i.e., bioactivity,
collection site, isolation type), the fine-tuning stage can better adapt the LLM output, and the FT-SS variants
can achieve the best and second-best results more often.

One problem with the usage of similarity search is that it reduces the real-world usage of the automatic
extraction pipeline by recreating a limitation of the previous graph embedding-based implementations: it limits
the extraction to a known indexed world.

4.3.6. How does the incremental addition of training data affect the performance of LLMs?

For the previous fine-tuning results, only 20% of the data from the first evaluation stage was used due to the
increase in processing time and resources required for evaluating fine-tuning on all evaluation stages for every
LLM and every fold from NatUKE. In Figure 4, we present the results when using the other evaluation stages’
training data for fine-tuning LLaMa. More often than not, there is an increase in performance for training the
extra training data present in the fourth evaluation stage in all extraction tasks. In particular, on the collection
species extraction task, there is a jump in performance from 0.53 to 0.65 from the second to the third, and
another 0.05 hits@20 gain by using the fourth evaluation stage training split for fine-tuning. For bioactivity and
collection site extraction tasks, the gains are not as significant at 0.05 hits@Q5 and 0.04 hits@20 respectively.
For compound name and isolation type, our two most different extraction tasks by number of possible answers
(see Table 1), there is no notable gain by using more training data for fine-tuning.

1.2

1 :
0.930.93 ¢, 0-94

0.710.

0.580-:590. 57
0.53

0.4 0.33

Name BioActivity Specie Site Type

1st ' 2nd M 3rd M 4th

Fig. 4. Fine-tuning of LLaMa in all stages in one fold to evaluate the power of data for biochemical properties prediction.

Additionally, we fine-tuned five single-task models in the entire Nubbe dataset. We made them avail-
able on https://huggingface.co/aksw/ under the following model names: Bike-name, Bike-bioactivity,
Bike-specie, Bike-site, Bike-isolation. These models enable the automatic extraction of properties
from natural products papers. However, as all the data was used for training, we cannot evaluate them in the
NatUKE.
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5. Conclusion and Future Work

In this work, we proposed new fine-tuning strategies for large language models (LLMs) combined with simi-
larity search to predict biochemical properties within the NatUKE benchmark. Our research goal was to advance
automated biochemical knowledge extraction from scientific literature, contributing to the acceleration of drug
discovery based on natural products and addressing limitations observed in previous approaches. We conducted
comparative experiments with both open-source and proprietary LLMs, with and without similarity search, eval-
uating their performance against state-of-the-art methods. Below, we summarize the main answers to our six
research questions:

1. RQ 1 (state-of-the-art results). Different strategies performed best for different properties: the pre-
trained GPT model combined with similarity search achieved the highest scores for species; the combination
of GPT with fine-tuning and similarity search was most effective for the collection site. The Phi model,
without fine-tuning but with similarity search, achieved the best results for compound name. In the
bioactivity and isolation type tasks, there were ties between different models, such as LLaMa with fine-
tuning plus similarity search and pre-trained GPT (bioactivity), and Qwen with fine-tuning plus similarity
search and GPT with fine-tuning plus similarity search (isolation type).

2. RQ 2 (biochemical properties with best and worst overall performance). The tasks of predicting
species, isolation type, and compound name yielded the best results, with average Hit@k scores above
0.85. In contrast, bioactivity and collection site showed lower performance, with averages ranging from
0.74 to 0.83. These findings underscore the need for future research to enhance performance on the more
challenging properties.

3. RQ 3 (open-source vs. proprietary models). Open-source models proved to be competitive and, in
some cases, outperformed proprietary ones. They achieved the best results for the compound name and
demonstrated comparable performance in terms of bioactivity and isolation type. However, the proprietary
GPTs are better in species and collection site predictions.

4. RQ 4 (impact of fine-tuning). Fine-tuning had a positive impact on some models (e.g., Qwen and
LLaMa) and a negative impact on others (e.g., GPT and Phi, specifically in certain tasks). Overall,
combining fine-tuning with similarity search outperformed using similarity search alone, with notable ex-
ceptions—for instance, the Phi model achieved better results with similarity search only.

5. RQ 5 (impact of similarity search). The use of similarity search consistently improved performance,
regardless of model or configuration. In all cases, it enhanced Hit@k scores, demonstrating its effectiveness
in mitigating subtle textual prediction errors.

6. RQ 6 (impact of incrementally adding training data to LLMs). The incremental addition of training
data improved the performance of open-source LLMs in predicting bioactivity, species, and sites. However,
no improvement was observed for more difficult tasks, such as predicting the compound name (with 418
unique values), or for the simplest task, isolation type (with only 5 options). These results are directly
related to the inherent number of distinct options for each biochemical property.

These results reinforce the potential of using LLMs, whether open-source or proprietary, in combination with
similarity search for extracting biochemical properties from scientific articles. Nonetheless, this study has a few
limitations. First, our similarity search strategy, although effective, remains naive and may return duplicate
values for the same biochemical property. Second, training open-source models requires robust computational
infrastructure. Third, applying fine-tuning to proprietary models entails financial costs. Lastly, the current design
of the NatUKE benchmark imposes constraints that hinder the broad evaluation under different configurations.

These limitations also point to clear directions for future research. We intend to enhance our similarity search
approach by incorporating structural and semantic constraints, and to explore smaller, more accessible open-
source models optimized for low-resource environments. We also plan to investigate new fine-tuning strategies,
including approaches based on reasoning [50]. Finally, we aim to develop NatUKE 2.0, a new benchmark with
an experimental design better suited to the capabilities of modern LLMs, including the systematic execution of
baseline methods established in the original NatUKE version.
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