
Multiset semantics in SPARQL, Relational

Algebra and Datalog

Response Letter to Reviewers

May 2025

We thank the reviewers for their insightful reviews and feedback. We care-
fully followed and incorporated all your comments. In some cases, we provide
a response following the comment. In other cases, we use a check mark to in-
dicate that an issue was solved. In case of need, the most relevant changes are
highlighted (in blue) in the new version of the article.

1 Review #1

The manuscript studies the expressive power of a fragment of SPARQL under
multiset semantics by identifying both a version of Datalog with multiset se-
mantics and a fragment of the relational algebra with multiset semantics that
have the exact same expressive power as the fragment of SPARQL considered
by the authors.

The material is well organized and presented in an easy-to-follow way. The
results are correct (with a minor exception, but that is not difficult to fix—see
below) and, to the best of my knowledge, this is the first publication showing
these results. For these reasons, I am generally in favor of accepting this work
for publication in the journal. However, there are three main points that the
authors need to work on a bit more, plus several other more minor points.

1.1 Main points

M1. The mapping from the multiset relational algebra (MRA) to SPARQL in
Section 8.1 is not complete. In particular, the function g31 that translates every
MRA database into a ”SPARQL database” (i.e., an RDF graph) does not con-
sider the cardinalities of the tuples in the multiset relations. More specifically,
the RDF triples produced by the function β that the definition of function g31 is
based do not capture the cardinalities. Due to this issue, the claim that ”MRA
can be simulated in SPARQL” (Lemma 13) is not fully supported. Fixing this
issue may be a bit of work but I don’t foresee any inherent complications in it:
The idea would be to extend the β function such that the resulting RDF triples
also describe the cardinalities of the represented tuples, and then to extend the
query-related mapping functions (f13 and h13) accordingly.

1

Response: We changed the definition of functions β. Now, given a relation r
and a tuple t, the function β(t, r) returns a set of RDF triples for each copy of
t.

M2. The manuscript provides very little (almost nothing) in terms of motiva-
tion of the presented work. The authors should extend the introduction (ideally
even the abstract) with a few statements to tell the reader why the presented
work is of relevance and what the potential impact of the presented results may
be. (I see that the authors base their work on a few questions, which are listed in
the ’Objectives and Contributions’ part of the introduction. Yes, it is not clear
what motivates these questions. Why might it be interesting to have answers
to these questions?)

Response: We improved the motivation presented in the Introduction.

M3. The ’Related work and Conclusions’ section (Sec.9) needs to be improved
in two ways. First, there are several sentences for which it is not clear what they
are supposed to mean: i) ”the multiset semantics of SPARQL has not been sys-
tematically addressed” ¡- What exactly do the authors mean by ”systematically
address[ing]” the multiset semantics of SPARQL? ii) ”the goal of characterizing
the multiset algebraic and/or logical structure of the operators in SPARQL.” ¡-
I don’t understand what this goal is meant to be. (What is a ”multiset algebraic
structure of operators”? What is a ”logical structure of operators”? ”character-
izing” in terms of what?) iii) ”this study shows the complexities and challenges
that the introduction of multisets brings to [...] SPARQL” ¡- I don’t see how
the presented work shows such complexities and challenges. Second, the related
works part should be improved as well. At the moment, it appears to be a bit
unorganized and it is focused only on SPARQL. Related formalisms, specifically
the ones that the considered variants of Datalog and MRA are based on, should
be discussed here as well. In particular, I would expect the commonalities and
the differences (if any) between these considered variants and the variants in
the literature to be elaborated very clearly.

Response: We improved the description of the Related Work.

1.2 Additional things

A1. The formal semantics for multisets in SPARQL should not be claimed as
a contribution (as done in Sec.1, line 23 on page 3) because this has already been
provided by Perez et al. in 2006 and is the basis of the SPARQL specifications
already since version 1.0 of SPARQL.

Response: We have changed the mentioned paragraph to avoid such a claim,
giving more emphasis to our contributions.

2

A2. In a similar sense (and also related to my point M3 above), it is not
clear to me to what extend the authors can actually claim that they ”develop a
logical formalism for multisets” (NRMD¬) and that they ”develop the relational
counterpart of this fragment.” In fact, it is not crystal clear from the manuscript
which parts of these formalisms are taken from the literature and exactly which
parts have been added. The manuscript needs to be improved in this aspect!

Response: We agree with this comment. We changed the Introduction to
clarify the specific contributions of the work.

A3. Why exactly does Table 1 contain the same SPARQL expression (”A
AND B”) in different rows? There should be a brief explanation of this.

Response: We revised Table 1 to improve the clarity of the explanation. We
also included a brief explanation about the use of the AND operator (page 3).

A4. A4. What does it mean that ”the root of ti unifies with Ai under θ′′?
(line 39 on page 10)

Response: We revised the definition of Derivation Tree to improve its clarity.

A5. Line 45 on page 10 considers the case that ”the root of t is a colored
version of F ′′ where t is a derivation tree. This is not possible because, by the
given definition of derivation trees, the roots of these trees are not colored (see
lines 34 and 41 on page 10), as is also visible in Fig.3. So, something seems to
be wrong or missing here.

Response: We revised the description to improve its clarity.

A6. The manuscript is inconsistent and sloppy in terms of how it calls the
things that are translated into one another. For instance, in lines 37-40 on page
13, it should be ”SPARQL pattern” instead of ”SPARQL query”, it should be
”RDF graph” instead of ”SPARQL database”, it should be ”NRMD¬ answer”
instead of ”NRMD¬ query solution”, and it should be ”multiset of mappings”
(”multiset of solution mappings”) instead of ”SPARQL query solution”. There
are many more such inconsistencies throughout the whole manuscript.

Response: We fixed the inconsistencies in the article.

A7. Similarly, the manuscript sometimes uses the word ”multiplicity” (e.g.,
line 43 on page 20, Def.23 on page 27) and more often the word ”cardinality”.
Pick one and be consistent about it!

Response: We just use the term ”cardinality” in the new version of the article.

3

A8. Def.18: SPARQL is not defined for ”a multiset of RDF triples” – there is
no such thing in the context of RDF and SPARQL.

Response: The error was fixed.

A9. The formula of
∑

V at the end of page 25 seems incorrect (incomplete)
to me. For instance, just saying “s, p ∈ V ” in the first subset means that the
condition “S = P” will be added to the selection operator if the subject and the
predicate of the given triple pattern are variables, no matter whether they are
the same or two different variables! This doesn’t seem to make sense. Instead,
in addition to “s, p ∈ V ” there should also be the condition that “s = p”. Same
issue for the other two subsets in the formula of

∑
V .

Response: We changed the definition of the function that translates a triple
pattern into a MRA expression. It should be clearer now.

1.3 Minor things

✓ m1. Line 35 on page 3 mentions a union operator using a symbol that
does not show up in the actual definitions in Sec.5.

✓ m2. The title of Sec.4 (page 9) is missing a closing parenthesis.

✓ m3. Line 44 on page 10 talks about ”nr-Datalog¬”, which has not been
introduced. Probably this was meant to be ”NRMD¬”.

✓ m4. Line 8 on page 12 mentions ”relation schema R = A1,...,An” which
is not entirely correct. By the definitions given in the previous paragraph,
R and A1,...,An are different things.

✓ m5. Line 14 on page 12: ”set of relational schemas” → ”set of relation
schemas”

✓ m6. Lines 15-16 on page 12: What does it mean that a ”relation ri satisfies
the schema Ri”?

✓ m7. The definition in lines 35-36 on page 12 assumes that attribute A is
in Êi, which should be mentioned explicitly as part of this definition.

✓ m8. Line 1 on page 13: How is this notion of ”is equal to” defined?

✓ m9. The definition of Eval(E,D) on page 13 assumes that E and D are over
the same relational database schema. This assumption should be made
explicit in lines 6-7 and, also, by adding ”over T” at the end of the first
sentence on line 8.

✓ m10. Line 49 on page 13 mentions “each term t ∈ G” which is incorrect.
G is a set of triples, not a set of terms.

4

✓ m11. The notation used in line 34 on page 17 has not been introduced.
The notation for writing multisets as given in the paper is a different one
(namely with a card function).

✓ m12. It is not clear whether the variables used in Datalog substitutions
are of the same kind as the variables in SPARQL solution mappings. Ac-
cording to the formulas in Def.8 that seems to be the case, but later in
Def.11, the authors seem to make a difference.

✓ m13. Def.9: the symbols p, c1, and cn (as used in the formula of the
definition) are not introduced within the definition.

✓ m14. Line 40 on page 18: What is “gp(L)DΠ” ?

✓ m15. Point 2 at the end of page 18 aims to define T(vr(Ri,L)) but the
bullet points that follow introduce only T(Ri).

✓ m16. Line 15 on page 19: ”(a0,a0,a0)” → ”(NULL,NULL,NULL)”

✓ m17. Similar issue with a0 in line 37 on page 19.

✓ m18. Line 50 on page 19 mentions “θµ = {X1/c1, ..., Xn/cn}”. Why this
notation? Where is it introduced? Why not the same notation as for the
SPARQL solution mappings? Both are (partial) functions after all.

✓ m19. Line 41 on page 20: ”under” → ”over”

✓ m20. Def.14: It is inconsistent to use the symbol R here. It should be
r instead (to be consistent with Sec.5.1). Same issue in Sec.7.2.1 and in
Def.15.

✓ m21. Line 41 on page 23: ”MRA relations” are undefined. Sec.5.1 calls
them ”multiset relations”!

✓ m22. Same issue in lines 24-25 on page 25.

✓ m23. Line 45 on page 23: ”... to IRIs[, and tuples to IRIs].”

m24. Lines 28-29 on page 24: What are u1 and u2 in the given SPARQL
pattern?

✓ m25. Line 25 on page 25: ”a set of tuples” → ”a multiset of tuples” !!

✓ m26. Line 42 on page 25: ”a multiset of RDF triples” → ”a set of RDF
triples”

✓ m27. Line 1 on page 26: ”Selection(s,p,o)” → ”Selection(T)”

✓ m28. Def.22: ”from graph patterns”→ ”from normalized graph patterns”

✓ m29. Def.22: ”whose selection formulas” → ”whose filter conditions”

5

✓ m30. Table 7: What is P∅ (in the first row of the table)? In fact, I
don’t think that this row is needed. The base case of the syntax are triple
patterns, which are covered by the next row in the table.

✓ m31. Line 43 on page 27: ”RDF mapping” → ”SPARQL mapping”

2 Review #2

The paper “Multiset semantics in SPARQL, Relational Algebra and Datalog” in-
vestigates the relationship between a fragment of SPARQL (the relational core),
the Multiset Relational Algebra (MRA), and Non-recursive multiset Datalog
with safe negation (NRMD¬). The authors prove that all of these frameworks
have the same expressive power.

The paper is well-structured. First, the concept of query languages and their
expressive power is formally defined. Then the three different frameworks are
introduced in detail. This is followed by sections which always focus on two
frameworks, define simulations from the first framework to the second and back
and thereby show that these have the same expressive power. These sections use
the notation from the introducing section such that it is easy to follow which
exact mapping is defined in which moment and why this mapping is needed.
The paper then discusses related work and concludes by listing the findings.

From my really subjective view (more as an interested reader), I really en-
joyed the section about the problems of translating SPARQL Filters to Datalog
which was well-explained and illustrated by examples.

While I appreciate the clear structure of the paper and also its contribution,
I see two main points for improvements:

2.1 Main points

M1. I could not always fully understand the details of the definitions or for-
malisations. This was for example the case for the section about MRA where it
is important to understand how r, R, R̂, t, T and r̂ relate or in Table 4 where
the Datalog rules for SPARQL queries are introduced but not further explained.
Here I would recommend to spend more times on details and also add examples
where possible

Response: We fixed the notations and introduced examples.

M2. I know that this is for space reasons, but in my opinion it is a little bit un-
fortunate that the main contribution of the paper, the proofs of the frameworks
having the same expressive power can only be found in the appendix. I would
recommend to either put longer proof sketches into the paper itself or to add
examples illustrating the mappings such that the reader can better appreciate
the contribution.

6

Response: We introduced examples to illustrate the mappings.

2.2 Additional things

A1. Definition 4: term(t) for each term t ∈ G→ G is a set of triples, so how
is that meant?

Response: Thank you for spotting it out. We should have written: “for each
t such that there exists a triple (s, p, o) ∈ G with s = t, p = t, o = t.” Thus,
the symbol t denotes all the terms in the graph, that is, elements in subject,
predicate, and object position. Intuitively, atoms term(t) list all terms in the
graph, and atoms eq(t, t), that each term is equal to itself. We fixed the text,
added a clarifying explanation, and an example.

A2. Mapping on page 18: the definition of T (vr(Ri, L) is defined using T (Ri),
but the latter is never defined, also gp(L)Dπ is not introduced

Response: The function T (R) is defined as a module of the function of
gp(L,Π). These two functions are mutually recursive. To clarify the nota-
tion, we indicate that both functions are defined together, and make it explicit
the paramters of T (R) that were implicit.

A3. Introduction of multiset relations (page 12): it could be that the reason
is that I am less familiar with MRA than with SPARQL and Datalog, but that
part was difficult for me to read and would benefit from examples or at least
from more detailed explanations.

Response: We improved the notations.

A4. Page 17, table 4, (P1 AND P2): the need for the predicate comp becomes
only clear after reading section 8.2.1 where we have a similar construct. This is
far too late, the rule needs explanation.

Response: We added the definition of predicate comp in Definition 4 and
illustrated it in Example 3.

A5. If the authors show that SPARQL and NRMD¬ have the same expressive
power and that NRMD¬ and MRA have the same expressive power, then it
directly follows that also SPARQL and NRMD¬ have the same expressive power.
Why did the authors choose to still give a proof for the latter?

Response: Because our objective is to study SPARQL and this translation
gives direct translation rules.

7

A6. page 11: In the proof for lemma 2, rules are rewritten and there is a
claim that it is clear that the resulting program is normal because the original
program was safe. I don’t see why var(L2) = var(L1), I can only see the
inclusion. Maybe that could be clarified?

Response: Thank you for the observation. We added the missing rule 2.c.

A7. page 12: “A relational database schema is a set of relational schemas.
Given a relational database schema T = {R1, ..., Rn}, a multiset relational
database over T is a set of multiset relations {r1, ..., rn} where each relation ri
satisfies the schema Ri”. → what does it mean to satisfy a schema?

Response: We fixed the sentence. It now says: “the relation ri is defined over
the schema Ri.”

A8. Lemmas 8, 9, etc. I personally would prefer to see the direct claims
instead of the lemmas, mainly because the functions f, g, h are already defined
in the text, so it would make sense to directly state that these are simulations.
I am furthermore aware that the proofs don’t fit in the text, but I would prefer
to get some more detail about the respective proofs here. An alternative could
be to provide a small example how the simulation works.

Response: We preferred to leave the text as it is because we consider these
statements are important to highlight.

A9. Page 18: NRMD¬ to SPARQL: I think an interesting detail of the map-
ping is that the predicate name is handled like the arguments and also is repre-
sented by a special triple (u, α0, p). I would mention that somewhere.

Response: We added Example 6 to explain it.

A10. Page 23, Definition 18: SPARQL is defined on RDF graphs which are
sets, the definition maps to multisets of RDF triples. Here I see a mismatch
which needs to be resolved.

Response: Yes, the translation is involved. Essentially, each MRA tuple (e.g.,
with multiplicity 2) gets a unique identifier. With this identifier, we define two
sets of triples to describe each individual occurrence of the tuple. We added an
example for clarity.

A11. Related work and conclusions: I think that the contribution is interest-
ing, I would however expect the authors to write a little bit more about the
relevance of the findings. Maybe some practical consequences for implementers
or the fact that proven results for one framework then can be transferred to
others?

8

Response: We took the comment and expanded the conclusions accordingly.

2.3 Minor comments

✓ page 7+8: var(t), var(P) -¿ var is used but not defined

✓ - page 8, Definition 3: “Every sub-pattern. . . holds that . . . ” -¿ “For
every sub-pattern. . . it holds that . . . ”

✓ - page 8: “..., the following equivalences are hold”-¿ “..., the following
equivalences hold”

✓ - page 14: the “solution to the query on the right side” is used twice, I
guess the first one should be the left side?

✓ - page 16: rules presented in Table 5 -¿ Table 4

✓ - page 18: especial -¿ special

✓ - page 18, definition 9: {NULL,NULL,NULL} to {(NULL,NULL,NULL)},
as g2,1 maps into a set of triples

✓ - page 18: “. . . is equivalent to R but have literal L as head.” → has

✓ - page 19, Example 4: gp((q(X), π))→ gp(q(X), π)

✓ - page 19: “This is done using the additional triple {NULL,NULL,NULL}...”,
most likely (NULL,NULL,NULL) is meant?”

✓ - page 19, Example 5: f2,1((q(X),Π) → f2,1((q(X),Π))

✓ - page 20, Theorem 1, page 23, Theorem 2, page 28, Theorem 3: “If follows
from Lemma X and Lemma Y ” → The Claim follows from. . .

✓ - page 20: “For each tuple t in r,Σ(r) contains a fact f of the form
p(c1, . . . , cn) where p is R,...” where p is the image of R (or however we
want to use the aforementioned mapping)

9

Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Multiset semantics in SPARQL, Relational
Algebra and Datalog
Renzo Angles a, Claudio Gutierrez b and Daniel Hernández c

a Department of Computer Science, Faculty of Engineering, Universidad de Talca, Chile
E-mail: rangles@utalca.cl
b Department of Computer Science, University of Chile, and IMFD , Chile
E-mail: cgutierr@dcc.uchile.cl
c Instute for Artificial Intelligence, University of Stuttgart, Germany
E-mail: daniel.hernandez@ki.uni-stuttgart.de

Abstract. The paper analyzes and characterizes the algebraic and logical structure of the multiset semantics for SPARQL patterns
involving AND, UNION, FILTER, EXCEPT, and SELECT. To do this, we align SPARQL with two well-established query
languages: Datalog and Relational Algebra. Specifically, we study (i) a version of non-recursive Datalog with safe negation
extended to support multisets, and (ii) a multiset relational algebra comprising projection, selection, natural join, arithmetic
union, and except. We prove that these three formalisms are expressively equivalent under multiset semantics.

Keywords: Query Languages, Multisets, Bags, SPARQL, Datalog, Relational Algebra

1. Introduction

Informally speaking, multisets are sets in which each element could occur multiple times, that is, the number
of “copies” of each element matters. In the field of databases, the notion of multisets (also called “duplicates”
or “bags”)1 has been studied in several contexts, including programming languages [2, 3], bag languages [4–9],
relational algebra [10–12], Datalog [13–17], SQL [18, 19], SPARQL [20–23] and data integration [24].

The incorporation of multisets in query languages is essentially due to practical concerns: duplicate elimination
is expensive, and duplicates might be required for some applications, e.g., for aggregation. Although this design
decision may be debatable (e.g., see [25]), today multisets are an established reality in database systems [26, 27].

The classical theory behind declarative query languages includes formalisms (relational algebra or relational
calculus) that for sets have a clear and intuitive semantics for users, developers and theoreticians [28]. The same
cannot be said for their extensions to multisets, whose theory is complex (particularly the containment of queries),
and their practical use not always clear [26]. Worst, there exist several possible ways of extending set relational
operators to multisets, which makes the study and design of multiset semantics for query languages challenging.

To illustrate the variety of possible semantics, we will show the different extensions to multisets of set operators
found in the literature. Consider the following multiset relations: R(W, X) = ⦃(a, b), (a, b), (a, d)⦄, S (W, X) =
⦃(a, b)⦄ and T (Y,Z) = ⦃(b, c), (b, c)⦄. For the first relation, R is the name of the relation, W and X are the attributes
that conform the schema of R, R contains three tuples, and the tuple (a, b) is duplicated (i.e., its cardinality is 2). A

1There seems to be no agreement on the best terminology [1, p. 27]. In this paper, we will use the word “multiset”.

1570-0844/$35.00 © 0 – IOS Press and the authors. All rights reserved

2 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Possible ways of extending set operators with multiset semantics in SQL and SPARQL. The table shows several extended relational algebra
operations for multisets currently present (or possible to implement) in SQL and SPARQL. Let R, S and T be multiset relations satisfying that R
and S have the same attributes, and T does not have attributes in common with R. The cardinality of an element x in a relation R is represented
as R(x). Note that SPARQL works with multisets of bindings, whose corresponding schema is a set of variables.

Operation Operator Cardinality for x SQL SPARQL

Selection σφ(R)

{
R(x) if x satisfies φ,
0 otherwise.

SELECT * FROM R WHERE φ R FILTER (φ)

Cartesian product R× T R(x)× T(x) R CROSS JOIN T R AND T

Join R ⋊⋉φ T R(x)× T(x) (R CROSS JOIN T) WHERE φ (R AND T) FILTER (φ)

Max-union R ⊔ S max(R(x), S (x)) (R UNION ALL S) EXCEPT ALL –
(R INTERSECT ALL S)

Arithmetic union R ∪ S R(x) + S (x) R UNION ALL S R UNION S

Min-intersection R ∩ S min(R(x), S (x)) R INTERSECT ALL S –

Max-intersection R ⊓ S S (x)× S (x) R NATURAL JOIN S R AND S

Arithmetic difference R− S max(0,R(x)− S (x)) R EXCEPT ALL S –

Existential negation R \ S

{
R(x) if S (x) = 0,

0 otherwise.
SELECT * FROM R

WHERE x NOT IN (S)
R MINUS S

Projection πAtts(R)
∑

t∈R, t[Atts]=x R(x) SELECT Atts FROM R SELECT Atts

similar description can be given for the relations S and T . Note that R and S have the same attributes, while T does
not have attributes in common with R and S .

– The selection returns the tuples satisfying a given condition but keeping cardinalities. For example, σX=′b′(R)
returns the multiset ⦃(a, b), (a, b)⦄ with schema (W, X).

– The cartesian product results in the multiplication of the cardinalities. For example, R× T returns the multiset
⦃ (a, b, b, c), (a, b, b, c), (a, b, b, c), (a, b, b, c), (a, d, b, c), (a, d, b, c) ⦄ with schema (W, X,Y,Z).

– The join results in the multiplication of the cardinalities, as it is expressed as a cartesian product followed by
a selection. For example, R ⋊⋉X=Y T returns the multiset ⦃ (a, b, b, c), (a, b, b, c), (a, b, b, c), (a, b, b, c) ⦄ with
schema (W, X,Y,Z).

– The max-union takes the maximum number of occurrences of an element. For example, R ⊔ S returns the
multiset ⦃ (a, b), (a, b), (a, d) ⦄ with schema (W, X).

– The arithmetic union adds up cardinalities. For example, R∪S returns the multiset ⦃ (a, b), (a, b), (a, d), (a, b)
⦄ with schema (W, X).

– The min-intersection takes the minimum number of occurrences of each element in the intersection. For exam-
ple, R ∩ S returns the multiset ⦃ (a, b) ⦄ with schema (W, X).

– The max-intersection returns the product of the cardinalities of each element in the intersection. For example,
R ⊓ S returns the multiset ⦃ (a, b), (a, b) ⦄ with schema (W, X).

– The arithmetic difference subtracts the cardinalities of the elements up to zero. For example R− S returns the
multiset ⦃ (a, b), (a, d) ⦄ with schema (W, X).

– The existential negation returns the elements in the first multiset that do not occur in the second one, but
preserving the cardinalities. For example R \ S returns the multiset ⦃ (a, d) ⦄ with schema (W, X).

– The projection reduces the number of attributes in each tuple, and gives rise to new cardinalities for the resulting
tuples. For example πW(R) returns the multiset ⦃ (a), (a), (a) ⦄ with schema (W).

Table 1 shows a summary of the above operators, and their corresponding implementation in SQL and SPARQL.
Note that SQL can express all the operators, whereas SPARQL does not support max-union, min-intersection, and

Angles et al. / The multiset semantics of SPARQL patterns 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

arithmetic difference. Also note that SPARQL uses the AND operator to implement cartesian product and max-
intersection. The first case occurs because R and T do not have variables in common, and the second case occurs
because R and S have the same set of variables.

The landscape of operators over multisets poses important challenges for integrating multisets in query languages.
First, as shown in Table 1, some operators exhibit different semantics when applied to multisets. Second, while
relational algebra and SQL support all the semantics listed, SPARQL and Datalog only support a subset. Third –
and this is the main motivation for our research – it remains unclear whether there exists an optimal set of multiset
operators for SPARQL, and if so, which one it is. To tackle these questions, it is essential to understand how
formalisms that are “closed” with respect to SPARQL behave, and how their design and behavior can inform or
be translated into SPARQL. In technical terms, this means analyzing the expressive power of SPARQL regarding
multisets. To this end, we focus on two natural and well-studied reference points: relational algebra and Datalog.
That is the aim of this article. Next, we review the existing literature about multisets.

Related Work. First, we consider the research works that define general algebras for manipulating bags. Albert [4]
extended typical set operations (union, intersection, difference, and boolean selection) to bags, and demonstrated
that some of the algebraic properties for sets fail for multisets. Grumbach et al. [6] introduced a bag algebra, called
BALG, that extends relational operations to handle duplicates. This paper shows that BALG is more expressive
than standard relational algebra because it can count duplicates, but it still has low data complexity (LOGSPACE).
Grumbach and Milo [7] focused on designing bag algebras that are both expressive and computationally tractable.
They introduce restricted forms of projection and join to maintain tractable data complexity. Libkin and Wong [5, 9]
introduced BQL, a query language for handling bags and aggregate functions (sum, count, avg.). They show that
BQL is more expressive than traditional set-based languages, and shows that after incorporating structural recursion
to BQL, it is able to express all primitive recursive functions, significantly increasing its computational power.
Ricciotti and Cheney [19] explored how to mix set and bag semantics in query languages, addressing practical
needs found in SQL (e.g., SELECT versus SELECT DISTINCT). They propose a formal model that supports both
semantics and allows translation between them.

The first attempt to extend the relational algebra to include multisets was made by Dayal et al. [10]. In this
work, the authors introduced a multiset relational algebra (formed by the operators of projection, selection, join,
max-union, arithmetic union, min-intersection and arithmetic difference) and studied their algebraic properties. This
work laid the groundwork for formalizing bag semantics in relational query languages. Klauser and Goodman [11]
provided a semantic framework for understanding the role of multirelations (relations with duplicates) at the con-
ceptual level. The authors explain how any query language can be extended consistently to have full multirelational
expressiveness. Afrati et al. [16] studied query containment in relational databases under bag semantics and bag-set
semantics (duplicates allowed in intermediate steps but not in final output). The authors identify conditions under
which containment is decidable and provide complexity results. Console et al. [12] investigated fragments of bag
relational algebra, focusing on their expressive power. The authors also study query answering over bags with nulls
(i.e. under incomplete data).

Multisets have also been the subject of study in the context of Datalog, with various extensions proposed to
support bag semantics. Mumick et al. [14] defined the Magic Sets transformation for optimizing recursive queries,
and described how to adapt this technique to support duplicates. They also showed how to efficiently evaluate
recursive queries under multiset semantics. In a subsequent work [13], Mumick et al. extended the Magic Sets
technique to support duplicates and aggregate functions in recursive queries. The authors also studied the challenges
of preserving correct bag semantics when applying recursion and aggregation. Cohen [15] studied the problem of
query equivalence under bag semantics. This work includes complexity results and demonstrates that equivalence
checking is significantly harder under bag semantics. Bertossi et al. [14] developed a translation of Datalog under
bag semantics into warded Datalog±, a well-behaved extension under set semantics. The authors investigated the
properties of the resulting Datalog± programs, the problem of deciding multiplicities, and expressibility of some
bag operations.

For SPARQL – the standard query language for RDF databases – Pérez et al. [29] provided the first formal
treatment of its multiset semantics. This work influenced the definition of SPARQL 1.0 [30] and SPARQL 1.1 [31],
whose semantics are based on operations over multisets of mappings (although a database is a set of RDF triples).

4 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Schmidt et al. [32] presented a formal framework for SPARQL query optimization, addressing both set and bag
semantics. The authors analyzed the algebraic properties of SPARQL operations like OPTIONAL, UNION, and
FILTER under multisets, and introduced equivalence rules and normal forms for optimizing queries. Kaminski et
al. [33] presented a formal investigation of subqueries and aggregate functions in SPARQL 1.1, focusing on their
semantics under multisets. The authors analyzed the expressive power of these constructs, showing that SPARQL
1.1 is strictly more expressive than SPARQL 1.0 due to these features.

Finally, we review research articles that present comparisons and translations among SPARQL, relational algebra,
and Datalog. Cyganiak [34] was among the first to translate a core fragment of SPARQL into relational algebra.
Polleres [35] proved the inclusion of the fragment of SPARQL patterns with safe filters into Datalog by providing
a precise and correct set of rules. Schenk [36] proposed a formal semantics for SPARQL based on Datalog, but
concentrated on complexity more than expressiveness issues. Both Polleres and Schenk did not consider the multiset
semantics of SPARQL in their translations. Angles and Gutierrez [37] studied the expressive power of SPARQL by
providing a translation to non-recursive safe Datalog with negation. Chebotko et al. [38] addressed the problem of
translating SPARQL queries into SQL while preserving bag semantics. The authors proposed a formal translation
framework that captures the subtleties of OPTIONAL, UNION, and FILTER, and ensures that duplicates in the
result sets are handled correctly when mapped to relational databases. Angles and Gutierrez [23] studied the multiset
semantics of SPARQL patterns by translating its patterns into two languages: a version of multiset relational algebra
and multiset non-recursive Datalog with safe negation. Angles et al. [39] implemented the translation from SPARQL
to Datalog within the Vadalog system [40].

Objectives and Contributions. The main objective of this article is to examine the theoretical foundations of
SPARQL’s multiset semantics. To do so, we compare it with classical algebraic and logical frameworks – specif-
ically, Relational Algebra and Datalog. We focus on the SPARQL fragment built from AND, UNION, FILTER,
EXCEPT, and SELECT, characterizing its structure and proving its expressive equivalence with corresponding frag-
ments of Relational Algebra and Datalog.

The specific contributions of our research are as follows:

(1) Based on the work of Mumick et al [13], who defined the multiset semantics for Datalog without nega-
tion, we defined a version called Non-Recursive Multiset Datalog with Safe Negation (NRMD¬). The definition of
NRMD¬includes negation and follows a proof-theoretic semantics.

(2) Based on the work of Dayal et al. [10], who extended the relational algebra to include multiset relations,
we defined a Multiset Relational Algebra (MRA). The definition of MRA includes the operators of projection (π),
selection (σ), natural join (⋊⋉), arithmetic union (∪) and filter difference (\), all of them working under multiset
semantics.

(3) We show the equivalence among the aforementioned SPARQL fragment, MRA and NRMD¬ by providing
translations for databases, queries, and answers. Table 2 shows a glimpse of these translations, whose details are
developed in this paper.

This paper extends a previously published conference paper [23]. Herein, we provide extended discussion
throughout, we extend the study to some operators that were introduced in the version 1.1 of SPARQL after the
publication of our previous work, and we extend the analysis to also consider bag semantics. Some of the additional
contributions of this paper come from Hernandez’s Ph.D. thesis [41].

The rest of the article is organized as follows. Section 2 presents basic concepts and notations. The SPARQL
query language is defined in Section 3. Non-recursive Multiset Datalog with Safe Negation (NRMD¬) is defined
in Section 4. The Multiset Relational Algebra (MRA) is defined in Section 5. The equivalence between SPARQL
and NRMD¬ is presented in Section 6. The equivalence between MRA and NRMD¬ is presented in Section 7. The
equivalence between MRA and SPARQL is presented in Section 8. Conclusions are presented in Section 9.

Angles et al. / The multiset semantics of SPARQL patterns 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
SCHEMA OF CORRESPONDENCES AMONG: SPARQL graph patterns; Multiset Relational Algebra (MRA) expressions; Non-Recursive Datalog
with safe Negation (NRMD¬) rules; and SQL expressions. The operator EXCEPT is not part of SPARQL, but it replaces the standard operators
MINUS and OPT without changing the expressiveness of the fragment. In MRA, ⊎ is the arithmetic union and \ is the multiset filter difference.
SPARQL patterns are assumed normalized, that is, variables in the filter condition are in the schema of the filtered pattern, and operators
EXCEPT AND UNION assume operands with the same schema. Patterns P1 and P2 occurring in the SPARQL pattern are associated to atoms
L1 and L2 in the NRMD¬ translation, and relations r1 and r2 in the MRA translations, respectively.

SPARQL NRMD¬ MRA SQL

SELECTX P1 L← L1, null(X \ X1) πX (r1) ⋊⋉ null(X \ X1) SELECT X
FROM r1 NATURAL JOIN null(X \ X1)

P1 FILTER X = a L← L1, X = a σX=a(r1) FROM r1 WHERE X = a

P1 AND P2 L←v1(L1), v2(L2),

comp(v1, v2,X)

πX̄ (ρv1 (r1) ⋊⋉ ρv2 (r2) ⋊⋉
comp(v2, v2,X))

SELECT X
FROM r1 NATURAL JOIN r2 NATURAL JOIN

comp(v2, v2,X)

P3 UNION P4 L← L1 ; L← L2 r1 ⊎ r2 r1 UNION ALL r2

P1 EXCEPT P2 L← L1,¬L2 r1 \ r2 r1 EXCEPT r2

2. Preliminaries

This section provides the concepts and formal notation we will follow regarding multisets and the expressive
power of query languages.

2.1. Multisets

Informally, a multiset is an unordered collection of elements where each element may occur more than once.
Formally, a multiset is a tuple M = (S , card) where S is the underlying set of M (containing the distinct elements),
and card : S → N+ is a function that defines the cardinality in M of each element a ∈ S . We write set(M) = S to
denote that the underlying set of M is S . Given a positive natural number n, card(a,M) = n denotes that a ∈ set(M)
and the cardinality of a in M is n, and usually write it as (a, n) ∈ M. Abusing notation, we write card(a,M) = 0 if
a /∈ set(M) and a ∈ M when card(a,M) ⩾ 1. In what follows we will prefer these formal notions instead of the
informal and intuitive ⦃a, a, a, b⦄.

2.2. Comparing the expressive power of query languages

Next we present the notion of query language and two notions of expressive power used in this paper.

Definition 1 (Query language). A query language L is a quadruple (Q,D,S,Eval), whereQ is the set of queries in
L, D is the set of databases in L, S is the set of query answers in L, and Eval : Q×D → S is the query evaluation
function of L.

Let L = (Q,D,S,Eval) be a query language. Two queries Q1,Q2 ∈ Q are said to be equivalent, denoted
Q1 ≡ Q2, if for every database D ∈ D, it holds that Eval(Q1,D) = Eval(Q2,D), i.e., they return the same query
answer for all input databases.

Given a query language (Q,D,S,Eval), a query Q ∈ Q determines a function q : D → S defined as q(D) =
Eval(Q,D), called the query function of Q. Two queries Q1 and Q2 are thus equivalent, denoted Q1 ≡ Q2, if they
determine the same query function.

In this context, the expressive power of a query language L is understood as the set of all query functions that
are expressible by L. Abiteboul et al. [28] summarizes how this notion is used to compare the expressive power of
relational algebra, Datalog, and relational calculus. In the context of SPARQL, Zhang and Van den Bussche [42],
Kontchakov et al. [43], and Angles and Gutierrez [44] use this notion to compare different fragments of SPARQL.

6 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

D1 D2 D3

S1 S2 S3

Q1 f12(Q1) f12◦ f23(Q1)

g12 g23

h23h12

Fig. 1. Transitivity of language containment. The figure represents three languages Li = (Qi,Di,Si,Evali) where i ∈ {1, 2, 3}. The con-
tainment of a language Li in Li+1 is given by the simulation (fi,i+1, gi,i+1, hi,i+1). The transitive containment of L1 in L3 is given by the
simulation (f12 ◦ f23, g12 ◦ g23, h23 ◦ h12) where ◦ denotes the composition of functions (e.g., g12 ◦ g23 denotes the function from D1 to D3

that results from composing g12 and g23).

The query languages studied in this paper do not satisfy the aforementioned property of having a common set of
databases and query answers. Thus, we need an extended version of the notion of expressive power as in Definition 2
below.

Definition 2 (Generalized expressive power). Given two query languages L1 = (Q1,D1,S1,Eval1) and L2 =
(Q2,D2,S2,Eval2), we say that L1 is contained in L2 if and only if there exist functions g : D1 → D2 (called
the database translation), f : Q1 → Q2 (called the query translation), and h : S2 → S1 (called the query answer
translation), such that for every Q ∈ Q1 and database D ∈ D1 it holds that

Eval1(Q,D) = h(Eval2(f (Q), g(D))).

If that is the case, we say that the triple (f , g, h) is a simulation of L1 in L2. We say that the languages L1 and L2

have the same expressive power, denoted L1
∼= L2, if and only if L1 is contained in L2 and L2 is contained in L1.

The above definition of generalized expressive power is implicit in the translations by Polleres [35], Angles and
Gutierrez [23, 37], and Polleres and Wallner [20].

Observe that the extended notion defined above defines a partial order: the containment relation on the equivalence
classes over the relation∼=. In fact, reflexivity and antisymmetry follow directly from the definition, while transitivity
is shown in Figure 1.

2.3. Comparing SPARQL, NRMD¬ and MRA

In the remainder of this paper, we define three families of query languages: Non-recursive Multiset Datalog with
Safe Negation (NRMD¬), Multiset Relational Algebra (MRA) and a core fragment of SPARQL. After defining
these languages, we present simulations that show the equivalence among these three families of query languages.
These simulations are depicted in Figure 2.

3. Multiset SPARQL

SPARQL [30, 31] is the standard query language for RDF. In this paper we study a fragment of SPARQL, the
“relational core”, described by Angles and Gutierrez [23], which considers the operators FILTER, SELECT, AND,
UNION, and EXCEPT. This fragment captures essentially the graph pattern queries in SPARQL. In fact, it has
been proved [23, 43] that it is mutually expressible with the standard-core consisting of the operators FILTER,
SELECT, AND, UNION, OPTIONAL, and MINUS. (In what follows when speaking of "SPARQL" we will mean
this fragment).

3.1. RDF Graphs

Assume two disjoint infinite sets I and L, called IRIs and literals, respectively. An RDF term is an element in the
set T = I ∪ L. An RDF triple is a triple (s, p, o) ∈ I× I× T where s is called the subject, p is called the predicate

Angles et al. / The multiset semantics of SPARQL patterns 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(1) SPARQL

(2) NRMD¬ (3) MRA

T12
T21

T23

T32

T31
T13

Fig. 2. The triangle of simulations among SPARQL, Non-Recursive Multiset Datalog with Safe Negation (NRMD¬), and Multiset Relational
Algebra (MRA) described in this paper. The query languages are identified by numbers, and Ti j denotes the simulation of language i using
language j.

and o is called the object. An RDF graph (just graph from now on) is a set of RDF triples. The union of graphs,
G1 ∪G2, is the set theoretical union of their sets of triples.

A SPARQL database will be a set of RDF triples.

Note: In addition to I and L, SPARQL admits as terms anonymous resources called blank nodes. In this paper,
we do not include them to help focus on the issues arising from multisets. Avoiding blank nodes does not affect the
results presented in this paper. Indeed, in SPARQL, blank nodes in the data can be consistently replaced by IRIs and
produce equivalent query results, and blank nodes in queries can be replaced by fresh variables without changing
the semantics of the query [45].

3.2. SPARQL Syntax

Assume the existence of an infinite set V of variables disjoint from T (RDF terms). A filter condition is defined
recursively as follows: (i) If ?X, ?Y ∈ V and c ∈ T then (?X = c), (?X = ?Y) and bound(?X) are atomic filter
conditions; (ii) If φ1,φ2 are filter conditions then (φ1 ∧ φ2),(φ1 ∨ φ2) and ¬φ1 are complex filter conditions. We
denote by var(φ) the set of variables occurring in φ.

A SPARQL pattern is defined recursively as follows:

– A triple from (I ∪ V)× (I ∪ V)× (I ∪ L ∪ V) is a pattern called a triple pattern. We will assume that a triple
pattern has at least one variable.

– If P1 and P2 are patterns then (P1 AND P2), (P1 UNION P2), and (P1 EXCEPT P2) are patterns.
– If P is a pattern and φ is a filter condition then (PFILTERφ) is a pattern.
– If W is a set of variables and P1 is a pattern then (SELECTW P1) is a pattern.

3.3. SPARQL Semantics

A solution mapping (or just mapping from now on) is a partial function µ : V → T where the domain of µ,
denoted dom(µ), is the subset of V where µ is defined. We write µ∅ to denote the mapping with empty domain (i.e.,
dom(µ∅) = ∅). Given ?X ∈ V and c ∈ T, we write µ(?X) = c to denote that µ maps the variable ?X to the term
c. Given a finite set of variables W, the restriction of a mapping µ to W, denoted µ|W , is a mapping µ′ that satisfies
dom(µ′) = W ∩ dom(µ) and µ′(?X) = µ(?X) when ?X ∈ dom(µ′). Two solution mappings µ1, µ2 are compatible,
denoted µ1 ∼ µ2, when for all ?X ∈ dom(µ1) ∩ dom(µ2) they satisfy µ1(?X) = µ2(?X), that is, when µ1 ∪ µ2 is
also a mapping. Note that two mappings with disjoint domains are always compatible.

Let Ω be a multiset of solution mappings. The domain of variables in Ω, denoted dom(Ω), is defined as the set
union of the domains of the variables that occur in the solution mappings of Ω. Given a mapping µ, the cardinality
of µ in Ω will be denoted as card(µ,Ω). If µ /∈ Ω then card(µ,Ω) = 0.

8 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 3
Evaluation of complex filter conditions [30, §17.2], where µ is a solution mapping, and φ1,φ2 are filter conditions.

µ(φ1) µ(φ2) µ(φ1) ∧ µ(φ2) µ(φ1) ∨ µ(φ2)

true true true true
true false false true
true error error true
false true false true
false false false false
false error false error
error true error true
error false false error
error error error error

µ(φ1) ¬(µ(φ1))

true false
false true
error error

The evaluation of a filter condition φ under a mapping µ, denoted µ(φ), is defined in a three-valued logic with
values true, false and error. We say that µ satisfies φwhen µ(φ) = true. The semantics of µ(φ) is defined recursively
as follows:

– If φ is ?X = c and c ∈ T, then: (a) If ?X ∈ dom(µ) then µ(φ) = true when µ(?X) = c and µ(φ) = false
otherwise; (b) If ?X /∈ dom(µ) then µ(φ) = error.

– If φ is ?X = ?Y and ?X, ?Y ∈ dom(µ), then µ(φ) = true when µ(?X) = µ(?Y), and µ(φ) = false otherwise. If
?X /∈ dom(µ) or ?Y /∈ dom(µ) then µ(φ) = error.

– If φ is bound(?X) and ?X ∈ dom(µ) then µ(φ) = true; otherwise µ(φ) = false.
– If φ is a complex filter condition, then it is evaluated following the three valued logic shown in Table 3.

The evaluation of a pattern P on a graph G is defined as a function JPKG, which returns a multiset of mappings.
Let P1, P2 be SPARQL patterns, φ be a filter condition and W be a set of variables. For simplicity of reading, denote
M = JPKG, M1 = JP1KG, and M2 = JP2KG. The evaluation JPKG is defined recursively as follows:

– If P is a triple pattern t then set(M) = {µ | dom(µ) = var(t), µ(t) ∈ G}, where µ(t) is the triple obtained by
replacing the variables in t according to µ, and card(µ,M) = 1.

– If P is (P1 AND P2) then set(M) = {µ1 ∪ µ2 | µ1 ∈ M1, µ2 ∈ M2, and µ1 ∼ µ2} and card(µ,M) =∑
µ=µ1∪µ2 card(µ1,M1)× card(µ2,M2).

– If P is (P1 UNION P2) then set(M) = {µ | µ ∈ M1∨µ ∈ M2} and card(µ,M) = card(µ,M1)+card(µ,M2).
– If P is (P1 EXCEPT P2) then set(M) = {µ | µ ∈ M1, µ /∈ M2} and card(µ,M) = card(µ,M1).
– If P is (P1 FILTERφ) then set(M) = {µ | µ ∈ M1, µ(φ) = true} and card(µ,M) = card(µ,M1).
– If P is (SELECTW P1) then

set(M) = {µ′ | µ′ = µ|W ∧ µ ∈ M1} and
card(µ′,M) =

∑
µ′=µ|W

card(µ,M1).

To facilitate the translation from SPARQL to relational algebra and Datalog, we use the difference operator
EXCEPT in SPARQL, called SetMinus by Kontchakov et al. [43]. Kontchakov et al. [43] proved that, over this
fragment, the operator EXCEPT and the pair of standard operators {MINUS,OPTIONAL} are mutually express-
ible.

3.4. Normalization of SPARQL patterns

The solution mappings of a SPARQL pattern P may have different domains. To translate SPARQL to languages
built upon relations, we require representing multisets of mappings as relations whose tuples have the same set
of attributes. This set of attributes has to contain all variables that can appear in the solution mappings of P. The
SPARQL specification [31] defines a finite set of variables, called in-scope, that include all variables of a SPARQL
pattern P that can occur in the solution mappings of P. To complete the relation, unbound values need to be denoted
with a distinguished constant of the target languages.

Angles et al. / The multiset semantics of SPARQL patterns 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Example 1. Assume a pattern P with in-scope variables ?X, ?Y, and ?Z that returns the multiset of mappings
Ω = ⦃{?X 7→ a}, {?X 7→ b, ?Y 7→ c}, {?Y 7→ d}⦄. Since all variables in the solution mappings are ensured
to be in-scope variables of P, we can represent this multiset of mappings as the following relation (⊥ denotes the
distinguished constant to denote unbound values):




?X ?Y ?Z

a ⊥ ⊥
b c ⊥
⊥ d ⊥


 .

In-scope variables are defined as follows. Let P1, P2 and P3 be patterns, φ be a filter condition, and W be a set of
variables. The set of in-scope variables of a pattern P, denoted inScope(P), is defined recursively as follows:

1. If P is a triple pattern then inScope(P) is the set of variables occuring in P.
2. If P is (P1 AND P2) or (P1 UNION P2) then inScope(P) = inScope(P1) ∪ inScope(P2);
3. If P is (P1 FILTERφ) or (P1 EXCEPT P2) then inScope(P) = inScope(P1);
4. If P is (SELECT W P1) then inScope(P) = W.

So far, we have described how to translate the results of SPARQL queries to relations. However, languages built
upon relations have some restrictions that difficult a straightforward translation of the SPARQL operations. The
relational selection operation requires all attributes in the selection formula being attributes of the relation; the
relational union is done over relations of the same schema; and the relational difference requires all variables in the
subtrahend be instanced in the minuend. Conversely, SPARQL does not have these restrictions. We next present a
normal form to simplify the translation from SPARQL to relational languages by satisfying the constraints of the
target languages.

Definition 3 (SPARQL normal form). A pattern P is said to be in normalized or in normal form if the following
conditions hold:

1. For every sub-pattern (P1 FILTERφ) in P it holds that var(φ) ⊆ inScope(P1);
2. For every sub-pattern (P1 UNION P2) in P it holds that inScope(P1) = inScope(P2);
3. For every sub-pattern (P1 EXCEPT P2) in P it holds that inScope(P1) = inScope(P2).

Lemma 1. Every SPARQL query (in the fragment described in Section 3.2) can be rewritten as an equivalent
normalized SPARQL query.

Proof. The conditions that make a pattern normalized refer to restrictions to the in-scope variables of patterns.
Patterns that are not normalized include at least one sub-pattern that has either the form (P1 FILTER φ),
(P2 UNION P3), or (P2 EXCEPT P3), where φ contains a variable ?X /∈ inScope(P1), and inScope(P2) ̸=
inScope(P3). We next present a method to normalize these patterns.

Given a pattern P, and a finite set of variables X, P ≡ (SELECT (inScope(P) ∪ X) P). Indeed, a mapping
µ is a solution of the pattern (SELECT (inScope(P) ∪ X) P) if and only there exists a solution mapping µ′ of
pattern P such that µ = µ′|inScope(P)∪X . By the definition of the in-scope variables, dom(µ′) ⊆ inScope(P). Then,
dom(µ′) ⊆ inScope(P) ∪ X. Then, µ = µ′. Hence, P ≡ (SELECT (inScope(P) ∪ X) P).

Let P′
1, P′

2, and P′
3 be the patterns defined as follows:

P′
1 = (SELECT (inScope(P1) ∪ var(φ)) P1),

P′
2 = (SELECT (inScope(P2) ∪ inScope(P3)) P2),

P′
3 = (SELECT (inScope(P2) ∪ inScope(P3)) P3).

Since P′
1 ≡ P1, P′

2 ≡ P2, and P′
3 ≡ P3, the following equivalences hold:

(P1 FILTER φ) ≡ (P′
1 FILTER φ),

(P2 UNION P3) ≡ (P′
2 UNION P′

3),

10 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(P2 EXCEPT P3) ≡ (P′
2 EXCEPT P′

3).

Unlike the patterns on the left side of these equivalences, the patterns on the right side are normalized. Indeed, by
the definition of the inScope function, var(φ) ⊆ inScope(P′

1) and inScope(P′
2) = inScope(P′

3). Hence, these
equivalences can be used to normalize SPARQL patterns.

Example 2. Let P be the pattern (P1 UNION P2) where P1 is the triple pattern (?X, is, person) and P2

is the triple pattern (?X, email, ?Y), and G be the RDF graph that includes the triples (a, is, person) and
(a, email, a@ex.org). The pattern P is not in normal form because variable ?Y is in inScope(P2), but not in
inScope(P1). The normal form of the pattern P is a pattern P′ that results from replacing P1 by the pattern
P′
1 = (SELECT ?X ?Y (?X, is, person)). The patterns P and P′ are equivalent because the patterns P1 and P′

1

return the same multiset of solution mappings Ω1 = ⦃{?X 7→ a}⦄. Note that variable ?Y is not in the solutions of
P1 nor P′

1. However, variable ?Y is in inScope(P′
1) but not in inScope(P1). Using the in-scope variables of the pat-

terns to translate the results of patterns P1 and P′
1 as relations we get the respective relations

[
?X

a

]
and

[
?X ?Y

a ⊥

]
.

Although both relations represent the same multiset of mappings, just the second relation has the same attributes as
the result of pattern P2, and thus can be operated with the relational union.

4. Non-Recursive Multiset Datalog with Safe Negation (NRMD¬)

This section presents an extension of Datalog to support multiset semantics. Based on the work of Mumick et
al. [13], a database is defined to allow duplicate facts, and the evaluation of a fact is given by the number of different
proofs for that fact. We extended Mumick’s formalism in [23] to provide a more complete formalism including
negation, which we call MD¬. Furthermore, we follow the work of Bertossi et al. [17] for the semantics of MD¬.
We call Non-Recursive Multiset Datalog with Safe Negation (NRMD¬) to the fragment of MD¬ restricted to non-
recursive queries.

4.1. NRMD¬ Syntax

Assume three disjoint sets: variables, constants and predicate names. A term is either a variable or a constant. An
atom is an expression p(t1, . . . , tn) where p is a predicate name and each ti is a term. An equality expression will be
represented by an atom of the form eq(t1, t2). A literal is either an atom (i.e. a positive literal A) or the negation of
an atom (i.e. a negative literal ¬A). Given a literal L, we use var(L) to denote the variables in L. A Horn Clause, or
simply clause, is an expression containing at most one positive literal. There are three types of clauses, named facts,
rules and goals.

A fact is a positive literal that does not contain any variables. A MD¬ Database is a finite multiset of facts. The
vocabulary of a MD¬ database D is a pair (P, α) where P is the set of predicate names occurring in the facts of D,
and α is a function defining the arity of each predicate name in P, i.e. if p(c1, . . . , cn) ∈ D then α(p) = n. The
predicate names occurring in D are called extensional.

A rule is an expression Ln+1 ← L1, . . . , Ln where Ln+1 is a positive literal with no constants called the head, and
L1, . . . , Ln (n ⩾ 1) is a set of literals called the body. A variable X occurs positively in a rule R if and only if X occurs
in a positive literal in the body of R. A rule R is said to be safe if all its variables occur positively. Additionally, we
will assume that every literal in the body of a rule has a variable at least.

A program Π is a finite set of rules. The predicate names occurring in the head of the rules of Π are called
intensional. A program Π is safe if all the rules of Π are safe. A MD¬ program is a safe program.

The dependency graph of a program Π is a digraph (N, E) where the set of nodes N is the set of predicates names
that occur in the literals of Π, and there is an edge (p1, p2) in E if there is a rule in Π whose body contains the
predicate name p1, and whose head contains the predicate name p2. A program is said to be non-recursive if its
dependency graph is acyclic. A NRMD¬ program is a MD¬ that is non-recursive.

Angles et al. / The multiset semantics of SPARQL patterns 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

r(a) r(a) p(a) p(a)

⟨r(a), 1⟩ ⟨r(a), 2⟩ r(a) r(a) r(a) p(a) r(a) p(a) r(a) p(a) r(a) p(a)

⟨r(a), 1⟩ ⟨r(a), 2⟩ ⟨r(a), 1⟩ r(a) ⟨r(a), 1⟩ r(a) ⟨r(a), 2⟩ r(a) ⟨r(a), 2⟩ r(a)

⟨r(a), 1⟩ ⟨r(a), 2⟩ ⟨r(a), 1⟩ ⟨r(a), 2⟩

q(a) q(a) q(a) q(a)
F F S S

F F

R R R R R R R R

F F F FS S S S

F F F F

Fig. 3. Example of derivation trees. Let D be a NRMD¬ database, F = r(a) be a fact in D with card(F,D) = 2, Π = {R, S} be a NRMD¬

program where R is the rule q(X)← r(X), p(X) and S is the rule p(X)← r(X). This figure shows the derivation trees of Π with respect to D.

A goal clause is an atom without constants. A MD¬ query is a pair (L,Π) where L is a goal clause, and Π is a
MD¬ program. A NRMD¬ query is a MD¬ query (L,Π) such that Π is non-recursive. A NRMD¬ database is a
MD¬ database.

4.2. NRMD¬ Semantics

We follow the formalisms by Mumick et al. [13] and Bertossi et al. [17] that use a proof-theoretic semantics for
NRMD¬ programs. The semantics is based on the notions of “substitution” and “derivation tree”.

A substitution is a partial function θ from variables to constants. Given a literal L (positive or negative), and a
substitution θ, we write θ(L) to denote the result of replacing all variables x occurring in L with θ(x). Informally,
the answer for a query (L,Π) where Π is a NRMD¬ program, over a database D, will be a multiset of substitutions
with the same domain, each obtained from one proof showing that this substitution works.

The notion of “colored set” [13] will be used to identify the different copies of an element. The colored set of
a multiset M, denoted coloring(M), is the set C = {⟨a, i⟩ | a ∈ set(M) and 1 ⩽ i ⩽ card(a,M)}. Each element
⟨a, i⟩ ∈ C is called a colored copy of a. Sometimes we will use the notation coloring−1(C) to define the multiset
defined by C when forgetting the “colors”, and write coloring−1(⟨a, i⟩) = a.

The notion of “derivation tree” [13] will be used to count the number of proofs for an atom. Formally, a Derivation
Tree is a connected, undirected graph, with no cycles, represented as a tuple T = (N , E ,L, ϵ, λ) whereN is a set of
nodes, E is a set of edges, L is a set of labels (for nodes and edges), ϵ : E → N ×N is a total function that assigns
a pair of nodes to each edge, and λ : (N ∪ E) → L is a total function that assigns a label to each node and edge.
The function root(T) will be used to obtain the root node of T .

Let R be a rule of the form Ln+1 ← L1, . . . , Lm, Lm+1, . . . , Ln where L1, . . . , Lm are positive literals, and
Lm+1, . . . , Ln are negative literals, DT be a set of derivation trees, and S T = (T1, . . . , Tm) be a sequence of deriva-
tion trees that satisfy that every derivation tree in S T is also in DT . We say that DT matches R with S T , denoted
DT |=S T R, if there is a substitution θ satisfying: (i) for every positive literal Li ∈ R it applies that θ(Li) = root(Ti)
where Ti ∈ S T ; and (ii) for every negative literal L j ∈ it applies that DT does not contain a derivation tree whose
root node has the label θ(L j).

Assume that DT |=S T R where S T = (T1, . . . , Tm), T1 = (N1, E1,L1, ϵ1, λ1), . . . , and Tm = (Nm, Em,Lm, ϵm, λm).
The derivation tree TR = (NR, ER,LR, ϵR, λR) for the rule R is defined as follows: NR = {nr} ∪ N1 ∪ · · · ∪ Nm,
ER = {e1, . . . , em} ∪ E1 ∪ · · · ∪ Em, LR = {R, θ(Ln+1)} ∪ L1 ∪ · · · ∪ Lm, every assignment in ϵi is also in ϵR,
ϵR(e1) = (nr, root(T1)), . . . , ϵR(em) = (nr, root(Tm)), every assignment in λi is also in λR, λR(nr) = θ(Ln+1), and
λR(e1) = R.

Let D be a NRMD¬ database and Π a NRMD¬ program. The set of derivation trees of Π with respect to D,
denoted dt(Π,D), is defined as follows:

1. For every fact F ∈ D of the form p(ti, . . . , tn), and for every colored copy ⟨p(ti, . . . , tn), i⟩, it applies that
dt(Π,D) contains a derivation tree T i

F = (N i
F , E i

F ,Li
F , ϵ

i
F , λ

i
F) where N i

F = {n1, n2}, E i
F = {e1}, Li

F =
{p(ti, . . . , tn), ⟨p(ti, . . . , tn), i⟩, F}, ϵ i

F(e1) = (n1, n2), λi
F(n1) = p(ti, . . . , tn), λi

F(n2) = ⟨p(ti, . . . , tn), i⟩, and
λi

F(e1) = F.

12 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2. Assume that DT is the set of derivation trees obtained for the facts in D as defined above. Given a rule R in
Π and a sequence of derivation trees S T satisfying DT |=S T R, the derivation tree for R is added to DT . This
process is repeated for every rule R in Π, until no more derivation trees are generated. Finally, dt(Π,D) = DT .

Let Π be a NRMD¬ program, D be a NRMD¬ database and F be a fact. A derivation tree T ∈ dt(Π,D) is said
to be a proof for the fact F if the label of the root node is F. The multiset of atoms of Π in D, denoted atoms(Π,D),
is the multiset of facts F such that there is a proof for F in dt(Π,D), and the cardinality of F in atoms(Π,D) is
the number of proofs of F. Figure 3 shows the derivation trees that are proofs of the facts derived from an example
NRMD¬ program. The facts r(a), p(a) and q(a) belong to atoms(Π,D) with cardinalities 2, 2, and 4.

The NRMD¬ query language over a vocabulary τ is the query language (Q,D,S, J·K·) where:

1. Q is the set of NRMD¬ queries over τ;
2. D is the set of NRMD¬ databases over τ;
3. S is the set of NRMD¬ query answers (i.e., pairs (V,M) where V is a set of variables and M is a multiset of

substitutions θ with dom(θ) = V); and
4. J·K is the function that receives a NRMD¬ query (L,Π) and a NRMD¬ database D, and returns a NRMD¬

query answer (V,M) where V = var(L), set(M) = {θ | θ(L) ∈ atoms(Π,D) and dom(θ) = V}, and
card(θ,M) = card(θ(L), atoms(Π,D)).

Observe that the domain of the query answer for a query (L,Π) is var(L). Abusing notation, we will say that it is
also the domain of the query (L,Π), denoted dom((L,Π)) = var(L).

The Multiset Datalog query language presented here, NRMD¬, differs from the version proposed by Bertossi et
al. [17] in that we do not allow recursive programs nor constants in the head of rules. These restrictions permit to
match the expressive power of the SPARQL fragment studied here.

4.3. Normalization of NRMD¬ programs

To simplify the translations from NRMD¬ to SPARQL and MRA, we assume that every NRMD¬ query is nor-
malized into a query that contains only rules of the three following types:

L0 ← L1, where var(L0) ⊆ var(L1); (projection rule)
L0 ← L1, L2, where var(L0) = var(L1) ∪ var(L2); (join rule)
L0 ← L1,¬L2, where var(L2) = var(L1) and var(L0) = var(L1). (negation rule)

Next, we show the feasibility of this normalization.

Lemma 2. Every NRMD¬ query is equivalent to a normalized NRMD¬ query.

Proof. We provide a normalization algorithm that replaces every rule in the query by a set of rules that do not change
the semantics of the query. Given a NRMD¬ query (L,Π), every rule R ∈ Π has the form

p(X̄)← A1, . . . , Am,¬B1, . . . ,¬Bn,

where A1, . . . , Am are positive literals, and ¬B1, . . . ,¬Bn are negative literals. For 1 ⩽ i ⩽ m, let Ȳi be the set of
variables that consists of the variables occurring in the atoms A1, . . . , Ai. Then, we replace rule R by the minimal set
of rules ΠR that includes the following rules:

1. Rules RA
i , for 2 ⩽ i ⩽ m, defined recursively as follows:

(a) RA
2 = qA

2(Ȳ2)← A1, A2.
(b) RA

i = qA
i (Ȳi)← qA

i−1(Ȳi−1), Ai.

2. Rules RB
j and RB′

j for 1 ⩽ j ⩽ n, defined recursively as follows:

(a) RB
0 = rB

0 (Ȳm)← qA
m(Ȳm),

(b) RB
j = rB

j (Ȳm)← rB
j−1(Ȳm),¬B′

j(Ȳm),

Angles et al. / The multiset semantics of SPARQL patterns 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(c) RB′
j = B′

j(Ȳm)← rB
j−1(Ȳm), B j .

3. A rule R′ = p(X̄)← rB
n (Ȳm).

Let (L,Π′) be the query resulting from replacing rule R with the rules in ΠR. It is clear that the program is normal
(recall that the original program is safe). Need to show that both programs are equivalent, that is, that the solutions
of query (p(X̄),Π) after the replacement are the same and have the same cardinalities. These two conditions follow
from Claim 3 in the Appendix.

5. Multiset Relational Algebra (MRA)

The multiset relational algebra used in this paper is based on the semantics defined by Dayal et al. [10]. This
algebra considers the operations of selection, projection, natural join and arithmetic union. Additionally, we include
operators for renaming and filter difference (or “except”).

5.1. Multiset relations

Assume that N,A,C are disjoint infinite sets, where N is the domain of relation names, A is the domain of
attributes, and C is the domain of constants or values.

A relation schema is given by a relation name R ∈ N and a set of attributes {A1, . . . , An} where Ai ∈ A for
1 ⩽ i ⩽ n. To simplify the notation, we will use the relation name R to denote the relation schema, and R̂ to denote
the attributes of R. A relational database schema is a finite set of relation schemas.

A tuple over a relation schema R with attributes R̂ = {A1, . . . , An} is a total mapping t from R̂ to C. The value of
tuple t on an attribute Ai ∈ R̂ will be denoted as t(Ai). Given a set of attributes U ⊆ R̂ and a tuple t, we write t[U]
to denote the tuple t′ with attributes U such that t′(A) = t(A) for every attribute A ∈ U.

A multiset relation r over a relation schema R is a multiset of tuples over R̂. We write r̂ to denote the relation
schema R where the multiset relation r is defined. Given a tuple t ∈ r, we will use card(t, r) to denote the cardinality
of tuple t in r.

A relational database schema is a set of relation schemas. Given a relational database schema T = {R1, . . . ,Rn},
a multiset relational database over T is a set of multiset relations {r1, . . . , rn} where each relation ri is defined over
the schema Ri. Sometimes we will write MRA database, emphasizing that the multiset relational database is in the
context of MRA.

Let r1, r2 be two multiset relations, and t1 ∈ r1 and t2 ∈ r2 be tuples. We say that t1 and t2 are compatible,
denoted t1 ∼ t2, if (i) for every attribute A ∈ r̂1 ∩ r̂2 it holds that t1(A) = t2(A), or (ii) r̂1 ∩ r̂2 = ∅. If t1 and t2
are compatible, then the merge of them, denoted t1 ∪ t2, is the tuple t with attributes r̂1 ∪ r̂2 where t(A) = t1(A) for
each attribute A ∈ r̂1, and t(B) = t2(B) for each attribute B ∈ r̂2 \ r̂1.

5.2. Syntax of MRA

The multiset relational algebra defined in this paper includes the operators of selection (σ), projection (π), renam-
ing (ρ), join (⋊⋉), union (∪), and except (\). Next we describe the syntax of MRA expressions containing the above
operators.

A selection formula ψ is a Boolean combination of equality expressions of the form x = y where x, y ∈ A ∪ C.
We define a MRA expression E over a relational database schema T , and the attributes of E, denoted Ê, by mutual
recursion as follows:

– A relation name R ∈ T is a MRA expression E, and Ê = R̂.
– If E1 is a MRA expression and ψ is a selection formula where the attributes occurring in ψ are included in Ê1,

then σψ(E1) is a MRA expression E, and Ê = Ê1.
– If E1 is a MRA expression and S ⊆ Ê1 is a set of attributes, them πS (E1) is a MRA expression E, and Ê = S .
– If E1 is a MRA expression, A ∈ Ê1 and B ∈ A are attributes, then ρA/B(E1) is a MRA expression E, and

Ê = (Ê1 \ A) ∪ B.

14 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– If E1 and E2 are MRA expressions, then (E1 ⋊⋉ E2) is an MRA expression E, and Ê = Ê1 ∪ Ê2.
– If E1 and E2 are MRA expressions and Ê1 = Ê2, then (E1 \ E2) is a MRA expression E, and Ê = Ê1.
– If E1 and E2 are MRA expressions and Ê1 = Ê2, then (E1 ∪ E2) is a MRA expression E, and Ê = Ê1.

Note that a selection operation σψ(E1) requires that attributes in the selection formula ψ be attributes of the MRA
expression E1; the projection operation πS (E1) requires that S be a subset of the attributes of the MRA expression
E1; and that the union E1∪E2 and difference E1 \E2 expressions require that expressions E1 and E2 have the same
set of attributes.

5.3. Semantics of MRA

Given a selection formula ψ and a tuple t over a relation schema R, we will use t |= ψ to denote that t satisfies ψ,
and its evaluation is given as follows:

1. if ψ is A = B where A, B ∈ R̂ are attributes, then t |= ψ iff t(A) = t(B);
2. if ψ is A = c where A ∈ R̂ is an attribute and c ∈ C is a constant, then t |= ψ iff t(A) = c;
3. if ψ is c1 = c2 where c1, c2 ∈ C are constants, then t |= ψ iff c1 is the same constant as c2;
4. if ψ is ψ1 ∧ ψ2, then t |= ψ iff t |= ψ1 and t |= ψ2;
5. if ψ is ψ1 ∨ ψ2, then t |= ψ iff t |= ψ1 or t |= ψ2;
6. if ψ is ¬ψ1, then t |= ψ iff t |= ψ1 does not hold.

Now, the evaluation of a MRA expression E over a multiset relational database D (of the same schema as E) is
defined as a function Eval(E,D) that returns a multiset relation r with the same schema as E.

Let D be a MRA database over a schema T and E, E1, E2 be MRA expressions over T . The evaluation
of Eval(E,D) is the multiset relation r defined recursively as follows (assume that Eval(E1,D) = r1, and
Eval(E2,D) = r2):

– If E is a relation name R1 ∈ T , then r is the relation for the relation name R1 in the database D.
– If E is σψ(E1) then set(r) = {t | t ∈ r1 and t |= ψ} and card(t, r) = card(t, r1).
– If E is πS (E1) then set(r) = {t′ | t′ = t[S] and t ∈ r1} and card(t′, r) =

∑
t with t[S]=t′ card(t, r1).

– If E is ρA/B(E1) then r is the result from renaming in r1 the attribute A as B.
– If E is (E1 ⋊⋉ E2) then set(r) = {t1 ∪ t2 | t1 ∈ r1, t2 ∈ r2, and t1 ∼ t2} and card(t1 ∪ t2, r) = card(t1, r1)×
card(t2, r2).

– If E is (E1 ∪ E2) then set(r) = {t | t ∈ r1 or t ∈ r2} and card(t, r) = card(t, r1) + card(t, r2).
– If E is (E1 \ E2) then set(r) = {t | t ∈ r1 and t /∈ r2} and card(t, r) = card(t, r1).

Hence, in MRA, the set of queries is the set of MRA expressions, the set of databases is the set of multiset rela-
tional databases, the set of results is the set of multiset relations, and the evaluation procedure is the aforementioned
function Eval.

6. Equivalence between SPARQL and NRMD¬

This section presents the simulations that prove that SPARQL and Non-Recursive Multiset Datalog with Safe
Negation (NRMD¬) have the same expressive power. Specifically, we show that SPARQL can be simulated by
NRMD¬ (Section 6.1), and NRMD¬ can be simulated by SPARQL (Section 6.2).

6.1. From SPARQL to NRMD¬

This section shows that SPARQL can be simulated by Non-Recursive Multiset Datalog with Safe Negation
(NRMD¬). To support this, we describe the following translation functions:

– function f12, that translates SPARQL queries into NRMD¬ queries;
– function g12, that translates SPARQL databases into NRMD¬ databases; and
– function h12, that translates NRMD¬ query answers into SPARQL query answers.

Angles et al. / The multiset semantics of SPARQL patterns 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

6.1.1. Translating databases from SPARQL to NRMD¬

Recall that a SPARQL database is a set of RDF triples and a NRMD¬ database is a multiset of facts.
The basic idea is to translate each RDF triple into a Datalog atom. Additionally, we create an atom to encode all

RDF terms, and an atom to encode the unbound value.

Definition 4 (Function g12). Let τ be the vocabulary with predicate names term, eq, triple, and null with arities
α(term) = 1, α(eq) = 2, α(triple) = 3, and α(null) = 1. Given an RDF graph G, the function g12(G) returns a
NRMD¬ database D wich consists of the facts over the vocabulary τ defined according to the following rules:

– term(t) ∈ D and eq(t, t) ∈ D, for each element t such that there is a triple (s, p, o) ∈ G with t = s, t = p, or
t = o;

– triple(v1, v2, v3) ∈ D for each triple (v1, v2, v3) ∈ G;
– null(⊥) ∈ D, where ⊥ is the constant reserved in RDF to encode unbounded values;
– comp(⊥,⊥,⊥) ∈ D;
– comp(a, a, a), comp(a,⊥, a), comp(⊥, a, a) for each term a in D.

Example 3. Let G be the RDF graph defined as follows

G = {(Alice, livesIn,Santiago), (Alice, knows,Bob),

(Bob, livesIn,Santiago), (Bob, knows,Carol),

(Carol, livesIn, Lima)}.

Then the data is translated for Datalog as follows:

g12(G) = ⦃ term(Alice), term(Bob), term(Carol), term(Santiago), term(livesIn), term(knows),

eq(Alice,Alice), eq(Bob,Bob), eq(Carol,Carol), eq(Santiago,Santiago),

eq(livesIn, livesIn), eq(knows, knows),

triple(Alice, livesIn,Santiago), triple(Alice, knows,Bob),

triple(Bob, livesIn,Santiago), triple(Bob, knows,Carol),

triple(Carol, livesIn, Lima),

null(⊥)
comp(⊥,⊥,⊥),
comp(Alice,Alice,Alice), comp(Alice,⊥,Alice), comp(⊥,Alice,Alice),

comp(livesIn, livesIn, livesIn), comp(livesIn,⊥, livesIn), comp(⊥, livesIn, livesIn),
...

comp(Lima, Lima, Lima), comp(Lima,⊥, Lima), comp(⊥, Lima, Lima)⦄.
Intuitively, atoms term(t) list all terms in the graph, atoms eq(t, t), that each term is equal to itself, and atoms

comp(a, b, c) state the compatibility between a and b. The atoms triple(v1, v2, v3) encode the triples of the graph,
and the atom null(⊥) states that ⊥ is the null value.

6.1.2. Translating queries from SPARQL to NRMD¬

In general terms, any SPARQL graph pattern can be translated into a set of NRMD¬ rules. However, there are
some subtleties that need to be discussed before presenting the general translation rules.

An initial issue is the translation of a filter graph pattern P = (P1 FILTERφ) where φ is a complex filter
condition. In order to simplify the translation to Datalog, we need to transform P into a collection of filter graph
patterns where every filter condition is an atomic filter condition.

Consider the following equivalences:

(P1 FILTERφ1 ∧ φ2) ≡ ((P1 FILTERψ1) FILTERφ2). (1)

16 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(P1 FILTERφ1 ∨ φ2) ≡ (P1 FILTERφ1)UNION(P1 FILTERφ2). (2)

(P1 FILTER¬(φ1)) ≡ (P1 EXCEPT(P1 FILTERφ1)). (3)

Intuitively, these equivalences seem to be true, since similar equivalences are valid in set relational algebra, namely
σφ1∧φ2(R) = σφ1(σφ2(R)), σφ1∨φ2(R) = σφ1(R)∪σφ2(R), and σ¬φ1(R) = R \σφ1(R). Under set semantics, these
three equivalences are valid. However, under bag semantics, just equivalence (1) is valid, and equivalences (2) and
(3) present problems. Let us analyze them and provide valid equivalences.

– To see why equivalence (2) is not valid, consider the case where for a solution µ of the pattern P1 the evaluation
of formulas φ1 and φ2 are true. Then, µ is a solution of the queries in both sides of equivalence (2). However,
the cardinality differs. Indeed, the cardinality of µ for the query on the right side is twice the cardinality for the
query on the left side. Hence, equivalence (2) is valid for set semantics but not for bag semantics.

– To see why equivalence (3) is not valid, consider the case where for a solution mapping µ of the pattern P1,
formula φ1 produces an error. Then, formula ¬φ1 also produces an error, and hence µ is not a solution to the
query on the left side. On the other hand, since µ is a solution mapping for P1 but not a solution to the pattern
(P1 FILTERφ1), µ is a solution mapping to the query on the right side. Hence, this equivalency is not valid
because the queries do not have the same solution mappings.

Intuitively, equivalence (2) is no longer valid when we change from set semantics to bag semantics, whereas equiv-
alence (3) is no longer valid when we change from 2-valued logic to 3-valued logic. In the following, we show how
to solve these problems.

Lemma 3 (Rewriting of disjoint filter conditions). We say that two filter conditions φ1 and φ2 are disjoint, if for
every mapping µ it does not hold that µ(φ1) and µ(φ2) are simultaneously true. Equivalence (2) is true when φ1 and
φ2 are disjoint.

Proof. Given that φ1 and φ2 are disjoint, it applies that µ(φ1) is true when µ(φ2) is not true (and vice versa). So, it
holds that µ(φ1 ∨ φ2) = true if and only if µ(φ1) = true or µ(φ2) = true, and the cardinality of µ on the left hand
side is the sum of the cardinalities of µ in each of the terms of the right hand side.

Now, consider the following equivalence:

(P1 FILTERφ1 ∨ φ2) ≡(P1 FILTERφ1 ∧ ¬φ2)UNION

(P1 FILTER¬φ1 ∧ φ2)UNION

(P1 FILTERφ1 ∧ φ2).

(4)

Equivalence (4) solves one of the problems of equivalence (2), but it still has problems to evaluate formulas with
errors. In order to solve them, we introduce the notion of “error filter condition.”

Definition 5 (Error filter condition). Given a filter condition φ, the expression Error(φ) denotes the filter condition
defined recursively as follows:

Error(bound(?X)) = false,

Error(?X = a) = ¬ bound(?X),

Error(?X = ?Y) = (¬ bound(?X) ∧ bound(?Y)) ∨
(bound(?X) ∧ ¬ bound(?Y)) ∨
(¬ bound(?X) ∧ ¬ bound(?Y)),

Error(φ1 ∧ φ2) = (φ1 ∧ Error(φ2)) ∨
(Error(φ1) ∧ φ2) ∨
(Error(φ1) ∧ Error(φ2)),

Angles et al. / The multiset semantics of SPARQL patterns 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Error(φ1 ∨ φ2) = (¬φ1 ∧ Error(φ2)) ∨
(Error(φ1) ∧ ¬φ2) ∨
(Error(φ1) ∧ Error(φ2)),

Error(¬φ1) = Error(φ1).

Lemma 4. For every filter condition φ and mapping µ it holds that µ(φ) = error if and only if µ(Error(φ)) = true.

Proof. This lemma is proved by induction on the structure of the filter condition (see Claim 1 in the appendix).

Example 4. Let φ be the filter condition L∨¬L where L is the equality ?X = a. According to Definition 5, Error(φ)
will be the filter condition (¬L∧Error(¬L))∨(Error(L)∧¬¬L)∨(Error(L)∧Error(¬L)). Since ¬¬L is equivalent
to L and Error(¬L) is equivalent to Error(L), then Error(φ) is equivalent to (¬L ∧ Error(L)) ∨ (Error(L) ∧ L) ∨
(Error(L)), which is equivalent to (φ ∧ Error(L)) ∨ (Error(L)), and then, equivalent to Error(L). According to
Definition 5, we conclude that Error(φ) is equivalent to ¬bound(?X).

There are three possible values for variable ?X in a mapping µ, namely µ(?X) = a, µ(?X) = b (for a term
b ̸= a), and variable ?X is unbound in µ (denoted µ(?X) = ⊥). The following table shows the values for µ(φ) and
µ(Error(φ)) for these three cases.

µ(?X) µ(φ) µ(Error(φ))

a true false
b true false
⊥ error true

As defined by Lemma 4, the filter condition φ produces error for mappings µ where µ(Error(φ)) = true, and
µ(Error(φ)) is either true or false.

Now we present an equivalence for the disjunction that works in all cases.

Lemma 5 (Disjunction rewriting). Given two filter conditions φ1 and φ2, and a pattern P, the following equivalence
holds for bag semantics:

(PFILTERφ1 ∨ φ2) ≡ (PFILTERφ1 ∧ φ2)UNION

(PFILTERφ1 ∧ ¬φ2)UNION

(PFILTER¬φ1 ∧ φ2)UNION

(PFILTERφ1 ∧ Error(φ2))UNION

(PFILTERError(φ1) ∧ φ2).

(5)

Proof. Since φ ∨ ¬φ ∨ Error(φ) is a tautology for every filter condition φ, the following equivalences hold:

φ1 ≡ φ1 ∧ (φ2 ∨ ¬φ2 ∨ Error(φ2)) ≡ (φ1 ∧ φ2) ∨ (φ1 ∧ ¬φ2) ∨ (φ1 ∧ Error(φ2)),

φ2 ≡ φ2 ∧ (φ1 ∨ ¬φ1 ∨ Error(φ1)) ≡ (φ2 ∧ φ1) ∨ (φ2 ∧ ¬φ1) ∨ (φ2 ∧ Error(φ1)).

Hence, the following equivalence holds:

φ1 ∨ φ2 ≡ (φ1 ∧ φ2) ∨ (φ1 ∧ ¬φ2) ∨ (¬φ1 ∧ φ2) ∨ (φ1 ∧ Error(φ2)) ∨ (Error(φ1) ∧ φ2).

Since all filter conditions in the disjunction of the right side of this equivalence are disjoint, by Lemma 3, we got
equivalence (5).

Finally, we provide a translation for filter graph patterns which have a negation. Under two-valued logic, the
evaluation of a pattern P of the form (P1 FILTER¬φ) may be understood as “all solutions µ of P1 except those
where µ(φ) is true.” Under 3-valued logic, the evaluation of P means “all solutions µ of P except those where µ(φ)
is true or µ(φ) is error.” Thus according to the latter meaning we have:

18 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Lemma 6 (Negation rewriting). Given a filter condition φ, and a pattern P1, the following equivalence holds:

(P1 FILTER¬φ) ≡ ((P1 EXCEPT (P1 FILTERφ)) EXCEPT (P1 FILTERError(φ))). (6)

Proof. The equivalence follows from the fact that the filter discards from the solutions of P those solutions µ such
that µ(φ) is false or error.

Now we are ready to present the effectiveness of rewriting that allows for the reduction of complex filter condi-
tions.

Definition 6 (Reduction of complex filter conditions). Given a pattern (P1 FILTERφ), the filter-reduced pattern
of it is the pattern that results of applying recursively the equivalences (1), (5), and (6) until in the resulting patterns
only occur atomic formulas (i.e. no logical connectives).

Lemma 7. Given a pattern (P1 FILTERφ), the procedure to reduce complex filter conditions described in Defini-
tion 6 produces a pattern equivalent to the original and with no logical connectives in filter conditions.

Proof. This lemma is proved by induction on the structure of the filter condition in the pattern. The base case
consists in a filter condition φ without logical connectives. The case where φ is φ1 ∧ φ2 is straightforward. The
pattern (PFILTERφ) can be reduced to the pattern ((PFILTERφ1) FILTERφ2), and the inductive hypothesis
can be applied on φ1 and φ2. The cases where φ is φ1 ∨ φ2 or ¬φ1 are more involved because the application of the
respective equivalences eliminates a logical connective from φ but adds new logical connectives to the resulting filter
conditions. The proof for the cases involving disjunction or negation follows from Claim 2 in the appendix.

We are ready to present the translation from SPARQL patterns to NRMD¬ queries. The translation essentially
follows the idea presented by Polleres [35], adapted to multisets by Angles and Gutierrez [23], and improved by
Hernández [41]. Specifically, we cover the following issues:

1. It considers the cases where a filter condition is evaluated as error. Some solutions are lost when these cases
are not considered.

2. It considers that the equality X = Y must be evaluated as true only if X and Y are bound. The translation is
fixed by using the literal eq(X,Y) instead of a built-in equality X = Y . Since, atom eq(X,Y) is true only if X
and Y are terms in the database, the translation of the filter-condition X = Y is not evaluated as true when X
and Y are unbound.

Let the function δ, given by the translation rules presented in Table 4, transforms a SPARQL graph pattern P into
a set of NRMD¬ rules δ(P). Note that function δ assigns a fresh predicate name to each pattern P and subpattern Pi

of P in a non-deterministic way. Polleres [35] proposed a deterministic recursive method to assign predicate names
to patterns. The function δ is the basis to present a general method to transform SPARQL queries into NRMD¬

queries.

Definition 7 (Function f12). Given a SPARQL query P, the function f12(P) returns a NRMD¬ query (L,Π) where
L is the goal atom p(P̄) and Π is a Datalog program containing the rules produced by δ(P).

Example 5. Let Q be the following SPARQL query asking for all people, the place where they live, and optionally
the people their know:

(((?person, livesIn, ?somewhere)AND (?person, knows, ?somebody))
UNION

((?person, livesIn, ?somewhere) EXCEPT
(SELECT?person ?somewhere
WHERE ((?person, livesIn, ?somewhere)AND (?person, knows, ?somebody))))).

Angles et al. / The multiset semantics of SPARQL patterns 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
Definition of function δ which allows to translate a SPARQL graph pattern into a set of NRMD¬ rules. Given a pattern P, P̄ returns the variables
of P in lexicographical order. pi is a fresh predicate name used to codify the graph pattern Pi.

Graph Pattern P δ(P) where ...

(x1, x2, x3) p(P̄)← triple(x1, x2, x3) P̄ contains the variables in {x1, x2, x3}

(P1 AND P2) p(P̄)← ν1(p1(P̄1)), ν2(p2(P̄2)), {comp(ν1(X), ν2(X), X) |
X ∈ P̄1 ∩ P̄2}; comp(X, X, X) ← term(X);
comp(X, Y, X) ← term(X), null(Y); comp(X, Y, Y) ←
null(X), term(Y); comp(X, X, X)← null(X); δ(P1); δ(P2)

ν1 and ν2 are functions whose domain is
P̄1 ∩ P̄2, have disjoint range, and νi(L) de-
notes a copy of a literal L where its variables
have been renamed according to function vi.

(P1 UNION P2) p(P̄)← p1(P̄1); p(P̄)← p2(P̄2); δ(P1); δ(P2) P̄ = P̄1 = P̄2

(P1 EXCEPT P2) p(P̄)← p1(P̄1),¬p2(P̄2); δ(P1); δ(P2) P̄ = P̄1

(P1 FILTER x1 = x2) p(P̄)← p1(P̄1), eq(x1, x2); δ(P1) P̄ = P̄1

(P1 FILTERbound(?X)) p(P̄)← p1(P̄1), term(?X); δ(P1); P̄ = P̄1

(SELECT W P1) p(P̄)← p1(P̄1), null(x1), . . . , null(xn); δ(P1) P̄ = W, and x1, . . . , xn are the variables that
are in W but not in inScope(P1).

This SPARQL query is not normalized because both sides of the UNION operator have different variables. To
normalize it we introduce a variable ?somebody with a SELECT clause:

(((?person, livesIn, ?somewhere)AND (?person, knows, ?somebody))
UNION

(SELECT?person ?somewhere ?somebody
WHERE ((?person, livesIn, ?somewhere) EXCEPT

(SELECT?person ?somewhere
WHERE ((?person, livesIn, ?somewhere)AND (?person, knows, ?somebody)))))).

Then, the corresponding NRMD¬ query f12(Q) is the query (q(X),Π) where Π is defined as follows:

p1(X,Y,Z)← (X1, livesIn,Y), triple(X2, knows,Z), comp(X1, X2, X)

p1(X,Y,Z)← p2(X,Y), null(Z),

p2(X,Y)← p3(X,Y),¬p4(X,Y),

P3(X,Y)← triple(X, livesIn,Y)

P4(X,Y)← p5(X,Y,Z)

P5(X,Y,Z)← (X1, livesIn,Y), triple(X2, knows,Z), comp(X1, X2, X) ,

where the NRMD¬ variables X, Y, and Z correspond to the SPARQL variables ?person, ?somewhere, and
?somebody.

6.1.3. Translating query answers from NRMD¬ to SPARQL
Recall that a NRMD¬ query answer is a pair (V,M) (where V is a set of variables and M is a multiset of substi-

tutions) and a SPARQL query answer is a multiset of solution mappings.
The main difference between a multiset of substitutions and a multiset of mappings is the representation of the

SPARQL unbound values with⊥. Hence, an unbound value occurring in a substitution is translated into an unbound
variable in the corresponding solution mapping.

20 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Definition 8 (Function h12). Given a multiset of Datalog substitutions Θ, the function h12(Θ) returns a multiset of
SPARQL solution mappings defined as

Ω = {(NotNull(θ), i) | (θ, i) ∈ Θ},

where NotNull(θ) returns a mapping µ satisfying that µ(?X) = θ(X) for every variable X ∈ dom(θ) such that
θ(X) ̸= ⊥.

Lemma 8. SPARQL can be simulated by NRMD¬.

Proof. We need to show that, using the functions defined above, (f12, g12, h12) is a simulation of SPARQL in
NRMD¬. The proof is in the Claim 4 of the Appendix.

6.2. From NRMD¬ to SPARQL

This section shows that Non-Recursive Multiset Datalog with Safe Negation (NRMD¬) can be simulated by
SPARQL. To support this, we describe the following translation functions:

– function f21, that translates NRMD¬ queries into SPARQL queries;
– function g21, that translates NRMD¬ databases into SPARQL databases; and
– function h21, that translates SPARQL query answers into NRMD¬ query answers.

6.2.1. Translating databases from NRMD¬ to SPARQL
In general terms, a fact p(c1, . . . , cn) can be translated into a set of triples of the form (u, αi, ci) where u is a fresh

IRI that identifies the fact, and αi is a reserved IRI which allows to describe that constant ci is in the position i of the
fact2. Also recall that the semantics of NRMD¬ relies on the notion of colored set of a multiset (see Section 4.2),
which is the set containing the colored copies of the element of the multiset. This idea is formalized next.

In what follows, we will assume that A = {α0, α1 . . . } is an enumerable set of special IRIs used to codify
positions in Datalog atoms, NULL is a special IRI, and any Datalog constant c has an equivalent SPARQL term
(excluding the aforementioned special IRIs) that we will denote with the same symbol c.

Definition 9 (Function g21). Assume that the NRMD¬ database D contains n copies of a fact F (namely
p(c1, . . . , cn)), and the coloring(D) contains the colored copies ⟨F, 1⟩, . . . , ⟨F, n⟩ of fact F. For each colored copy
⟨F, i⟩ of F, we assume the existence of a fresh IRI u⟨F,i⟩, which we use to identify the colored copy.

Then the function g21 applied to the multiset of NRMD¬ facts D, returns a set of RDF triples (i.e. an RDF graph)
defined as

g21(D) = {(NULL,NULL,NULL)}
⋃

⟨F,i⟩∈coloring(D)

{(u⟨F,i⟩, α0, p), (u⟨F,i⟩, α1, c1), . . . , (u⟨F,i⟩, αn, cn)}.

Example 6. Let D be the following NRMD¬ database:

D = ⦃p(a, b), p(a, b), p(a, c), q(b, d, a), q(b, e, a)⦄.

In this dataset, the fact p(a, b) contains two copies, so we need to generate the colored copies for this fact, namely
⟨p(a, b), 1⟩ and ⟨p(a, b), 2⟩. Similarly, for fact p(a, b) we have a single copy, and thus we generate a simple colored

2An option can be the use of properties rdf:_1, rdf:_2, rdf:_3, . . . , defined in the RDF Schema 1.1 vocabulary.

Angles et al. / The multiset semantics of SPARQL patterns 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

copy, ⟨p(a, c), 1⟩. Then the data is translated for SPARQL as follows:

g21(D) = {(NULL,NULL,NULL),
(u⟨p(a,b),1⟩, α0, p), (u⟨p(a,b),1⟩, α1, a), (u⟨p(a,b),1⟩, α2, b),
(u⟨p(a,b),2⟩, α0, p), (u⟨p(a,b),2⟩, α1, a), (u⟨p(a,b),2⟩, α2, b),
(u⟨p(a,c),1⟩, α0, p), (u⟨p(a,c),1⟩, α1, a), (u⟨p(a,c),1⟩, α2, c),
(u⟨p(b,d,a),1⟩, α0, q), (u⟨p(b,d,a),1⟩, α1, b), (u⟨p(b,d,a),1⟩, α2, d), (u⟨p(b,d,a),1⟩, α3, a),
(u⟨p(b,e,a),1⟩, α0, q), (u⟨p(b,e,a),1⟩, α1, b), (u⟨p(b,e,a),1⟩, α2, d), (u⟨p(b,e,a),1⟩, α3, a)}.

Intuitively, the SPARQL database corresponding to the NRMD¬ database D consists of a set of triples that
describe each of the facts, and the inclusion of triple (NULL,NULL,NULL) allows to ensure that the SPARQL
database is not empty. The need of this additional triple is explained next when describing the translation from
NRMD¬ queries to SPARQL.

6.2.2. Translating queries from NRMD¬ to SPARQL
A notable difference between NRMD¬ and SPARQL is the way both languages define the scope of variables. In

NRMD¬, all variables in a rule are universally quantified, and they are not in the scope of the query. On the other
hand, variables in a SPARQL query are divided into in-scope and non-in-scope (see Subsection 3.4). To see this
difference, consider the NRMD¬ query (q(X,Y),Π) where the program Π consists of the single rule R = q(Y,Z)←
p(X,Z,Y). Notice that the variables in the goal of the query do not correspond to the variables in the head of the
rule R. To simplify the translation, we rename variables in rules according to the goal of the query. In this case, we
rewrite R as the rule R′ = q(X,Y) ← p(X,Y,Z). Formally, given a literal L = q(X1, . . . , Xn) and a rule R whose
head is q(Y1, . . . ,Yn), the renamed rule of R with respect to L, denoted vr(R, L), is the rule R′ that results from R by
consistently renaming each variable Yi as Xi, for 1 ⩽ i ⩽ n.

Let L be a positive literal p(X1, . . . , Xn) and Π be a normalized NRMD¬ program. We define the function gp(L,Π)
which translates L into a SPARQL graph pattern. The function gp is defined recursively as follows:

1. If predicate name p does not occur in the head of any rule of Π (i.e., p is extensional), then gp(L,Π) returns

SELECT X ((?Y, α0, p)AND (?Y, α1, ?X1)AND · · ·AND(?Y, αn, ?Xn)),

where X = var(L) and ?Y is a fresh variable.
2. Otherwise, if p occurs in the head of the rules {R1, . . . ,Rn} in Π (i.e., p is intensional), then gp(L,Π) returns:

(T (vr(R1, L))UNION · · ·UNIONT (vr(Rn, L))),

where the operator T (R) is defined as follows:

– If R is a projection rule L← L1 then T (R) is (SELECT X P1) where X = var(L) and P1 = gp(L1,Π);
– If R is a join rule L← L1, L2 then T (R) is (P1 AND P2) where P1 = gp(L1,Π) and P2 = gp(L2,Π);
– If R is a negation rule L ← L1,¬L2 then T (R) is (P1 EXCEPT P2) where P1 = gp(L1,Π) and P2 =

gp(L2,Π).

Note that, if there is just one rule R1 then gp(L,Π) can be reduced to T (R1) (no need to rename variables).

Example 7. Consider the NRMD¬ query (q(X),Π) where program Π consists of the rule q(X) ← p(X,Y). Then,
gp(q(X),Π) is the SPARQL query

SELECT?X ((?U, α0, p)AND (?U, α1, ?X)AND (?U, α2, ?Y)).

The function gp is not enough to translate NRMD¬ queries to SPARQL queries. Recall that a NRMD¬ query
answer is a pair (V,M) where V is a set of NRMD¬ variables and M is a set of NRMD¬ substitutions, and a SPARQL
query answer is a multiset Ω of SPARQL mappings. To conclude the translation, we need to define a function that,

22 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

given a SPARQL query answer Ω, returns a NRMD¬ query answer (V,M). The issue is that we cannot compute
the set V when the multiset Ω is empty. For example, an empty NRMD¬ database D is translated as the SPARQL
database consisting of the set of triples {(NULL,NULL,NULL)} (see Subsection 6.2.1). The evaluation of the query
gp(q(X),Π) in Example 7 returns an empty multiset of mappings, Ω, where the query answer to the NRMD¬ query
(q(X),Π) is a pair ({X},M) such that M is an empty multiset of solutions. Hence, the SPARQL query answer Ω
does not contain the information needed to generate the set of variables {X} in the answer of the NRMD¬ query.

To solve the aforementioned issue of having an empty SPARQL query answer, we can extend the function gp with
a query that introduces the variables of the query. This is done using the additional triple (NULL,NULL,NULL) we
introduced in the translation. Given a set of NRMD¬ variables V = {X1, . . . , Xn} we write VarQuery(V) to denote
the SPARQL pattern (NULL,NULL, ?X1) AND · · · AND (NULL,NULL, ?Xn). The translation of a NRMD¬ query
is then the union of the graph patterns computed by the functions gp and VarQuery.

Definition 10 (Function f21). Given a NRMD¬ query Q = (L,Π), the function f21(Q) returns a SPARQL graph
pattern (gp(L,Π)UNIONVarQuery(var(L))).

Example 8. Consider the NRMD¬ query (q(X),Π) in Example 7. Then, f21((q(X),Π)) is the following SPARQL
graph pattern:

(SELECT?X ((?U, α0, p)AND (?U, α1, ?X)AND (?U, α2, ?X)))UNION (NULL,NULL, ?X).

The result of evaluating the NRMD¬ query on an empty set of facts D is the pair ({X},M) where M is an empty
multiset of NRMD¬ substitutions, whereas the result of evaluating the graph pattern f21((q(X),Π)) on the SPARQL
database g21(D) = {(NULL,NULL,NULL)} is the SPARQL query answer Ω = {{?X 7→ NULL}}. Intuitively,
the mapping {?X 7→ NULL} does not codify a NRMD¬ substitution, but the variables in the domain of NRMD¬

substitutions.

6.2.3. Translating query answers from SPARQL to NRMD¬

Recall that a SPARQL query answer is a multiset of solution mappings, and a NRMD¬ query answer is a pair
(V,M) (where V is a set of variables and M is a multiset of substitutions). Since a SPARQL solution mapping can be
seen as a NRMD¬ substitution, the translation from SPARQL mappings to NRMD¬ substitutions does not require
modifications, except for the mapping {?X1 7→ NULL, . . . , ?Xn 7→ NULL} which is used to codify the solution
variables.

Definition 11 (Function h21). Let Ω be a multiset of SPARQL solution mappings that includes a mapping µV 7→NULL

with cardinality 1 where dom(µV 7→NULL) = V and µ(?X) = NULL for every variable ?X ∈ dom(µV 7→NULL), and for
every mapping µ′ ∈ Ω it holds that dom(µ′) = V. The NRMD¬ solution for Ω, denoted h21(Ω), is the pair (V,M)

where M is the multiset of substitutions θ defined as follows:

1. Given an SPARQL mapping µ = {?X1 7→ c1, . . . , ?Xn 7→ cn} the corresponding NRMD¬ substitution for
mapping µ is the substitution θµ = {X1 7→ c1, . . . , Xn 7→ cn} where the NRMD¬ variable Xi corresponds to
the SPARQL variable ?Xi.

2. set(M) = {θµ | µ ∈ Ω \ {µV 7→NULL}}.
3. card(θµ,M) = card(µ,Ω).

Lemma 9. NRMD¬ can be simulated by SPARQL.

Proof. This is a long but straightforward induction on Datalog queries using as hypothesis that (f21, g21, h21) is a
simulation of NRMD¬ in SPARQL. The details of this proof are in the appendix (Claim 5).

Angles et al. / The multiset semantics of SPARQL patterns 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

6.3. SPARQL and NRMD¬ have the same expressive power

Putting together the simulations among SPARQL and NRMD¬ stated in this section, we get the following theo-
rem:

Theorem 1. SPARQL and NRMD¬ have the same expressive power.

Proof. The claim is based on the simulation of SPARQL with NRMD¬ (Lemma 8) and the simulation of NRMD¬

with MRA (Lemma 9).

7. Equivalence between MRA and NRMD¬

This section presents the simulations that prove that Multiset Relational Algebra (MRA) and Non-Recursive
Multiset Datalog with Safe Negation (NRMD¬) have the same expressive power. Specifically, we show that MRA
can be simulated by NRMD¬ (Section 7.1), and NRMD¬ can be simulated by MRA (Section 7.2).

7.1. From MRA to NRMD¬

This section shows that Multiset Relational Algebra (MRA) can be simulated by Non-Recursive Multiset Datalog
with Safe Negation (NRMD¬). To support this, we describe the following translation functions:

– function f32, that translates MRA queries into NRMD¬ queries;
– function g32, that translates MRA databases into NRMD¬ databases; and
– function h32, that translates NRMD¬ query answers into MRA query answers.

7.1.1. Translating databases from MRA to NRMD¬

Recall that a MRA database is a set of relations (where each relation is a multiset of tuples), and a NRMD¬

database is a multiset of facts. First, we define a method to translate a MRA relation into a multiset of facts. Then,
we define a method to translate a set of MRA relations into a multiset of NRMD¬ facts.

Assume the existence of functions that map: MRA relation names to NRMD¬ predicate names, MRA attributes
to NRMD¬ variables, and MRA constants to NRMD¬ constants. Given a relation schema R, we write R⃗ to denote a
tuple containing the attributes of R in lexicographical order.

Given a multiset relation r, defined over a relation schema R, with R⃗ = (A1, . . . , An), the function Σ(r) returns a
multiset of Datalog facts defined as follows: For each tuple t in r, Σ(r) contains a fact f of the form p(c1, . . . , cn)
where p is the image of R, every ci is t(Ai), and the cardinality of f in Σ(r) is given by the cardinality of t in r.

Definition 12 (Function g32). Given a MRA database D, the function g32 returns a multiset of NRMD¬ facts D′

defined as follows:

1. For each MRA relation r in D, D′ contains the facts returned by Σ(r);
2. For each constant c in D, D′ contains a fact eq(c, c).

Example 9. Let D be an MRA dataset consisting in two relations r and s with respective relation schemas R and S
with R⃗ = (A1, A2) and S⃗ = (A1, A3), and defined as follows:

r = ⦃{A1 7→ a1, A2 7→ a2}, {A1 7→ a1, A2 7→ a2}, {A1 7→ a1, A2 7→ a3}⦄,
s = ⦃{A1 7→ a1, A3 7→ a4}⦄.

Then, the corresponding NRMD¬ dataset is the following:

g32(D) = ⦃pR(a1, a2), pR(a1, a2), pR(a1, a3), pS (a1, a4), eq(a1, a1), eq(a2, a2), eq(a3, a3), eq(a4, a4)⦄,
where predicates pR and pS are the corresponding images for the relation schemas R and S .

24 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Note that the multiset of Datalog facts D′ is defined over the vocabulary that includes as predicate names all the
relation names in D, and as arity of the predicate name R the number of attributes of the relation name R.

7.1.2. Translating queries from MRA to NRMD¬

Recall that a MRA query is a relational algebra expression, and a NRMD¬ query is a set of rules.
First, we need to provide a recursive method to reduce MRA selection formulas into atomic formulas. Such

method is based on the following equivalences where E is an MRA expression, and ψ, ψ1, and ψ2 are selection
formulas:

σψ1∧ψ2
(E) ≡ σψ2

(σψ1
(E)), (7)

σψ1∨ψ2
(E) ≡ σψ1∧¬ψ2

(E) ∪ σ¬ψ1∧ψ2
(E) ∪ σψ1∧ψ2

(E), (8)

σ¬ψ(E) ≡ E \ σψ(E). (9)

The proof of the validity of the above equivalences follows directly from the semantics of the selection operator. In
particular, Equivalence 8 is rather involved because separates the disjunction in a union of three disjoint multiset
relations in order to preserve the cardinality of each solution. Using the above equivalence, we get the following
lemma.

Lemma 10. For every MRA expression E, there exists an equivalent MRA expression E′ satisfying that all selection
formulas in E′ are atomic.

Proof. The proof follows from induction in the number k of Boolean connectives in selection formulas occurring
in an MRA expression E. The base case is k = 0 and thus all selection formulas are atomic. If k > 0, then the
expression includes a selection expression whose formula has either the form ψ1 ∧ ψ2, ¬ψ, or ψ1 ∨ ψ2. In the first
two cases, equivalences 7 and 9 reduce by one of the Boolean connectives of the expression. In the third case, the
consecutive application of equivalences 8, 7, and 9 (in that order) reduces by one the number of Boolean connectives.
Hence, we produce an equivalent query with k − 1 Boolean connectives.

Definition 13 (Function f32). Let Q be a MRA query (i.e. an MRA expression), where selection formulas are atomic
(i.e., have no Boolean connectives). The function f32(Q) returns a NRMD¬ query (L,Π) where L is a goal clause of
the form q(Q⃗) where q is a predicate name corresponding to Q, Q⃗ are the variables corresponding to the attributes
in the schema Q̂ (sorted in lexicographical order), and Π is a set of NRMD¬ rules (i.e. a NRMD¬ program) created
by applying recursively the rules shown in Table 5.

Note that function f32 assigns a fresh predicate name to each operation in query Q by following a non-
deterministic approach. Although it is not difficult to define deterministic ways (like in the translation from SPARQL
to NRMD¬), we omit in how intensional predicate names are assigned.

7.1.3. Translating query answers fro NRMD¬ to MRA
Recall that a NRMD¬ query answer is a pair (V,M) where V is a set of variables, and M is a multiset of NRMD¬

substitutions. On the other hand, an MRA query answer is a multiset relation. Next, we define a function h32 which
translates a NRMD¬ query answer into a MRA query answer.

Definition 14 (Function h32). Given a NRMD¬ query answer A = (V,M), the function h32(A) returns a multiset
relation r where: the schema of r is given by the set of attributes V (assume a simple transformation of variables to
attribute names); for each substitution θ in M, there is a tuple t in r satisfying that t(X) = θ(X) for every attribute
X ∈ R̂, and card(t, r) = card(θ,M).

Lemma 11. MRA can be simulated by NRMD¬.

Proof. Let f32, g32, h32 be the functions described in Definition 12, Definition 14 and Definition 13 respectively.
The proof of this theorem follows from the claim that (f32, g32, h32) simulates MRA in NRMD¬ by using induction
in the structure of queries. The proof of this claim is in the appendix (Claim 6).

Angles et al. / The multiset semantics of SPARQL patterns 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 5
Definition of function Γ which translates an MRA expression into a set of Datalog rules. Given a MRA expression E, the recursive function
Γ(E) returns a set of NRMD¬ rules where: qi(Ā) is a positive literal related to the MRA expression Ei, qi is a fresh predicate name, Āi denotes
a set of variables, R⃗ denotes the attributes in schema R̂, sorted in lexicographical order.

MRA expression E0 Γ(E0) where ...

R q0(Ā0)← R(R⃗) Ā0 = R⃗

(E1 ⋊⋉ E2) q0(Ā0)← q1(Ā1), q2(Ā2); Γ(E1); Γ(E2) Ā0 = Ā1 ∪ Ā2

(E1 ∪ E2) q0(Ā0)← q1(Ā1); q0(Ā0)← q2(Ā2); Γ(E1); Γ(E2) Ā0 = Ā1 = Ā2

(E1 \ E2) q0(Ā0)← q1(Ā1),¬q2(Ā2); Γ(E1); Γ(E2) Ā0 = Ā1

πS (E1) q0(Ā0)← q1(Ā1); Γ(E1) Ā0 = S

ρA/B(E1) q0(Ā0)← q1(Ā1), eq(A, B); Γ(E1) Ā0 = (Ā1 \ {A}) ∪ {B}

σA=B(E1) q0(Ā0)← q1(Ā1), eq(A, B); Γ(E1) Ā0 = Ā1

7.2. From NRMD¬ to MRA

This section shows that Non-Recursive Multiset Datalog with Safe Negation (NRMD¬) can be simulated by
Multiset Relational Algebra (MRA). To support this, we describe the following translation functions:

– f23, that translates NRMD¬ queries into MRA queries;
– g23, that translates NRMD¬ databases into MRA databases; and
– h23, that translates MRA query answers into NRMD¬ query answers.

7.2.1. Translating databases from NRMD¬ to MRA
Recall that a database in NRMD¬ is a multiset of facts, and a database in MRA is a set of relations (where each

relation is a multiset of tuples). First, we define a method to translate a multiset of facts with the same predicate
name into a relation r. Let M be a multiset of NRMD¬ facts having the same predicate name, i.e. every fact in M
has the form p(t1, . . . , tn). The function ψ(M) returns a MRA relation r where: the relation schema r̂ of r is given
by the relation name p and the set of attributes {A1, . . . , An}, where each attribute name has the form att_i with
1 ⩽ i ⩽ n; for each fact p(t1, . . . , tn) in M there is a tuples t in r satisfying that t(Ai) = ti.

Next, we define function g23 which allows translating a multiset of facts into a set of relations.

Definition 15 (Function g23). Let M be a multiset of NRMD¬ facts M (i.e. an NRMD¬ database), and {p1, . . . , pn}
are the predicate names in M. The function g23(M) returns a set of relations (i.e. a MRA database) {r1, . . . , rn}
where ri = ψ(Mi) such that Mi is the subset of NRMD¬ facts of M having the predicate name pi.

Example 10. Let M be the multiset of NRMD¬ facts defined as follows:

M = ⦃p1(c1, c2), p1(c1, c2), p1(c1, c3), p2(c1, c4)⦄,

Then, the corresponding MRA dataset g23(M) consists of the following relations r1 and r2 with relation schemas
R1 and R2, and R⃗1 = (A1, A2) and R⃗2 = (B1, B2):

r1 = ⦃{A1 7→ c1, A2 7→ c2}, {A1 7→ c1, A2 7→ c2}, {A1 7→ c1, A2 7→ c3}⦄,
r2 = ⦃{B1 7→ c1, B3 7→ c4}⦄.

26 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

7.2.2. Translating queries from NRMD¬ to MRA
Recall that a NRMD¬ query is a set of rules, and a MRA query is a relational algebra expression.
Let Π be a normalized NRMD¬ program. We define, by mutual recursion, functions δ1(L,Π) and δ2(r,Π) to

translate (respectively) literals and rules into MRA expressions.
Given a literal L in Π of the form p(X1, . . . , Xn), the function δ1(L,Π) is defined as follows:

1. If predicate name p does not occur in the head of any rule of Π, then δ1(L,Π) returns the MRA expression
ρA1/X1(· · · ρAn/Xn(R) · · ·) where R is the relation name associated to p;

2. Otherwise, if p occurs in the head of the rules {r1, . . . , rm} in Π, then δ1(L,Π) returns the MRA expression
(E1 ∪ (E2 ∪ (· · · Em) · · ·) where each Ei is a MRA expression returned by δ2(ri,Π).

Given a rule r in Π, the function δ2(r,Π) is defined as follows:

– If r is a projection rule L0 ← L1 then δ2(r,Π) returns the MRA expression πS (E) where S is the set of variables
var(L0) and E is the MRA expression returned by δ1(L1,Π);

– If r is a join rule L0 ← L1, L2 then δ2(r,Π) returns the MRA expression (E1 ⋊⋉ E2) where E1 and E2 are the
MRA expressions returned by δ1(L1,Π) and δ1(L2,Π) respectively;

– If r is a negation rule L0 ← L1,¬L2 then δ2(r,Π) returns the MRA expression (E1 \ E2) where E1 and E2 are
the MRA expressions returned by δ1(L1,Π) and δ1(L2,Π) respectively.

Definition 16 (Function f23). Given a normalized NRMD¬ query Q = (L,Π) where L is the goal clause, and Π a
NRMD¬ program, the function f23(Q) returns a MRA query defined by δ1(L,Π).

7.2.3. Translating query answers from MRA to NRMD¬

Recall that a MRA query answer is a multiset relation, and a NRMD¬ query answer is a pair (V,M) where V is a
set of variables, and M is a multiset of substitutions. Since a MRA tuple can be seen (interpreted) also as a Datalog
substitution, the translation from MRA tuples to Datalog substitutions requires essentially no modifications. Next,
we define a function h23 which transforms a MRA query answer into a NRMD¬ query answer.

Definition 17 (Function h23). Given a MRA relation R with schema R̂ = {A1, . . . , An}, the function h23(R) returns
a NRMD¬ query answer A = (V,M) where: V is a set of variables {X1, . . . , Xn} where variable Xi corresponds to
attribute Ai (assume a simple transformation of attribute names to variable names); and, for each tuple t in R, there
is a substitution θ in M satisfying that θ(Xi) = t(Ai) for every attribute Ai ∈ R̂, and card(θ,M) = card(t,R).

Lemma 12. NRMD¬ can be simulated by MRA.

Proof. This is a long but straightforward induction on Datalog queries using as hypothesis that (f23, g23, h23) is a
simulation of NRMD¬ in MRA. The details of this proof are in the appendix (Claim 7).

7.3. MRA and NRMD¬ have the same expressive power

Putting together the simulations among MRA and NRMD¬ stated in this section, we get the following theorem:

Theorem 2. MRA and NRMD¬ have the same expressive power.

Proof. The claim is based on the simulation of MRA with NRMD¬ (Lemma 11) and the simulation of NRMD¬

with MRA (Lemma 12).

8. Equivalence between MRA and SPARQL

This section presents the simulations that prove that Multiset Relational Algebra (MRA) and SPARQL have the
same expressive power. Specifically, we show that MRA can be simulated by SPARQL (Section 8.1), and SPARQL
can be simulated by MRA (Section 8.2).

Angles et al. / The multiset semantics of SPARQL patterns 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

8.1. From MRA to SPARQL

This section shows that Multiset Relational Algebra (MRA) can be simulated by SPARQL. To support this, we
describe the following translation functions:

– function f31, that translates MRA queries into SPARQL queries;
– function g31, that translates MRA databases into SPARQL databases; and
– function h31, that translates SPARQL query answers into MRA query answers.

8.1.1. Translating databases from MRA to SPARQL
Recall that a MRA database is a set of relations (where each relation is a multiset of tuples), and a SPARQL

database is a set of triples.
Assume the existence of functions that map relation names to IRIs, relation attributes to IRIs, and tuples to IRIs.
Let r be a multiset relation, t be a tuple in r and {t1, . . . , tn} be the set of copies of t where n = card(t, r).

The function β(t, r) returns a set of RDF triples defined as follows: for each copy ti of t, β(t, r) contains a triple
(iri_ti, iri_b, iri_r) where iri_ti is an IRI which identifies the tuple ti, iri_r is an IRI which identifies the relation r,
and iri_b is an IRI which describes that iri_ti is a tuple of iri_r; and, for each attribute A in r̂, β(t, r) contains a triple
of the form (iri_ti, iri_A, lit_A) where iri_A is an IRI which identifies the attribute A, and lit_A is a literal equivalent
to the value t(A). Hence, for each copy of a tuple t we create a set of RDF triples.

Definition 18 (Function g31). Given a MRA database D, the function g31(D) returns a set of RDF triples D′ defined
as follows:

– For each multiset relation r in D, and for each tuple t in r, D′ contains the RDF triples returned by β(t, r);
– D′ contains a triple (NULL,NULL,NULL) where NULL is a special IRI. Like in the simulation of NRMD¬

with SPARQL, the simulation of MRA with SPARQL uses this special triple to retrieve the variables that are
attributes of the MRA query answer.

Example 11. Let D be an MRA dataset consisting in two relations r and s with respective relation schemas R and
S with R⃗ = (A1, A2) and S⃗ = (A1, A3), and defined as follows:

r = ⦃{A1 7→ a1, A2 7→ a2}, {A1 7→ a1, A2 7→ a2}, {A1 7→ a1, A2 7→ a3}⦄,
s = ⦃{A1 7→ a1, A3 7→ a4}⦄.

Then, the corresponding SPARQL dataset is the following:

g31 = {(u1
1, iri_b, iri_r), (u1

1, iri_A1, lit_Aa1), (u
1
1, iri_A2, lit_Aa2),

(u2
1, iri_b, iri_r), (u2

1, iri_A1, lit_Aa1), (u
2
1, iri_A2, lit_Aa2),

(u1
2, iri_b, iri_r), (u1

2, iri_A1, lit_Aa1), (u
1
2, iri_A2, lit_Aa3),

(v11, iri_b, iri_s), (v11, iri_A1, lit_Aa1), (v
1
1, iri_A3, lit_Aa4),

(NULL,NULL,NULL)},

where u11, u2
1, and u12 correspond to the IRIs for the tuples in the multiset relation r and v11 correspond to the IRI of

the tuple in the multiset relation s.

8.1.2. Translating queries from MRA to SPARQL
Recall that a MRA query is a relational algebra expression and a SPARQL query is a graph pattern.
First, consider the following issue. A query answer in MRA is a multiset relation r over a set of attributes r̂,

whereas a query answer in SPARQL does not specify a set of variables for which solutions are defined. For example,
the evaluation of the triple pattern (?X, ?Y, ?Z) over an empty RDF graph results in an empty multiset Ω. The

28 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

reference to the variables is not carried in the SPARQL answer. Like with the simulation of NRMD¬ with SPARQL,
we need to define a SPARQL pattern to retrieve the answer variables.

Given an MRA expression E, with attributes Ê = {X1, . . . , Xn}, we write AttrQuery(E) to denote the SPARQL
pattern (NULL,NULL, ?X1) AND · · · AND (NULL,NULL, ?Xn), where, for 1 ⩽ i ⩽ n, variable ?Xi is the corre-
sponding SPARQL variable for the MRA attribute Xi.

Example 12. Consider the MRA expression r ⋊⋉ s where r̂ = {X,Y} and ŝ = {Y,Z}. Then, AttrQuery(E) =
(NULL,NULL, ?X) AND (NULL,NULL, ?Y) AND (NULL,NULL, ?Z), where ?X, ?Y, and ?Z are the correspond-
ing SPARQL variables for attributes X, Y, and Z.

Recall that a MRA query is an MRA expression, and a SPARQL query is a SPARQL graph pattern. We will show
that every type of MRA expression can be translated to a specific type of SPARQL graph pattern. Table 6 shows the
translation rules which are the basis for the following definition.

Definition 19 (Function f31). Given an MRA expression E, the function f31 returns a SPARQL graph pattern defined
by (Υ(E)UNIONAttrQuery(E)).

Table 6
Definition of function Υ which translates an MRA expression into a SPARQL pattern.

MRA expression E SPARQL pattern Υ(E) where ...

R (SELECT ?X1 · · ·?Xn ur is the IRI that identifies R, ?Y is a variable used to

((?Y, iri_b, iri_r) AND ((?Y, iri _A1, ?X1) AND (· · · AND (?Y, iri _A2, ?Xn) · · ·) match every tuple of R, and Xi is a variable that cor-
responds to the attribute Ai in schema R̂.

(E1 ⋊⋉ E2) (P1 AND P2) P1 = Υ(E1) and P2 = Υ(E2).

(E1 ∪ E2) (P1 UNION P2) P1 = Υ(E1) and P2 = Υ(E2).

(E1 \ E2) (P1 EXCEPT P2) P1 = Υ(E1) and P2 = Υ(E2).

πS (E1) (SELECTWP1) P1 = Υ(E1) and W is the set of variables corre-
sponding to the attributes in S .

ρA/B(E1) subs?X/?Y(P1) P1 = Υ(E1), ?X is the variable that corresponds to
attribute A, ?Y is the variable that corresponds to at-
tribute B, and subs?X/?Y(P1) denotes the renaming
of variable ?X with variable ?Y in the SPARQL query
P1 (see Appendix A).

σψ(E1) (P1 FILTER φ) P1 = Υ(E1), and φ is a filter condition equivalent to
the selection condition ψ.

Example 13. Consider the MRA expression E = R ⋊⋉ S where R̂ = {A, B} and Ŝ = {B,C}. Then the correspond-
ing SPARQL query f31(E) is the following:

f31(E) = (((SELECT {?XA, ?XB}WHERE (?Y1, iri _A, ?XA)AND(?Y1, iri _B, ?XB)) AND

(SELECT {?XB, ?XC}WHERE (?Y1, iri _B, ?XB)AND(?Y1, iri _C, ?XC))) UNION

((NULL,NULL, ?XA)AND (NULL,NULL, ?XA)AND (NULL,NULL, ?XA))).

If R = ⦃{A 7→ a, B 7→ b}, {A 7→ a, B 7→ b}⦄ and S = ⦃{B 7→ b,C 7→ c}⦄, the answer to the SPARQL query over
the corresponding translation of the MRA database D to an RDF graph is the following multiset:

J f31EKg31(D) = ⦃{?XA 7→ a, ?XB 7→ b, ?XC 7→ c},
{?XA 7→ a, ?XB 7→ b, ?XC 7→ c},
{?XA 7→ NULL, ?XB 7→ NULL, ?XC 7→ NULL}⦄.

Angles et al. / The multiset semantics of SPARQL patterns 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Otherwise, if R is empty then:

J f31EKg31(D) = ⦃{?XA 7→ NULL, ?XB 7→ NULL, ?XC 7→ NULL}⦄.

Whereas the first two SPARQL mappings {?XA 7→ a, ?XB 7→ b, ?XC 7→ c} correspond are duplicates of the same
MRA answer, {A 7→ a, B 7→ b,C 7→ c}, the last mapping does not correspond to an answer, but encodes the
attributes of the MRA query. By encoding the attributes of the MRA query, we can reconstruct the result MRA
relation even in the case it is empty.

8.1.3. Translating query answers from SPARQL to MRA
Recall that a query answer in SPARQL is a multiset of mappings, and a query answer in MRA is a multiset

relation (i.e. a multiset of tuples). Intuitively, a multiset of mappings Ω can be transformed into a MRA relation r
where the attributes in r̂ are the variables in the domain of Ω. This notion is defined next.

Definition 20 (Function h31). Let Ω be a multiset of mappings with dom(µ) = V for every mapping µ ∈ Ω, and
that includes the mapping µV 7→NULL with dom(µV 7→NULL) = V, µV 7→NULL(?X) = NULL for every variable ?X ∈ V, .
The function h31(Ω) returns a multiset relation r where:

– For each variable ?X ∈ V, the schema r̂ includes the MRA attribute A corresponding to variable ?X.
– The tuple tµ corresponding to a mapping µ with dom(µ) = V is the tuple with attributes r̂ such that t(A) =
µ(?X), for each MRA attribute A ∈ r̂ corresponding to a variable ?X ∈ V.

– set(r) = {tµ | µ ∈ set(Ω) \ {µV 7→NULL}}.
– card(tµ, r) = card(µ,Ω)

Lemma 13. MRA can be simulated in SPARQL.

Proof. Let f31, g31, h31 denote respectively the functions stated in definitions and 19, 18, and 20. The proof of this
theorem follows from the claim that (f31, g31, h31) simulates MRA in SPARQL by using induction in the structure
of queries. The proof of this claim is in the appendix (Claim 8).

8.2. From SPARQL to MRA

This section shows that SPARQL can be simulated by Multiset Relational Algebra (MRA). To support this, we
describe the following translation functions:

– function f13 which translates SPARQL queries into MRA queries;
– function g13 which translates SPARQL databases into MRA databases; and
– function h13 which translates MRA query answers into SPARQL query answers.

The translation presented here is inspired by the one presented by Cyganiak [34]. However, unlike Cyganiak,
we do not use null values with the SQL semantics. Instead, we use a special constant, denoted ⊥, used to codify
unbound values.

8.2.1. Translating databases from SPARQL to MRA
Recall that a SPARQL database is a set of RDF triples, and a MRA database is a set of multiset relations. The

translation of a set of RDF triples G will produce three multiset relations (without duplicates): Trip, which codifies
the RDF triples in G; Null, introduced to manage the unbound values of SPARQL; and Comp, introduced to simulate
the notion of compatibility between mappings.

Definition 21 (Function g13). Let⊥ be a special constant. Given a set of RDF triples G, the function g13(G) returns
a multiset relational database D′ containing the multiset relations Trip, Null, and Comp defined as follows:

1. T̂rip = {S , P,O}, set(Trip) = {{S 7→ s, P 7→ p,O 7→ o} | (s, p, o) ∈ G}, and card(t,Trip) = 1 for every
tuple t ∈ set(Trip).

2. N̂ull = {N}, set(Null) = {{N 7→ ⊥}}, and card({N 7→ ⊥},Null) = 1.

30 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

3. Ĉomp = {A1, A2, A}, set(Comp) includes the tuple {A1 7→ ⊥, A2 7→ ⊥, A 7→ ⊥} and all tuples of the form
{A1 7→ a, A2 7→ a, A 7→ a}, {A1 7→ ⊥, A2 7→ a, A 7→ a}, and {A1 7→ a, A2 7→ ⊥, A 7→ a} where a is an RDF
term in G, and card(t,Comp) = 1 for every tuple t ∈ set(Comp).

Example 14. Let G be the RDF graph defined as follows

G = {(Alice, livesIn,Santiago), (Alice, knows,Bob),

(Bob, livesIn,Santiago), (Bob, knows,Carol),

(Carol, livesIn, Lima)}.

Then the data is translated for MRA as the database g13(G) with the multiset relations Trip, Null, and Comp
defined as follows:

Trip = ⦃{S 7→ Alice, P 7→ livesIn,O 7→ Santiago}, {S 7→ Alice, P 7→ knows,O 7→ Bob}
{S 7→ Bob, P 7→ livesIn,O 7→ Santiago}, {S 7→ Bob, P 7→ knows,O 7→ Carol},
{S 7→ Carol, P 7→ livesIn,O 7→ Lima}⦄

Null = ⦃{N 7→ ⊥}⦄
Comp = ⦃{A1 7→ ⊥, A2 7→ ⊥, A3 7→ ⊥},

{A1 7→ Alice, A2 7→ Alice, A3 7→ Alice},
{A1 7→ Alice, A2 7→ ⊥, A3 7→ Alice},
{A1 7→ ⊥, A2 7→ Alice, A3 7→ Alice},
{A1 7→ livesIn, A2 7→ livesIn, A3 7→ livesIn},
{A1 7→ livesIn, A2 7→ ⊥, A3 7→ livesIn},
{A1 7→ ⊥, A2 7→ livesIn, A3 7→ livesIn},

...
{A1 7→ Lima, A2 7→ Lima, A3 7→ Lima},
{A1 7→ Lima, A2 7→ ⊥, A3 7→ Lima},
{A1 7→ ⊥, A2 7→ Lima, A3 7→ Lima}⦄.

8.2.2. Translating queries from SPARQL to MRA
Recall that a SPARQL query is a graph pattern, and a MRA query is a relational algebra expression. First, we

define the function Λ which allows translating an RDF triple pattern into a MRA expression.
Assume that a, b, c are RDF terms, and ?X, ?Y , ?Z are variables. Recall that Trip is a multiset relation that is

obtained from a set of RDF triples, where T̂rip = {S , P,O} is the schema of Trip. Given a triple pattern T , the
function Λ(T) returns a MRA expression defined as follows3:

– if T is (?X, b, c) then Λ(T) returns π?X(ρS/?X(σP=b∧O=c(Trip)));
– if T is (a, ?Y , c) then Λ(T) returns π?Y(ρP/?Y(σS=a∧O=c(Trip)));
– if T is (a, b, ?Z) then Λ(T) returns π?Z(ρO/?Z(σS=a∧P=b(Trip)));
– if T is (?X, ?Y , c) then Λ(T) returns π?X,?Y(ρP/?Y(ρS/?X(σO=c(Trip))));
– if T is (?X, b, ?Z) then Λ(T) returns π?X,?Z(ρO/?Z(ρS/?X(σP=b(Trip))));
– if T is (a, ?Y , ?Z) then Λ(T) returns π?Y ,?Z(ρO/?Z(ρP/?Y(σS=a(Trip))));
– if T is (?X, ?Y , ?Z) then Λ(T) returns π?X,?Y ,?Z(ρO/?Z(ρP/?Y(ρS/?X(Trip))));
– if T is (?X, ?X, c) then Λ(T) returns π?X(ρS/?X(σS=P∧O=c(Trip)));

3These rules are based on Cyganiak’s translation [34].

Angles et al. / The multiset semantics of SPARQL patterns 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– if T is (?X, b, ?X) then Λ(T) returns π?X(ρS/?X(σP=b∧S=O(Trip))).
– if T is (a, ?X, ?X) then Λ(T) returns π?X(ρP/?X(σS=a∧P=O(Trip)));
– if T is (?X, ?X, ?X) then Λ(T) returns π?X(ρS/?X(σS=P∧P=O(Trip)));

Second, we define a function γ which allows translating a SPARQL filter condition into a MRA selection con-
dition. Like in the translation from SPARQL to NRMD¬, it is not necessary to translate complex filter conditions
(SPARQL) to complex selection formulas (MRA) because SPARQL queries can be normalized to avoid logical
connectives.

Given an atomic filter condition φ, the function γ(φ) is defined recursively as follows:

– If φ is ?X = c then γ(φ) is (¬(X = ⊥) ∧ X = c) where X is the attribute name corresponding to variable ?X;
– If φ is ?X = ?Y then γ(φ) is ((¬(X = ⊥) ∧ ¬(Y = ⊥)) ∧ X = Y) where X and Y are the attribute names

corresponding to variables ?X and ?Y , respectively;
– If φ is bound(X) then γ(φ) is ¬(X = ⊥) where X is the attribute name corresponding to variable ?X.

In Definition 21, we introduced the relation named Comp to simulate the compatibility between mappings. For
example, to simulate the SPARQL query Q = (P1 AND P2) we need to ensure that check if two pairs of mappings
µ1 ∈ JP1KG and µ2 ∈ JP2KG are compatible, and if they are compatible, return the mapping µ = µ1 ∪ µ2 resulting
from joining them. To explain how this operation is simulated with MRA, let inScope(P1) ∩ inScope(P2) = {?X}
and tuples t1 and t2 correspond to mappings µ1 and µ2. To be compatible, either both mappings map variable ?X to
the same value, or at least for one of the mappings, variable ?X is unbound. For tuples, an unbound variable ?X is
represented with an attribute value ⊥ (e.g., t(X) = ⊥). Then, to check if tuples t1 and t2 are compatible, we need
to rename the attribute name X corresponding to variable ?X as two attributes, namely X1 and X2 and check if there
exists a tuple t3 in the result of query ρA1/X1

(ρA2/X2
(Comp)) that agrees with tuples t1 and t2 (i.e., t3(X1) = t1(X)

and t3(X2) = t2(X)) or agrees with either t1 or t2 whereas for the other tuple the value is ⊥ (e.g., t3(X1) = t1(X)
and t2(X2) = ⊥). We recover the renamed attribute X for the attribute A in the relation named Comp. That is,
for the compatibility we use the MRA expression ρA/X(ρA1/X1(ρA2/X2(Comp))) which is generalized as follows for
multiple common variables in the scope of patterns P1 and P3.

Let X be a finite set of attribute names, and ν1 and ν2 be two bijective functions that map each attribute X ∈ X to
two different sets of attributes (i.e., the ranges of ν1 and ν2 are disjoint). Then, we write Comp(ν1, ν2,X) to denote
the join of MRA expressions of the form ρA/X(ρA1/ν1(X)(ρA2/ν2(X)(Comp))), for every attribute name X ∈ X .

Let E be a MRA expression, and X = {X1, . . . , Xn} be a subset of the attribute names in Ê, and ν a bijective
function that maps each attribute name in X to a fresh attribute name (i.e., ν(X) /∈ Ê). We call ν(E) to the MRA
expression that renames each attribute name X ∈ X with ν(X). That is, ν(E) = ρX1/ν(X1)(· · · ρXn/ν(Xn)(E) · · ·).

Given two MRA expressions E1 and E2, assume two bijective functions ν1 and ν2 that map each attribute X ∈
Ê1 ∩ Ê2 to two fresh attributes (i.e., ν1(X), ν2(X) /∈ Ê1 ∪ Ê2), and satisfy range(ν1) ∩ range(ν2) = ∅. Then, we
define the MRA operation E1 ∗ E2 in terms of existing MRA operators as follows:

E1 ∗ E2 = πÊ1∪Ê2
(Comp(ν1, ν2, Ê1 ∩ Ê2) ⋊⋉ ν1(E1) ⋊⋉ ν2(E2)).

Notice that the attribute names in the ranges of functions µ1 and µ2 in the definition of expression E1 ∗ E2 do not
matter because are not in the schema of the multiset that results from expression E1 ∗ E2.

To translate SPARQL queries Q of the form (SELECT X P) where the set of variables X include a variable
that is not in the scope of P, we need to generate values ⊥ to fill the tuples returned by the translated query. For
example, if inScope(P) = {?X} and X = {?X, ?Y}, then the MRA expression E that corresponds to the SPARQL
pattern P can be extended with an attribute name Y by joining E with the MRA relation ρN/Y(Null). Given a set
Y = {Y1, . . . ,Yn} of attribute names, we define the MRA expression ∆(Y) as ρN/Y1(Null) ⋊⋉ · · · ⋊⋉ ρN/Yn(Null).

Next, we present the translation of SPARQL queries to MRA queries.

Definition 22 (Function f13). The translation rules in Table 7 define the function f13 from normalized graph patterns
whose filter conditions have no Boolean connectives to MRA queries.

32 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 7
Definition of the function f13, which takes a normalized SPARQL pattern P as input (without logical connectives in filter conditions) and returns
an MRA query.

SPARQL pattern P MRA query f13(P) where...

(s, p, o) Λ(s, p, o)

(P1 AND P2) (f13(P1) ∗ f13(P2))

(P1 UNION P2) (f13(P1) ∪ f13(P2))

(P1 EXCEPT P2) (f13(P1) \ f13(P2))

(SELECT inScope(P) P1) πA(f13(P1) ⋊⋉ ∆B) A is the set of attribute names corresponding to the variables in set inScope(P)
and B is the set of attribute names that correspond to variables that are in set
inScope(P) \ inScope(P1).

(P1 FILTER φ) σγ(φ)(f13(P1))

Example 15. Let Q be the following SPARQL query asking for all people, the place where they live, and optionally
the people their know (notice that this query is already normalized as we discussed in Example 5).

(((?person, livesIn, ?somewhere)AND (?person, knows, ?somebody))
UNION

(SELECT?person ?somewhere ?somebody
WHERE ((?person, livesIn, ?somewhere) EXCEPT

(SELECT?person ?somewhere
WHERE ((?person, livesIn, ?somewhere)AND (?person, knows, ?somebody)))))).

Then, the corresponding query f13(Q) is the query (q(X),Π) where Π is defined as follows:

(Λ(?person, livesIn, ?somewhere) ∗ Λ(?person, knows, ?somebody)) ∪
((πPerson(Λ(?person, livesIn, ?somewhere)) \
πPerson(Λ(?person, livesIn, ?somewhere) ∗ Λ(?person, knows, ?somebody))) ⋊⋉
ρN/Somebody(Null)) ,

where the MRA attributes Person and Somebody correspond to the SPARQL variables ?person and ?somebody.

8.2.3. Translating query answers from MRA to SPARQL
Recall that a MRA query answer is a multiset of tuples, and a SPARQL query answer is a multiset of solution

mappings. Next, we define the function h31 that transforms MRA query answers into NRMD¬ query answers.
Intuitively, the translation of a MRA tuple t as a SPARQL solution mapping µ consists of removing from tuple t

every attribute whose value is ⊥, and viewing the result tuple as a SPARQL mapping µ. For example, the result of
translating a tuple t with t̂ = {X,Y}, t(X) = a, and t(Y) = ⊥, is the SPARQL mapping µ = {?X 7→ a}. Recall that
we write ?X to denote the corresponding SPARQL variable for a MRA attribute X.

Definition 23 (Function h31). Given a MRA tuple t, we write f31(t) to denote the SPARQL mapping µ such that: (1)
µ(?X) = t(X) if X ∈ t̂ and t(X) ̸= ⊥, and (2) variable ?Y is not in dom(µ) if Y /∈ t̂ or t(Y) = ⊥. Abusing notation,
f31(r) is also the function that receives a MRA relation r and returns the multiset Ω of SPARQL mappings where
set(Ω) = {µ | there exist t ∈ r such that f31(t) = µ} and the cardinality of mapping f31(t) in Ω is the cardinality
of tuple t in r.

Lemma 14. SPARQL can be simulated by MRA.

Angles et al. / The multiset semantics of SPARQL patterns 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Proof. This is a long but straightforward induction on the structure of SPARQL queries using as hypothesis that
(f13, g13, h13) is a simulation of SPARQL by MRA. The details of this proof are in the appendix (Claim 9).

8.3. MRA and SPARQL have the same expressive power

Putting together the simulations among MRA and SPARQL stated in this section, we get the following theorem:

Theorem 3. MRA and SPARQL have the same expressive power.

Proof. The claim is based on the simulation of MRA with SPARQL (Lemma 13) and the simulation of SPARQL
with MRA (Lemma 14).

9. Conclusions

We studied the algebraic and logic structure of the multiset semantics of the core SPARQL patterns, and compared
it to the classical and well-studied formalisms of multiset relational algebra and multiset Datalog. Our motivation
was to shed light on the underlying theoretical structure of the multiset features of SPARQL that could help improve
future designs and implementations. In this regard, the main discoveries of this research are: (1) the core fragment
of SPARQL patterns matches precisely the multiset semantics of Datalog as defined by Mumick et al. [13]; and
(2) this logical structure corresponds to a simple multiset algebra, namely the Multiset Relational Algebra (MRA).
These correspondences, besides showing a nice parallel to the one exhibited by classical set relational algebra and
relational calculus, and thus transferring theoretical guarantees from these well-studied formalisms, could help to
give new insights on possible optimizations and future extensions of SPARQL.

We think there are a couple of lessons learnt in the investigation of the multiset features of SPARQL. First,
contrary to the rather chaotic variety of multiset operators in SQL, it is interesting to observe that the SPARQL
design comprises a more coherent body of multiset operators. We suggest that this asset should be considered and
curated by designers in order to try to keep this clean design in future extensions of SPARQL. Second, there is a
challenging goal for query language designers that work with multisets: existing a diversity of multiset extensions
for each of the classical set operators, it is not evident at all from a theoretical perspective how to develop a logically
coherent formalism that could integrate all or most of them.

Our study shows that there are fragments that behave coherently, but that operators that do not fit in this schema,
when available (not always), have to be accessed in a very ad-hoc manner. Last, but not least, this study shows (and
adds evidence of) the complexities and challenges that the introduction of multisets brings to query languages, ex-
emplified here in the case of SPARQL. Much more use cases are needed in order to match the theoretical restrictions
and recommendations (e.g. as studied in this paper), and real-life use cases that to the best of our knowledge do not
have yet a good systematization.

References

[1] J. Melton and A.R. Simon, SQL:1999. Understanding Relational Language Components, Morgan Kaufmann Publ., 2002.
[2] V. Breazu-Tannen and R. Subrahmanyam, Logical and computational aspects of programming with sets/bags/lists, in: Automata, Languages

and Programming, Springer Berlin Heidelberg, Berlin, Heidelberg, 1991, pp. 60–75.
[3] J.W. Lloyd, Programming with multisets, Technical Report, University of Bristol, 1998.
[4] J. Albert, Algebraic Properties of Bag Data Types, in: Proc. of the Int. Conference on Very Large Data Bases (VLDB), 1991, pp. 211–219.
[5] L. Libkin and L. Wong, Some Properties of Query Languages for Bags, in: Proc. of the Int. Workshop on Database Programming Languages

(DBPL) - Object Models and Languages, 1994, pp. 97–114.
[6] S. Grumbach, L. Libkin, T. Milo and L. Wong, Query languages for bags: expressive power and complexity, SIGACT News 27(2) (1996),

30–44.
[7] S. Grumbach and T. Milo, Towards Tractable Algebras for Bags, Journal of Computer and System Sciences 52(3) (1996), 570–588.

doi:https://doi.org/10.1006/jcss.1996.0042.

34 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[8] L.S. Colby and L. Libkin, Tractable iteration mechanisms for bag languages, in: International Conferencia on Database Theory (ICDT),
Springer Berlin Heidelberg, Berlin, Heidelberg, 1997, pp. 461–475. ISBN 978-3-540-49682-3.

[9] L. Libkin and L. Wong, Query languages for bags and aggregate functions, Journal of Computer and System Sciences 55(2) (1997), 241–
272.

[10] U. Dayal, N. Goodman and R.H. Katz, An Extended Relational Algebra with Control over Duplicate Elimination, in: Proc. of the Symposium
on Principles of Database Systems (PODS), ACM, 1982, pp. 117–123.

[11] A. Klausner and N. Goodman, Multirelations - Semantics and languages, in: Proc. of Int. Conf. on Very Large Data Bases (VLDB), 1985.
[12] M. Console, P. Guagliardo and L. Libkin, Fragments of bag relational algebra: Expressiveness and certain answers, Information Systems

(2022). doi:https://doi.org/10.1016/j.is.2020.101604.
[13] I.S. Mumick, H. Pirahesh and R. Ramakrishnan, The Magic of Duplicates and Aggregates, in: Proc. of the International Conference on

Very Large Data Bases, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990, pp. 264–277.
[14] I.S. Mumick, S.J. Finkelstein, H. Pirahesh and R. Ramakrishnan, Magic is Relevant, SIGMOD Rec. 19(2) (1990), 247–258.

doi:10.1145/93605.98734.
[15] S. Cohen, Equivalence of Queries That Are Sensitive to Multiplicities, The VLDB Journal 18(3) (2009), 765–785. doi:10.1007/s00778-

008-0122-1.
[16] F.N. Afrati, M. Damigos and M. Gergatsoulis, Query Containment Under Bag and Bag-set Semantics, Information Processing Letters

110(10) (2010), 360–369.
[17] L. Bertossi, G. Gottlob and R. Pichler, Datalog: Bag Semantics via Set Semantics, in: International Conference on Database

Theory (ICDT), Vol. 127, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2019, pp. 16:1–16:19.
doi:10.4230/LIPIcs.ICDT.2019.16.

[18] P. Guagliardo and L. Libkin, A Formal Semantics of SQL Queries, Its Validation, and Applications, Proc. VLDB Endow. 11(1) (2017),
27–39. doi:10.14778/3151113.3151116.

[19] W. Ricciotti and J. Cheney, Mixing Set and Bag Semantics, in: Proc. 17th ACM SIGPLAN International Symposium on Database Program-
ming Languages (DBPL), ACM, New York, NY, USA, 2019, pp. 70–73. doi:10.1145/3315507.3330202.

[20] A. Polleres and J.P. Wallner, On the relation between SPARQL1.1 and Answer Set Programming, Journal of Applied Non-Classical Logics
23(1–2) (2013), 159–212.

[21] F. Geerts, T. Unger, G. Karvounarakis, I. Fundulaki and V. Christophides, Algebraic Structures for Capturing the Provenance of SPARQL
Queries, J. ACM 63(1) (2016). doi:10.1145/2810037.

[22] M. Kaminski, E.V. Kostylev and B. Cuenca Grau, Semantics and Expressive Power of Subqueries and Aggregates in SPARQL 1.1, in:
Proc. of the International Conference on World Wide Web, 2016, pp. 227–238.

[23] R. Angles and C. Gutiérrez, The Multiset Semantics of SPARQL Patterns, in: 15th International Semantic Web Conference (ISWC), Lecture
Notes in Computer Science, Vol. 9981, Springer, 2016, pp. 20–36. doi:10.1007/978-3-319-46523-4_2.

[24] A. Hernich and P.G. Kolaitis, Foundations of information integration under bag semantics, in: 2017 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), 2017, pp. 1–12. doi:10.1109/LICS.2017.8005104.

[25] C.J. Date, Date on Database: Writings 2000-2006, APress, 2006, Chapter Ch. 10: Double Trouble, Double Trouble.
[26] T.J. Green, Bag Semantics, in: Encyclopedia of Database Systems, 2009, pp. 201–206.
[27] G. Lamperti, M. Melchiori and M. Zanella, On Multisets in Database Systems, in: Proceedings of the Workshop on Multiset Processing,

2001, pp. 147–216.
[28] S. Abiteboul, R. Hull and V. Vianu, Foundations of Databases, Addison-Wesley, 1995.
[29] J. Pérez, M. Arenas and C. Gutierrez, Semantics of SPARQL, Technical Report, TR/DCC-2006-17, Department of Computer Science,

University of Chile, 2006.
[30] E. Prud’hommeaux and A. Seaborne, SPARQL Query Language for RDF. W3C Recommendation, 2008.
[31] S. Harris and A. Seaborne, SPARQL 1.1 Query Language - W3C Recommendation, 2013.
[32] M. Schmidt, M. Meier and G. Lausen, Foundations of SPARQL query optimization, in: Proc. of the Int. Conference on Database Theory,

ACM, 2010, pp. 4–33.
[33] M. Kaminski, E.V. Kostylev and B.C. Grau, Semantics and Expressive Power of Subqueries and Aggregates in SPARQL 1.1., in: Proceed-

ings of the Int. Conference on World Wide Web (WWW), ACM, 2016, pp. 227–238.
[34] R. Cyganiak, A relational algebra for SPARQL, Technical Report, HPL-2005-170, HP Labs, 2005.
[35] A. Polleres, From SPARQL to Rules (and back), in: Proceedings of the 16th Int. World Wide Web Conference (WWW), ACM, 2007,

pp. 787–796.
[36] S. Schenk, A SPARQL Semantics Based on Datalog, in: Annual German Conference on Advances in Artificial Intelligence, Vol. 4667,

2007, pp. 160–174.
[37] R. Angles and C. Gutiérrez, The Expressive Power of SPARQL, in: Proc. of the International Semantic Web Conference (ISWC), Lecture

Notes in Computer Science, Vol. 5318, Springer, 2008, pp. 114–129–. doi:10.1007/978-3-540-88564-1_8.
[38] A. Chebotko, S. Lu and F. Fotouhi, Semantics preserving SPARQL-to-SQL translation, Data & Knowledge Engineering 68(10) (2009).
[39] R. Angles, G. Gottlob, A. Pavlović, R. Pichler and E. Sallinger, SparqLog: A System for Efficient Evaluation of SPARQL 1.1 Queries via

Datalog, Proc. VLDB Endow. 16(13) (2023), 4240–4253–. doi:10.14778/3625054.3625061.
[40] L. Bellomarini, E. Sallinger and G. Gottlob, The Vadalog system: datalog-based reasoning for knowledge graphs, Proc. VLDB Endow.

11(9) (2018), 975–987–. doi:10.14778/3213880.3213888.
[41] D. Hernández, The Problem of Incomplete Data in SPARQL, Ph.D. dissertation, Universidad de Chile - Faculty of Physical and Mathemat-

ical Sciences, Santiago, Chile, 2020. https://repositorio.uchile.cl/handle/2250/178033.

Angles et al. / The multiset semantics of SPARQL patterns 35

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[42] X. Zhang and J.V. den Bussche, On the primitivity of operators in SPARQL, Inf. Process. Lett. 114(9) (2014), 480–485.
[43] R. Kontchakov and E.V. Kostylev, On Expressibility of Non-Monotone Operators in SPARQL, in: Int. Conference on the Principles of

Knowledge Representation and Reasoning, 2016.
[44] R. Angles and C. Gutierrez, Negation in SPARQL, in: Alberto Mendelzon Int. Workshop on Foundations of Data Management (AMW),

2016.
[45] A. Hogan, M. Arenas, A. Mallea and A. Polleres, Everything You Always Wanted to Know About Blank Nodes, Journal of Web Semantics

27(1) (2014).

Appendix A. Variable renaming in SPARQL

This appendix section defines function subs(·, ·), which renames SPARQL variables. This function is used to
simulate the MRA operator renaming ρA/B (see Table 6). Note that function subs(·, ·) is not an additional algebraic
operation but an operation over expressions (i.e., a query rewriting). Intuitively, given a MRA query Q, a SPARQL
pattern P that simulates Q, a renaming of MRA attributes A/B and a renaming of variables ?X/?Y where ?X and ?Y
are the corresponding variables for attributes A and B, the query rewriting subs?X/?Y(P) simulates the MRA query
ρA,B(Q). To this end, SPARQL variables are renamed in the pattern, instead of renaming query result attributes as
MRA does.

Definition 24 (SPARQL Variable Renaming). Given two SPARQL variables ?X and ?Y, we define the function
ν?X/?Y : I ∪ L ∪ V → I ∪ L ∪ V as the function such that ν?X/?Y(?X) = ?Y and ν?X/?Y(s) = s, for every s ∈
(I∪L∪V)\{?X}. Given a SPARQL pattern P and two SPARQL variables ?X ∈ inScope(P) and ?Y /∈ inScope(P),
we write subs?X/?Y(P) to denote the pattern defined recursively as follows:

1. If P is a triple pattern (s, p, o) then subs?X/?Y(P) = (ν?X/?Y(s), ν?X/?Y(p), ν?X/?Y(o)).
2. If P has the form (P1 AND P2) then subs?X/?Y(P) = subs?X/?Y(P1)AND subs?X/?Y(P2).
3. If P has the form (P1 UNION P2) then subs?X/?Y(P) = subs?X/?Y(P1)UNION subs?X/?Y(P2).
4. If P has the form (P1 EXCEPT P2) then subs?X/?Y(P) = subs?X/?Y(P1) EXCEPT subs?X/?Y(P2).
5. If P has the form (P1 FILTERφ) then subs?X/?Y(P) = (subs?X/?Y(P1) FILTER ν?X/?Y(φ)) where, abusing

of notation, ν?X/?Y(φ) is the selection formula defined recursively as follows:

(a) If φ has the form a = b, where a, b ∈ V ∪ I ∪ I, then ν?X/?Y(φ) = ν?X/?Y(a) = ν?X/?Y(b).
(b) If φ has the form bound(?x) then ν?X/?Y(φ) = bound(ν?X/?Y(?x)).
(c) If φ has the form ψ1 ∧ ψ2 then ν?X/?Y(φ) = ν?X/?Y(ψ1) ∧ ν?X/?Y(ψ2).
(d) If φ has the form ψ1 ∨ ψ2 then ν?X/?Y(φ) = ν?X/?Y(ψ1) ∨ ν?X/?Y(ψ2).
(e) If φ has the form ¬ψ then ν?X/?Y(φ) = ¬ν?X/?Y(ψ).

6. If P has the form (SELECTW WHERE P1) then:

(a) If ?Y /∈ inScope(P1), then subs?X/?Y(P) = (SELECT (W \ {?X} ∪ {?Y})WHERE P1).
(b) Otherwise, subs?X/?Y(P) = (SELECT (W \ {?X} ∪ {?Y})WHERE subs?Y/Z(P1)), where ?Z is a fresh

variable. We rename variable ?Y as ?Z when is not in-scope of P to avoid a variable name clash.

Appendix B. Proof of claims

B.1. Error filter condition

Claim 1. For every SPARQL formula φ, the formula Error(φ) can be expressed as a formula of the form
∨
ψ∈C ψ

where C is a non-empty set of conjunctions of formulas belonging to one of the following types:

1. positive or negative literals (i.e., formulas of the form false, ?X = a, ¬(?X = a), ¬(?X = ?Y), bound(?X),
or ¬bound(?X)),

2. formulas φ′, ¬φ′, or Error(φ′) such that φ′ occurs in φ and φ′ is strictly smaller than φ;

36 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 8
Truth values for the error formula of a conjunction. According to Definition 5, given a formula φ of the form φ1 ∧ φ2, the formula Error(φ) is
the formula ψ1 ∨ψ2 ∨ψ3 where ψ1 is the formula (φ1 ∧Error(φ2)), ψ2 is the formula (Error(φ1)∧φ2), and ψ3 is the formula (Error(φ1)∧
Error(φ2)). Given an arbitrary mapping µ, this table shows the possible truth values for formulas φ, Error(φ), and its components.

µ(φ1) µ(φ2) µ(φ) µ(Error(φ1)) µ(Error(φ2)) µ(ψ1) µ(ψ2) µ(ψ3) µ(Error(φ))

true true true false or error false or error false or error false or error false or error false or error

true false false false or error false or error false or error false false or error false or error

true error error false or error true true false or error false or error true

false true false false or error false or error false false or error false or error false or error

false false false false or error false or error false false false or error false or error

false error false false or error true false false or error false or error false or error

error true error true false or error false or error true false or error true

error false false true false or error false or error false false or error false or error

error error error true true error error true true

Table 9
Truth values for the error formula of a disjunction. According to Definition 5, given a formula φ of the form φ1 ∨ φ2, the formula Error(φ)
is the formula ψ1 ∨ ψ2 ∨ ψ3 where ψ1 is the formula (¬φ1 ∧ Error(φ2)), ψ2 is the formula (Error(φ1) ∧ ¬φ2), and ψ3 is the formula
(Error(φ1)∧Error(φ2)). Given an arbitrary mapping µ, this table shows the possible truth values for formulas φ, Error(φ), and its components.

µ(φ1) µ(φ2) µ(φ) µ(Error(φ1)) µ(Error(φ2)) µ(ψ1) µ(ψ2) µ(ψ3) µ(Error(φ))

true true true false or error false or error false false false or error false or error

true false true false or error false or error false false or error false or error false or error

true error true false or error true false false or error false or error false or error

false true true false or error false or error false or error false false or error false or error

false false false false or error false or error false or error false or error false or error false or error

false error error false or error true true false or error false or error true

error true true true false or error false or error false false or error false or error

error false error true false or error false or error true false or error true

error error error true true error error true true

and for every mapping µ, µ(φ) = error if and only if there exists a unique formula ψ ∈ C for which µ(ψ) = true.

Proof. We next show this result by induction on the structure of the query.

1. If φ has the form bound(?X) then Error(φ) is the formula false. Formula φ satisfies the claim. Indeed, C =
{false} and µ(Error(φ)) = false for every mapping µ because formula φ does not produce error.

2. If φ has the form ?X = a then Error(φ) is the formula ¬ bound(?X). Formula φ satisfies the claim. Indeed,
C = {¬ bound(?X)} and µ(Error(φ)) = true if and only if variable ?X is unbound in µ, that is the unique
case when formula φ produces error.

3. If φ has the form ?X = ?Y then Error(φ) is the formula ψ1 ∨ ψ2 ∨ ψ3 where ψ1 is the formula
(¬ bound(?X) ∧ bound(?Y)), ψ2 is the formula (bound(?X) ∧ ¬ bound(?Y)), and ψ3 is the formula
(¬ bound(?X)∧¬bound(?Y)). Formula φ satisfies the claim. Indeed, C = {ψ1, ψ2, ψ3}, and by construction,
only one formula in C can be true, and µ(Error(φ)) = true if and only if µ(φ) = error.

4. If φ has the form ¬φ1 then Error(φ) is the formula Error(φ1). In this case C = {Error(φ1)}. By the induction
hypothesis, µ(Error(φ1)) = true if and only if µ(φ1) = error. Because ¬ error is error, we conclude that
µ(Error(φ)) = true if and only if µ(φ) = error. Hence, formula φ satisfies the claim.

5. If φ has the form φ1∧φ2 then Error(φ) is the formula ψ1∨ψ2∨ψ3 where ψ1 is the formula (φ1∧Error(φ2)),
ψ2 is the formula (Error(φ1)∧ φ2), and ψ3 is the formula (Error(φ1)∧Error(φ2)). The validity of the claim
for formula φ is shown in Table 8. There are three cases where µ(φ) = error:

Case ET: µ(φ1) = error and µ(φ2) = true,

Angles et al. / The multiset semantics of SPARQL patterns 37

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Case TE: µ(φ1) = true and µ(φ2) = error,
Case EE: µ(φ1) = error and µ(φ2) = error.

Note that if µ(φ1) = error and µ(φ2) = false then µ(φ) = false (because error∧ false is false).
The values in the remaining columns can be computed using the inductive hypothesis. We next present case
ET as an example. The other cases follow the same reasoning. In case ET, µ(φ1) = error and µ(φ2) = true.
By the induction hypothesis, µ(Error(φ1)) = true and µ(Error(φ2)) is either false or error.

(a) If µ(Error(φ2)) = false then:

µ(ψ1) = µ(φ1) ∧ µ(Error(φ2))
= error∧ false
= false .

µ(ψ2) = µ(Error(φ1)) ∧ µ(φ2)
= true∧ true
= true .

µ(ψ3) = µ(Error(φ1)) ∧ µ(Error(φ2))
= true∧ false
= false .

Hence, µ(Error(φ)) = µ(ψ1 ∨ ψ2 ∨ ψ3) = false∨ true∨ false = true.
(b) If µ(Error(φ2)) = error then:

µ(ψ1) = µ(φ1) ∧ µ(Error(φ2))
= error∧ error
= error .

µ(ψ2) = µ(Error(φ1)) ∧ µ(φ2)
= true∧ true
= true .

µ(ψ3) = µ(Error(φ1)) ∧ µ(Error(φ2))
= true∧ error
= error .

Hence, µ(Error(φ)) = µ(ψ1 ∨ ψ2 ∨ ψ3) = error∨ true∨ error = true.

6. If φ has the form φ1 ∨ φ2 then the validity of the claim for formula φ is shown in Table 9, following the same
reasoning as for the previous case where φ is a conjunction φ1 ∧ φ2.

B.2. Reduction of complex filter conditions

To prove the following claims, we introduce the notion of reduction and reducible filter condition. Section 6.1.2
presents three equivalences to transform a pattern with complex filter conditions into a pattern where all filter con-
ditions are atomic. In this appendix, we show that these equivalences can be used to this end. For each equivalence
(PFILTERφ) ≡ P′, we define a function that maps the filter condition φ to the set Σφ of filter conditions in
pattern P′.

Consider the following equivalences:

(PFILTERψ1 ∧ ψ2) ≡ ((PFILTERψ1) FILTERψ2),

38 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(PFILTERψ1 ∨ ψ2) ≡ (PFILTERψ1 ∧ ψ2)UNION

(PFILTERψ1 ∧ ¬ψ2)UNION

(PFILTER¬ψ1 ∧ ψ2)UNION

(PFILTERψ1 ∧ Error(ψ2))UNION

(PFILTERError(ψ1) ∧ ψ2),

(PFILTER¬ψ) ≡ ((PEXCEPT (PFILTERψ)) EXCEPT (PFILTERError(ψ))).

These three equivalences define the following functions, called reduction rules:

f∧(φ) =
{
{ψ1, ψ2} if φ has the form ψ1 ∧ ψ2,
{φ} otherwise;

f∨(φ) =
{
{ψ1 ∧ ψ2, ψ1 ∧ ¬ψ2, ψ1 ∧ Error(ψ2), ¬ψ1 ∧ ψ2, Error(ψ1) ∧ ψ2} if φ has the form ψ1 ∨ ψ2,
{φ} otherwise;

f¬(φ) =
{
{ψ, Error(ψ)} if φ has the form ¬ψ,
{φ} otherwise;

Note that if the filter condition φ does not have the form of filter condition on the left side of the identity, we return
the set {φ}. This captures the fact that the equivalence cannot be applied to reduce filter condition φ.

For convenience, we also define the reduction function that eliminates atomic formulas f◦ and a reduction that
composes f∨ with f∧, called f∨∧.

f◦(φ) =
{
{φ} if φ is a complex filter condition,
∅ if φ is an atomic filter condition;

f∨∧(φ) =

{
{ψ1, ψ2, ¬ψ1, ¬ψ2, Error(ψ1), Error(ψ2)} if φ has the form ψ1 ∨ ψ2,
{φ} otherwise.

For r ∈ {∧,∨,¬, ◦,∨∧}, let Fr be the function that receives a set of filter conditions Σ and returns the set of filter
conditions Fr(Σ) =

⋃
φ∈Σ fr(φ). Given two sets of filter conditions Σ1 and Σ2 we write Σ1

r−→ Σ2 if Fr(Σ1) =

Σ2. In this case, we say that Σ1
r−→ Σ2 is a reduction. We said that a filter condition φ is reducible if there is a

finite sequence of reductions {φ} r1−→ Σ1
r2−→ · · · rn−→ ∅. Intuitively, reductions are applied until all complex filter

conditions are eliminated. It is not difficult to see that we can apply the aforementioned equivalences to transform
every pattern P1 to a pattern P2 with no complex formulas if and only if every filter condition φ is reducible.

We next prove that every filter condition is reducible by induction on the structure of the filter condition. For
this induction, we define the components of a filter condition φ, denoted comp(φ), to be the set of filter conditions
defined as follows: If φ is atomic, then comp(φ) = ∅; if φ = ψ1 ∨ ψ2 or φ = ψ1 ∧ ψ2, then comp(φ) = {ψ1, ψ2} ∪
comp(ψ1) ∪ comp(ψ2); and if φ = ¬ψ then comp(φ) = {ψ} ∪ comp(ψ).

Claim 2. Every filter condition φ is reducible.

Proof. We prove this by induction using the following hypothesis: if φ is a filter condition where for each filter
condition ψ ∈ comp(φ), ψ and Error(ψ) are reducible, then the filter conditions φ and Error(φ) are reducible.

1. If φ is bound(?X) then

{φ} ◦−→ ∅,

{Error(φ)} = {false} ◦−→ ∅.

Angles et al. / The multiset semantics of SPARQL patterns 39

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2. If φ is ?X = a then

{φ} ◦−→ ∅,

{Error(φ)} = {¬ bound(?X)} ¬−→ {bound(?X), Error(¬bound(?X))} = {bound(?X), false} ◦−→ ∅.

3. If φ is ?X = ?Y then

{φ} ◦−→ ∅,
{Error(φ)} = {¬ bound(?X) ∨ ¬ bound(?Y)}

∨∧−−→ { bound(?X), bound(?Y), ¬bound(?X), ¬ bound(?Y),

Error(¬bound(?X)), Error(¬bound(?Y))}
= {bound(?X), bound(?Y), ¬bound(?X), ¬bound(?Y), f alse}
◦−→ {¬ bound(?X), ¬ bound(?Y)}
¬−→ {bound(?X), Error(bound(?X)), bound(?Y), Error(bound(?Y))}
= {bound(?X), false, bound(?Y), false}
◦−→ ∅.

4. If φ is ¬ψ1 then

{φ} ¬−→ {ψ, Error(ψ)},
{Error(φ)} = {Error(ψ)}.

Since ψ ∈ comp(φ) and by inductive hypothesis, the filter conditions ψ and Error(ψ) are reducible. Hence,
the filter conditions φ and Error(φ) are reducible.

5. If φ is ψ1 ∧ ψ2 then

{φ} ∧−→ {ψ1, ψ2},
{Error(φ)} = {Error(ψ) ∨ Error(ψ2)}

∨∧−−→ {Error(ψ1), Error(ψ2),

¬Error(ψ1), ¬Error(ψ2),

Error(Error(ψ1)), Error(Error(ψ2))}
= {Error(ψ1), Error(ψ2), ¬Error(ψ1), ¬Error(ψ2), false}.

Since ψ1, ψ2 ∈ comp(φ) and by the induction hypothesis, the filter conditions Error(psi1) and Error(ψ2) are
reducible. To show that φ is reducible, we have to show that ¬Error(ψ1) and ¬Error(ψ2) are reducible.

{¬Error(ψ1)} ¬−→ {Error(ψ), Error(Error(ψ2))} = {Error(ψ), f alse}.

By the induction hypothesis, Error(ψ) is reducible. Hence, ¬Error(ψ1) is reducible. Similarly, ¬Error(ψ1)
is reducible. Then, Error(φ) is reducible.

40 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

6. Let φ be ψ1 ∨ ψ2. First, we show that φ is reducible.

{φ} ∨∧−−→ {ψ1, ψ2,¬ψ1,¬ψ2,Error(ψ1),Error(ψ2)}

By the induction hypothesis on ψ1 and ψ2, ψ1, ψ2, Error(ψ1), and Error(ψ2) are reducible. To prove that φ is
reducible, suffices to prove that ¬ψ1 and ¬ψ2 are reducible.

{¬ψ1} ¬−→ {ψ1,Error(ψ1)}.

By the induction hypothesis in ψ1, ψ1 and Error(ψ1) are reducible. Hence, ¬ψ1 is reducible. Similarly, ¬ψ2

is reducible. Hence, φ is reducible.
Second, we show that Error(φ) is reducible.

{Error(φ)} = {Error(ψ1) ∧ Error(ψ2)} ∧−→ {Error(ψ1), Error(ψ2)}.

By the induction hypothesis in ψ1 and ψ2, Error(ψ1) and Error(ψ2) are reducible. Hence, Error(φ) is re-
ducible.

Hence, for every filter condition φ, the filter conditions φ and Error(φ) are reducible.

B.3. Normalization of NRMD¬ queries

Claim 3 (Normalized NRMD¬). Let (p(X̄),Π) be a NRMD¬ query, and R be a rule in Π with form

p(X̄)← A1, . . . , Am,¬B1, . . . ,¬Bn,

where A1, . . . , Am are positive literals, and ¬B1, . . . ,¬Bn are negative literals. For 1 ⩽ i ⩽ m, let Ȳi be the set of
variables that consists of the variables atoms A1, . . . , Ai. Consider the minimal set of rules ΠR that includes the
following rules:

1. Rules RA
i , for 2 ⩽ i ⩽ m, defined recursively as follows:

(a) RA
2 = qA

2(Ȳ2)← A1, A2.
(b) RA

i = qA
i (Ȳi)← qA

i−1(Ȳi−1), Ai.

2. Rules RB
j for 1 ⩽ j ⩽ n, defined recursively as follows:

(a) RB
0 = rB

0 (Ȳm)← qA
m(Ȳm),

(b) RB
j = rB

j (Ȳm)← rB
j−1(Ȳm),¬B′

j(Ȳm),
(c) RB′

j = B′
j(Ȳm)← rB

j−1(Ȳm), B j .

3. A rule R′ = p(X̄)← rB
n (Ȳm).

The NRMD¬ query (p(X̄),Π′) that results from replacing rule R in query (p(X̄),Π) with the rules in ΠR is equivalent
to query (p(X̄),Π).

Proof. We next prove this claim by induction on the numbers m, of positive literals, and n, of negative literals, in
a rule R. The hypothesis of induction states that the query (q(X̄), {R}) and its normalized query (q(X̄),ΠR) are
equivalent. Since we assumed that every literal in the body of a rule must have at least one variable (see Section 4),
to guarantee safeness, the body of the rule cannot include a negative literal without having at least a positive literal.

1. If m = 1 and n = 0, rule R is already normalized because it is the projection rule p(X̄)← A1.

Angles et al. / The multiset semantics of SPARQL patterns 41

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

θ(p(X̄))

θ(A1)

R

θ(A2)

R

θ(A3)

R

. . . θ(Am)

R

θ(p(X̄))

θ(qA
2(Ȳ2))

θ(A1)

RA
2

θ(A2)

RA
2

R′′

θ(A3)

R′′

. . . θ(Am)

R′′

Fig. 4. Derivation trees for the ground literal θ(p(X̄)) regarding query (p(X̄), {R}) (on the left), and query (p(X̄), {RA
2 ,R

′′}) (on the right). The
children of the nodes labeled with the positive ground literals θ(Ai) are omitted.

2. If m > 1 and n = 0 then the normalization of rule R consists of a set ΠR of rules RA
i , for 2 ⩽ i ⩽ m, defined

recursively as follows:

RA
2 = qA

2(Ȳ2)← A1, A2,

RA
i = qA

i (Ȳi)← qA
i−1(Ȳi−1), Ai for 2 ⩽ i ⩽ m,

RB
0 = r0(Ȳm)← qA

n (Ȳm),

R′ = p(X̄)← rB
0 (Ȳm).

By the induction hypothesis, the query (p(X̄), {RA
3 , . . . ,R

A
m,R

B
0 ,R

′}) is equivalent to the query (p(X̄), {R′′})
where R′′ is the rule p(X̄) ← qA

2(Ȳ2), A3, . . . , Am. Hence, the query (p(X̄),ΠR) is equivalent to the query
(p(X̄), {RA

2 ,R
′′}). To show that these queries are equivalent to query (p(X̄), {R}), we need to show that they

have the same answers, and each answer has the same cardinality.
Assume that a substitution θ is an answer to query (p(X̄), {R}). Then, program {R} has a derivation tree
whose root is labeled with the ground literal θ(p(X̄)), has m children labeled with the ground literals θ(Ai), for
1 ⩽ i ⩽ m, and the edges from the root to the children are labeled with rule R, as is shown in Figure 4 (on the
left). Then, for 1 ⩽ i ⩽ m, there is a derivation three whose root is labeled with the ground literal θ(Ai). The
existence of the ground literals θ(Ai) as labels of derivation tree roots proves that the ground literal θ(p(X̄)) is
inferred using the rules RA

2 and R′′, as is shown in the Figure 4 (on the right). Then, if θ is an answer to query
(p(X̄), {R}) then θ is an answer to query (p(X̄), {RA

2 ,R
′′}). The same argument can be used in the contrary

direction to prove that if θ is an answer to query (p(X̄), {RA
2 ,R

′′}) then θ is an answer to query (p(X̄), {R}).
Finally, the cardinality of θ(p(X̄)) is, for both queries, the product of the cardinalities of θ(Ai), for 1 ⩽ i ⩽ m.
Hence, both queries are equivalent.

3. If m > 1 and n > 0 then the normalization of rule R consists of a set ΠR of rules RA
i , for 2 ⩽ i ⩽ m, defined

recursively as follows:

RA
2 = qA

2(Ȳ2)← A1, A2,

RA
i = qA

i (Ȳi)← qA
i−1(Ȳi−1), Ai for 2 ⩽ i ⩽ m,

RB
0 = rB

0 (Ȳm)← qA
m(Ȳm),

RB
j = rB

j (Ȳm)← rB
j−1(Ȳm),¬B′

j(Ȳm) for 1 ⩽ j ⩽ n,

RB′
j = B′

j(Ȳm)← rB
j−1(Ȳm), B j,

R′ = p(X̄)← rB
n (Ȳm).

42 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

θ(p(X̄))

θ(A1)

R

. . . θ(Am)

R

¬θ(B1)

R

. . . ¬θ(Bn)

R

θ(p(X̄))

θ(rB
n (Ȳm))

θ(t(Ȳm))

θ(A1)

Rγ

. . . θ(Am)

Rγ

¬θ(B1)

Rγ

. . . ¬θ(Bn−1)

Rγ

Rβ

¬θ(B′
n(Ȳm))

Rβ

R′′

Fig. 5. Derivation trees for the ground atom θ(p(X̄)) regarding query (p(X̄), {R}) (on the left), and query (p(X̄), {RA
2 ,R

′′}) (on the right). The
children of the nodes labeled with the positive ground literals θ(Ai) are omitted. Nodes label with the negative ground literals ¬θ(B j) have no
children and do no derivation tree include the positive literal θ(B j) as the root label.

The rules above are equivalent to the following rules:

RA
2 = qA

2(Ȳ2)← A1, A2,

RA
i = qA

i (Ȳi)← qA
i−1(Ȳi−1), Ai for 2 ⩽ i ⩽ m,

RB
0 = rB

0 (Ȳm)← qA
m(Ȳm),

RB
j = rB

j (Ȳm)← rB
j−1(Ȳm),¬B′

j(Ȳm) for 1 ⩽ j ⩽ n− 1,

RB′
j = B′

j(Ȳm)← rB
j−1(Ȳm), B j,

Rα = t(Ȳm)← rB
n−1(Ȳm),

Rβ = rB
n (Ȳm)← t(Ȳm),¬Bn,

R′′ = p(X̄)← rB
n (Ȳm).

By the induction hypothesis, the query (t(Ȳm), (ΠR∪{Rα})\{RB
n ,R

′}) is equivalent to the query (t(Ȳm), {Rγ})
where Rγ is the rule t(Ȳm)← A1, . . . , Am, B1, . . . , Bn−1. Hence, the query (p(X̄),ΠR) is equivalent to the query
(p(X̄), {Rγ,Rβ,R′′}) To show that these queries are equivalent to query (p(X̄), {R}), we need to show that
they have the same answers, and each answer has the same cardinalities.
Assume that a substitution θ is an answer to query (p(X̄), {R}). Then, program {R} has a derivation tree whose
root is labeled with the ground literal θ(p(X̄)), has m children labeled with the ground literals θ(Ai), and n
children labeled with literals ¬θ(B j), for 1 ⩽ i ⩽ m and 1 ⩽ j ⩽ n, and the edges from the root to the children
are labeled with rule R, as is shown in Figure 5 (on the left). Then, for 1 ⩽ i ⩽ m, there is a derivation three
whose root is labeled with the ground literal θ(Ai), and for 1 ⩽ j ⩽ n, there is no derivation three whose root
is labeled with the ground literal θ(B j). The existence of the ground literals θ(Ai) and the non-existence of the
ground literals θ(B j) as labels of derivation tree roots prove that the ground literal θ(p(X̄)) is inferred using
the rules Rγ, Rβ, and R′′, as is shown in the Figure 5 (on the right). Then, if θ is an answer to query (p(X̄), {R})
then θ is an answer to query (p(X̄), {Rγ,Rβ,R′′}). The same argument can be used in the contrary direction to
prove that if θ is an answer to query (p(X̄), {Rγ,Rβ,R′′}) then θ is an answer to query (p(X̄), {R}). Finally,
the cardinality of θ(p(X̄)) is, for both queries, the product of the cardinalities of θ(Ai), for 1 ⩽ i ⩽ m. Hence,
both queries are equivalent.

Hence, we have proved that the normalization method produces an equivalent NRMD¬ query.

Angles et al. / The multiset semantics of SPARQL patterns 43

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

B.4. Simulations between query languages

Claim 4 (SPARQL to NRMD¬). The triple (f12, g12, h21) is a simulation of SPARQL in NRMD¬.

Proof. To prove this claim, we show that, for every SPARQL query Q and RDF graph G, it holds that JQKG =
h21(J f12(Q)Kg12) by induction on the structure of a normalized SPARQL query Q. In this proof, we assume that θ
is a NRMD¬ substitution for the variables of the NRMD¬ query f12(Q), and µ is the SPARQL mapping h21(θ). To
show then that JQKG = h21(J f12(Q)Kg12), we have to prove that µ ∈ JQKG if and only if θ ∈ h21(J f12(Q)Kg12), and
card(µ, JQKG) = card(θ, h21(J f12(Q)Kg12)).

1. Let Q be a triple pattern (?X, p, ?Y). In this case, there is a corresponding version of the triple pattern as a
NRMD¬ literal triple(X, p,Y), where X and Y are the corresponding variables for ?X and ?Y . The NRMD¬

query f12(Q) is then (q(X,Y),Π) where Π is the program with a rule q(X,Y) ← triple(X, p,Y). Let θ be the
NRMD¬ substitution θ = (X/s, Y/o) and µ be the SPARQL mapping h21(θ) = {?X 7→ s, ?Y 7→ o}.
(a) According to the NRMD¬ semantics, θ ∈ J f12(Q)Kg12(G) if and only if triple(s, p, o) ∈ g12(G). By the

definition function g12, triple(s, p, o) ∈ g12(G) if and only if (s, p, o) ∈ G. By the SPARQL semantics,
the SPARQL mapping µ is in JQKG if and only if (s, p, o) ∈ G. Hence, θ ∈ J f12(Q)Kg12(G) if and only if
µ ∈ JQKG.

(b) By construction, card(θ, J f12(Q)Kg12(G)) = 1 and card(µ, JQKG) = 1. Hence, card(θ, J f12(Q)Kg12(G)) =
card(µ, JQKG).

We have shown that we can simulate triple patterns of the form (X, p,Y) with NRMD¬ queries. However, it
is not difficult to apply the same argument for the other forms of triple patterns (e.g., (X, p, o) or (s, X,Y)).
Hence, SPARQL triple patterns are simulable with NRMD¬.

2. Let Q be a query (P1 AND P2). Assume that inScope(P1) = {?X, ?Y} and inScope(P2) = {?X, ?Z}. The
NRMD¬ query f12(Q) is then (q(X,Y,Z),Π) where Π is the program that consists of the rules in the programs
of queries (p1(X,Y),Π1) = f12(P1) and (p2(X,Z),Π2) = f12(P2), the rule

q(X,Y,Z)← p1(X1,Y), p2(X2,Z), comp(X1, X2, X)

and the rules that define the compatibility between values (which may also included in Π1 and Π2)

comp(X, X, X)← term(X)

comp(X,Y, X)← term(X),null(Y)

comp(Y, X, X)← term(X),null(Y)

comp(Y,Y,Y)← null(Y).

(a) If θ ∈ J f12(Q)Kg12(G) then, by the semantics of NRMD¬, there exists the NRMD¬ solutions θ1 =
{X1/a1,Y/b}, θ2 = {X2/a2,Z/c}, and θ3 = {X1/a1, X2/a2, X/a} such that

{X1/a1,Y/b} ∈ J(p1(X1,Y),Π1)Kg12(G),

{X2/a2,Z/c} ∈ J(p2(X2,Z),Π2)Kg12(G),

{X1/a1, X2/a2, X/a} ∈ J(comp(X1, X2, X),Π)Kg12(G).

By the induction hypothesis in P1 and P2, θ1 ∈ {X1/a1,Y/b} ∈ J(p1(X1,Y),Π1)Kg12(G) and θ2 ∈
{X1/a1,Y/b} ∈ J(p2(X1,Y),Π2)Kg12(G) if and only if mappings µ1 = h21(θ1) and µ2 = h21(θ2) hold
µ1 ∈ JP1KG and µ2 ∈ JP2KG. By the rules defining comp, it holds that µ1 ∼ µ2 and µ1 ∪ µ2 = µ. By the
semantics of the SPARQL operator AND, this it holds that µ ∈ JQKG. Hence, θ ∈ J f12(Q)Kg12(G) if and
only if µ ∈ JQKG.

44 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(b) By definition,

card(µ, JQKG) =
∑

µ1∈JP1KG
µ2∈JP2KG
µ1∼µ2

µ=µ1∪µ2

card(µ1, JP1KG)× card(µ2, JP2KG).

By the induction hypothesis,

card(µ, JQKG) =
∑

{X1/a1,Y/b}∈J(p1(X1,Y),Π1)Kg12(G)

{X2/a2,Z/c}∈J(p2(X2,Y),Π2)Kg12(G)

{X1/a1,X2/a2,X/a}∈J(comp(X1,X2,X),Π)Kg12(G)

card({X1/a1,Y/b}, J f12(P1)Kg12(G))×card({X2/a2,Z/c}, J f12(P1)Kg12(G)).

By the semantics of NRMD¬, we conclude that card(µ, JQKG) = card(θ, J f12(Q)Kg12(G)).

We have shown that we can simulate queries of the form (P1 AND P2), where inScope(P1) = {?X, ?Y}
and inScope(P2) = {?X, ?Z}, with NRMD¬ queries. However, it is not difficult to apply the same argument
for queries where P1 and P2 have different sets of in-scope variables. Hence, SPARQL queries of the form
(P1 AND P2) are simulable with NRMD¬.

3. Let Q be a query (P1 EXCEPT P2), and ?X̄ be the list of SPARQL variables in set inScope(Q). The NRMD¬

query f12(Q) is then (q(X̄),Π) where Π is the program that consists of the rules in programs of queries
(p1(X̄),Π1) = f12(P1) and (p2(X̄),Π2) = f12(P2), and the rule q(X̄)← p1(X̄),¬p2(X̄).

(a) By the semantics of NRMD¬, θ ∈ J f12(Q)Kg12(G) if and only if θ ∈ J f12(P1)Kg12(G) and θ /∈
J f12(P2)Kg12(G). By the induction hypothesis, the last condition is equivalent to µ ∈ JP1KG and µ /∈ JP2KG.
By the SPARQL semantics, this is equivalent to µ ∈ JQKG.

(b) By definition, card(µ, JQKG) = card(µ, JP1KG) and card(θ, J f12(Q)Kg12(G)) = card(θ, J f12(P1)Kg12(G)).
By the induction hypothesis, card(µ, JP1KG) = card(θ, J f12(P1)Kg12(G)). Hence, card(µ, JQKG) =
card(θ, J f12(Q)Kg12(G)).

Hence, SPARQL queries of the form (P1 EXCEPT P2) are simulable with NRMD¬.
4. Let Q be a SPARQL query (P1 UNION P2). The NRMD¬ query f12(Q) is then (q(X̄),Π) where X̄ is the list

with the variables in set inScope(Q), and Π is the program that consists of the rules in program of queries
(p1(X̄),Π1) = f12(P1) and (p2(X̄),Π2) = f12(P2), and the rules that correspond the operation UNION,
namely q(X̄)← p1(X̄) and q(X̄)← p2(X̄).

(a) By the NRMD¬ semantics, θ is a solution of (q(X̄),Π) if and only if θ ∈ J(p1(X̄),Π1)Kg12(G) or θ ∈
J(p2(X̄),Π2)Kg12(G). By the induction hypothesis, this is equivalent to that µ ∈ JP1KG or µ ∈ JP1KG. By the
SPARQL semantics, this is equivalent to µ ∈ JQKG.

(b) By the NRMD¬ semantics, card(θ, J f12(Q)Kg12(G)) = card(θ, J f12(P1)Kg12(G))+card(θ, J f12(P2)Kg12(G))
and card(θ, J f12(Q)Kg12(G)) = card(µ, JP1KG) + card(µ, JP2KG).
By the induction hypothesis, card(θ, J f12(P1)Kg12(G)) = card(µ, JP1KG) and card(θ, J f12(P2)Kg12(G)) =
card(µ, JP2KG). Hence card(θ, J f12(Q)Kg12(G)) = card(µ, JQKG).

Hence, SPARQL queries of the form (P1 UNION P2) are simulable with NRMD¬.
5. Let Q be the SPARQL query (PFILTERφ) where is an atomic filter condition (i.e., a filter condition of the

form ?X = c, ?X = ?Y , or bound(?X)), and Lφ be a set of NRMD¬ literals defined as follows:

Lφ =





X = c,bound(X) if φ is ?X = c,
X = Y,bound(X),bound(Y) if φ is ?X = ?Y ,
bound(X) if φ is bound(?X).

Angles et al. / The multiset semantics of SPARQL patterns 45

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

The NRMD¬ query f12(Q) is then (q(X̄),Π) where X̄ is the list with the variables in set inScope(Q), and Π is
the program that consists of the rules in program of query (p(X̄),Π′) = f12(P), and the rule that corresponds
the operation FILTER, namely rule q(X̄)← p(X̄), Lφ.

(a) By the NRMD¬ semantics, θ is a solution of (q(X̄),Π) if and only if θ ∈ J(p(X̄),Π′)Kg12(G), and θ(Lφ) ⊆
g12(G). By the induction hypothesis, θ ∈ J(p(X̄),Π′)Kg12(G) is equivalent to µ ∈ JPKG. By construction,
θ(Lφ) ⊆ atoms(Π′, g12(G)) if and only if µ(φ) = true. By the SPARQL semantics, this is equivalent to
µ ∈ JQKG.

(b) By construction, every fact in θ(Lφ) occurs once in g12(G). For each fact in F ∈ θ(Lφ) there is then
only one proof that F ∈ atoms(Π, g12(G)). Hence, card(θ, J f12(Q)Kg12(G)) = card(θ, J f12(P)Kg12(G)). By
the induction hypothesis, card(θ, J f12(P)Kg12(G)) = card(µ, JPKG). According to the SPARQL semantics,
card(µ, JPKG) = card(µ, JQKG). Hence, card(θ, J f12(Q)Kg12(G)) = card(µ, JQKG).

Hence, SPARQL queries of the form (PFILTERφ) are simulable with NRMD¬.
6. Let Q be the SPARQL query (SELECT X̄ P). The NRMD¬ query f12(Q) is then (q(X̄),Π), where Π is the

program that consists of the rules in the program of query (p(Ȳ ,Π′) = f12(P), and the rule that corresponds
to the operation projects, namely rule q(X̄)← p(Ȳ),null(x1), . . . ,null(xn), where x1, . . . , xn are the variables
that are in W but not in inScope(P1).

(a) By the NRMD¬ semantics, θ is a solution of (q(X̄),Π) if and only if there exists a solution θ′ ∈
J(p(Ȳ ,Π′)Kg12(G) such that θ(x) = θ′(x) if x ∈ inScope(Q)∩inScope(P). Let µ = h21(θ) and µ′ = h21(θ′).
By construction µ = µ′|inScope(Q). By the induction hypothesis, µ′ ∈ JPKG. Hence, µ ∈ JQKG.

(b) By construction,

card(θ, J f12(Q)Kg12(G)) =
∑

θ′|inScope(Q)=θ

θ′∈J f12(P)Kg12(G)

card(θ′, J f12(P)Kg12(G)).

By the induction hypothesis,

card(θ, J fe1,2(Q)Kg12(G)) =
∑

θ′|inScope(Q)=θ

µ′=h21(θ′)
µ′∈JPKG

card(µ′, JPKG).

By construction,

card(θ, J fe1,2(Q)Kg12(G)) =
∑

µ′|inScope(Q)=h21(θ)
µ′∈JPKG

card(µ′, JPKG).

Hence, card(θ, J f12(Q)Kg12(G)) = card(h21(θ), JQKG).

Hence, SPARQL queries of the form (SELECT X̄ P) are simulable with NRMD¬.

Hence, the triple (f12, g12, h21) is a simulation of SPARQL in NRMD¬.

Claim 5 (NRMD¬ to SPARQL). The triple (f21, g21, h12) is a simulation of NRMD¬ in SPARQL.

Proof. To prove this claim, we consider only normalized NRMD¬ queries Q, that is, queries where rules consist
of projection rules, join rules and negation rules (see Section 6.2). This proof follows from induction on the struc-
ture of query Q = (q(X̄),Π) with inductive hypothesis θ ∈ JQKD if and only if h12(θ) ∈ J f21(Q)Kg21(D) and
card(θ, JQKD) = card(h12(θ), J f21(Q)Kg21(D)).

46 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1. If q is an extensional predicate, then f21(Q) is the SPARQL query

(SELECT ?X1 . . . ?Xn ((?Y , α0, p)AND (?Y , α1, ?X1)AND · · ·AND(?Y , αn, ?Xn)),

where the SPARQL variables ?X1 . . . ?Xn correspond to the n NRMD¬ variables in X̄.

(a) By construction, θ ∈ JQKD if and only if h12(θ) ∈ J f21(Q)Kg21(D). Indeed, each colored fact
⟨q(a1, . . . , an), i⟩ in coloring(D) corresponds to a subgraph {(ui, α0, p), (ui, α1, a1), · · · , (ui, αn, an)}where
ui is a fresh IRI to identify the colored fact, and ai = θ(xi), for the i-th variable xi ∈ X̄.

(b) card(θ, JQKD) is the cardinality of q(a1, . . . , an) in multiset D. By construction, this is the number
of subsgraphs of the form {(ui, α0, p), (ui, α1, a1), · · · , (ui, αn, an)} of g21(D). Hence, card(θ, JQKD) =
card(h12(θ), J f21(Q)Kg21(D)).

2. If q is an intensional predicate, then there are several rules in Π with head q(X̄), each one matching one of the
following forms:

– q(X̄)← p(Ȳ),
– q(X̄)← p1(Ȳ1), p2(Ȳ2),
– q(X̄)← p3(Ȳ3),¬p4(Ȳ4).

The function f21(Q) maps each of these rules to one of the following SPARQL queries:

– (SELECT X̄ f21((p(Ȳ),Π))),
– (f21((p1(X̄),Π))AND f21((p2(X̄),Π))),
– (f21((p3(X̄),Π))EXCEPT f21((p4(X̄),Π)).

If {R1, . . . ,Rn} is the set rules in Π with predicate q in the head, then the SPARQL query f21(Q) has the form
(P1 UNION · · ·UNION Pn), where Pi is the corresponding SPARQL query for the rule Ri, for 1 ⩽ i ⩽ n.

(a) First we will prove that the SPARQL query and the NRMD¬ query have the same answers. A substitution
θ is an answer of query Q if and only if at least one of the following conditions holds:

– For a rule Ri of the form q(X̄) ← p(Ȳ), there exists a solution θ′ of query (p(Ȳ),Π) such that
θ(x) = θ′(x) for every variable x ∈ X̄. Then, by the inductive hypothesis, there exists a solution
µ′ ∈ J f21((p(Ȳ),Π))Kg21(D) such that h12(µ′) = θ′. Let µ be the solution mapping µ′|X̄ . By construction,
µ ∈ J f21(Q)Kg21(D) and h12(µ) = θ.

– For a rule Ri of the form q(X̄) ← p1(Ȳ1), p2(Ȳ2), substitutions θ1 = θ|Ȳ1
and θ2 = θ|Ȳ2

are solutions
of queries (p1(Ȳ1),Π) and (p2(Ȳ2),Π). By the inductive hypothesis, there exist two solutions µ1 ∈
J f21((p1(Ȳ1),Π))Kg21(D) and µ2 ∈ J f21((p2(Ȳ2),Π))Kg21(D) such that h12(µ1) = θ1 and h12(µ2) = θ2.
Let µ be the solution mapping µ1 ∪ µ2. By construction, µ ∈ J f21(Q)Kg21(D) and h12(µ) = θ.

– For a rule Ri of the form q(X̄) ← p3(Ȳ3),¬p4(Ȳ4), substitution θ is a solution of query (p3(Ȳ3),Π)
and θ is not a solution of query (p4(Ȳ3),Π). By the inductive hypothesis, there exists a solution µ ∈
J f21((p3(Ȳ3),Π))Kg21(D) such that µ /∈ J f21((p4(Ȳ4),Π))Kg21(D), and h12(µ) = θ. By construction,
µ ∈ J f21(Q)Kg21(D).

Hence, θ ∈ JQKD if and only if there exists µ such that f12(µ) = θ and µ ∈ J f21(Q)Kg21(D).
(b) We next prove that the answers have the same cardinality in SPARQL and NRMD¬. By definition,

card(θ, JQKD) =
∑

θ′|X̄=θ

card(θ′, J(p(Ȳ),Π)KD) +

card(θ1, J(p1(Ȳ1),Π)KD)× card(θ2, J(p2(Ȳ2),Π)KD) +

card(θ, J(p3(Ȳ3),Π)KD).

Angles et al. / The multiset semantics of SPARQL patterns 47

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

By the inductive hypothesis,

card(θ, JQKD) =
∑

θ′|X̄=θ
h12(µ′)=θ′

card(µ′, J f21((p(Ȳ),Π))Kg21(D)) +

card(µ1, J f21((p1(Ȳ1),Π))Kg21(D))× card(µ2, J f21((p2(Ȳ2),Π))Kg21(D)) +

card(µ, J f21((p3(Ȳ3),Π))Kg21(D))

= card(µ, J f21(Q)Kg21(D)).

Hence, the triple (f21, g21, h12) is a simulation of NRMD¬ in SPARQL.

Claim 6 (MRA to NRMD¬). The triple (f32, g32, h2,3) is a simulation of MRA in NRMD¬.

Proof. We prove this claim for normalized MRA expressions where the condition of a selection formula is always an
equality atom (e.g., σA=B(R)). This proof follows by induction on the structure of a MRA expression E, assuming
that given a MRA database D, for every subquery E′ of E it holds that t′ ∈ JE′KD if and only if there exists a
NRMD¬ solution θ′ ∈ J f32(E)Kg32(D) such that h2,3(θ

′) = t′.

1. If E is a relation name R then f32(E) is the NRMD¬ query (r(Ê), ∅) where r is an extensional predicate.

(a) By definition, t ∈ JEKD if and only if t belongs to the multiset relation corresponding to the relation name
R in the database D. By construction, t ∈ JEKD is thus equivalent to θ ∈ J f32(E)Kg32(D), where h2,3(θ) = t.
Indeed, t ∈ RI if and only if r(a1, . . . , an) ∈ g32(D) and t = (a1, . . . , an).

(b) The fact that card(t, JEKD) = card(θ, J f32(E)Kg32(D)) follows by construction; the cardinality of t in the
multiset relation corresponding to the relation name R is the same as the cardinality of fact r(a1, . . . , an) in
multiset g32(D).

2. If E is a query E1 ∪ E2, then Ê1 = Ê and Ê2 = Ê, and f32(E) is a NRMD¬ query (q(Ê),Π) such that
f32(E1) = (q1(Ê),Π) and f32(E2) = (q2(Ê),Π), and program Π includes the rules q(Ê) ← q1(Ê) and
q(Ê)← q2(Ê).

(a) By definition, t ∈ JEKD if and only if t ∈ JE1KD or t ∈ JE2KD. By the induction hypothesis, t ∈ JE2KD is
equivalent to say that there exists θ such that h2,3(θ) = t and θ ∈ J f32(E1)Kg32(D) or θ ∈ J f32(E2)Kg32(D).
That is, θ ∈ J f32(E)Kg32(D).

(b) Assume the respective answers t and θ described in (a). By definition,

card(t, JEKD) = card(t, JE1KD) + card(t, JE2KD),

card(θ, J f32(E)Kg32(D)) = card(θ, J f32(E1)Kg32(D)) + card(θ, J f32(E2)Kg32(D)).

By the inductive hypothesis, these two cardinalities are equal.

3. If E is a query E1 ⋊⋉ E2 then Ê1 ∪ Ê2 = Ê, f32(E) = (q(Ê),Π), f32(E1) = (q1(Ê1),Π), f32(E2) =
(q2(Ê2),Π), and program Π includes the rule q(Ê)← q1(Ê1), q2(Ê2).

(a) By definition, t ∈ JEKD if and only if there exists two tuples t1 and t2 such that t1 ∼ t2, t = t1 ∪ t2,
t1 ∈ JE1KD and t2 ∈ JE2KD. By the induction hypothesis, t ∈ JEKD if and only if there exists two NRMD¬

solutions θ1 ∈ J f32(E1)Kg32(D) and θ2 ∈ J f32(E2)Kg32(D) where h2,3(θ1) = t1 and h2,3(θ2) = t2. Let θ be
θ1 ∪ θ2. By construction, θ ∈ J f32(E)Kg32(D) and h2,3(θ) = t.

(b) Assume the respective answers t, t1, t2, θ, θ1, and θ2 described in (a). By definition,

card(t, JEKD) = card(t1, JE1KD)× card(t2, JE1KD),

card(θ, J f32(E)Kg32(D)) = card(θ1, J f32(E1)Kg32(D))× card(θ2, J f32(E1)Kg32(D)).

48 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

By the inductive hypothesis, these two cardinalities are equal.

4. If E is a query E1 \ E2 then Ê1 = Ê, Ê1 = Ê, f32(E) = (q(Ê),Π), f32(E1) = (q1(Ê),Π), f32(E2) =
(q2(Ê),Π), and program Π includes the rule q(Ê)← q1(Ê),¬q2(Ê).

(a) By definition, t ∈ JEKD if and only if t ∈ JE1KD and t /∈ JE2KD. By the induction hypothesis, t ∈ JEKD

if and only if there exists a NRMD¬ solution θ such that θ ∈ J f32(E1)Kg32(D), θ /∈ J f32(E2)Kg32(D), and
h2,3(θ) = t. By construction, θ ∈ J f32(E)Kg32(D).

(b) Assume the respective answers t and θ described in (a). By definition, card(t, JEKD) = card(t, JE1KD) and
card(θ, J f32(E)Kg32(D)) = card(θ, J f32(E1)Kg32(D)). By the induction hypothesis, these two cardinalities
are equal.

5. If E is a query πS (E1) then Ê = S and S ⊆ Ê1, and f32(E) is a NRMD¬ query (q(X̄),Π) such that f32(E1) =
(q1(Ê),Π), and program Π includes the rule q(Ê)← q1(Ê1).

(a) By definition, t ∈ JEKD if and only if there exists a tuple t1 ∈ JE1KD such that t1|Ê = t. By the induction
hypothesis, t1 ∈ JEKD if and only if there exists θ1 ∈ J f32(E1)Kg32(D) such that h2,3(θ1) = t1. Let θ be θ1|Ê .
By construction, t ∈ JEKD if and only if θ ∈ J f32(E)Kg32(D) and h2,3(θ) = t.

(b) Assume the respective answers t and θ described in (a). By definition,

card(t, JEKD) =
∑

t1∈JE1KD
t1|Ê=t

card(t1, JE1KD),

card(θ, J f32(E)Kg32(D)) =
∑

θ1∈J f32(E1)Kg32(D)

θ1|Ê=θ

card(θ1, J f32(E1)Kg32(D)).

By the induction hypothesis, these two cardinalities are equal.

6. If E is a query ρA/B(E1) then Ê = (Ê1 \ {A}) ∪ {B}, f32(E) = (q(Ê),Π), and f32(E1) = (q(Ê1),Π).

(a) By definition, t ∈ JEKD if and only if there exists a tuple t1 ∈ JE1KD where t(C) = t1(C) for every
attribute C ∈ Ê \ {A}, and t(A) = t1(B). By the induction hypothesis, t1 ∈ JE1KD if and only if there
exists a solution θ1 ∈ J f32(E1)Kg32(D) such that h2,3(θ1) = t1. Let θ be the tuple with domain Ê such that
θ(C) = θ1(C) for every attribute C ∈ Ê \ {A}, and θ(A) = θ1(B). By construction, θ ∈ J f32(E)Kg32(D) if
and only if θ1 ∈ J f32(E1)Kg32(D) and h2,3(θ) = t.

(b) Assume the respective query answers t, t1, θ, and θ1 described in (a). By definition,

card(t, JEKD) = card(t1, JE1KD),

card(θ, J f32(E)Kg32(D)) = card(θ1, J f32(E1)Kg32(D)).

By the induction hypothesis, these two cardinalities are equal.

7. If E is a query σA=B(E1) then Ê = Ê1, f32(E) = (q(Ê),Π), and f32(E1) = (q1(Ê1),Π) and program Π
includes the rule q(Ê)← q1(Ê1), A = B.

(a) By definition, t ∈ JEKD if and only if t ∈ JE1KD and t(A) = t(B). By the induction hypothesis, there is an
answer θ ∈ J f32(E1)Kg32(D) such that h2,3(θ) = t. By construction, θ(A) = θ(B). Then, θ ∈ J f32(E)Kg32(D).

(b) Assume the respective query answers t and θ described in (a). By definition,

card(t, JEKD) = card(t1, JE1KD),

card(θ, J f32(E)Kg32(D)) = card(θ1, J f32(E1)Kg32(D)).

By the induction hypothesis, these two cardinalities are equal.

Angles et al. / The multiset semantics of SPARQL patterns 49

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Hence, the triple (f32, g32, h2,3) is a simulation of MRA in NRMD¬.

Claim 7 (NRMD¬ to MRA). The triple (f2,3, g2,3, h32) is a simulation of NRMD¬ in SPARQL.

Proof. To prove this claim we consider only normalized NRMD¬ queries Q, that is, queries where rules consist
of projection rules, join rules and negation rules (see Section 6.2). This proof follows from induction on the struc-
ture of query Q = (q(X̄),Π) with inductive hypothesis θ ∈ JQKD if and only if h32(θ) ∈ J f2,3(Q)Kg2,3(D) and
card(θ, JQKD) = card(h32(θ), J f2,3(Q)Kg2,3(D)).

1. If q is a extensional predicate, then f21(Q) is the MRA query ρA1/X1
(· · · ρAn/Xn(R)), where the MRA attributes

X1, . . . , Xn correspond to the n NRMD¬ variables in X̄, and R is the relation name corresponding to predicate
q.

(a) Let r be the MRA relation associated to relation name R in the MRA database g2,3(D). Let θ be a NRMD¬

answer with domain {X1, . . . , X1}, and t be the MRA tuple where t(Ai) = θ(Xi) for 1 ⩽ i ⩽ n. By
definition, θ ∈ JQKD if and only if p(θ(X1), . . . , θ(Xn)) ∈ D. Because, by definition, each fact q(a1, . . . , an)
in D corresponds to a tuple t ∈ r where t(Ai) = ai for 1 ⩽ i ⩽ n, then θ ∈ JQKD if and only if t ∈ r.
Let s be a MRA tuple with ŝ = {X1, . . . , Xn} where s(Xi) = t(Ai), for 1 ⩽ i ⩽ n. By definition, t ∈ r if
and only if s ∈ JρA1/X1

(· · · ρAn/Xn(R))Kg2,3(D). By construction, s = h32(θ). Hence, θ ∈ JQKD if and only if
h32(θ) ∈ J f2,3(Q)Kg2,3(D).

(b) The identity card(θ, JQKD) = card(h32(θ), J f2,3QK f2,3(D)) follows from the next identities:

card(θ, JQKD) = card(q(θ(X1), . . . , θ(Xn)),D)

= card(t, r)

= card(s, J f2,3(Q)Kg2,3(D))

= card(h32(θ), J f2,3QKg2,3(D)).

2. If q is an intensional predicate then there are several rules in Π with head q(X̄), each one has matches of the
following forms:

– q(X̄)← p(Ȳ),
– q(X̄)← p1(Ȳ1), p2(Ȳ2),
– q(X̄)← p3(Ȳ3),¬p4(Ȳ4).

where X̄ ⊆ Ȳ , Ȳ1 ∪ Ȳ2 = X̄, Ȳ3 = X̄, and Ȳ4 = X̄. The function f2,3(Q) maps each of these rules to one of the
following MRA queries:

– πX̄(f2,3((p(Ȳ),Π))),
– (f2,3((p1(X̄),Π)) ⋊⋉ f2,3((p2(X̄),Π))),
– (f2,3((p3(X̄),Π)) \ f2,3((p4(X̄),Π))).

If {R1, . . . ,Rn} is the set rules in Π with predicate q in the head, then the MRA query f2,3(Q) has the form
(E1 ∪ · · · ∪ En), where Ei is the corresponding MRA expression for the rule Ri, for 1 ⩽ i ⩽ n.

(a) First, we will prove that the MRA expression and the NRMD¬ query have the same answers. A substitution
θ is an answer of query Q if and only if one of the following conditions holds:

– There exists a solution θ′ of query (p(Ȳ),Π) such that θ(x) = θ′(x) for every variable x ∈ X̄. By the
induction hypothesis, there exists a solution t′ ∈ J f2,3((p(Ȳ),Π))Kg2,3(D) such that h32(t′) = θ′. Let t be
the solution mapping t′|X̄ . By construction, t ∈ J f2,3(Q)Kg2,3(D) and h32(t) = θ.

– Substitutions θ1 = θ|Ȳ1
and θ2 = θ|Ȳ2

are solutions of queries (p1(Ȳ1),Π) and (p2(Ȳ2),Π).
By the induction hypothesis, there exists two solutions t1 ∈ J f2,3((p1(Ȳ1),Π))Kg2,3(D) and t2 ∈
J f2,3((p2(Ȳ2),Π))Kg2,3(D) such that h32(t1) = θ1 and h32(t2) = θ2. Let t be the MRA solution t1 ∪ t2. By
construction, t ∈ J f2,3(Q)Kg2,3(D) and h32(t) = θ.

50 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– θ is a solution of query (p3(Ȳ3),Π) and θ is not a solution of query (p4(Ȳ3),Π). By the induction
hypothesis, there exists a solution t ∈ J f2,3((p3(Ȳ3),Π))Kg2,3(D) such that t /∈ J f2,3((p4(Ȳ4),Π))Kg2,3(D),
and h32(t) = θ. By construction, t ∈ J f2,3(Q)Kg2,3(D).

Hence, θ ∈ JQKD if and only if there exists µ such that f12(µ) = θ and µ ∈ J f21(Q)Kg21(D).
(b) We next prove that the answers have the same cardinality in MRA and NRMD¬. By definition,

card(θ, JQKD) =
∑

θ′|X̄=θ

card(θ′, J(p(Ȳ),Π)KD) +

card(θ1, J(p1(Ȳ1),Π)KD)× card(θ2, J(p2(Ȳ2),Π)KD) +

card(θ, J(p3(Ȳ3),Π)KD).

By the induction hypothesis,

card(θ, JQKD) =
∑

θ′|X̄=θ
h12(t′)=θ′

card(t′, J f2,3((p(Ȳ),Π))Kg2,3(D)) +

card(t1, J f2,3((p1(Ȳ1),Π))Kg2,3(D))× card(t2, J f2,3((p2(Ȳ2),Π))Kg2,3(D)) +

card(t, J f2,3((p3(Ȳ3),Π))Kg2,3(D))

= card(t, J f2,3(Q)Kg2,3(D)).

Hence, the triple (f2,3, g2,3, h32) is a simulation of NRMD¬ in MRA.

Claim 8 (MRA to SPARQL). The triple (f31, g31, h13) is a simulation of NRMD¬ in SPARQL.

Proof. We proof this claim for normalized MRA expressions where the condition of a selection formula is always an
equality atom (e.g., σA=B(R)). We proof this claim by induction on the structure of a MRA expression E, assuming
that given an MRA database D, for every subquery E′ of E it holds that t′ ∈ JE′KD if and only if there exists a
SPARQL solution µ′ ∈ J f31(E)Kg31(D) such that h13(µ′) = t′.

1. If E is a relation name R then f31(E) is the SPARQL query (SELECT ?A1 · · · ?An P) where P is the ba-
sic graph pattern ((?X, ub, ur)AND(?X, u1, ?A1)AND · · ·AND(?X, un, ?An))), and ?A1, . . . , ?An are the vari-
ables corresponding to the attributes associated to relation name R.

(a) Let t be an MRA tuple with t̂ = R̂, and µ be an SPARQL mapping with h13(µ) = t. By definition, t ∈ JEKD

if and only if tuple t belongs to multiset relation RD. By construction, t ∈ JEKD is thus equivalent to the
existence of an an IRI u such that the triples (u, ub, ur), (u, u1, t(A1)), . . . , (u, un, t(An)) belong to the RDF
graph g31(D). By definition, there exists such an IRI u if and only if there exists a SPARQL mapping
µ′ ∈ JPKg31(D) where µ′(?X) = u and µ(?Ai) = t(ai), for 1 ⩽ i ⩽ n. By construction, µ′|?A1,...,?An = µ.
Then, µ′ ∈ JPKg31(D) if and only if µ ∈ J f31(Q)Kg31(D).

(b) The fact that card(t, JEKD) = card(µ, J f31(E)Kg31(D)) follows by construction; the cardinality of t in
the multiset relation RD is the same as the number of IRIs u such that such that the triples (u, ub, ur),
(u, u1, t(A1)), . . . , (u, un, t(An)) belong to the RDF graph g31(D).

2. If E is a query E1 ∪ E2, then Ê1 = Ê, Ê2 = Ê, and f31(E) is the SPARQL query (f31(E1)UNION f31(E2)).

(a) Let t be an MRA tuple with t̂ = Ê, and µ be an SPARQL mapping such that h13(µ) = t. By definition,
t ∈ JEKD if and only if t ∈ JE1KD or t ∈ JE2KD. By the induction hypothesis, t ∈ JEKD if and only if
µ ∈ J f31(E1)Kg31(D) or µ ∈ J f31(E2)Kg31(D). By definition, t ∈ JEKD if and only if µ ∈ J f31(E)Kg31(D).

Angles et al. / The multiset semantics of SPARQL patterns 51

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(b) Assume the respective answers t and µ described in (a). By definition,

card(t, JEKD) = card(t, JE1KD) + card(t, JE2KD),

card(µ, J f31(E)Kg31(D)) = card(µ, J f31(E1)Kg31(D)) + card(µ, J f31(E2)Kg31(D)).

By the induction hypothesis, these two cardinalities are equal.

3. If E is a query E1 ⋊⋉ E2 then Ê1 ∪ Ê2 = Ê, and f31(E) is the SPARQL query (f31(E1)AND f31(E2)).

(a) Let t be an MRA tuple with t̂ = Ê, and µ be an SPARQL mapping such that h13(µ) = t. By definition,
t ∈ JEKD if and only if there exists two tuples t1 and t2 such that t1 ∼ t2, t = t1 ∪ t2, t1 ∈ JE1KD and
t2 ∈ JE2KD. By the induction hypothesis, t1 ∈ JE1KD and t2 ∈ JE2KD if and only there exist two SPARQL
mappings µ1 and µ2 such that h13(µ1) = t1, h13(µ2) = t2, µ1 ∈ J f31(E1)Kg31(D), and µ1 ∈ J f31(E1)Kg31(D).
By construction, µ1 ∼ µ2, µ1 ∪ µ2 = µ, and µ ∈ J f31(E)Kg31(D). Hence, t ∈ JEKD if and only if µ ∈
J f31(E)Kg31(D).

(b) Assume the respective answers t, t1, t2, µ, µ1, and µ2 described in (a). By definition,

card(t, JEKD) = card(t1, JE1KD)× card(t2, JE1KD),

card(µ, J f31(E)Kg31(D)) = card(µ1, J f31(E1)Kg31(D))× card(µ2, J f31(E1)Kg31(D)).

By the induction hypothesis, these two cardinalities are equal.

4. If E is a query E1 \ E2 then Ê1 = Ê, Ê1 = Ê, and f31(E) is the SPARQL query (f31(E1) EXCEPT f31(E2)).

(a) Let t be an MRA tuple with t̂ = Ê, and µ be an SPARQL mapping such that h13(µ) = t. By definition,
t ∈ JEKD if and only if t ∈ JE1KD and t /∈ JE2KD. By the induction hypothesis, t ∈ JEKD if and only if
µ ∈ J f31(E1)Kg31(D) and µ /∈ J f31(E2)Kg31(D). Hence, t ∈ JEKD if and only if µ ∈ J f31(E)Kg31(D).

(b) Assume the respective answers t and µ described in (a). By definition, card(t, JEKD) = card(t, JE1KD) and
card(µ, J f31(E)Kg31(D)) = card(µ, J f31(E1)Kg31(D)). By the induction hypothesis, these two cardinalities
are equal.

5. If E is a query πS (E1) then Ê = S and S ⊆ Ê1, and f31(E) is a SPARQL query (SELECT W f31(E1)) such
that W is the corresponding set of SPARQL variables for the set of attributes S .

(a) Let t be an MRA tuple with t̂ = Ê. By definition, t ∈ JEKD if and only if there exists a tuple t1 ∈ JE1KD

such that t1|Ê = t. By the induction hypothesis, t1 ∈ JEKD if and only if there exists µ1 ∈ J f31(E1)Kg31(D)

such that h13(µ1) = t1. Let µ be µ1|W . By construction, t ∈ JEKD if and only if µ ∈ J f31(E)Kg31(D) and
h13(µ) = t.

(b) Assume the respective answers t and µ described in (a). By definition,

card(t, JEKD) =
∑

t1∈JE1KD
t1|Ê=t

card(t1, JE1KD),

card(µ, J f31(E)Kg31(D)) =
∑

µ1∈J f31(E1)Kg31(D)

µ1|W=µ

card(µ1, J f31(E1)Kg31(D)).

By the induction hypothesis, these two cardinalities are equal.

6. If E is a query ρA/B(E1) then Ê = (Ê1\{A})∪{B}, f31(E) is the SPARQL query that results from consistently
renaming variable ?A as variable ?B in f31(E1) (i.e., subs?A/?B(A)), and ?A and ?B are the corresponding
SPARQL variables for atributes A and B.

52 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(a) By definition, t ∈ JEKD if and only if there exists a tuple t1 ∈ JE1KD where t(C) = t1(C) for every
attribute C ∈ Ê \ {A}, and t(A) = t1(B). By the induction hypothesis, t1 ∈ JE1KD if and only if there
exists a solution µ1 ∈ J f31(E1)Kg31(D) such that h13(µ1) = t1. Let µ be the SPARQL mapping with domain
(dom(µ′) \ {?A}) ∪ {?B} such that µ(?C) = µ1(?C) for every variable ?C ∈ dom(µ′) \ {?A}, and
µ(?A) = µ1(?B). By construction, h13(µ) = t. Hence, t ∈ JEKD if and only if µ ∈ J f31(E)Kg31(D).

(b) Assume the respective query answers t, t1, µ, and µ1 described in (a). By definition,

card(t, JEKD) = card(t1, JE1KD),

card(µ, J f31(E)Kg31(D)) = card(µ1, J f31(E1)Kg31(D)).

By the induction hypothesis, these two cardinalities are equal.

7. If E is a query σA=B(E1) then Ê = Ê1, f31(E) = (q(Ê),Π), and f31(E1) is the SPARQ query
(P1 FILTER ?A = ?B) where ?A and ?B are the corresponding SPARQL variables for the MRA attributes
A and B.

(a) By definition, t ∈ JEKD if and only if t ∈ JE1KD and t(A) = t(B). By the induction hypothesis, there is an
answer µ ∈ J f31(E1)Kg31(D) such that h13(µ) = t. By construction, µ(A) = µ(B). Then, t ∈ JEKD if and
only if µ ∈ J f31(E)Kg31(D).

(b) Assume the respective query answers t and θ described in (a). By definition,

card(t, JEKD) = card(t1, JE1KD),

card(µ, J f31(E)Kg31(D)) = card(µ1, J f31(E1)Kg31(D)).

By the induction hypothesis, these two cardinalities are equal.

Hence, the triple (f31, g31, h13) is a simulation of MRA in NRMD¬.

Claim 9 (SPARQL to MRA). The triple (f13, g13, h31) is a simulation of NRMD¬ in SPARQL.

Proof. To prove this claim we show that, for every SPARQL query Q and RDF graph G, it holds that JQKG =
h31(J f13(Q)Kg13). For simplicity, we write D instead of D. We next show this identity by induction on the structure
of a normalized SPARQL query Q. In this proof we assume that t is a MRA tuple with the attributes of the MRA
expression f13(Q), and µ is the SPARQL mapping h31(t). To show that JQKG = h31(J f13(Q)Kg13), we prove that
µ ∈ JQKG if and only if t ∈ J f13(Q)KD and card(µ, JQKG) = card(t, J f13(Q)KD).

1. Case Q is a triple pattern.

(a) By definition, every triple pattern is translated to a MRA expression consisting of operations σ, ρ, and π
over the relation name Trip. For example, if Q is the triple pattern (?X, p, ?X), then f12(Q) is the expression
ΠX(ρS/X(σP=p∧S=O(Trip))). It can be shown that the triple pattern Q = (?X, p, ?X) is equivalent to the
SPARQL query Q′ = (SELECT ?X ((?X, ?P, ?O) FILTER(?P = p ∧ ?X =?O)). Then, µ ∈ JQKG if and
only if there exists a solution µ′ ∈ J(?X, ?P, ?O)KG such that µ = µ′|{X}, µ′(?P) = p and µ′(?X) = µ′(?O).
Without loss of generality, let µ′(?X) = a. Such mapping µ′ is a solution of the triple pattern (?X, ?P, ?O)
if and only if (a, p, a) ∈ G. By construction, (a, p, a) ∈ G if and only if (a, p, a) ∈ TripD, where D is the
MRA database D. If (a, p, a) ∈ TripD then t ∈ J f13(Q)KD. Hence, µ ∈ JQKG if and only if t ∈ J f13(Q)KD.
So far, we showed that the claim follows for a particular triple pattern. This result can be extended for all
the triple patterns following the same procedure.

(b) By construction, card(µ, J f1,1(Q)Kg1,1(G)) = 1 and card(µ, JQKG) = 1. Hence, card(t, J f1,1(Q)Kg1,1(G)) =
card(µ, JQKG).

Angles et al. / The multiset semantics of SPARQL patterns 53

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2. Case Q is a query (P1 AND P2). Without loss of generality assume that inScope(P1) = {?X, ?Y} and
inScope(P2) = {?X, ?Z}. By definition, the MRA expression for query Q is:

f13(Q) = f13(P1) ∗ f13(P2)

= πX,Y,Z(ρA1/X1
(ρA2/X2

(ρA/X(Comp))) ⋊⋉ ρX/X1
(f13(P1)) ⋊⋉ ρX/X2

(f13(P2))).

(a) If t ∈ J f13(Q)KD then, there are MRA tuples t1 ∈ J f13(P1)KD, t2 ∈ J f13(P2)KD, and t3 ∈ JCompKD such
that t(X) = t3(A), t(Y) = t2(Y), t(Z) = t3(Z), and t1(X) = t3(A1), t2(X) = t3(A2). Let µ1 = h31(t1),
µ2 = h31(t2), and µ3 = h31(t3). By the induction hypothesis in P1 and P2, t1 ∈ J f13(P1)KD and t2 ∈
J f13(P2)KD if and only if µ1 ∈ JP1KG and µ2 ∈ JP2KG. By the definition of CompD, it holds that µ1 ∼ µ2
and µ1 ∪ µ2 = µ. By the semantics of the SPARQL operator AND, it holds then that µ ∈ JQKG. Hence,
t ∈ J f13(Q)KD if and only if µ ∈ JQKG.

(b) By definition,

card(µ, JQKG) =
∑

µ1∈JP1KG
µ2∈JP2KG
µ1∼µ2

µ=µ1∪µ2

card(µ1, JP1KG)× card(µ2, JP2KG),

card(t, J f13(Q)KD) =
∑

t1∈J f13(P1)KD
t2∈J f13(P2)KD
t3∈JCompKD
φ(t1,t2,t3)

card(t3, JCompKD)× card(t1, JP1KD)× card(t2, JP2KD),

where φ(t1, t2, t3) is a condition coresponding to the compatibility, that is true if and only if the following
statements hold:

i. t1(Y) = t(Y),
ii. t2(Z) = t(Z), and
iii. either

A. (t1(X) = t(X) and t2(X) = t(X),
B. (t1(X) = t(X) and t2(X) = t(X), or
C. (t1(X) = t(X) and t2(X) = t(X).

By the induction hypothesis, card(µ1, JP1KG) = card(t1, J f13(P1)KD) and card(µ2, JP2KG) = card(t2, J f13(P2)KD).
By construction, card(t3, JCompKD) = 1. Hence, card(µ, JQKG) = card(t, J f13(Q)KD).

3. Case Q is a query (P1 EXCEPT P2). Let ?X̄ be the list of SPARQL variables in set inScope(Q). The MRA
query f13(Q) is then f13(P1) \ f13(P2).

(a) By definition, t ∈ J f13(Q)KD if and only if t ∈ J f13(P1)KD and t /∈ J f13(P2)KD. By the induction hypothe-
sis, the last condition is equivalent to µ ∈ JP1KG and µ /∈ JP2KG. By the SPARQL semantics, t ∈ J f13(Q)KG

if and only if µ ∈ JQKG.
(b) By definition, card(µ, JQKG) = card(µ, JP1KG) and card(t, J f13(Q)KD) = card(t, J f13(P1)KD). By the

induction hypothesis, card(µ, JP1KG) = card(t, J f13(P1)KD). Hence, card(µ, JQKG) = card(t, J f13(Q)KD).

4. Case Q is a SPARQL query (P1 UNION P2). The MRA expression f13(Q) is then f13(P1) ∪ f13(P2).

(a) By definition, t ∈ J f13(Q)KG if and only if t ∈ J f13(P1)KD or t ∈ J f13(P2)KD. By the induction hypothesis,
t ∈ J f13(Q)KG if and only if µ ∈ JP1KG or µ ∈ JP1KG. By the SPARQL semantics, t ∈ J f13(Q)KG if and
only if µ ∈ JQKG.

(b) By definition,

card(t, J f13(Q)KD) = card(t, J f13(P1)KD) + card(t, J f13(P2)KD),

54 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

card(µ, JQKG) = card(µ, JP1KG) + card(µ, JP2KG).

By the induction hypothesis, card(t, J f13(P1)KD) = card(µ, JP1KG) and card(t, J f13(P2)KD) = card(µ, JP2KG).
Hence card(t, J f13(Q)KD) = card(µ, JQKG).

5. Case Q is a SPARQL query (PFILTERφ) where φ is an atomic filter condition (i.e., a filter condition of the
form ?X = c, ?X = ?Y , or bound(?X)). The MRA expression f13(Q) is then σψ(f13(P)) where ψ is the MRA
selection condition defined as follows:

ψ =





X = c ∧ ¬(X = ⊥) if φ is ?X = c,
X = Y ∧ ¬(X = ⊥) ∧ ¬(Y = ⊥) if φ is ?X = ?Y ,
¬(X = ⊥) if φ is bound(?X).

(a) By definition, t ∈ J f13(Q)KD if and only if t ∈ J f13(P)KD and t satisfies condition ψ. It is not difficult to see
that t satisfies condition ψ if and only if µ satisfies condition φ. By the induction hypothesis, t ∈ J f13(P)KD

if and only if µ ∈ JPKG. Hence, µ ∈ J f13(Q)KD if and only if µ ∈ JQKG.
(b) By definition, if t and µ satisfy the respective conditions, then:

card(t, J f13(Q)KD) = card(t, J f13(P)KD),

card(µ, JQKG) = card(µ, JPKG).

By the induction hypothesis, card(t, J f13(P)KD) = card(µ, JPKG). Hence, card(t, J f13(Q)KD) = card(µ, JQKG).

6. Case Q is a SPARQL query (SELECT ?X̄ P). The MRA expression f13(Q) is then πX̄(f13(P) ⋊⋉ ∆Ȳ), where
X̄ is the corresponding set of attributes for the variables ?X̄ and Ȳ is the correponding set of attributes for the
variables in set inScope(P) \ inScope(Q).

(a) By definition, t ∈ J f13(Q)KD if and only if t(Y) = ⊥ for every attribute name Y ∈ Ȳ and there exists
a solution t′ ∈ J f13(P)KD such that t′(A) = t(A) for every attribute A ∈ X̄ \ Ȳ . Let µ′ = h31(t′). By
the induction hypothesis, t′ ∈ J f13(P)KD if and only if µ′ ∈ JPKG. By construction µ = µ′|?X̄ . Hence,
t ∈ J f13(Q)KD if and only if t ∈ JPKG.

(b) By construction,

card(t, J f13(Q)KD) =
∑

t′|inScope(Q)=t
t′∈J f13(P)KD

card(t′, J f13(P)KD),

card(µ, JQKG) =
∑

µ′|inScope(Q)=µ

µ′∈JPKG

card(µ′, JPKG),

By the induction hypothesis, card(t′, J f13(P)KD) = card(µ′, JPKG). Hence, card(t, J f13(Q)KD) =
card(µ′, JQKG).

Hence, the triple (f13, g13, h31) is a simulation of SPARQL in MRA.

