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Abstract. In order to effectively handle the growing amount of available RDF data, scalable and flexible RDF data processing
frameworks are needed. While emerging technologies for Big Data, such as Hadoop-based systems that take advantages of
scalable and fault-tolerant distributed processing, based on Google’s distributed file system and MapReduce parallel model, have
become available, there are still many issues when applying the technologies to RDF data processing. In this paper, we propose
our RDF data processing framework using Pig and Hadoop with several extensions to solve the issues. We integrate an efficient
RDF storage schema into our framework and then show the performance improvement from Pig’s standard bulk load and store
operations, including the schema conversion cost from conventional RDF file formats. We also compare the performance of our
framework to the existing single-node RDF databases. Furthermore, as reasoning is an important requirement for most RDF data
processing systems, we introduce the user operation for inferring new triples using entailment rules and show the performance

evaluation of the transitive closure operation as an example of the inference, on our framework.
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1. Introduction

Metadata describing a variety of contents and con-
texts is recognized as being an important aspect of
knowledge based processing. RDF (Resource Descrip-
tion Framework), a W3C standard for describing meta-
data [39], is becoming widely adopted in the Seman-
tic Web world, where it is increasingly being used to
publish large amounts of information. The amount of
the available RDF data is rapidly increasing, and it will
be necessary to support RDF databases in the petabyte
scale with trillions of RDF triples in the future. How-
ever, the scalability of RDF databases is an unresolved
issue. The data size requires distribution over multi-
ple nodes, and graph pattern matching for RDF queries
usually requires a large amount of processing power.
Using a relational database in the back end of the RDF
database might not perfectly solve the problem, be-
cause RDF databases require RDF-specific query pro-
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cessing operations and rule-based inference support.
Moreover, storing RDF data as metadata and the con-
tents written in the RDF together and analyzing them
on the same data processing infrastructure will be one
of the practical RDF applications.

In order to solve the scalability problem, we pro-
posed a framework that exploits parallel database pro-
cessing over the distributed file system and the MapRe-
duce model [35]. The framework design was inspired
by the recent achievements of Google and Yahoo for
handling petabyte scale Web data on commodity hard-
ware clusters. The distributed file system proposed as
Google File System (GFS) [18] provides a functional-
ity to store a large file over multiple storage nodes by
dividing it to fixed-size chunks, with fault-tolerance to
node crashes achieved using the chunk replica on other
nodes. MapReduce [16] is a programming model to
compose a parallel job by defining sub-tasks as an arbi-
trary map operation processing the chunk and a reduce
operation merging the outputs of the maps, and also an
efficient and fault-tolerant execution model allowing
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retries of the sub-tasks on a distributed environment
running the GFS. Hadoop [3] is based on GFS and
MapReduce, and it is an open-source software aimed
at providing a similar functionality. We use Hadoop as
the basic infrastructure and also use Pig [28], which
provides a general data processing platform on top of
MapReduce and allows users to write a script incorpo-
rating database operations (e.g. filter, join) in a proce-
dural programming style. Pig compiles the script and
generates the MapReduce code to run on the Hadoop
installed system. The scalability of this software stack
is shown by other works [17,29]. However, because
the RDF data model is a labeled, directed graph and
complicated analytical queries are applied, more effi-
cient and fine-tuned methods for RDF data processing
should be integrated into the software stack.

In our previous work [35], we studied a storage
schema to shorten the execution time of the select-
projection-join (SPJ) query, which was implemented
using MapReduce and executed on the Hadoop sys-
tem, taking into account characteristics of the RDF
data. Then we proposed an initial RDF data processing
framework in the paper [36]. In this paper, the com-
plete architecture design and extended methods for
RDF data processing are presented with comprehen-
sive evaluation, as follows:

— Definition of the RDF storage schema combined
with vertical partitioning and the key-value data
format of the Hadoop.

— Development of the schema conversion tool using
MapReduce and the RDF data loader of Pig, for
the above storage schema.

— Basic performance evaluation of our proposed
framework using SP2Bench [32].

— Definition of the inference command in Pig Latin.

— Implementation of the transitive closure operation
on Pig, and its performance improvement by dy-
namic parameter tuning and parallel execution.

In the rest of the paper, we describe about the scal-
ability problem of the RDF data in Section 2, a de-
sign overview and advantages of our proposed frame-
work and extensions for efficient RDF data processing
in Section 3, and then present implementation of each
extension and evaluation result in Section 4. The re-
lated works are summarized in Section 5 and the paper
is concluded in Section 6.

2. Scalability Requirements of
RDF/RDF-annotated Data Repositories

A scalability problem involving storing and query-
ing large RDF data is rapidly being recognized to be
important. First, the number of the RDF repositories
continues to increase as RDF becomes more widely
adopted within applications. We can see the amount
of the public data and their interlinks in the report
from the W3C SWEO (Semantic Web Education and
Outreach) Linking Open Data community project [7].
In September, 2011, 295 datasets consist of over 31
billion RDF triples, which are interlinked by around
504 million RDF links. There is another report that
973 million pages contained Microformat, Microdata,
RDFa data in 3.2 billion HTML pages [21], and there
is an effort to map Microdata to RDF [22]. These facts
indicate that many data on the Web are being struc-
tured, or can be represented as RDF, and they would
become an important application for search engines or
data warehouses.

Second, the size of each RDF repository is also
growing. One of the most prominent repositories, the
DBpedia [2] knowledge base, describes more than 2.6
million things with 274 millions’ RDF triples whose
size is about 67GB. Other sources of large amounts of
RDF data also exist, for example “ucode” is an identi-
fier used to assign potentially billions of real-world ob-
jects so that the object becomes uniquely identifiable
and manageable by computers [8]. Ucode is written in
RDEF, which means a large amount of RDF data might
be produced as ucode becomes widely adopted.

Finally, in addition to the repository having only
RDF data, there is an RDF-annotated data repository
whose size can be much larger. For example, scientific
data related to geosciences or physics now needs to be
handled on the petabyte scale. Data analysis with a set
of queries using metadata about scientific data is com-
mon and RDF is used for the metadata in those appli-
cations, too. In this scenario, providing a unified data
processing infrastructure for both RDF and annotated
data with efficient access on such a large scale is an
important challenge.

Our proposed framework, explained in the next sec-
tion, aims to support both types of repositories, the
RDF-only type and the other type having both applica-
tion data and RDF. Both data can be stored on the same
distributed file system and both analyses can be per-
formed on the same MapReduce execution system, but
this paper focuses on the techniques for only handling
RDF data.
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3. Proposed RDF Data Processing Framework
3.1. Design concept

Our proposed RDF data processing framework is
built on top of the distributed file system (DFS) and
MapReduce provided by Hadoop, and based on Pig
with several extensions to specially support RDF data
processing. The reasons why we chose this layered ar-
chitecture are as follows:

— Scalable architecture: Scalability of the DFS
and the MapReduce was shown by Google’s, Ya-
hoo’s and now many other activities, in storing
and analyzing petabyte scale Web data over thou-
sands of nodes.

— A common set of data processing tools and
a general query optimization framework: Pig
on top of the Hadoop provides a general data
processing platform and supports a common
set of database operations: SELECT, FOREACH,
FILTER, JOIN, and etc. The operations are also
useful for RDF data processing, which means that
RDF and other generic data processing can be ex-
ecuted on the same infrastructure. This benefits
users to perform efficient integrated data process-
ing using RDF annotation.

— Flexible interface for applying custom process-
ing: The MapReduce programming model sup-
ports the user defined function (UDF) in the map
and reduce tasks. This capability is kept in Pig
and the customized operation can be programmed
in Pig Latin, a programming language of Pig. The
UDF is extremely useful for rule-based process-
ing and data analysis using third-party tools.

While the architecture has these advantages, Pig
does not support various optimization techniques that
are traditionally provided by database management
systems. Pig implements the optimization techniques
that do not require the data schema [27,17]. In addi-
tion, RDF queries usually require multiple joins, but
Pig assumes that performing more than one join is rare
and does not optimize the join ordering. Without op-
timization well-suited to applications, the query exe-
cution time would be very long. Therefore we need to
define the storage schema for the RDF data and more
effectively optimize the query. We keep the original
system design of Pig and do not force non-RDF data
to have the schema, so that the flexibility for the other
data will not be lost. Instead the other data’s schema
can be described with the RDF data.

RDF/RDF-annotated Data Processing Interface
S

saL i SPARQL, etc.

Extended Pig Latin Language
[Dalabase operations provided by Pig} [RDF special operalions] [Cuslom data processmg}

oo oo User-defined (UDF;

Pig Query and Processing Engine

analysis tools.

for RDF and

other data

(MapReduce
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[ Logical Opti‘-nizer ‘
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[ Physical Op‘imizer } }

[ MapReduce Execution System ]
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[ Distributed File System

Fig. 1. An architecture overview of our proposed RDF data process-
ing framework

For the rule-based processing with RDF, users
would give rules as inputs to Pig, and then Pig needs to
generate corresponding MapReduce operations to ap-
ply rules to the RDF data. Additional operations and/or
built-in functions of Pig Latin should be designed for
users to do this with ease.

3.2. Architecture overview

Figure 1 shows an architecture overview of our pro-
posed RDF data processing framework. The extended
Pig Latin language provides three types of the process-
ing interface; a general data processing interface pro-
vided as Pig Latin standard commands, an RDF data
processing interface that we extend, and a custom data
processing interface given by users as UDF. Our ex-
tensions, which are shown in grey in Figure 1, are in-
tegrated into each layer, and they are to make RDF
data processing more efficiently on this framework.
The storage schema is defined at the bottom layer and
the optimization using the schema is implemented in
Pig’s query engine. RDF-specific LOAD, INFER and
other operations would be implemented in the Pig pro-
cessing engine, or developed as special analysis tools
using MapReduce. A SPARQL interface can be imple-
mented on top of the extended Pig Latin by leverag-
ing the three interfaces, if necessary, but it is out of the
scope of this paper. The details of our extensions are
described in the next subsection.

3.3. Extensions for RDF data processing
3.3.1. Storage schema

We design the RDF storage schema under the con-
sideration of the following three aspects;
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a = LOAD ‘DBpedia’ USING RDFLoader (
‘?predicate = <http://dbpedia.org/property/relatedInstance>’);
b = LOAD ‘WordNet’ USING RDFLoader (
‘?subject = <http://www.w3.0rg/2006/03/wn/wn20/schema/tagCount>");

Fig. 3. Example of the LOAD operation using RDFLoader()

Table P, Table P, Table P53 Table P, Table Py

lsmdex]§ [Sindex| [Sindex] [Sindex| [Sindex|

&

MapFile format S: Subject, P: Predicate, O: Object

Fig. 2. Vertical partitioning combined with MapFile (VP-MapFile)

— An internal file structure of both RDF triples and
intermediate results of queries and analysis.

— Data partitioning, which relates to a file tree struc-
ture and file distribution on the DFS.

— Structure of indices including inferred data.

and have implemented the vertical partitioning ap-
proach, which is one of the three data partitioning
methods studied in our previous work [35].

The vertical partitioning [10] approach (VP) uses
the characteristic that predicates rarely become a vari-
able in most RDF queries. Because, in our previous ex-
periments, VP outperforms other methods in terms of
performance and less disk space usage, we adopted VP
for integrating into our proposed framework. In VP, all
triples are divided into predicate tables which corre-
spond to files on the DFS, and each file name relates
to the predicate value. In Section 4.1, we implement
VP combined with the MapFile of the Hadoop. This
implementation, which is called VP-MapFile, uses
the MapFile as the internal file format and leverages
lookup capability of key-value pairs, by using index
and sort, as shown in Figure 2. Thus, when the query
specifies the predicates and/or subjects, the matching
triples can be quickly loaded.

In order to load the RDF data into the Pig runtime,
we developed RDFLoader() that is a built-in load func-
tion of Pig. The example use of the RDFLoader() is
shown in Figure 3. The first argument of LOAD, ‘DB-
pedia,’ is a repository name of the data to be loaded.
The argument of the RDFLoader() accepts expressions
based on the syntax of the SPARQL filter clause and
applies the filter when loading data so that unnecessary
data will never be read from the DFS. In the ‘DBpe-
dia’ example, the RDF data whose predicate is ‘relate-

dInstance’ will be loaded. Once the data is loaded, the
standard Pig operations can be applied to the data.

In addition, we developed a helper tool that converts
the RDF data on existing RDF file formats to our VP-
based storage schema. The tool can be applied to files
imported into the DFS and the conversion is performed
by the MapReduce execution.

3.3.2. Query optimization

The RDF query execution is optimized for our stor-
age schema described in the previous subsection. The
filter operations would be applied when loading data,
which allows the system to read only the required RDF
data from the DFS and achieves significant perfor-
mance improvement. We evaluate this improvement,
and the performance of the query execution by using
SP2Bench. The details are described in Section 4.

In addition to this, any other extended optimiza-
tions for RDF data processing can be applied to the
original Pig query engine [17] in Figure 1. The log-
ical optimizer interprets the statements in Pig Latin
with/without RDF-specific operations, and constructs
an optimized logical plan. The logical optimizer may
change the order of the operations, combine more than
two operations into one equivalent operation or make
a decision to use materialized data (e.g. join indices)
if it improves the performance. Then the physical op-
timizer compiles the logical plan into several MapRe-
duce jobs.

In particular for RDF data processing, a sequence
of self-join operations to find new triples of the RDF
data graph is required by rule-based processing. Then
multiple join operations are expected to be optimized
by reordering, reuse of the past results, choosing
faster join algorithms against the specific data distribu-
tions, and so on. As one of such techniques, we have
proposed an adaptive multi-join method by a single
MapReduce execution, which is presented in the pa-
per [24], though the method has not been integrated
into our proposed framework yet.

3.3.3. Reasoning support

Our proposed framework provides reasoning capa-
bility in two aspects, using given rules to infer new
information and using the rules for performing faster
query execution. In this paper, we focus on the former
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Table 1

Specification of the cluster

Cluster specification 9 nodes

— 1 node for client and management, and 8 nodes for processing and storage
— 111GB disk space is allocated for Hadoop on each node.
— CentOS 4.5, Hadoop release 0.20.2, Pig release 0.7.0

Hardware of each node

Intel Xeon 2.8GHzx 2, 1GB memory, 3-drive RAID-5 disk array, 1 Gigabit Ethernet

Table 2

Specification of the virtualized cluster

Cluster specification

13 nodes, each of which runs on a different host machine
— 1 node for client and management, and 12 nodes for processing and storage
— 8 cores, 16GB memory, and 300GB disk space for Hadoop are allocated on each node.
— CentOS 5 with KVM, Hadoop release 0.20.2, Pig release 0.7.0

Hardware of each host machine

Intel Xeon E5220 2.27GHz Quad Core x 2, 24GB memory, 2TB disk, 1 Gigabit Ethernet

’ b = RDF-INFER a USING RDFRuleBase (‘myrule-1'); ‘

Fig. 4. Example of the RDF-INFER operation using RDFRuleBase()

one and propose the RDF-INFER command, which
can be used to infer new RDF triples based on a set
of rules, as an addition to Pig Latin. In Figure 4, the
RDF-INFER finds new triples that satisfy the rule
‘myrule-1." The RDFRuleBase() is an example, new
function for the RDF—INFER and it is implemented
as a built-in function of Pig to interpret the rules for
‘myrule-1" and generate a sequence of the Pig oper-
ations such as select, projection, join, etc. to apply
the rules. The supported rules and the rule syntax for
‘myrule-1" depends on each built-in function. Provid-
ing the RDF-INFER command is not only aimed at
providing a high level interface to users but also aims
to add the necessary functionality to Pig in order to ex-
ecute the inference operation efficiently. Use of spe-
cific algorithms, reordering or merging operations spe-
cific to the RDF inference, and use of the materializa-
tion can be managed by the Pig query engine.

4. Implementation and evaluation

This section describes about implementation and
evaluation of our extensions. The analytical query per-
formance of our proposed framework was evaluated by
two aspects, performance comparison against existing
RDF databases by using the RDF benchmark suite and
performance evaluation of our own implementing the
transitive closure operation. Through the evaluations,

scalability of our proposed framework and possibility
of further performance improvement are presented.

Evaluations were performed on two environments
each of whose specification is shown in Table 1 and
2 respectively. While Table 1 is a normal Hadoop-
installed cluster, Table 2 is a cluster which consists of
virtualized servers. Because each virtualized server oc-
cupies a single physical server, we only need to con-
sider virtualization overheads on each node, in partic-
ular to I/O performance degradation compared to the
physical server, when looking at results.

4.1. Schema-aware RDF data loader

4.1.1. Implementation

We implemented a prototype of the schema-aware
RDF data loader, which is described as RDFLoader()
here. The filter clause of the RDFLoader() understands
simple string matching of the subject, the predicate or
the object and takes advantages of the VP and Map-
File schemas. Future work will examine the possibil-
ity of adding support for more advanced filtering op-
erations on various RDF data types. Currently the RD-
FLoader() supports both text and binary formats of the
predicate file. The binary format combined with VP
was implemented with the MapFile of the Hadoop,
which is a sorted data format with an index to permit
lookups by key using a binary search. In this imple-
mentation, which is called VP-MapFile, random and
partial access by subjects becomes possible by storing
subjects as key. In addition, splittable block compres-
sion using the LZO [5] library natively installed on the
server is available.



6 Y. Tanimura et al. / A Scalable RDF Data Processing Framework based on Pig and Hadoop

Stored size of the WordNet 2.0 Full data in the HDFS

Size [MB] | Ratio [%]
The original N-Triples format 318.2 100.00
N-Triples based format - Tab-delimited text file (nf) 317.9 99.89
VP format - Text without compression (vp-txt) 219.5 68.97
VP format - MapFile without compression (vp-my) 236.8 74.41
VP format - MapFile with LZO compression (vp-mfc) 36.9 11.59

Execution time of loading the RDF data with specifying a subject and a predicate

Execution time [sec]

N-Triples based format - Tab-delimited text file (nt-1m) 59.6

N-Triples based format - Tab-delimited text file (nt-5m) 23.8

VP format - Text without compression (vp-txt) 26.4

VP format - MapFile without compression (vp-mif) 14.3

VP format - MapFile with LZO compression (vp-mfc) 12.4
4.1.2. Evaluation 70 ——vp-txt

Table 3 shows stored data size of WordNet 2.0 60 e 1 :SEL

Full [38] consisting of 1,942,887 triples, on the Hadoop 3 50 :::;2
distributed file system (HDFS) by using our storage £ 40
schemas, and the ratio to the original size. The N- an _ .
Triples based format (nf) is almost same as the original é 2 I __ M————E
format, but removes ‘. and converts the space delim- « 10 /
iter among the subject, the predicate and the object to . ‘
the tab. In this result, the VP-based formats saved the 0 w0 20 30 40 50 60

disk space because it did not contain predicates in each
file. Instead, a predicate map between the file names
of the predicate group and actual predicates was sepa-
rately stored and its file size was 3.5 [KB]. The Map-
File used more space than the text format (vp-txt) but
when the compression was enabled in vp-mfc, space
usage was significantly reduced.

Figure 5 compared the performance results of the
RDFLoader() and the standard Pig load function,
PigStorage(). In this experiment, we measured the exe-
cution time, starting when the WordNet data in Table 3
is loaded, specifying a predicate, until it is completely
stored in another file on the HDFS using the default
STORE operation. In the case of using PigStorage(),
the FILTER operation was applied to the loaded data
before the STORE operation, in order to exclude most
triples containing unspecified predicates.

The experiment was performed with 5 different
predicates so that each output became a different data
size. All executions with RDFLoader() ran as a sin-
gle map task on 1 machine shown as in Table 1. How-

Result data size [MB]

Fig. 5. Execution time of loading the RDF data while specifying a
predicate

ever, nt-5m of the execution with PigStorage() ran as
5 map tasks on 5 machines in parallel because the nt
file consists of 5 blocks due to the default block size
parameter (64MB) of the HDFS. In order to eliminate
the effects of access locality, we created replicas of the
inputs on each machine. Furthermore, we prepared a
single block nt file and performed the sequential ex-
ecution with PigStorage() as a single map task (nt-
Im). Figure 5 shows that loading the data using RD-
FLoader() was faster than using PigStorage() even in
most cases of nt-5m. Although MapFile was slow for
the data load, MapFile with the LZO compression (mf-
mfc) was competitive to the text based VP format (vp-
txf). In this environment, reducing an amount of read
data from the HDFS overcame negative impact of the
decompression cost.
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Table 5

Performance of the schema conversion tool

# of triples Size in N-Triples [GB] | Exec. time [sec]
100 million 16 4,713
1 billion 158 51,002

Table 4 shows an extended experiment result where
the output data was 56.2 [MB] in Figure 5. Here, we
specified the subject in addition to the predicate in
the arguments of the RDFLoader(). Thus the final out-
put was 121 [bytes]. While vp-txt needs to execute
the FILTER operation after loading the data, MapFile
takes an advantage of random access function. There-
fore the MapFile based format finished the execution
in shorter time as expected.

In these experiments, the advantages of the RD-
FLoader() was shown, and particularly, vp-mfc was su-
perior to others in disk usage and the performance of
loading data.

4.2. Schema conversion tool

4.2.1. Implementation

The schema conversion tool, which transforms the
RDF data into the data stored with our VP-based
schemas described in Section 4.1, was implemented
as a MapReduce program. Each map task reads one
block of the input RDF file stored in the HDFS, parses
triples and outputs subject-object pairs to each predi-
cate group file. Then each reduce task collects the spe-
cific predicate files, merges them with sort by the sub-
ject and outputs them into the HDFS. At the end of
the MapReduce job, the predicate map file is gener-
ated. The advantage of this implementation is that high
workloads of parsing and sorting are executed in par-
allel. For parsing, the tool supports our own developed
parser for the N-Triples format and the parser of the
Sesame 2.3.2 [30]. By using Sesame, the tool can read
any RDF formats that Sesame supports, such as N-
Triples, Notation3 and so on.

4.2.2. Evaluation

First, two parsers were compared by the conver-
sion performance. The N-Triples formatted file of the
WordNet 2.0 Full was converted to vp-mfc. Each exe-
cution launched 5 maps and 7 reducers on the cluster
in Table 1. While the conversion with our own parser
took 83 [sec], the one with Sesame took 98 [sec]. The
reason is that Sesame’s parser starts parsing after read-
ing a whole block, which stalls streamlined processing
of the map task suitable to line-oriented inputs.

Then the execution time of the schema conversion
was measured with larger datasets which were gener-
ated by the sp2b_gen program of the SP2Bench [32].
Table 5 shows the experiment result which was per-
formed on the cluster in Table 2. Each dataset on the
HDFS was converted from the N-Triples to vp-mf with
128 reducers. For data increase, abrupt increase of the
execution time was not seen from the result.

Finally, 25 million of triples (4GB in the N-Triples
format) generated by sp2b_gen was imported to the
cluster in Table 2, for the RDF query benchmark us-
ing SP?Bench which is described in Section 4.3. The
data import into the HDFS took 217 [sec] and the data
conversion to vp-mfc with the Sesame parser took 524
[sec] with 128 reducers.

4.3. Query performance evaluation

4.3.1. Test method

Performance of our proposed framework was eval-
uated by SP2Bench, which is a comprehensive RDF
data processing benchmark along with the DBLP
scenario [23]. Because the original test queries of
SP?Bench were written in SPARQL, we translated
them to Pig Latin. In addition, we applied the RD-
FLoader(), which is described in Section 4.1, to the
test queries.

The benchmark test was executed on the cluster
in Table 2, and vp-mfc/vp-mf formatted dataset that
has been described in Section 4.2.2 was used. Each
dataset consists of 25 millions of triples and this is the
largest dataset whose experiment result is shown in the
SP2Bench paper [32].

4.3.2. Test result

In Table 6, we compared the results obtained using
our proposed framework with the results shown in Ta-
ble IV of the SP?Bench paper [32]. The experiment of
the SP2Bench paper was conducted under a single ma-
chine that ran Linux ubuntu v7.10 gutsy, on top of an
Intel Core2 Duo E6400 2.13GHz CPU, 3GB memory,
and 250GB Hitachi P7K500 SATA-II hard drive with
8MB cache, which is different from our environment.
However, the comparison indicates that our proposed
framework could process the amount of data that could
not be handled on single-node RDF databases, due to
the processing cost, the lack of the memory and so on.
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Table 6

Comparison between our proposed framework and single-node RDF
databases by the SP?Bench result

Query S5a Query 5b Query 6
Proposed framework (Used mfc format) 301 sec. 240 sec. 350 sec.
Proposed framework (Used mf format) 447 sec. 368 sec. 842 sec.

ARQ v2.2/Jena 2.5.5

Timeout (30 min.)

Timeout (30 min.)

Timeout (30 min.)

Sesame v2.2 beta2 (In-memory)

Memory Exhaustion

Timeout (30 min.)

Memory Exhaustion

Sesame v2.2 beta2 (Mulgara SAIL v1.3 betal)

Timeout (30 min.)

Success within 30 min.

Timeout (30 min.)

Virtuoso v5.0.6

Loading Failure

Loading Failure

Loading Failure

[\ ,
Base Base \
Triples(2) Triples(2)

New
Triples(2)
Join —
" Extract new triples

Base 4
Triples(1)

b) Algorithm-2

Join

Base
Triples(1)

a) Algorithm-1

Fig. 6. Processing trees of each algorithm

4.4. Transitive closure operation over Pig

4.4.1. Implementation

RDF-based reasoning based on various languages
(e.g. RDF Schema, OWL, SWRL!) is currently an ac-
tive research topic and initially we have chosen to fo-
cus on one very common and significant problem, that
of inferring new RDF data based on transitive proper-
ties, for example, the rdfs:subClassOf property. Such
properties can be used to generate new triples by gen-
erating a transitive closure, which can be implemented
by applying a sequence of self-joins to a table.

For support of the optimized execution to generate a
transitive closure, we implemented two algorithms in
Pig Latin and Shell script. Both algorithms are based
on squaring evaluation of the iterative algorithms [12],
which means that a previous join result become the
next join input, as shown in Figure 6. Each detailed
algorithm is shown in Figure 7 and 8.

Algorithm-1 in Figure 7 simply iterates self-join to
compute the closure. The joined result is combined

Semantic Web Rule Language,
http://www.w3.org/Submission/SWRL/

7 +— 1
repeat
if ¢ = 1 then
BaseTriples; «— Input
end if
TmpResult < SELF-JOIN BaseT riples;
BaseTriples; 1 < UNION BaseTriples;, TmpResult
i— i+ 1
until Size_O f_BaseTriples;11 = Size_O f_BaseTriples;

Fig. 7. Algorithm-1: Iterate self-join simply

7 — 1
repeat
if i = 1 then
BaseTriples; <— Input
NewTriples; — Input
else
BaseTriples; < UNION BaseT'riples;—1, NewTriples;
end if
TmpResult < JOIN BaseTriples;, NewTriples;
Extract NewT riples; 1 from TmpResult and BaseT riples;
1+—1+1
until Size_Of_NewTriples; =0

Fig. 8. Algorithm-2: Detect new triples in every loop iteration

with each input data and becomes the input of the join
at the next iteration. While Algorithm-1 does not de-
tect new triples at each iteration, Algorithm-2 finds
them out and always keeps two datasets. One stores
all triples, a set of original triples and new triples,
and the other stores only new triples. At each itera-
tion, Algorithm-2 performs join of all triples and new
triples. Because the number of new triples is fewer than
the number of base triples and hence the cardinalities
of relations involved in the join are reduced. An obvi-
ous drawback is that extracting new triples requires ad-
ditional processing and our concern is that it might take
more time. We compare the two algorithms through
several experiments in the next subsection.
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Fig. 10. Execution time of the Pig Latin script at each loop iteration
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Fig. 9. Input data size of each join operation

4.4.2. Basic evaluation

In our evaluation, two programs implementing each
algorithm were executed on 4 machines shown in Ta-
ble 1. A small set of the Billion Triple Challenge
dataset in 2009 [1] was used as the experiment data,
and closure of the ‘foaf:knows’ property was obtained.
The small set is approximately 1.13 [GB] in size of
vp-txt, containing 26 [MB] of the ‘foaf:knows’ triples
as its predicate table. Because, even with the input
size, the generated intermediate data would fill the ca-
pacity of the temporary space in our experiment en-
vironment, we sampled the data uniformly and gen-
erated two sets of input data, knows-1 and knows-
2. The knows-1 dataset is 2.00% of the original size
and knows-2 is 2.26% of the original. Figure 9 shows
the input data size of each join operation. Algorithm-
1 reads base triples two times at each iteration, and
Algorithm-2 does the same at the first iteration and
reads the base triples and new triples at the rest of
the iterations. Figure 9 indicates that the size of new
triples was smaller than the size of base triples. The
loop lasted 6 iterations for knows-1 and 7 iterations for
knows-2.

Figure 10 shows execution time of each loop which
corresponds to one execution of the Pig Latin script.
For both inputs, Algorithm-1 finished the execution

faster than Algorithm-2 until the 5th iteration. How-
ever, Algorithm-2 became faster after the Sth iteration
because the input data of join in Algorithm-1 became
large and then much larger intermediate data was gen-
erated. The intermediate data size reached to 8.3 [GB]
at the 5th and 6th iterations in Algorithm-1 while it was
at most 2.3 [GB] in Algorithm-2. As shown in Table
7, the total execution time of Algorithm-2 was shorter
than Algorithm-1. Table 7 also shows the overhead
ratio in the total execution time. Here we observed
overheads such as internal processing in Pig between
MapReduce jobs, generation of the Pig code, and the
termination test of the loop. The overhead ratio de-
pends on the number of MapReduce jobs. Thus the ra-
tio was higher in Algorithm-2 than in Algorithm-1 be-
cause more jobs were generated to identify new triples.
When each MapReduce execution became longer, the
ratio became relatively smaller, which was seen in the
comparison between the knows-1 and knows-2 results.

Comparing the results produced by the two algo-
rithms, Algorithm-2 ran faster than Algorithm-1 with
those inputs. Moreover, from the results, it indicates
that Algorithm-2 has an advantage over Algorithm-1 as
the input data size increases.

4.4.3. Improvement by join optimization

In order to execute the closure operation using
Algorithm-2 faster, we considered join optimization
and parallel execution. First, we tried to use the most
suitable join algorithm according to the properties of
the input data. In the Pig release 0.7.0, ‘replicated,
‘skewed’ and ‘merge’ JOIN are available under sev-
eral conditions upon the input data. Here, the ‘repli-
cated’” JOIN was applied to Algorithm-2 because it
satisfied the condition that one of the input data size
was small enough. In the ‘replicated” JOIN, Pig per-
formed JOIN in the map task without launching the
reduce task. Second, we examined increasing the num-
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Table 7
Total execution time and the number of the generated MapReduce jobs
knows-1 knows-2
Alg.-1 | Alg.-2 | Alg-1 | Alg.-2
Total execution time [sec] 1,647 1,487 7,597 3,061
Total MapReduce execution time [sec] 1,500 1,276 7,445 2,807
Overheads ratio [%] 8.91 14.2 2.00 8.30
Total number of the MapReduce jobs 18 29 21 34
Total number of map tasks 90 121 312 200
Total number of reduce tasks 11 18 14 21

1400

O No tuned —1
1200 M Replicated join
| |BParallel reduce
B Combined

1000

800

600

400
200 D |:|
0
1 2 3 4 5 6 7
Iteration

Execution time [sec]

Fig. 11. Execution time of the Pig Latin script at each loop iteration
with optimization

ber of reduce tasks, as the input data size and the num-
ber of map tasks increased like at the latter iterations in
the previous experiment in Section 4.4.2. Note that the
number of the reduce tasks was one at default setting,
and at the previous experiment as well. This parallel
execution was applied to not only the JOIN operation
but also the DISTINCT and GROUP operations in this
experiment.

Figure 11 shows the execution time of each iter-
ation to process the knows-2 dataset, including the
above improvement. Each replicated join iteration was
shorter than the corresponding ‘No-tuned’ iteration,
and sometimes much shorter (see the 5th and 6th iter-
ations). However, we also observed that some reduce
tasks took time to write a large join result to a file for
the next MapReduce job. In the parallel execution, we
set the number of the reduce tasks to be the division
of the total input size of the reduce phase by 64 [MB],
or the maximum number of 4. In this case, the JOIN
operation was not performed in parallel when the in-
put data size was small enough. The effect of the par-
allel execution was appeared in the 4th, 5th and 6th it-
erations but unexpectedly it was less effective than the
replicated join. ‘Combined’ in Figure 11 mixed both

optimizations. It basically used the replicated join but
when the output size of the join was supposed to be
large, it enabled parallel execution. Parallel execution
of other operations was also enabled based on the in-
put size of the reduce phase. ‘Combined’ achieved the
best improvement in this experiment and the total ex-
ecution time was reduced 35% from the execution of
Algorithm-2 in Table 7.

A problem of this approach is that the input and out-
put size of the join is unknown before the execution,
and not able to be estimated accurately. This means
that it is difficult to select an appropriate join algorithm
and an appropriate level of the parallel execution. One
possibility is to incorporate an adaptive strategy within
the Pig query engine to configure these parameters dur-
ing query execution.

4.4.4. Effect of parallel execution

There is another advantage of using our proposed
architecture for the RDF-INFER command execu-
tion by rule processing parallelism. Rule processing
parallelism can be achieved by processing indepen-
dent rules in parallel, for example, ‘foaf:knows’ and
‘rdfs:subClassOf” are independent and can be exe-
cuted in parallel for generating separate transitive clo-
sures. The significant aspect here is that generating
multiple closures will need to take place at the same
time, as the RDF—-INFER command may need to pro-
cess a number of rules at the same time. In this sce-
nario, Hadoop is capable of automatically schedul-
ing multiple concurrent joins in order to efficiently
utilize the computational power of available nodes
and minimize the overall time required to execute
the RDF-INFER command. We experimented such
parallel execution to get two transitive closures of
‘foaf:knows’ (knows-1 dataset) and ‘rdfs:subClassOf’
on 8 machines shown in Table 1, and compared with
two individual executions. The 8 machines had a 16
map tasks capacity and another 16 reduce tasks ca-
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Table 8

Parallel execution of the two transitive closure operations

Individual execution Parallel execution
knows-1 | subClassOf | knows-1 | subClassOf
Total time [sec] 1420 742 1443 775
Time increase [%] - 101.65 104.46

pacity. While both closure operations were executed
in parallel, the capacities afforded the submitted tasks.
Table 8 shows that the parallel execution took about
66% of sum of the two individual executions, with al-
most no overhead for knows-1 and 4.46% overhead for
subClassOf. This shows that multiple transitive clo-
sures can be generated by our proposed framework in
parallel faster than if they are processed sequentially.

5. Related Work

The RAPID and RAPID+ systems have been de-
veloped based on Pig and Hadoop [33,31] and their
designs are similar to our proposal. Filtering and
aggregation at data load, which are implemented
as GFD/GBD in the RAPID and loadFilter in the
RAPID+, have the same goal of our RDFLoader(),
though an internal storage schema in the HDFS of the
RAPID and RAPID+ is not disclosed. In addition, the
RAPID implements the Multi-dimensional Join [14]
and the RAPID+ does the grouping-based star join pro-
cessing with a look-ahead method to reduce I/O cost.
Such join optimization techniques could be used in
conjunction with our approach. Unlike the RAPID and
RAPID+ systems, our presented storage schema is the
integration of the logical partitioning and the underly-
ing file system format, and our study is extended to the
reasoning support and the performance evaluation of
the transitive closure operation.

The paper [26] presents the framework that uses a
Pig-based RDF stores as a back end of Sesame [11].
The paper mentions about the extended load and store
functions to convert RDF to Pig’s data model, and the
reasoning support using a forward-chaining algorithm.
However, the details of the back end implementation
are not presented. Our framework does not limit the
implementation to provide the repository abstraction
layer of Sesame on top of itself, either.

The paper [20] summarizes various cloud-based
Linked Data Management systems using recent large-
scale data processing technologies, and many of them
support RDF. In the paper, our proposed framework

is categorized under the Pig/Hadoop based system but
HBase [4] can be a replacement of the HDFS. As is ob-
vious, the advantage of the replacement should be con-
sidered, because we see the primary performance bot-
tleneck on our framework is currently not in the HDFS
but the MapReduce execution system.

As anon-Hadoop system, SYSTAP’s BigdataTM [34]
provides a scale-out storage and computing fabric for
RDF data. Bigdata builds a B+tree architecture on a
distributed system like Bigtable [13] and HBase, and
has multiple indices of the mapping between term
and ID, and all access paths (subject-predicate-object,
predicate-object-subject, object-subject-predicate). The
SPARQL and OWL Lite interfaces are supported, and
declarative rules such as the forward closure or back-
ward chaining can be dynamically added. The overall
architecture is similar to our proposed framework but
our framework aims at providing capability of flexi-
bly customizable rule-based processing and integrated
processing with non-RDF data. Therefore our frame-
work is based on Pig, allowing procedural program-
ming of the database and user-defined operations, and
the technical approach presented in this paper is for
extension of Pig in order to speed-up processing large
RDF datasets.

As an optimization technique of the RDF-INFER
operation, there are many existing studies for paral-
lel algorithms to compute transitive closure. The al-
gorithm using a pipeline method [15] cannot be ap-
plied to the MapReduce model, but the algorithms
proposed in the papers [19,25] or other direct algo-
rithms [12] can be applied. Implementation of these al-
gorithms would not be a sequence of Pig commands as
we implemented, but be a program directly using the
MapReduce library. For the iterative algorithm, multi-
way joins using MapReduce [9,24] seems to speed-up
the closure execution.

Another approach towards efficient RDFS reason-
ing with MapReduce is presented in [37], where opti-
mization for encoding the RDFS ruleset is performed
in a higher level than the level of our discussed opti-
mization for multi-joins. The approach is possibly used
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for implementing the RDF—-INFER operation in our
framework.

6. Conclusion

This paper presented an approach towards scalable
RDF data processing based on the general data pro-
cessing platform of Pig and Hadoop. Two extensions
for RDF, the RDFLoader() and the RDF-INFER com-
mand for allowing further optimization in Pig were
proposed. Neither of these requires any changes of
the Pig and Hadoop architectures and keeps the ad-
vantages of their scalable and flexible data process-
ing capabilities. RDFLoader() was successfully imple-
mented with MapFile provided by Hadoop, which al-
lows users to load the data, specifying a subject and/or
a predicate much faster than the original Pig load func-
tion and save disk space significantly. Moreover the
schema conversion cost by the MapReduce execution
is presented, and it is shown that our proposed frame-
work having the extensions could handle 25 million
triples which could not be successful in query execu-
tions on existing single-node RDF databases. It would
be possible to handle larger size of the RDF data in the
larger environment. Users of our framework only have
to add more Hadoop nodes for storing the data and pro-
cessing more MapReduce tasks that would simply in-
crease against the data size, as usually other Pig and
Hadoop users do for scaling-up their general data pro-
cessing.

For reasoning support with the RDF-INFER, ef-
ficient implementation of the transitive closure oper-
ation on this framework was studied. Two squaring-
based algorithms were compared, and Algorithm-2,
which reduces the cardinalities of a join by additional
processing, was faster. Because the intermediate data
could be much larger in the closure operation against
data like ‘foaf:knows’ in the full data set of the Billion
Triple Challenge, Algorithm-2 seems to be more prac-
tical for most applications. Improvement of Algorithm-
2 by enhanced functions of Pig, use of the most suit-
able join implementations and parallel execution, was
examined. As a result, it is possible to improve the
performance using them but only when the input and
output data size was known in advance. In our future
implementation of the RDF-INFER, it may be ben-
eficial to have an adaptive or prediction based query
optimization in the Pig query engine. Use of join in-
dices and multiway joins that we introduced in Section
5 should also be applied to the implementation.

As future work, we would like to improve further
about the RDF-INFER operation, have scalability ex-
periments using publicly available RDF data [7,6] on
larger environments, and then evaluate our proposed
framework, in terms of the combined processing capa-
bility of the RDF and RDF-annotated data.
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