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Measuring the potential of client-side
adaptive query optimisation for link traversal
over decentralised Linked Data documents
Jonni Hanski *, Simon Van Braeckel, Ruben Verborgh and Ruben Taelman
IDLab, Department of Electronics and Information Systems, Ghent University – imec

Abstract. Alongside the emergence of decentralisation initiatives to address issues around regulatory compliance and barriers to
entry to data-driven markets, the need arises for client-side query engines, to reduce the overhead of service development atop
such decentralised environments, by abstracting away the complexities of data access. These engines, however, are responsible
for performant data access in interactive applications, where user-perceived sluggishness can ultimately inhibit the adoption of
the underlying decentralisation initiatives themselves. The performance cost consists of the network overhead to acquire the
data, and the local processing of it, the latter of which is the focus of our work. Prior work has demonstrated how the structure
of certain decentralised environments can assist query engines in efficiently locating and accessing query-relevant data, reducing
the relative impact of data access, and exposing the local processing as a major bottleneck. Within this work, we demonstrate
the potential of client-side adaptive query planning over decentralised Linked Data documents, using the Solid ecosystem as an
example environment. We also consider the impact of request rate limiting and network latency increases, to ensure our findings
are also applicable under more realistic circumstances. Through the implementation of a restart-based query planning technique,
we achieve average query execution time reductions of up to 15% compared to a baseline of unchanged query plan execution.
Through the use of request rate limiting, we also identify optimisation potential in the Comunica query engine framework,
with reductions of up to 60% in data transfer and 75% in system resource usage possible through smarter resource allocation.
This illustrates the importance and potential of client-side optimisation even in distributed environments, and highlights the
importance of further investigation in the direction of adaptive query processing techniques for link traversal.

Keywords: Solid, Linked Data, Link Traversal, Adaptive Query Processing

1. Introduction

With ever-increasing amounts of users, data, and legislation, challenges around centralised approaches to data
management are emerging, such as with adherence to privacy-related legislation, or with barriers to entry to data-
driven markets, where new entrants would have to collect and manage considerable amounts of data just to provide
a competitive service. Together with these challenges, however, a set of alternative, decentralised, and distributed
approaches are emerging to address them. One such approach is offered by the Solid initiative [1], where user data
would be stored in user-specific online data stores, with the user responsible for managing the data and the access to
it. Thus, the development of new and innovative services, as well as further development of existing services, could
take place over an open data ecosystem, shifting the responsibilities and costs of data storage away from the service
providers, allowing them to focus on the service being provided, instead of the data upon which it is built.
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Decentralisation, however, comes with its own set of challenges. The luxury of uniform and centralised data
storage and access may no longer be afforded by developers, adding a layer of complexity previously absent from
development of services, potentially leading to additional barriers to entry within the decentralised context. For ex-
ample, to develop a service that makes use of a specific set of decentralised data, the developers would first need to
create or adapt a purpose-built data access framework. One solution to the data access challenge is an abstraction
layer in the form of a client-side query engine library [2]. Much like with centralised databases, developers could
write declarative queries to manipulate or extract data, and a purpose-built query engine would take on the respon-
sibility of locating and processing the underlying distributed data, ideally without requiring any prior knowledge, or
requiring a minimal amount of it. Thus, the engine would be responsible for both the discovery and processing of
data, and for this arrangement to be viable in practice, the engine would need to perform its duties with sufficient
user-perceived performance. The ideal, zero-knowldge approach to data discovery does, however, limit what can be
done optimisation-wise.

Within this work, we investigate the potential of applying optimisations to such a client-side engine within the
Solid ecosystem [1], to take one step closer to attaining acceptable performance for practical applications. We
evaluate the potential of optimising zero-knowledge client-side techniques, through the use of an example adaptive
query planning approach, designed to offer an estimate of the lower bound of optimisation potential. We show how
client-side techniques can offer tangible performance improvements, even with more realistic levels of network
latency, as well as practical server response rates due to rate limiting. These results demonstrate the need for client-
side optimisations, even in decentralised environments with network overhead.

This work is an extension of our earlier investigation [3]. The goal of this extension is to address a combina-
tion of observations made during the experiments, as well as recurring reviewer feedback. Specifically, within this
extension, we have further optimised the client-side adaptive approach implementation, to ensure lowest possible
overhead. Furthermore, we have expanded the set of experiments to address concerns around the relative impact of
data access over actual networks, by taking into account realistic levels of network latency, as well as the impact
of request rate limiting, in case of server-side rate limits. Our earlier experiments used an experiment setup where
the engine was sending HTTP requests to the server at an unrealistic rate, to the extent that would have the client
blocked by real remote servers due to request spamming. The earlier experiments also did not take into account
proper network latencies, running locally with effectively zero latency. This extension addresses these shortcom-
ings, and underlines the viability of client-side optimisations even in more realistic scenarios.

The remainder of this article is structured as follows. Section 2 briefly discusses related work, followed by Sec-
tion 3 introducing our research question and hypotheses, as well as Section 4 outlining our approach to tackling
them. Section 5 explains our experiments, followed by the results in Section 6. The paper is concluded by a brief
discussion and our conclusions in Sections 7 and 8.

2. Related work

Within decentralised environments, where data discovery and processing is delegated to a client-side query en-
gine, the engine takes on the responsibility of carrying out these tasks with sufficient performance for the use case.
This section details the related work around data discovery, as well as data processing considerations, and the basics
of the Solid ecosystem used as the basis for our work, as an example decentralisation initiative.

2.1. Zero-knowledge data discovery

The zero-knowledge approach to data discovery is enabled by Link Traversal Query Processing (LTQP) [4].
This approach bases itself on the Linked Data principles [5]. Through widespread adoption of these principles, the
World Wide Web enables a globally distributed dataspace in the form of the Web of Linked Data [6]. Essentially,
when everything is uniquely identified by an IRI, and dereferencing that IRI provides a description of the thing
identified by it, the problem of data access becomes a simple IRI lookup task. Link traversal takes this approach,
and combines it with link extraction into a so-called follow-your-nose approach, where further links to follow are
extracted from the data acquired through IRI lookups, using a set of reachability criteria. These reachability criteria
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include (i) cNone, where no links are considered, (ii) cAll, where all links are considered, and (iii) cMatch, where
the links to follow are extracted based on the triple patterns in the query.

With the dataset bounded by the chosen reachability criteria, the query results are only comparable under the
specific reachability semantics bounded by these criteria [7]. That is, the query results – while not complete within
an unbounded Web-wide context – could be considered complete under the reachability semantics used. This is an
automated, query-driven approach to browsing networks of interlinked data [8], and is analogous to how a human
would browse such a Web of data, yet fully automated and driven by a declarative query language. In practice, this
technique allows for resolving queries against Linked Data sources, without prior knowledge of all the data sources
contributing to the final answer.

2.2. Zero-knowledge query processing

With link traversal enabling zero-knowledge data discovery and acquisition, executing queries over decentralised
data becomes a matter of running the query in tandem with the traversal process, by intertwining triple pattern
matching, link extraction, and IRI lookups [9]. Using pipelined query execution, results can be produced as soon as
possible, provided the query contains no blocking operations.

Due to the data only becoming available in small chunks during query execution, however, producing an optimised
query plan in advance using the traditional optimise-then-execute approach to query planning becomes practically
impossible. For example, the importance of join planning, as in traditional centralised contexts [10], also applies
to decentralised scenarios where the data still has to be processed locally, and excessive numbers of intermediate
results affect the overall performance of this processing.

Provided at least some statistics are available during the query planning phase, the cost and robustness-based
query plan optimiser [11], that seeks to avoid significant performance regressions arising from over-optimistic
query planning, could be used to avoid the worst-case scenarios. With absolutely no prior knowledge available, a set
of heuristics for zero-knowledge query planning [7] may be employed. However, the query plans produced by such
heuristics may still differ greatly from the optimum [12].

2.3. Adaptive query processing

Within Linked Data querying contexts, various techniques under the umbrella term of adaptive query processing
have been successfully employed to address advance planning limitations. The goal of such adaptive techniques is
to adapt the initial query plan or its execution to runtime conditions using various forms of execution feedback [13],
for example by migrating to a different join order if the data turns out to have characteristics different than expected.
The adaptive approaches have been categorised as either inter-query adaptivity, for changes between executions, or
intra-query adaptivity, for changes during execution.

Although inter-query techniques are deemed easier to incorporate into existing optimise-then-execute processes,
they essentially require executing similar queries over similar data to be able to take advantage of the information
acquired. This has been demonstrated through the use of a theoretical oracle in prior work [12], that collects the
necessary data prior to formulating the query plan for the actual execution, to achieve up to double the query
performance of zero-knowledge query planning.

Intra-query techniques, on the other hand, aim to take advantage of information as it is discovered during the
execution of a query plan. One such approach is the postponing of plan selection to runtime, when the necessary
information is available, as described with pre-computed switchable plans [14, 15]. Measurable improvements have
likewise been demonstrated through join operation reordering and algorithm replacement [16]. Other approaches
include data partitioning methods, such as Eddies [17], where different parts of the data are processed using dif-
ferent sets of operators, depending on the data itself. The concept of Eddies has also been applied to Linked Data,
such as with the network of Linked Data Eddies (nLDE) [18], to process different triples with a different order of
operators when possible, in an effort to address fluctuating data access costs over the network, that make cost esti-
mation in advance challenging. Further techniques include operator-internal approaches that aim to, for example,
allow changing the order of entries in join operations, or changing the physical implementation of a logical join,
to reduce the number of intermediate results, such as with the polymorphic bind and hash join operators [11], that
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swap between the two strategies at runtime. The Eddies have also been extended with essentially operator-internal
techniques [19], to allow for more flexibility in the data-partitioning method itself.

Within this work, we demonstrate the potential of applying intra-query techniques in link traversal over a network
of distributed Linked Data documents, using a query plan restart-based approach, to provide a lower bound estimate
for the performance potential of adaptive client-side techniques.

2.4. Relative impact of query plan

The overall performance impact of the data processing part has been shown to vary considerably. Some prior work
has demonstrated how, in performing traversal-based query execution over Linked Data, the cost of data retrieval
over the network marginalises the cost of locally processing that data following the query plan [9]. This conclusion
was reached through the application of different static and random query plans on traversal-based query execution
over the Berlin SPARQL Benchmark suite data [20], adapted for a number of different test networks with different
link structures to them, simulating an online e-commerce environment.

On the other hand, considerable performance improvements have been demonstrated [12] over a social forum
dataset, adapted for distributed link traversal scenario from the LDBC social network benchmark datset [21], using
a theoretical oracle to produce an optimal query plan with all the required statistics known beforehand. This conclu-
sion was reached in a test Solid environment with negligible network latency, due to the client and server running
on the same machine. Nevertheless, the improvements were considerable, with query time reductions of up to half,
leading to the conclusion that in specific environments, the network overhead may not fully dwarf the impact of
the query plan. Thus, within this work, we focus on the practical performance improvements attainable through
client-side optimisations, with the expectation that the overall performance impact will land somewhere between
negligible and significant.

2.5. The Solid initiative

The Solid initiative [1] seeks to offer individuals greater control over their own data, by storing it in permissioned
personal online datastores, referred to as pods, encouraging and facilitating the reuse of personal data, while also
enabling users themselves to control access to it. Notably, the Solid pods expose their contents following a set of
specifications such as the Solid protocol [22]. The contents of pods are exposed as a tree-like linking structure
consisting of containers and resources, using the Linked Data Protocol (LDP) [23]. Additionally, optional, purpose-
built Solid type indexes1 can be used to assist in data discovery. Further work on developing a core Web storage
protocol is continuing in the new Linked Web Storage W3C Working Group [24], which may eventually result in
data sources outside the Solid ecosystem sharing some aspects of its convenient means of exposing data for machine
processing.

This constrained and well-defined means of publishing data in Solid pods has been shown to increase the relative
impact of query planning [12], when the environment has enough structure to it that can be taken advantage of to
efficiently and quickly locate query-relevant data, shifting the bottleneck from data access to local processing of
that data to produce the query results. Further reductions in network overhead have been demonstrated through the
use of link prioritisation during traversal [25]. With these considerations, we have chosen the Solid initiative as the
basis for our experiments, and the SolidBench benchmark for the evaluation to align with existing work in the link
traversal space.

2.6. Triple pattern cardinality estimation

Cardinality information on triple patterns and other algebra operations is used during query planning to determine
the join plan – the order of joins – between them, in an effort to minimise the number of intermediate results,
thereby also minimising the amount of work needed to process the data. Prior work on the impact of cardinality
estimation [10] has shown that, in query plans with multiple joins, errors in this estimation can cause exponential

1https://github.com/solid/solid/blob/main/proposals/data-discovery.md
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increases in the number of intermediate results. Although centralised storage solutions are often capable of pre-
computing such information or providing estimates efficiently, such as through the use of characteristics sets [26],
within decentralised scenarios this may not always be possible, yet the importance of accurate estimates remains
high [12].

Thus, various purpose-built estimation techniques have to be applied in this context, such as variable count-
ing [27], that estimates the relative selectivities of triple patterns using the type and number of unbound compo-
nents, assuming different selectivities for different components of a triple pattern. Other approaches, such as the set
of formulae by Hagedorn et al. [28], copied in Table 1, make use of the statistics offered in dataset descriptions pub-
lished using the Vocabulary of Interlinked Datasets (VoID) [29], in combination with the triple patterns in a given
query, to provide more robust estimates in cases where the VoID statistics, such as the number of triples with a given
predicate, are available.

Triple pattern Result cardinality
?s ?p ?o ct

subjA ?p ?o ct
cs

?s predA ?o cppredA,t

?s ?p objA ct
co

subjA predA ?o
cppredA,t
cppredA,s

subjA ?p objA ct
cs·co

?s predA objA
cppredA,t
cppredA,o

subjA predA objA
cppredA,t

cppredA,s·cppredA,o

?s rdf:type ?o cprd f :type,t

subjA rdf:type ?o
cprd f :type,t
cprd f :type,s

?s rdf:type objA ccob jA,e

subjA rdf:type objA
cprd f :type,t

cprd f :type,s·cprd f :type,o

or 0 if no class partition for objA
Table 1

Triple pattern cardinality estimation formulae from Hagedorn et al. [28], using void:triples (ct), void:distinctSubjects (cs),
void:distinctObjects (co), as well as their property partition equivalents (cpp,t , cpp,s, cpp,o) for property p, and the class partition
void:entities (ccc,e) for class c.

Within this work, to estimate triple pattern cardinalities for use in evaluating the chosen query plan, and in
selecting a new one if deemed relevant, we have chosen to employ a variable counting-based approach due to its
lack of preconditions, as well as the formulae from Hagedorn et al. [28] due to their suitability for decentralised
scenarios where VoID descriptions can be used to communicate data statistics from a remote server to the client-
side query engine. Furthermore, to limit the scope of this work, we are using single-point estimates, disregarding
any trends over time introduced by unintended correlations and the like, but acknowledge the importance of taking
variance – such as the best and worst values for different parameters – into account to produce more robust query
plans [15].

3. Research question

Within this work, we seek to explore the impact of applying client-side adaptive query processing techniques in
traversal-based query execution over a traversal-friendly decentralised environment. We use a restart-based approach
for this purpose, evaluating the current query plan and restarting it if the plan would differ based on information
available during the evaluation. The following research questions serve as the basis for our work:

Question 1. Can overall query performance be improved through the application of client-side adaptive techniques,
compared to heuristics-based zero-knowledge query planning?
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Fig. 1. Once the cardinalities are discovered, and the current plan is suboptimal due to TP1 producing the most results, the wrapper transparently
restarts the query plan to place it higher up in the join tree, thus avoiding excessive intermediate results.

Question 2. How does increasing network latency or limiting request rate affect the impact of these client-side
techniques on performance?

We derived the following hypotheses to answer this research question:

Hypothesis 1. Compared to a heuristic zero-knowledge query planning technique, a restart-based planning ap-
proach achieves lower total execution time, and produces the first and last result sooner.

Hypothesis 2. Using a uniform interval for plan evaluation and restart performs worse than evaluation and restart
upon the discovery of new dataset characteristics information.

Hypothesis 3. Performing plan evaluation and optional restart more than once per query execution will negate any
performance benefits due to the associated overhead.

Hypothesis 4. Using VoID description metadata, the cardinality estimation formulae from [28] will outperform
simple predicate count-based estimation technique, highlighting the importance of the cardinality estimation in
achieving performance improvements.

Hypothesis 5. Lowering the request rate of the query engine to simulate real-world rate limiting scenarions will
marginalise the impact of local optimisations.

Hypothesis 6. Uniform increases to network latency will lower the performance benefits of of local optimisations
and ultimately negate them.

This research question and hypotheses are addressed through a practical implementation and experiments.

4. Client-side optimisation and simulation

Within this section, we outline our approach to restart-based query planning, as well as the query plan evaluation
approach used, the triple pattern cardinality estimation techniques, as well as the network latency simulation and
request rate limiting approaches.

4.1. Restart-based query planning

Within this work, we employ an operator-internal technique to restart query plans from the beginning during
pipelined query execution, where bindings pass through the query plan one by one, as they are produced and con-
sumed by the operators. Our restart wrapper operator essentially encapsulates the entire query plan, by acting as
a virtual passthrough join operator at the top of the tree of joins within the query plan, with this tree join of joins
consisting of the actual physical join operators that form the body of the query plan. This allows the operator to
monitor the query plan output, and to transparently restart it without disrupting the pipelines execution at the en-
gine level. This wrapper, illustrated in Fig. 1, is responsible for (i) evaluating the currently executing set of joins to
determine whether it is optimal and should be restarted or not, and (ii) restarting the encapsulated query plan when
the current one no longer appears optimal.
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Our restart-based approach differs from stop-and-restart approaches, such as by [30], in that the query plan is
terminated entirely under the wrapper, and restarted from the beginning, with the sole goal of producing a better
query plan after the restart. Thus, the approach does not react to resource pressure in shared environments, or allow
pausing the query execution. Our work is thereby more analogous to that around Web agents [31], where the agent
attempts to achieve higher performance by re-sending a query, in our case by re-running the query with a different
plan.

The query plan wrapper operates under bag semantics as required by the SPARQL specification [32], as part of
pipelined query execution, under the assumption that a query plan, when restarted, produces its full output again
from the beginning. The wrapper internally keeps track of all output produced by the query plan it encapsulates,
using a mapping of bindings to their produced counts. Upon restarting the query plan, the wrapper uses this mapping
to discard bindings that were already produced by the previous execution, ensuring no spurious duplicates are
produced, without dropping intended future duplicates. While this record is maintained fully in memory within our
implementation, and thus is unsuitable for use with queries producing more bindings than can be stored in system
memory, practical solutions could look towards flushing it to disk as with XJoin [33] or agjoin [34], or splitting the
record across several memory pools based on hashes such as with GRACE [35].

4.2. Query plan evaluation

Alongside restarting the query plan, the wrapper operator is also responsible for evaluating the optimality of the
chosen query plan. This is achieved by creating a new query plan at the time of evaluation, given the triple pattern
cardinalities available at that moment, that the engine deems optimal. This current optimal plan is then compared
against the executing plan, and if they differ – for example, if the join order between two triple patterns is different
– the wrapper considers the current plan sub-optimal. Should the plans be identical, the current one is still optimal,
and can continue execution.

The wrapper can be configured to perform its query plan evaluation using two different approaches, based on our
hypotheses:

1. Interval-based: When the query plan is initially started, the wrapper sets a recurring timeout at specific in-
tervals. Every time the timeout is reached, the query plan evaluation takes place. For example, if the interval
is set to 100 milliseconds, the wrapper will evaluate the current plan after 100 milliseconds. If the plan still
remains optimal, the wrapper will wait an additional 100 milliseconds, and perform the evaluation again after
200 milliseconds of total execution time.

2. Update-based: Every time the cardinality estimate of a triple pattern is updated, such as when the query engine
discovers a VoID dataset description applicable to the currently executing query, the query plan evaluation is
carried out. This approach allows for the evaluation of the query plan only when the information affecting
query planning is updated, and should ideally perform fewer unnecessary evaluations than the fixed interval
approach.

Both approaches can be configured to carry out the evaluation an unlimited number of times, or only a specific
number of times. Additionally, the wrapper performs cardinality estimation for the entire query plan it encapsulates,
when the cardinality of the individual join entries is updated, and uses this total cardinality estimate as the basis to
evaluate how much work has already been done by the query plan. When the number of produced bindings relative
to the total estimate for the query plan is above a configurable percentage threshold, the wrapper will skip restarting
the query plan, to avoid scenarios where the query plan would be restarted when almost all of the work has already
been done.

4.3. Triple pattern cardinality estimation

The query plan evaluation relies on cardinality information on triple patterns being updated as new information
becomes available. If the cardinality information does not change, the evaluation will produce the same plan every
time, and the experiments would be identical. Ideally, any new cardinality estimate would be closer to the true
cardinality value known only at the end of the processing.
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Within this work, we have chosen to employ the following two triple pattern cardinality estimation techniques,
taking advantage of the information provided by VoID dataset descriptions:

1. A formula-based approach, that uses the the formulae from Hagedorn et al. [28], included in Table 1. The
edge cases not covered by the formulae, or cases with missing statistics, or where the divisor in a formula
would go to zero, the total number of triples in the dataset is used as the realistic, conservative upper bound
estimate.

2. A predicate-based approach, that assumes the cardinality of a triple pattern to equal the cardinality of the
predicate value within that triple pattern. For example, if the triple pattern has a predicate ex:p, and the
VoID description contains a predicate partition for ex:p with triple count n, then n is used as the cardinality
estimate for this triple pattern. For triple patterns with variable predicate, the total number of triples in the
dataset is used as an upper bound estimate.

These two approaches will allow us to establish an understanding of the impact of cardinality estimation tech-
niques on restart-based query planning, to avoid accidentally evaluating the cardinality estimation approach rather
than the restart itself. The initial query plan with both cardinality estimation approaches, prior to execution, is pro-
duced based on zero cardinalities for all triple patterns and query operations, Whenever new information becomes
available, such as when a VoID dataset description is discovered, the cardinality estimate is updated immediately.
The cardinality estimator also breaks down larger chunks of the query into triple pattern level if necessary, and
reconstructs the higher-level cardinality as a worst-case estimate of the lower-level components. This allows the
engine to perform cardinality estimations on, for example, a union, by estimating the total cardinality as the sum of
the input cardinalities.

4.4. Network overhead simulation

Within this work, we employ two types of network overhead simulation: (i) request rate limiting, to simulate
a more realistic client-server interaction, and (ii) network latency simulation, to emulate realistic levels of delay
between a request and a response. These will allow us to better evaluate the scaling of client-side optimisations
under more realistic scenarios with regards to the data access overhead over the network.

The request rate limiter operates by matching client request rate to server response times: if the server responds to
ten requests a second on average, the rate limiter will space out client requests to reach a corresponding average of
ten requests per second. The rate limiter keeps track of the server response time, using a simple smoothing multiplier
to shift this calculated response time towards the latest measured value. This uses the method in (1) to calculate the
interval applied between latest request n and the next request n + 1, where S is the constant smoothing multiplier.

in+1 =


0 n = 0

i0 n = 1

in−1 + S · (in − in−1) n > 1

, S ∈]0, 1] (1)

This allows for dynamic rate limiting without relying on server-side communications, and results in the query
engine exhibiting more polite client behaviour, as opposed to sending as many requests as possible to a server,
potentially overloading smaller servers or taking resources away from other clients.

The network latency simulator component is independent from the request rate limiter, and applies a uniform,
configurable delay to all requests. For example, if the latency simulator is configured for 10 milliseconds, then each
outgoing request will be delayed by 10 milliseconds, in addition to any rate limits or normal underlying network
latency. This allows for the simulation of realistic levels of network-induced data access slowness.

5. Experiment setup

Within this section, we describe the benchmark used, our implementation of the approaches, as well as the exper-
iments conducted.
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5.1. The SolidBench benchmark and VoID descriptions

The dataset and queries used for our experiments were generated using SolidBench2, a benchmark to simulate
a distributed social network use case across Solid pods using the LDBC SNB social network dataset from [21]. This
benchmark has been used in related work [12], as well, for evaluating the relative impact of query optimisation, thus
proving suitable for our use case.

The generated dataset consisted of 1,528 Solid pods, containing a total of 3,514,190 triples across 117,967 docu-
ments, with an average of 30 triples per document and 77 documents per pod, excluding the LDP container structure
links that were generated on-the-fly by the Community Solid Server [36] used to serve the dataset. The SolidBench
benchmark also uses a set of 27 query templates – 7 short queries, 12 complex queries and 8 discover queries – to
instantiate 5 queries per template for a total of 135 queries, based on the generated data.

Following the work by Hagedorn et al. [28], to enable the use of the cardinality estimation approaches detailed
earlier, we chose to expose dataset metadata using the VoID vocabulary [29] for each Solid pod within the bench-
marking dataset. We extended the RDF dataset fragmenter library used by the SolidBench dataset3 to also generate
VoID descriptions, and treated each pod as a dataset. These descriptions were placed at the pod roots as metadata,
and thus served by the Community Solid Server when a client requests the pod root URI. This enables the automatic
discovery of these descriptions during traversal over the pods.

5.2. Query engine implementations

The engine-level approaches discussed in Section 4 were implemented in Comunica [37], a modular SPARQL
query engine framework that provides a baseline link traversal implementation, also previously used to benchmark
the relative impact of query plans compared to network overhead in related work [12]. The Comunica framework
allowed us to implement only the components needed to evaluate our specific approaches, ensuring a fair compar-
ison between the different scenarios from a technical standpoint. Our implementation is available as open source
software4.

Through changes in the query engine configuration, we set up the following test cases to measure the impact of
our approaches:

– The baseline approach, using the heuristic-based zero-knowledge query planning approach [7]. This is the
standard configuration of the engine without any of our implementation overheard, and performs link traversal
under the cMatch reachability criteria, where links to follow are chosen based on triple patterns in the query.

– The overhead evaluation, otherwise identical to the baseline setup, except with VoID description parsing and
cardinality estimation using either the predicate count-based approach or the formulae from Hagedorn et
al. [28] The zero-knowledge heuristics for query planning are also replaced by a cardinality-based approach,
but with all cardinalities being zero during the initial planning phase. This is a configuration with all the
implementation overhead necessary for cardinality estimation and updates, but without taking advantage of it
to evaluate the query plan or to restart it. This allows us to measure the impact of our implementation itself,
to ensure it does not unnecessarily skew the results in either direction.

– The interval-based restart approach, identical to the overhead experiment in its configuration, but with the
evaluation and potential restart of the query plan taking place at specified intervals. This experiment is con-
ducted for single-restart and unlimited restart scenarios, to measure the overhead of multiple restarts.

– The update-based restart approach, also identical to the overhead experiment in its configuration, but with
query plan evaluation and potential restart taking place whenever the cardinality estimate for a triple pattern
is updated. This experiment is also conducted for single-restart and unlimited restart scenarios, to measure
the overhead of multiple restarts.

2https://github.com/SolidBench/SolidBench.js/tree/3e45198
3https://github.com/SolidBench/rdf-dataset-fragmenter.js/tree/9b3f2ae
4https://github.com/surilindur/comunica-components/tree/d6e936a
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5.3. Experiment overview

The following parameters were varied between the experiments, to get a more complete overview:

– The join ordering approach for creating query plans, varied between heuristics [7] and a simple cardinality-
based ordering modes.

– The cardinality estimator, varied between no estimation using heuristics, the formulae from Hagedorn et
al. [28], and the predicate-based estimator.

– The query plan evaluation scheduling, varied between interval-based approach at 100, 1,000 and 10,000
millisecond intervals, and the estimate update-triggered approaches.

– The restart limit, varied between unlimited restarts a one-time restart for the interval-based approaches, and
an unlimited restart count for all estimate update-based approaches.

– The additional network latency, varied between no added latency, 50 milliseconds of latency, and 100 mil-
liseconds.

– The client-side rate limiting, varied between enabled and disabled.

These variations are detailed in Table 2 for clarity. The threshold of estimated work done, after which join restart
would not be allowed anymore, was set to 33%, as a balance based on manual testing, that allows for effectively
all join restarts to take place, save for those that would clearly be done unnecessarily late in the execution. The
choices of additional network latencies were based on observations of real-life latencies, with 50 milliseconds
corresponding to latency between different parts of a continent, and 100 milliseconds corresponding to latencies
between different continents or just latencies over a slower network within the same continent. We believe these
values offers a sufficient estimate of values encountered in real world use cases.

5.4. Experiment environment

The experiments were all executed on the same virtual machine, with a 4-core 8-thread AMD Milan EPYC™
7003 CPU, 32 GB of DDR4 memory, and an NVMe SSD for data storage, running Fedora Server 42 on linux
6.14.11 kernel with security mitigations enabled. Both the Community Solid Server and Comunica query engine
client were running locally and communicating over a Docker network, using the jbr.js5 benchmark runner tool [12].

Query timeout was set to 60 seconds, which is reasonable for the nature of the benchmark: the goal is to simulate
a social network scenario, where a user issues queries to discover messages, comments, reactions or other data from
this social network, and it is reasonable to expect these search-like actions to complete within one minute, as the
low user-perceived performance would otherwise render the social network application unusable. Although this is
stricter than the 120-second timeout from related work [12], from a usability perspective in an interactive application,
having to wait for over a minute for a search to finish could be deemed unusable. The queries instantiated using the
complex query templates timed out even with 120-second execution limit, aligning with the prior work, leaving
a total of 75 short and discover queries to execute for each experiment configuration. The experiments and our
results are available online6 for reproducibility and validation.

6. Results

The results overview is available in Table 3, with the full results available online alongside the experiments.
Different experiment test cases successfully completed different sets of queries within the allocated budget of time
and system resources, and thus the analysis has been limited to the queries successfully executed by all test cases.
Even the baseline configuration was unable to complete all queries. Of the total 75 queries, a common set of 16
queries was thereby left for analysis. We will analyse these results from the perspective of execution time, result
production efficiency over the execution, system resource consumption, and network usage.

5https://github.com/rubensworks/jbr.js/tree/de543aa
6https://github.com/surilindur/comunica-experiments/tree/5c7539a
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Fig. 2. The average completeness curves for different experiments, with client-side rate limiting and without it. The experiments with higher
added network latency exhibited greater variance of the average, as well, although the averages themselves are relatively close to each other. One
can observe how the shapes remain the same as latency increases, meaning latency mostly serves to slow things down, on average, rather than
significantly alter query behaviour.

6.1. Query performance

From the results, one can observe how the change from a heuristics-based join ordering to cardinality-based one
for the overhead experiments only had a modest impact on average query performance and resource consumption.
This impact includes the overhead of our implementation, as well as the reduction in potential query planning perfor-
mance caused by the use of zero-cardinalities for the query plan. The average execution time increased by mere 11%,
with increases in network latency further reducing this to around 2%. The first result was also produced around 12%
slower, with the difference reduced to around 3% by additional network latency. The same trend continued with last
result, that was produced around 16% slower, reduced to 4% with network latency. The maximum query execution
time increased by mere 17...29%, and the maximum time to first and last result by 11...50%. The queries themselves
are written in a way that is already quite optimal, so this comes as no surprise, and with identical estimated zero
cardinalities, the engine has no means of determining an alternative join order. Still, the heuristics applied in the
baseline experiments were able to reduce the worst-case performance by up to one third, which highlights their
importance in the absence of cardinality estimates.

The general trend appears to be for the average values for query duration, as well as first and last result, to be
higher with the restart-based approach. This can be seen from Fig. 2, where the completeness curves are shifted
upwards as a whole across the board. For example, evaluating query plans immediately upon cardinality estimate
updates, using the formulaic approach for the estimates, ended up increasing the average execution time by 32...71%,
producing first result 44...113% slower, and last result 40...97% slower on average. The minimum values, however,
have remained essentially identical to baseline, and the increased average can be attributed to the significantly
worse maximum execution times at 2.4× to 4.5× the baseline, as well as the corresponding increases of up to 4.3×
in times to first and last result. This is likely caused by overly optimistic estimates using the formulae, that may be
more accurate at the time of estimation, but that take into account full triple patterns and thus produce estimates
lower than the predicate-based approach. Thus, every time new information becomes available, the optimistic triple
pattern cardinality estimates may increase in a non-uniform fashion across the query, and have a higher chance
of changing their relative order, thus triggering a restart, increasing the overhead and exacerbating the worst-case
performance.

The predicate-based cardinality estimation approach manages to avoid the worst-case regressions, by producing
unnecessarily conservative cardinality estimates to the extent that their relative ordering is unlikely to change, un-
less the underlying data distribution characteristics dramatically change as a whole, which does not happen within
the context of our benchmark. Thus, the predicate-bases estimator, upon plan evaluation after cardinality estimate
update, produced 10...15% lower execution times on average, depending on network latency, and the first result
11...16% faster, and the last result 8...14% faster on average. While the minimum query duration was effectively
identical to baseline heuristics, as were the minimum times to first and last result, the maximum query durations
were 31...35% lower, the maximum times to first and last result 12...38% lower. This is a key observation in our
work, and could easily be ignored if only looking at the averages. On the other hand, the predicate-based estimator
failed the most queries, unless additional network latency or rate limiting was applied, resulting from unnecessarily
conservative query plan selection in fear of its own grossly overestimated cardinalities. The queries that worked,
however, and thus were included in this analysis, did so much better thanks to this.
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Fig. 3. The diefficiency metrics are calculated as an integral of results arrivals over time. For diefficiency at time t, higher is considered better, as
the engine has produced more results within that given time. For diefficiency at k results, lower is considered better, as the engine has spent less
time producing the given number of results.

Evaluating the join plans at fixed intervals followed a pattern similar to evaluations upon cardinality estimate
updates. The formulaic approach to cardinality estimates resulted in significantly worse worst-case performance,
lifting the averages up with it. Notably, the performance when restricting restarts to take place only once was almost
identical to the performance of unlimited restarts, underling the impact of the initial overly optimistic estimates to
the entire execution. With increases in the evaluation interval, the worst-case performance of the forumlaic estimator
improved considerably, due to it being able to perform more accurate estimates, catching up to the predicate-based
estimator. The predicate-based estimator, on the other hand, performed more consistently, staying relatively close to
the baseline performance in its best and worst cases, but also not providing significant improvements. Thus, it can
be concluded that an interval-based solution remains suboptimal, as was the case also in our prior work.

Applying client-side rate limiting does not change the overall trend of the results, as seen from Table 3, but
rather increases all query durations, and times to first and last results, across the board. The absolute worst-case
performance becomes worse, with the outliers shifted further out. This can also be seen from Fig. 4, where the
individual query execution times are plotted. The client-side rate limit spreads the execution times away from the
lower-end clusters, towards the higher values. Applying uniform network latency increases has a similar impact.
Still, even with increases in network latency and decreases in request rates, the trend remains the same, and tangible
improvements can be attained through client-side optimisations. With client-side rate limiting applied, and a network
latency of 50 milliseconds, query plan evaluations upon cardinality estimates using the predicate-based estimator
achieved 8% lower average query execution times, and 22% lower worst-case execution times. The average time to
produce the first result was also 11% lower, and the worst-case first result was produced 3% faster.

Moving up to 100 millisecond network delays does negate the impact of client-side optimisations when rate
limiting is also applied, but with an average HTTP request count of 62 per query, this would translate to around 6.2
seconds spent on HTTP requests on average, when the average query execution time is around 1.9 seconds and the
worst-case execution time around 5...6 seconds. With the rate limiter trying to avoid excessive concurrent request
counts, as a server-side rate limiter implementation would do the same, this shifts the majority of the network latency
directly into rate limits, thus increasing the relative cost of data access considerably.

Beyond execution times, and times to first and last result, we chose to employ the diefficiency metrics [38]. These
metrics capture the continuous query execution efficiency, over the duration of the query execution, and allow
comparison between query executions that have identical total duration, but that produce the results with different
result arrival trends. This helps us gain additional insights into the behaviour of the different test scenarios. The
original paper introduced two metrics: 1. dieff@t for diefficiency at a point t in time, where higher is better, and
2. dieff@k for diefficiency at the time of producing k results, where lower is better. The metrics are calculated as an
intergal of the result distribution function over time, illustrated in Fig. 3.

Within this work, we chose to employ dief@k, and assign k to the total number of results for a given query.
This allows us to aggregate the results across queries producing different numbers of results, while still maintaining
a connection between the metric and the continuous efficiency represented by it. These diefficiency results are
plotted for every execution in Fig. 4, to provide the full overview of their distribution, with and without client-side
rate limiting applied.

From the results, one can observe how the diefficiency metrics generally follow the trend exhibited by query
durations, save for the outliers. For example, for the estimate update-based restart experiment, using the formulaic
estimator, the diefficiency values remain lower than without rate limits, even though the execution time increases.
This would indicate better continuous efficiency over the query duration, despite the duration itself being longer.
For queries producing results in the range of a hundred or so, such as the interactive-discover-2 template, the results
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Fig. 4. The individual query execution durations and the corresponding dieff@full values, both with client-side rate limiting and without it.
Applying rate limiting causes long-running queries with many HTTP requests to take even longer. Furthermore, the diefficiency values are
spread more towards the higher end, also due to the increased query duration.

are indeed produced more smoothly over time, despite the query execution itself taking slightly longer. This is
illustrated in Fig. 5. From a user perspective, this gradual delivery of results could make for a better experimence,
and help the potential application taking advantage of such querying appear more consistent in its performance.

Further analysis of the rate limiter approach, as well as the network latency configurations, suggests that in
the absence of a rate limiter, the engine dedicates most of its time to link traversal and document parsing, and
focuses fully on query execution only when traversal subsides. This could be caused by the Comunica query engine
framework used for the experiments using the Node.js environment, relying on the event loop for mostly single-
threaded processing of both the query and the traversal, as well as the document parsing. We believe splitting the
traversal and parsing to a separate thread – such as a worker process – should help avoid this infighting for resources,
but there was no simple way to test this due to the interconnected design of the engine, and the potential overhead
of transferring data between worker threads.

6.2. System resource consumption

The CPU-seconds metric captures the consumption of CPU resources over the duration of the experiment, and
the GB-seconds metric captures the consumption of memory over the same duration. Due to the way the CPU and
memory consumption is recorded by jbr.js, these metrics could not be connected to individual query executions,
and thus capture the entirety of an experiment, including failed queries. Nevertheless, being uniform across the
experiments in its behaviour, the values can still be compared, and help understand the hardware costs of local
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Fig. 5. The result arrival trends for various experiments, both with client-side rate limiting and without it. The rate limiter causes results to be
produced more smoothly over time, whereas the default configurations appear stuck at first, and then suddenly dumps the majority of results in
one go.

query processing. The metrics also help understand the relative cost of executing queries in environments that bill
services by their resource consumption.

From the results in Table 3, one can observe how the overhead experiments exhibited around the same resource
consumption as the baseline, achieving an average 10% lower CPU-seconds and 5...30% lower GB-seconds in to-
tal across the benchmark runs. This is contrast to the query durations, where the overhead experiments exhibited
slightly longer execution times, and thereby indicates differences in query plans that result in lower resource con-
sumption at the expense of longer execution times. Restarting query plans upon cardinality estimate updates resulted
in CPU-second increases of 13...36%, whereby the formulaic approach to cardinality estimation mostly increased
processor utilisation. The associated memory consumption was likewise increased by 20...36%. This aligns with
the poorer query performance overall, especially for the worst-case performance. The predicate-based estimation
approach managed to avoid the pitfalls of the formulaic approach through its overshooting cardinality estimates,
which resulted in less processing needed to address various estimate shifts, and thus the CPU-seconds and GB-
seconds were mostly identical to baseline, ignoring the experiment without added network latency, that failed to
execute most of the queries and this exhibited abnormally low values for these metrics.

Applying client-side rate limiting reduced the system resource consumption by the query engine considerably,
cutting CPU-seconds by 50...60% and GB-seconds by 60...75% across the board. This supports the observation of
the engine dedicating its resources to link traversal and document parsing, even though this is clearly unnecessary
and hinders performance. This suboptimal resource allocation also causes the engine to use more system resources
than it needs, which directly translates to costs when running the query engine.

Additionally, through manual execution of several queries to better understand the engine behaviour, it was ob-
served that the engine continues processing its internal link queue even after query execution is over. The link queue
is the internal link buffer, that links to be followed are extracted into during the parsing of downloaded documents,
and where further links to follow are pulled from. This link queue is not emptied upon query execution termination,
and the engine continues pulling links from it until it is exhausted, independent of the query execution state, unless
an engine error occurs. This behaviour causes the engine to perform unnecessary processing after finishing a query.

6.3. Network utilisation

The network ingress and egress capture the data download and upload on an experiment level, implemented in
jbr.js similarly to the GB-seconds and CPU-seconds metrics, and thus also comparable across experiments, but im-
possible to associate with individual queries. These metrics allow for the analysis of data transfer, to help understand
how much or little data is needed to actually answer a given query, and to identify configurations that use more net-
work resources that they need to answer the query. These metrics also help understand the relative cost of query
execution in environments where billing is based on network utilisation.

From the results in Table 3, one can notice how all the experiments turn in similar network utilisation numbers,
downloading around 25...31 GB worth of data, while sending out requests worth 1...2 GB in total. Although this
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may not be much for the entire benchmark execution with replications included, the rate-limited results demonstrate
how most of this data downloaded is unnecessary, and is also a product of the query engine prioritising data access
over query processing, and thus ending up doing more link traversal than is necessary to answer the queries. The
problem is further excacerbated by the engine continuing to empty the link queue after query execution is over. The
rate-limited experiments download data in the range of 5...10 GB, around 1/5...1/3 of the default setup, and sends
out requests worth less than 0.5 GB, amounting to less than 1/2...1/4 of the default. This not only increases the cost
of traversal for environments where network usage is factored into the service fees, but also unnecessarily elevates
the costs for hosting data, when the query engine pulls more data from data providers than it actually needs, making
the engine an inconsiderate client from the data servers’ perspective.

7. Discussion

Although the average query execution times remained close to baseline, it was possible to achieve some con-
siderable improvements through restart-based query planning. Unlike in our previous work, through a variety of
optimisations both on engine-level and in our implementation, the formulae from Hagedorn et al. [28] did not
perform the best, due to the necessary VoID description data becoming available slowly over the duration of the
execution, and the formulae being so thorough in their estimations, that the final cardinalities changed several times,
prompting the restart-based technique to spend its execution time improvements on the restart overhead. This would
directly confirm Hypothesis 3, were it not for the predicate-based estimator, that manages to avoid the worst-case
performance regressions of the formulaic approach, and improve performance relative to baseline. Thus, we are
required to reject this hypothesis. We are also forced to reject Hypothesis 4, not because of the formulae themselves,
but because of the nature of link traversal, where the information needed for the formulae becomes available in such
small chunks that the formulae appear to produce unstable estimates over time.

With some interval-based evaluations also performing better than baseline, we are inclided to accept Hypothesis 1,
as in our previous work, under the assumption that more robust cost-benefit estimation will help avoid further worst-
case regressions and ultimately improve the average performance. We will also need to accept Hypothesis 2, due to
uniform evaluation intervals generally performing inconsistently, underlining the importance of reactive query plan
evaluation over a polling-style one.

The most interesting observation from this work has been the impact of rate limiting. Unlike in the work from
[12], we chose to apply client-side rate limiting, to bring our experiments closer to real-world conditions, where
servers refuse to handle hundreds of HTTP requests per second from an individual client over extensive periods of
time. The initial assumption was that this would marginalise the impact of local processing, and align more closely
with related work where this was shown to be the case [9], yet this did not happen. The rate-limited imposed on
the engine forced it to dedicate more time to local query processing, at the expensive of data access, resulting in
smoother result arrival rates over time, as well as better query performance with the predicate-based cardinality
estimator. Thus, we reject Hypothesis 5.

Applying a uniform network latency also did not universally marginalise the impact of local query processing,
with client-side optimisations still providing measurable improvements at 50-millisecond network latency. Thereby,
we reject Hypothesis 6, due to being too universal. Applying a network latency of 100 milliseconds, however, did
negate the impact of local optimisations, when the time spent on data access became too high relative to the overall
query execution time, as the average total time spent on HTTP requests even exceeded the average query execution
time. This serves to prove the point of [9] about data access over networks dwarfing the impact of local query
processing, but also demonstrates how there is a window in the latency values where local processing can have
a measurable impact. With 50-millisecond network latency fitting within this window, most applications operating
within a single continent where latencies are expected to fall within this window should still be able to achieve
measurable improvements, as outlined in the results.

Outside query performance, the use of system resources stood out in the experiment results. Due to the query
engine being unable to manage the resource allocation between data acquisition and local query processing, it ends
up dedicating unnecessary amounts of resources to data access, which not only reduces the relative impact of local
query processing, but also reduces the overall user-perceived query performance. Furthermore, by consuming more
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resources than it actually needs, the engine also makes itself more expensive to run, and prevents its own use in
resource-constrained environments. Beyond the engine itself, this behaviour, together with the forced exhaustion
of the link queue after execution, also resulted in more network traffic than necessary, notably 3...5× the amount
of data download relative to what is actually needed, making the engine a poor client from the perspective of data
providers upon whom this overhead is ultimately imposed in full. Future work on the engine itself should thereby
prioritise addressing this issue with suboptimal resource allocation, to make the engine not only more performant
with the same set of hardware, but also able to run with less resources, such as in edge computing scenarios.

8. Conclusions

The results from our experiments lead us to conclude that query performance can be improved through client-
side adaptive techniques, over a heuristics-based approach. This is our answer to Question 1, and the primary
conclusion of our work. Related work placed a theoretical oracle at roughly twice the performance of a heuristics-
based approach in the best-case scenario [12], and thereby defined the upper bound of what should be possible
through client-side optimisations. Our work here provides a lower bound to complement this, with an average
of up to 15% improvements attainable through a restart-based approach. The current and future state-of-the-art
techniques should thereby land in this 15...50% improvement window of client-side optimisations purely based on
query planning.

The secondary goal of this work, specifically our extension to the original experiments, was to establish an
understanding of the impact of network overhead. Related work demonstrated the marginal impact of local query
processing [9], through a set of random query plans with identical performance, due to the data access costs dwarfing
any impact of local query planning. Within this work, we applied request rate limiting to simulate real-world client-
server interactions, and repeated the experiments with 50 and 100 milliseconds of additional latency, to simulate
more realistic scenarios. Our discoveries indicate a window below 100 milliseconds, where network latency does
not completely dwarf the query plan, but latencies close to and above 100 milliseconds appear to behave as described
in related work [9]. This answers Question 2, in that rate limiting or network latency do not completely erase the
impact of client-side optimisations, but with high enough latencies or aggressive enough rate limits, they definitely
will, which also makes sense intuitively.

Overall, our experiments show potential in client-side optimisations, even in environments with realistic levels of
network overhead. Through state-of-the-art adaptive optimisation techniques, alongside state-of-the-art cost-benefit
analysis, tangible performance improvements can be attained, and future work in this direction should continue.
Even in link traversal scenarios, purpose-built client-side optimisation techniques should provide significant im-
provements. To enable decentralisation initiatives such as Solid to succeed, performant query engine abstraction
layers will be needed, to assist developers in producing services that take advantage of the benefits of decentralised
data storage solutions.

Our results also highlight several shortcomings in the Comunica query engine itself, that when properly ad-
dressed, should enable query engine performance in the context of interactive applications, lower system resource
consumption, and also better client behaviour towards data publishers. For example, decoupling link traversal and
document parsing from the query processing should result in both performing better, provided there is no signifi-
cant architecture-imposed overhead introduced that negates the performance benefits. While this is an engineering
issue, it underlines the importance of the engineering aspect alongside the algorithm design, where implementation
oversights can inadvertently introduce performance bottlenecks that hide of negate impact of various algorithms.

We believe the future of application development on top of decentralisation initiatives such as Solid depend on
client-side query engine abstraction layers, and these abstraction layers need further research in client-side query
optimisation to reach their peak performance, as well as implementations of these optimisations that do not suffer
from engineering-introduced architecture overhead or implementation limitations, so that developers depending on
them can deliver software and services that perform up to the expectations of their users.
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Experiment Join order based on Cardinality estimator Plan evaluation Restart limit Network latency (ms) Rate limited

baseline-0ms heuristics without cardinality - - - - no
heuristics without cardinality - - - - yes

baseline-50ms heuristics without cardinality - - - 50 no
heuristics without cardinality - - - 50 yes

baseline-100ms heuristics without cardinality - - - 100 no
heuristics without cardinality - - - 100 yes

overhead-hagedorn-0ms cardinality estimate formulae - - - no
cardinality estimate formulae - - - yes

overhead-hagedorn-50ms cardinality estimate formulae - - 50 no
cardinality estimate formulae - - 50 yes

overhead-hagedorn-100ms cardinality estimate formulae - - 100 no
cardinality estimate formulae - - 100 yes

overhead-predicate-0ms cardinality estimate predicate - - - no
cardinality estimate predicate - - - yes

overhead-predicate-50ms cardinality estimate predicate - - 50 no
cardinality estimate predicate - - 50 yes

overhead-predicate-100ms cardinality estimate predicate - - 100 no
cardinality estimate predicate - - 100 yes

restart-update-hagedorn-0ms cardinality estimate formulae on estimate update - - no
cardinality estimate formulae on estimate update - - yes

restart-update-hagedorn-50ms cardinality estimate formulae on estimate update - 50 no
cardinality estimate formulae on estimate update - 50 yes

restart-update-hagedorn-100ms cardinality estimate formulae on estimate update - 100 no
cardinality estimate formulae on estimate update - 100 yes

restart-update-predicate-0ms cardinality estimate predicate on estimate update - - no
cardinality estimate predicate on estimate update - - yes

restart-update-predicate-50ms cardinality estimate predicate on estimate update - 50 no
cardinality estimate predicate on estimate update - 50 yes

restart-update-predicate-100ms cardinality estimate predicate on estimate update - 100 no
cardinality estimate predicate on estimate update - 100 no

restart-100ms-hagedorn cardinality estimate formulae 100 ms intervals - - no
cardinality estimate formulae 100 ms intervals - - yes

restart-100ms-hagedorn-once cardinality estimate formulae 100 ms intervals 1 - no
cardinality estimate formulae 100 ms intervals 1 - yes

restart-100ms-predicate cardinality estimate predicate 100 ms intervals - - no
cardinality estimate predicate 100 ms intervals - - yes

restart-100ms-predicate-once cardinality estimate predicate 100 ms intervals 1 - no
cardinality estimate predicate 100 ms intervals 1 - yes

restart-1000ms-hagedorn cardinality estimate formulae 1,000 ms intervals - - no
cardinality estimate formulae 1,000 ms intervals - - yes

restart-1000ms-hagedorn-once cardinality estimate formulae 1,000 ms intervals 1 - no
cardinality estimate formulae 1,000 ms intervals 1 - yes

restart-1000ms-predicate cardinality estimate predicate 1,000 ms intervals - - no
cardinality estimate predicate 1,000 ms intervals - - yes

restart-1000ms-predicate-once cardinality estimate predicate 1,000 ms intervals 1 - no
cardinality estimate predicate 1,000 ms intervals 1 - yes

restart-10000ms-hagedorn cardinality estimate formulae 10,000 ms intervals - - no
cardinality estimate formulae 10,000 ms intervals - - yes

restart-10000ms-hagedorn-once cardinality estimate formulae 10,000 ms intervals 1 - no
cardinality estimate formulae 10,000 ms intervals 1 - yes

restart-10000ms-predicate cardinality estimate predicate 10,000 ms intervals - - no
cardinality estimate predicate 10,000 ms intervals - - yes

restart-10000ms-predicate-once cardinality estimate predicate 10,000 ms intervals 1 - no
cardinality estimate predicate 10,000 ms intervals 1 - yes

Table 2
The complete description of the test cases, to map the experiment names to their engine configurations. The experiments were repeated with

client-side rate limiting and without it. The formulaic cardinlaity estimator uses the formulae from Hagedorn et al. [28], and the predicate-based
estimator uses the predicate count from VoID descriptions. The restart limit restricts the number of query plan restarts.
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Duration (s) First result (s) Last result (s) dieff@full HTTP CPU-sec GB-sec Network (GB) Queries
Experiment min avg max min avg max min avg max min avg max requests (%) ingr. egr. finished

baseline-0ms 0.23 0.49 1.39 0.06 0.32 1.52 0.06 0.38 1.52 0.03 1.57 32.00 62 213,936 53,865 31 2 55 / 75
0.55 1.09 3.40 0.07 0.63 5.44 0.07 0.78 5.44 0.04 3.28 24.70 62 84,232 14,821 7 0 60 / 75

baseline-50ms 0.50 0.82 1.73 0.28 0.63 1.86 0.28 0.70 1.86 0.14 2.05 23.54 62 203,679 41,663 29 2 54 / 75
0.74 1.64 5.66 0.27 1.13 6.43 0.27 1.26 6.43 0.14 3.14 23.59 62 86,675 14,518 6 0 59 / 75

baseline-100ms 0.76 1.09 2.16 0.47 0.87 2.44 0.47 0.93 2.45 0.24 1.63 10.70 62 217,614 44,029 29 1 57 / 75
0.96 1.75 4.87 0.46 1.25 5.53 0.46 1.38 5.53 0.23 2.93 19.48 62 86,566 14,537 6 0 61 / 75

overhead-hagedorn-0ms 0.24 0.55 1.79 0.06 0.36 2.28 0.06 0.44 2.28 0.03 1.94 20.81 62 193,236 38,892 27 1 57 / 75
0.56 1.13 3.64 0.07 0.67 4.83 0.08 0.80 4.83 0.04 3.32 19.19 62 83,170 13,921 6 0 66 / 75

overhead-hagedorn-50ms 0.50 0.86 2.22 0.26 0.67 2.39 0.26 0.74 2.39 0.13 2.31 24.69 62 198,438 40,711 27 1 61 / 75
0.72 1.67 6.02 0.27 1.14 7.02 0.27 1.28 7.02 0.13 3.46 22.65 62 84,783 15,009 5 0 64 / 75

overhead-hagedorn-100ms 0.77 1.10 2.31 0.47 0.89 2.43 0.47 0.96 2.43 0.23 2.69 32.33 62 193,274 36,108 25 1 62 / 75
0.99 1.90 6.27 0.47 1.37 7.35 0.47 1.52 7.35 0.24 3.53 28.78 62 81,989 14,013 5 0 64 / 75

overhead-predicate-0ms 0.22 0.54 1.89 0.05 0.37 2.19 0.05 0.44 2.19 0.02 2.09 20.97 62 194,024 37,624 27 1 57 / 75
0.56 1.17 4.11 0.06 0.69 5.97 0.08 0.83 5.97 0.04 3.48 24.25 62 84,638 14,701 6 0 65 / 75

overhead-predicate-50ms 0.50 0.85 2.15 0.27 0.66 2.33 0.27 0.74 2.33 0.13 2.39 22.89 62 190,224 36,636 26 1 61 / 75
0.72 1.61 5.78 0.26 1.13 7.09 0.26 1.25 7.09 0.13 3.21 20.81 62 82,441 15,614 5 0 65 / 75

overhead-predicate-100ms 0.77 1.12 2.53 0.46 0.91 2.71 0.46 0.98 2.71 0.23 2.38 33.04 62 200,461 42,964 25 1 60 / 75
0.98 1.92 6.61 0.46 1.40 7.65 0.46 1.54 7.65 0.23 3.53 23.85 62 81,140 14,568 5 0 65 / 75

restart-update-hagedorn-0ms 0.23 0.84 6.32 0.05 0.68 6.37 0.07 0.75 6.37 0.03 1.87 16.92 62 290,847 72,603 27 2 57 / 75
0.57 1.66 8.78 0.07 1.19 12.60 0.08 1.34 12.60 0.04 3.74 20.63 62 103,610 17,918 8 0 62 / 75

restart-update-hagedorn-50ms 0.47 1.08 4.11 0.26 0.91 6.68 0.26 0.98 6.68 0.13 3.33 28.85 62 229,516 49,187 27 2 62 / 75
0.72 2.75 16.42 0.27 2.27 18.14 0.27 2.41 18.14 0.14 3.96 18.01 62 103,370 18,571 7 0 63 / 75

restart-update-hagedorn-100ms 0.77 1.60 6.13 0.46 1.38 8.52 0.47 1.45 8.52 0.23 2.79 28.81 62 246,479 53,031 26 2 59 / 75
0.96 3.45 21.26 0.46 2.94 37.94 0.46 3.08 37.94 0.23 4.02 18.97 62 102,832 17,969 7 0 64 / 75

restart-update-predicate-0ms 0.24 0.44 0.90 0.05 0.27 1.18 0.08 0.35 1.18 0.04 2.27 25.60 62 54,515 14,316 4 0 25 / 75
0.52 0.99 2.59 0.07 0.53 3.19 0.08 0.68 3.19 0.04 3.20 19.95 62 144,616 39,377 9 0 59 / 75

restart-update-predicate-50ms 0.50 0.70 1.15 0.26 0.53 1.17 0.26 0.60 1.17 0.13 2.38 24.54 62 205,765 45,913 29 2 57 / 75
0.76 1.51 4.45 0.26 1.01 6.21 0.27 1.15 6.22 0.14 3.37 22.85 62 93,123 16,325 8 0 59 / 75

restart-update-predicate-100ms 0.77 0.97 1.48 0.46 0.77 1.79 0.47 0.84 1.79 0.24 2.39 34.08 62 189,849 41,207 27 2 57 / 75
1.00 1.78 5.38 0.47 1.27 6.22 0.48 1.41 6.22 0.24 3.29 16.36 62 93,941 16,026 8 0 59 / 75

restart-100ms-hagedorn 0.24 0.88 6.37 0.06 0.71 6.55 0.07 0.79 6.55 0.04 2.10 24.94 62 312,396 79,242 27 2 57 / 75
0.54 1.68 8.20 0.07 1.24 11.40 0.08 1.37 11.40 0.04 3.62 23.50 62 112,351 20,056 8 0 61 / 75

restart-100ms-hagedorn-once 0.21 0.83 6.23 0.06 0.67 6.46 0.06 0.74 6.46 0.03 2.25 23.75 62 243,300 52,867 26 2 58 / 75
0.59 1.60 7.40 0.06 1.13 13.61 0.08 1.26 13.62 0.04 3.41 18.00 62 106,678 17,897 8 0 64 / 75

restart-100ms-predicate 0.21 0.56 2.35 0.05 0.38 3.91 0.05 0.45 3.91 0.03 1.90 18.25 88 229,757 51,323 27 2 52 / 75
0.52 1.11 3.80 0.07 0.64 5.13 0.08 0.77 5.13 0.04 3.09 14.88 62 101,290 18,215 8 0 54 / 75

restart-100ms-predicate-once 0.21 0.43 0.90 0.06 0.26 1.22 0.06 0.33 1.22 0.03 1.77 32.60 62 240,729 57,610 27 2 54 / 75
0.53 1.10 3.56 0.07 0.64 6.44 0.08 0.77 6.44 0.04 3.46 17.66 62 109,635 17,686 8 0 64 / 75

restart-1000ms-hagedorn 0.22 0.53 1.62 0.06 0.36 1.87 0.07 0.44 1.87 0.03 2.19 23.84 62 224,702 46,207 26 2 55 / 75
0.52 1.07 3.25 0.05 0.62 4.96 0.05 0.76 4.96 0.02 3.32 24.03 62 110,697 19,560 8 0 60 / 75

restart-1000ms-hagedorn-once 0.21 0.53 1.63 0.04 0.36 1.79 0.05 0.43 1.79 0.03 2.05 24.57 62 242,955 51,566 25 2 56 / 75
0.54 1.16 4.13 0.06 0.70 4.93 0.06 0.84 4.93 0.03 3.35 18.45 62 108,675 19,990 8 0 61 / 75

restart-1000ms-predicate 0.20 0.52 1.54 0.05 0.36 1.60 0.05 0.43 1.60 0.03 2.10 26.33 62 265,700 65,916 27 2 59 / 75
0.58 1.32 3.52 0.07 0.83 14.80 0.07 0.98 14.80 0.04 3.79 23.43 66 98,772 18,973 8 0 57 / 75

restart-1000ms-predicate-once 0.21 0.53 1.62 0.04 0.35 1.95 0.07 0.43 1.95 0.03 1.88 22.63 62 236,727 54,767 28 2 58 / 75
0.58 1.12 3.42 0.06 0.65 4.79 0.06 0.78 4.79 0.03 3.49 29.34 62 101,542 17,009 8 0 62 / 75

restart-10000ms-hagedorn 0.21 0.57 1.71 0.04 0.40 3.65 0.04 0.47 3.65 0.02 1.68 21.83 62 220,080 48,758 30 2 58 / 75
0.57 1.18 3.85 0.07 0.67 4.84 0.08 0.81 4.84 0.04 3.76 26.98 62 100,986 17,415 9 0 63 / 75

restart-10000ms-hagedorn-once 0.22 0.55 1.89 0.05 0.37 1.97 0.07 0.45 1.97 0.03 2.30 28.87 62 248,495 59,338 31 2 57 / 75
0.54 1.11 3.71 0.07 0.66 4.34 0.07 0.79 4.34 0.03 3.49 19.75 62 111,166 19,898 9 0 62 / 75

restart-10000ms-predicate 0.21 0.52 1.79 0.05 0.36 1.83 0.06 0.43 1.83 0.03 2.08 24.25 62 237,755 55,339 30 2 59 / 75
0.57 1.13 3.61 0.07 0.65 5.70 0.07 0.79 5.70 0.04 3.64 23.00 62 101,088 16,615 9 0 64 / 75

restart-10000ms-predicate-once 0.21 0.53 1.81 0.05 0.37 1.87 0.05 0.45 1.87 0.03 2.32 31.10 62 284,735 71,381 31 2 58 / 75
0.59 1.19 3.63 0.08 0.68 5.25 0.08 0.83 5.25 0.04 3.50 17.77 62 102,244 17,397 9 0 63 / 75

Table 3
Overview of the benchmark results, for both the default HTTP request behaviour, and with client-side rate limiting applied. Measurements better
than their respective baselines are highlighted in bold. The use of client-side rate limiting reduces absolute query performance, and increases
dieff@full, but allows more queries to succeed, while also considerably reducing data transfer over network, as well as the relative CPU-seconds
used by the query engine, as well as the GB-seconds, measured as an integral of memory consumption over execution time. The HTTP request
count reported is the number of requests done by the time the query finished.
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