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Abstract
Graph Neural Networks (GNNs) are widely used for Knowledge Graph Completion (KGC) but often suffer from
“geometric blindness“, resulting in redundant message propagation and limiting their ability to perform effective
long-range reasoning. We introduce ORCA-GCN (Ollivier-Ricci Curvature-Aware Graph Convolutional Network), a
novel geometry-aware GNN that integrates Ollivier-Ricci Curvature (ORC) into its message-passing mechanism.
While prior curvature-guided methods for node classification often enhance high-curvature intra-cluster links, which
can be detrimental for KGC, ORCA-GCN strategically down-weights these redundant high-curvature connections
and amplifies low-curvature bridge edges to improve information flow. It also features a layer-wise evolutionary
framework, transitioning from geometric priors in shallow layers to learned semantic similarity in deeper layers.
Extensive experiments on FB15k-237 and WN18RR demonstrate ORCA-GCN consistently outperforms strong
baselines in link prediction. Our analysis confirms that high-curvature intra-cluster edges tend to be semantically
redundant, thereby offering limited utility in KGC tasks and underscoring the importance of structural geometry in
guiding discriminative representation learning.
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Introduction
Knowledge Graphs (KGs) represent structured factual
information and support a wide range of applications,
including semantic search Xiong et al. (2017), recommender
systems Wang et al. (2019), and question answering West
et al. (2014). Despite their utility, real-world KGs are
often incomplete, making automated Knowledge Graph
Completion (KGC), especially in the form of link prediction,
a critical task.

Graph Neural Networks (GNNs) have become a leading
paradigm for KGC by propagating information through
multi-hop message passing, as exemplified by models
like R-GCN Schlichtkrull et al. (2018) and CompGCN
Vashishth et al. (2020). Their strength lies in aggregating
neighborhood signals to enrich node representations.
However, recent studies have challenged the universal
value of message passing. Interestingly, even simple Multi-
Layer Perceptrons (MLPs), which entirely forgo structural
aggregation, have achieved performance comparable to
GNN-based approaches in recent benchmarks Li et al.
(2023). This suggests that neighborhood aggregation may
not always contribute meaningfully to performance.

We revisit the common GNN assumption of treating
all neighboring nodes equally. Such uniform aggregation
leads to a phenomenon we term geometric blindness—
characterized by redundant message passing within dense
clusters and insufficient utilization of topologically critical
bridge edges, as illustrated in Figure 1. This indiscriminate
propagation exacerbates two well-known issues in GNNs:
over-smoothing Li et al. (2018), where node representations

become indistinguishably similar, and over-squashing Alon
and Yahav (2021), where information from distant nodes is
excessively compressed through limited paths. Both effects
are detrimental to long-range reasoning in knowledge graphs
(KGs).

To address these issues, we incorporate Ollivier-
Ricci Curvature (ORC) Ollivier (2009), a theoretically
grounded and unsupervised metric that quantifies the
structural role of each edge in the graph. ORC effectively
distinguishes between high-curvature intra-cluster edges
(typically redundant) and low-curvature inter-cluster bridge
edges that facilitate information flow. This distinction is
particularly valuable in KGC, where oversaturation with
redundant edges can obscure meaningful signals. Our
empirical analysis on FB15k-237 shows that removing up to
60% of the highest-curvature edges during aggregation has
negligible impact on performance, indicating that many such
connections contribute little to KGC.

Building on this insight, we propose ORCA-GCN
(Ollivier-Ricci Curvature-Aware Graph Convolutional
Network), a novel geometry-aware GNN that reweights edge
importance according to Ollivier-Ricci curvature. Unlike
prior curvature-based methods, typically designed for node
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Figure 1. Illustration of redundant message passing in a locally
dense subgraph. Nodes within the cluster repeatedly exchange
messages (purple dashed arrows). The green dashed edge
connects a distant subgraph, but due to uniform treatment of
edges, traditional GNNs often underutilize such structurally
important connections.

classification and favoring high-curvature connections,
ORCA-GCN down-weights structurally redundant edges
while amplifying low-curvature bridges to enhance long-
range information flow for link prediction. In addition, we
introduce a layer-wise evolutionary strategy: early layers
rely on geometric priors when semantic representations are
weak, while deeper layers transition toward learned semantic
similarity for refined aggregation. This gradual shift enables
ORCA-GCN to adaptively balance structure and semantics
across layers.

We validate ORCA-GCN on standard KGC benchmarks
including FB15k-237 and WN18RR, where it consistently
outperforms strong baselines.

The main contributions of this paper are summarized as
follows:

• We identify and characterize the phenomenon of
”geometric blindness” of message passing in standard
GNNs for Knowledge Graph Completion (KGC)
and empirically show that high-curvature intra-cluster
edges are often redundant or even detrimental to link
prediction performance.

• We propose a geometry-aware aggregation framework
that leverages Ollivier-Ricci Curvature to down-
weight high-curvature edges and emphasize low-
curvature inter-cluster links—contrasting with prior
approaches in node classification that favor high-
curvature connectivity.

• We introduce ORCA-GCN, which integrates
curvature-guided aggregation with a layer-wise
transition from geometric to semantic signals, and
demonstrate its consistent gains over strong baselines
on benchmark KGC datasets.

The remainder of this paper is organized as follows:
Section 2 discusses related work. Section 3 details our
proposed ORCA-GCN model. Section 4 presents our
experimental results and analysis. Finally, Section 5
concludes this paper.

2. Related Work
Knowledge Graph Completion with Graph Neural
Networks. Knowledge graph completion (KGC) aims to
infer missing links between entities, typically framed as

a link prediction task. Early methods such as TransE,
DistMult, and ComplEx learn entity and relation embeddings
based on predefined scoring functions over triples. However,
these approaches struggle with multi-hop reasoning and
global structure integration. To address this, graph neural
networks (GNNs) have emerged as a powerful alternative
due to their message-passing capability.

Relational GCN (R-GCN) extends the GCN framework
to multi-relational graphs by using relation-specific trans-
formations during aggregation. CompGCN further improves
this by jointly embedding entities and relations in a unified
space and composing them through various operators (e.g.,
addition, multiplication, circular correlation). These models
achieve strong performance on benchmark KGC datasets.
However, they typically assign equal or learned weights to
all neighbors without explicit awareness of their topological
roles, potentially limiting their ability to distinguish redun-
dant from informative connections.

Curvature-Guided Graph Neural Networks. Ricci
curvature, a concept from differential geometry, quantifies
the local deviation of a space from being flat. Among
its extensions to discrete spaces, Ollivier-Ricci Curvature
(ORC) has gained significant attention in graph learning
for its geometrically meaningful interpretation based on
optimal transport theory Li et al. (2022). Intuitively,
ORC characterizes the connectivity of neighborhoods: As
conceptually illustrated in Figure 2, edges with high
positive curvature typically reside within densely connected
communities (intra-cluster links), whereas edges with low or
negative curvature often act as “bridges” between different
communities (inter-cluster links). A detailed formulation of
ORC is provided in Section 3.1.

Leveraging this property, several studies have incorporated
ORC as a structural prior to guide the message-passing
process in GNNs. However, the strategies for utilizing
curvature vary significantly, often tailored to the specific
downstream task.

For node classification, prevailing methods operate
on the homophily assumption, where strengthening intra-
community signals is paramount. These approaches often
treat inter-community bridge connections as noise. Follow-
ing this line of thought:

• CGNN Li et al. (2022) proposes an explicit method
that transforms ORC into aggregation weights through
specialized processing and normalization modules,
thereby assigning greater weights to edges with high
curvature to reinforce intra-community connections.

• Employing a similar rationale through a stochastic
lens, CurvDrop introduces a dropout strategy that is
more inclined to remove edges with lower curvature
during training Liu et al. (2023). This approach aims
to better isolate communities for node classification by
pruning sparse connections between them.

Other methods have adopted data-driven approaches. The
pioneering CurvGN utilized a multi-layer perceptron (MLP)
to learn a mapping from curvature values to message weights
Ye et al. (2019). However, subsequent work suggests its
success may be largely attributable to the learning capacity
of the MLP, with curvature potentially acting as a mere
numerical perturbation rather than a source of meaningful
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topological information Li et al. (2022). The CD-GCN also
follows this MLP-based paradigm, applying it to the task of
link prediction Guo et al. (2023).

A recent theoretical work offers a unified geometric
framework for understanding key GNN limitations, rigor-
ously demonstrating that over-smoothing is linked to pos-
itive curvature, while over-squashing is associated with
negative curvature Nguyen et al. (2023). Based on this
duality, the BORF algorithm was proposed as a graph
rewiring method that mitigates these issues by removing
high-curvature edges and adding new connections around
low-curvature ones before training begins Nguyen et al.
(2023).

The aforementioned methods provide valuable insights
but either focus on node classification, employ implicit
learning schemes, or alter the graph’s fundamental topology.
In contrast, our work targets knowledge graph completion
(KGC), a task that often demands effective multi-hop and
long-range reasoning. We hypothesize that for KGC, high-
curvature intra-cluster links can be information-redundant,
whereas low-curvature bridge edges are vital for global
information flow. Therefore, our proposed ORCA-GCN
takes a distinct approach by intentionally down-weighting
high-curvature edges while amplifying the influence of low-
curvature ones, a strategy motivated by the unique demands
of the KGC task.

x y

(a) Positive curvature (κ > 0).

x y

(b) Zero curvature (κ = 0).

x y

(c) Negative curvature (κ < 0).

Figure 2. Conceptual Illustrations of Ollivier-Ricci
Curvature (ORC) on Graphs. This figure demonstrates how
ORC reflects the local topology surrounding an edge. (a)
Positive curvature (κ > 0) typically signifies an edge within a
dense community. (b) Zero curvature (κ = 0) corresponds to
regular, grid-like structures. (c) Negative curvature (κ < 0)
identifies a ”bridge” edge connecting two distinct communities.

3. Methodology
This section introduces the proposed ORCA-GCN model.
We begin by adapting Ollivier-Ricci curvature (ORC)
Ollivier (2009) to accommodate the directed, multi-
relational, and self-loop-enriched characteristics of knowl-
edge graphs. Then, we propose a Geometry-Aware Aggre-
gation module that leverages curvature-based weights to
prioritize structurally significant (i.e., negatively curved)
edges while attenuating redundant intra-cluster connections.
Subsequently, a Semantic-Aware Aggregation mechanism
refines message propagation in deeper layers by exploiting
cosine dissimilarity between node embeddings to capture
semantic divergence. Together, these components enhance
both structural sensitivity and feature-level expressiveness.
The overall architecture of ORCA-GCN is depicted in Fig-
ure 3.

3.1 Ollivier-Ricci Curvature
Ricci curvature originates from differential geometry, where
it quantifies how much a space deviates from being
locally Euclidean by measuring the degree to which
geodesics converge or diverge. In positively curved regions,
geodesics tend to converge; in negatively curved regions,
they diverge do Carmo (1992). Ollivier-Ricci curvature
(ORC) Ollivier (2009) extends this concept to metric
measure spaces, including graphs, by comparing the optimal
transport distance between local probability distributions.
In this framework, each node is considered the center
of a probability distribution over its neighborhood. ORC
then quantifies the transportation cost between these local
distributions, capturing the graph’s intrinsic geometric
structure. Specifically, for a pair of nodes i and j, let mi and
mj denote the probability distributions over their respective
neighborhoods. In unweighted graphs, these are uniform;
in weighted graphs, they are typically proportional to edge
weights. The ORC along edge (i, j) is defined as:

κ(i, j) = 1− W1(mi,mj)

d(i, j)
(1)

where W1(·, ·) is the Wasserstein-1 distance (also known
as Earth Mover’s Distance), computed using the graph’s
shortest-path metric, and d(i, j) denotes the distance
between nodes i and j (typically 1 for adjacent nodes). Intu-
itively, if two nodes share highly overlapping neighborhoods,
W1(mi,mj) is small, and the curvature is positive; if their
neighborhoods are far apart, the curvature becomes negative.

The standard definition of ORC applies to simple graphs,
where at most one edge exists between any pair of nodes
Ollivier (2009). However, knowledge graphs are typically
modeled as multigraphs, in which multiple directed edges
(corresponding to distinct relations) may connect the same
pair of entities. To apply ORC in this context, we propose
a two-step adaptation process that involves aggregating
parallel edges and mapping the resulting curvature values
back to the original multigraph. In particular, self-loop
edges are excluded from standard ORC computation, since
the ORC formula involves division by edge length and is
therefore undefined in the zero-distance case.

Edge Aggregation via Parallel Resistance Analogy.
To prepare the multigraph GM = (V,EM ) for ORC
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Figure 3. The overall architecture of ORCA-GCN. The model first computes Ollivier-Ricci Curvature for the input knowledge graph.
The first layer performs Geometry-Aware Aggregation using ORC values to re-weight messages. The second layer transitions to
Semantic-Aware Aggregation, using cosine dissimilarity between node embeddings. Final embeddings are passed to a scoring
network for link prediction.

computation, we first convert it into a weighted simple
digraph GS = (V,ES). Our approach is inspired by the
parallel resistance analogy from circuit theory Alexander
& Sadiku (2017). We interpret edge weights as a form
of resistance, where a higher value signifies a weaker
connection. Accordingly, since edges in standard knowledge
graphs are typically unweighted, we assign a default unit
resistance of wM (ei) = 1 to all non-loop edges.

Just as multiple resistors in parallel decrease the total
resistance, multiple edges between two nodes signify
a stronger effective connection. We formalize this by
computing an equivalent weight (resistance) for the single
edge in GS that replaces the parallel edges in GM . For a node
pair (u, v) with k parallel edges, this is:

wS(u, v) =

(
k∑

i=1

1

wM (ei)

)−1

(2)

where wM (ei) is the resistance of an individual parallel
edge. This method ensures the resulting graph GS preserves
the crucial distance-based properties required for accurate
ORC computation. With our unit resistance assumption, the
formula elegantly simplifies to wS(u, v) = 1/k.

Uniform Curvature Mapping. Once the ORC values
κS(u, v) are computed on the aggregated graph GS , we
propagate them back to the corresponding edges in GM using
a uniform assignment scheme. This choice is motivated by
the fact that ORC quantifies the geometric coupling between
the neighborhoods of two nodes, independent of the number
of edges connecting them. Thus, for each original edge e ∈

Euv(M), the mapped curvature is:

κM (e) = κS(u, v), ∀e ∈ Euv(M) (3)

This method guarantees that all parallel edges, which
represent a single underlying structural link, share a unified
geometric interpretation.

Curvature Assignment for Self-Loops. The final adap-
tation concerns self-loops that naturally occur in the orig-
inal knowledge graph GM , such as self-referential triples
(e, r, e). These should be distinguished from the artificial
self-loops introduced in many GNN architectures solely to
incorporate a node’s own features during message aggrega-
tion. For naturally occurring self-loops in a KG, the ORC
formula is undefined because the distance d(i, i) = 0 appears
in the denominator. Following Curvature Graph Neural
Networks (CGNN) Li et al. (2022), we assign a fixed
curvature value of +1.0 to all such edges:

κM (eii) = 1.0 for any self-loop edge eii (4)

Other conventions exist; for example, CurvGN sets self-loop
curvature to 0, analogous to an edge in a flat grid Ye et al.
(2019). We adopt the +1.0 assignment to reflect the notion
of QuatE, treating these self-referential relations as strong
stabilizing forces in the graph’s geometry.

3.2 Geometry-Aware Aggregation Module
The first layer of ORCA-GCN employs a Geometry-
Aware Aggregation module, designed to inject a strong
structural inductive bias while node representations are
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still developing. The core mechanism is to modulate the
influence of each neighbor based on the Ollivier-Ricci
Curvature of the connecting edge.

This is achieved in two steps. First, we compute
normalized attention scores. For an edge (j → i), we define
a raw geometric weight, w(1)

ji = 1− κ(j, i), which directly
implements our central hypothesis: it amplifies the influence
of low-curvature bridges (where κ < 0) and attenuates that of
high-curvature intra-cluster links (where κ > 0). These raw
weights are then processed through a softmax operator over
all of node i’s neighbors to produce normalized attention
coefficients α(1)

ji :

α
(1)
ji =

exp(w
(1)
ji )∑

k∈N (i)

exp(w
(1)
ki )

(5)

Second, these attention scores are used to modulate
the messages before aggregation. Each message m

(1)
ji is

constructed by applying the attention score α
(1)
ji to the

transformed composition of the source node and relation
embeddings:

m
(1)
ji = α

(1)
ji Wλ(rji)ϕ(h

(0)
j , rji) (6)

where ϕ(·, ·) is a relational composition function and
Wλ(rji) is a direction-specific learnable matrix. The final

first-layer representation h
(1)
i is then obtained by aggregating

all incoming modulated messages, along with a transformed
self-loop message, and passing the result through a non-
linear activation function σ(·):

h
(1)
i = σ

WSϕ(h
(0)
i , rloop) +

∑
j∈N (i)

m
(1)
ji

 (7)

This geometry-guided mechanism enables the model to
selectively prioritize signals from structurally important
neighbors, thereby building a more topologically-informed
representation in its initial layer.

3.3 Semantic-Aware Aggregation Module
While the geometry-aware module leverages structural
priors, it does not capture the semantic relationships
embedded in the learned node representations. To address
this, the second layer of ORCA-GCN employs a semantic-
aware aggregation mechanism that modulates message
passing based on the semantic dissimilarity between
first-layer node embeddings. We adopt a non-parametric
dissimilarity measure to directly evaluate the hypothesis that
semantic divergence is an informative aggregation signal,
while avoiding additional trainable parameters that could
increase overfitting risk.

Given the first-layer representations h
(1)
j and h

(1)
i for a

source node j and a target node i, we compute their semantic
dissimilarity using the cosine distance:

dcos
ji = 1− cos(h

(1)
j , h

(1)
i ) = 1−

h
(1)
j · h(1)

i

∥h(1)
j ∥ · ∥h(1)

i ∥
(8)

This value quantifies how semantically distinct the two nodes
are. As in the first layer, we convert dissimilarity scores into

normalized attention coefficients using a softmax over the
neighborhood of each target node:

α
(2)
ji =

exp(dcos
ji )∑

k∈N (i)

exp(dcos
ki )

(9)

The semantic-aware message m
(2)
ji is then obtained by

weighting the composed message with the semantic attention
score:

m
(2)
ji = α

(2)
ji Wλ(rji)ϕ(h

(1)
j , rji) (10)

The second-layer node update aggregates these messages
together with a self-loop message:

h
(2)
i = σ

WSϕ(h
(1)
i , rloop) +

∑
j∈N (i)

m
(2)
ji

 (11)

By introducing semantic-aware aggregation in the second
layer, ORCA-GCN transitions from reliance on structural
priors to exploitation of learned semantic information,
enabling a balanced integration of topological and semantic
cues for improved link prediction performance.

4 Experiments
In this section, we evaluate ORCA-GCN on standard
knowledge graph completion benchmarks to assess the
effectiveness of integrating structural and semantic priors
into link prediction. We focus on two key aspects: (i) How
do the geometry-aware and semantic-aware modules, both
independently and in synergy, contribute to ORCA-GCN’s
overall performance? (ii) Can Ollivier-Ricci Curvature
effectively reveal structural properties like redundancy or
bottlenecks in knowledge graphs, thereby providing insights
for optimizing graph connectivity and message propagation?
The remainder of this section is organized as follows: Section
4.1 describes the experimental setup, Section 4.2 presents
the quantitative comparisons, Section 4.3 details the ablation
studies, and Section 4.4 provides a curvature-based structural
analysis.

4.1 Experimental Setup
4.1.1 Datasets We evaluate ORCA-GCN on two widely-
used knowledge graph completion benchmark datasets:
FB15k-237 and WN18RR. Both datasets are derived from
larger knowledge bases and are commonly used for link
prediction tasks.

• FB15k-237: A subset of Freebase Bollacker et al.
(2008), FB15k-237 is characterized by its diverse
set of entities and relations, making it a challenging
benchmark for KGC. It contains a significant number
of entities and relations, often exhibiting complex,
multi-relational patterns, as well as dense clusters and
critical bridge connections between them. The dataset
is split into training, validation, and test sets.

• WN18RR: Derived from WordNet Miller (1995),
WN18RR is a more sparse and hierarchical dataset
compared to FB15k-237. It primarily captures lexical
relations between words, resulting in a more tree-
like structure. This distinct topological characteristic
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Table 1. Model performance is reported on the FB15k-237 and WN18RR test sets. Best results are bolded. Results marked with †
were reproduced using the provided code; Results marked with ‡ are as reported in Li et al. (2022); all other results are from their
respective published papers.

Models FB15k-237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Translational Distance
TransE‡ Bordes et al. (2013) .330 .231 .369 .528 .223 - .401 .529
RotatE Sun et al. (2019) .338 .241 .375 .533 .476 .428 .492 .571

Semantic Matching
DistMult‡ Yang et al. (2015) .308 .219 .336 .485 .439 .394 .452 .533
ComplEx‡ Trouillon et al. (2016) .323 .229 .353 .513 .468 .427 .485 .554
ConvE Dettmers et al. (2018) .325 .237 .356 .501 .430 .400 .440 .520
TuckER Balazevic et al. (2019) .358 .266 .394 .544 .470 .443 .482 .526
ProcrustEs Peng et al. (2021) .345 .249 .379 .541 .474 .421 .502 .569

MLP-based
MLP-DistMult Li et al. (2023) .334 .245 .366 .511 .433 .399 .446 .507
MLP-ConvE Li et al. (2023) .355 .264 .389 .537 .473 .437 .488 .544

GNN-based
R-GCN† Schlichtkrull et al. (2018) .330 .239 .365 .505 .445 .406 .458 .524
SACN Shang et al. (2019) .310 .260 .390 .540 .470 .430 .480 .540
KBGAT‡ Nathani et al. (2019) .336 .244 .373 .520 .438 .401 .453 .511
CompGCN† Vashishth et al. (2020) .355 .264 .390 .535 .475 .443 .494 .546

ORCA-GCN (ours) .363 .272 .398 .544 .483 .446 .498 .544

provides a valuable contrast for evaluating the
generalizability of our curvature-aware approach. The
dataset is also partitioned into training, validation, and
test sets.

For both datasets, we adhere to the standard evaluation
protocol for link prediction, using filtered Mean Reciprocal
Rank (MRR) and Hits@k (H@1, H@3, H@10) as our
primary metrics. MRR is the average of the reciprocal ranks
of all correct entities, while Hits@k measures the proportion
of correct entities ranked within the top k candidates.

4.1.2 Baselines To comprehensively assess the perfor-
mance of ORCA-GCN, we compare it against a wide range
of strong baselines, categorized as follows:

• Translational Distance Models: These models learn
entity and relation embeddings such that relations are
modeled as translations in the embedding space. We
include TransE and RotatE.

• Semantic Matching Models: These approaches
define a scoring function to measure the plausibility
of a triple based on semantic matching. This
category includes DistMult, ComplEx, TuckER,
ConvE, InteractE, and ProcrustEs.

• MLP-based Models: Recent work has shown that
simple Multi-Layer Perceptrons (MLPs) can achieve
competitive results on KGC. We include MLP-
DistMult and MLP-ConvE to provide a baseline
that explicitly omits message passing, allowing for a
clearer understanding of the benefits of graph-aware
mechanisms.

• GNN-based Models: These models leverage mes-
sage passing to aggregate information from neigh-
boring nodes and relations. We compare against

prominent GNN architectures for KGC, including R-
GCN, SACN, KBGAT and CompGCN. Our proposed
ORCA-GCN is built upon the CompGCN architec-
ture, augmenting its message-passing capabilities with
curvature and semantic awareness.

4.2 Main Results

This section presents the primary experimental results of
ORCA-GCN on the knowledge graph completion task,
comparing its performance against a comprehensive set of
baselines on the FB15k-237 and WN18RR datasets. The
complete results, evaluated using standard link prediction
metrics (Mean Reciprocal Rank (MRR), and Hits@k
(H@1, H@3, H@10) as introduced in Section 4.1.1), are
summarized in Table 1.

As shown in Table 1, ORCA-GCN consistently
outperforms all strong baselines across both FB15k-
237 and WN18RR datasets. These results represent
a notable improvement over its base architecture,
CompGCN Vashishth et al. (2020). This demonstrates
the effectiveness of integrating Ollivier-Ricci Curvature and
semantic awareness into the message-passing mechanism
for enhancing knowledge graph completion. On the
WN18RR dataset, ORCA-GCN also achieves the best
overall performance. While the relative improvement over
CompGCN is slightly less pronounced compared to FB15k-
237, it still confirms the robustness and generalizability of
ORCA-GCN across different knowledge graph structures.
The differing degrees of improvement across datasets can
be attributed to their distinct structural properties, which we
will further analyze in Section 4.4.
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Figure 4. Distribution of Ollivier-Ricci Curvature (ORC) on the WN18RR (left) and FB15k-237 (right) datasets. FB15k-237 shows a
wide distribution with many negative-curvature edges, while WN18RR’s distribution is more polarized, reflecting their distinct
topological properties.

4.3 Ablation Study
To comprehensively isolate and quantify the contribution of
each component within ORCA-GCN, we conduct a detailed
ablation study by evaluating three key model variants. Our
ORCA-GCN is built upon the CompGCN architecture. The
results are summarized in Table 2.

• w/o Geometry-Aware Module: In this variant, we
disable the geometry-aware aggregation in the initial
layer by replacing the curvature-based weights (1 -
κ) with uniform weighting for all incoming messages.
This effectively reverts the first layer’s aggregation
to a standard, geometry-agnostic approach, similar
to a conventional GCN. This change leads to a
noticeable degradation in performance on FB15k-
237, highlighting the crucial role of Ollivier-Ricci
Curvature (ORC) in suppressing redundant intra-
cluster signals and amplifying informative bridge-like
connections for KGC.

• w/o Semantic-Aware Module: For this variant,
we remove the semantic-aware aggregation from
the second layer, reverting its message passing to
using uniform weights, similar to the first layer’s
behavior in the ”w/o Geometry-Aware Module”
setting. The subsequent performance drop, indicates
that leveraging embedding-level dissimilarity becomes
increasingly important for refining representations
in deeper layers, where initial structural cues may
become less discriminative and semantic alignment
becomes crucial.

• w/ Random Curvature: To rigorously verify that the
performance gain arises from meaningful geometric
information embedded in ORC, rather than a mere
numerical perturbation, we replace the true ORC
values with random noise. This noise is uniformly
sampled from the observed range of ORC values
in our datasets, approximately [−2, 1]. The resulting
model exhibits significantly degraded performance,
which underscores that ORC provides a potent and

indispensable topological signal for effective message
aggregation.

Taken together, these findings robustly validate the com-
plementary and distinct roles of our structural (geometry-
aware) and semantic (semantic-aware) priors in creating a
more effective message aggregation framework. The degra-
dation observed in each ablated scenario confirms the neces-
sity and efficacy of each proposed module within the ORCA-
GCN architecture, particularly for the challenging task of
Knowledge Graph Completion.

Table 2. This table evaluates the contribution of ORCA-GCN’s
components. ”w/o” indicates the removal of a specific module,
while ”w/” signifies the inclusion of an alternative component or
setting.

Models FB15k-237

MRR H@1 H@3 H@10

ORCA-GCN .363 .272 .398 .544
w/o Geometry-Aware .359 .268 .395 .541
w/o Semantic-Aware .360 .269 .392 .543
w/ Random Curvature .358 .266 .394 .540

4.4 Structural Analysis
Beyond performance metrics, we conduct a structural
analysis of FB15k-237 and WN18RR to elucidate the
differing effectiveness of ORCA-GCN. As shown in
Figure 4, the Ollivier–Ricci Curvature (ORC) distributions
reveal distinct topological patterns in the two datasets.

FB15k-237 exhibits a broad curvature spectrum, with
a pronounced concentration of negatively curved edges—
indicative of bridge connections linking densely intercon-
nected clusters. This supports the view that FB15k-237
comprises tightly knit communities connected by structural
bridges. By down-weighting redundant intra-cluster edges
and amplifying such bridges, ORCA-GCN facilitates richer
long-range message propagation across communities.
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In contrast, WN18RR displays a highly polarized
curvature distribution, with most edges clustered at κ =
+1 (including self-loops) or κ = −1, and very few in
the intermediate range. This pattern reflects a sparse,
hierarchical structure aligned with WordNet’s lexical
taxonomy. In such tree-like graphs, neighbor connectivity is
more uniform and depth-oriented, offering fewer exploitable
bridges for ORC-based reweighting.

Figure 5. MRR performance on FB15k-237 and WN18RR
when removing the top-k% of edges with the highest curvature.
On FB15k-237, removing up to 40% of high-curvature edges
slightly improves performance, highlighting their redundancy.
Performance on the WN18RR is less affected.

Edge-pruning experiments further corroborate these
insights. Figure 5 and Table 3 show that, for FB15k-
237, removing up to 40% of the highest-curvature
edges—primarily intra-cluster links—slightly improves
performance, suggesting that excessive local redundancy can
oversaturate aggregation and obscure informative signals.
Pruning reduces this redundancy, enabling the model to focus
on structurally critical long-range connections. In contrast,
pruning in WN18RR yields negligible impact at all levels,
consistent with its sparse structure and lack of redundant
intra-cluster connectivity.

Overall, these results demonstrate that ORC-based edge
weighting is most beneficial in clustered, bridge-rich
graphs such as FB15k-237, where differentiating between
redundant local links and structurally vital long-range
edges enhances message propagation. Conversely, in tree-
like, sparsely connected graphs such as WN18RR, where
structural pathways are already streamlined, curvature-
guided strategies provide limited additional gains.

These findings motivate a broader discussion of the
method’s practical implications, limitations, and potential
extensions, as outlined in the conclusion.

5. Conclusion
In this paper, we proposed ORCA-GCN (Ollivier–
Ricci Curvature–Aware Graph Convolutional Network), a
geometry-aware GNN designed to address the “geometric

Table 3. Impact of removing the top-k% edges (ranked by ORC
value) during the aggregation stage in CompGCN. Performance
is reported on FB15k-237 and WN18RR.

k MRR Hits@1 Hits@3 Hits@10

FB15k-237
0 0.355 0.264 0.390 0.535
20 0.356 0.268 0.388 0.534
40 0.358 0.268 0.392 0.539
60 0.354 0.264 0.387 0.534

WN18RR
0 0.479 0.443 0.494 0.546
20 0.479 0.440 0.492 0.553
40 0.478 0.438 0.494 0.554
60 0.477 0.435 0.494 0.551

blindness” of conventional message passing in Knowledge
Graph Completion (KGC). By integrating Ollivier–Ricci
Curvature (ORC) into a layer-wise evolutionary aggregation
framework, ORCA-GCN selectively attenuates redundant
high-curvature intra-cluster edges and amplifies informative
low-curvature bridges. This design enables more effective
long-range reasoning, particularly in clustered graphs where
structural bottlenecks hinder message flow. Experiments
on FB15k-237 and WN18RR demonstrate consistent
improvements over strong baselines, validating the benefit
of combining structural priors with semantic dissimilarity
signals.

Limitations. ORCA-GCN requires computing ORC
values for all edges, which can be computationally expensive
for very large-scale graphs. Although parallel computation
and sampling strategies can mitigate this, the method may
still face scalability challenges in web-scale knowledge
bases. Moreover, the current work focuses on static graphs;
handling dynamic or streaming RDF graphs remains an open
issue.

Future directions. Extending ORCA-GCN to multi-
modal knowledge graphs that integrate textual, visual, or
geospatial data is a promising avenue. Another direction
is combining curvature-aware aggregation with symbolic
reasoning, enabling tighter integration of statistical learning
and logical inference in semantic web systems. Finally,
evaluating the model on large, real-world semantic web
datasets such as DBpedia and YAGO would further confirm
its applicability and benefit to the community.

In summary, this work highlights the value of incorporat-
ing discrete geometric signals into KGC, offering a princi-
pled way to enhance semantic web knowledge bases through
improved structural and semantic sensitivity in graph neural
networks.
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