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Abstract. Evolving an ontology involves re-learning, re-enriching and re-validating knowledge in the face of changes to the 

domain, and techniques applied for them can be adapted to ontology evolution. The possibilistic approach to axiom scoring has 
been applied over complete and large datasets in ontology learning. This paper presents an adaptation of the possibilistic approach 

to axiom scoring to the context of RDF data streams for ontology evolution, a scenario which forcefully deals with incomplete 

and time-dependent data. Possibilistic axiom scoring is used in two distinct scenarios: (1) with previously known property 

axioms, allowing for the exploration of the effectiveness of the approach in a scenario in which no incorrect data was present; 

and (2) in an evolving knowledge scenario, in which neither the properties nor the axioms were known and the dataset was 

obtained from publicly available sources, possibly both incomplete and with errors. Results show the effectiveness of the 

approach in accepting/rejecting axioms for the ontology’s properties. The different approaches to possibility and necessity 

proposed in literature are recontextualized in terms of their bias towards selective confirmations or counterexamples – showing 
that some axioms benefit from a more lenient approach, while others present a lower risk of introducing inconsistencies by 

having harsher acceptance conditions. 
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1. Introduction 

Ontology Evolution – especially when performed 

automatically or semi-automatically – cannot be 

detached from other subfields of ontology studies in 

computer science, such as ontology learning, 

enrichment, and validation [1,2]. Many steps and 

techniques are transversal to these fields; consider, for 

example, how evolutionary processes occur: new 

knowledge needs to be learned so it can be formalized 

into the ontology, and data can be used to further 

enrich the evolving schema into a more expressive and 

precise result. Ontology evolution is, in a way, the 

process of re-learning, re-enriching and re-validating 

an ontology in the face of changes to the domain, 

particularly when these are triggered by the data itself. 

While many ontology learning approaches imply 

the acquisition of data through text, more recently 

there has been a shift towards using continuous 
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streams of (structured and semi-structured) data [1–3]. 

Data streams carry, implicitly or explicitly, a time 

dimension that can and must be taken into 

consideration if it is meant to guide evolutionary 

processes [1,3–5].  This means the ontology is not 

learned once, but that learning and evolving the 

ontology are inextricably linked and the data used to 

trigger those processes is both limited and transient.  

Ontology learning and evolution solutions tend to 

focus on the identification and materialization of 

changes in concepts and roles and the hierarchies 

between them, but the same attention has not been 

given to the axiomization of said structures [6] – 

particularly when dealing with the inherent 

incompleteness that comes with data obtained via 

streams.  

The TICO (Time Constrained instance-guided 

Ontology Evolution) [7] tool is an ontology evolution 

framework that analyses new ontology individuals to 



understand if the concepts defined on the ontology 

have changed over time. The framework implements a 

set of operators that compare definitions present in an 

ontology to the structure of individuals incoming 

through a Resource Description Framework (RDF) 

stream. The result of the application of these operators 

is a set of evolutionary actions that can be triggered to 

produce changes in the ontology – generating new 

versions of specific concepts and properties to suit the 

patterns found in the individuals. If sufficient 

difference between the individuals of the concepts 

being analyzed and the version of them asserted in the 

ontology is identified, TICO uses a 4-D Fluents [8] 

approach to reify new, disjoint definitions of the 

concept for each time period – or Time Slice – in a 

strictly positive monotonic fashion; the tool aims to 

iteratively evolve an ontology as a result of the 

analysis of small numbers of individuals. The 

architecture of TICO has been described in [7] and 

allows for the analysis of streams of RDF individuals 

to extract potential evolutionary actions that add 

temporally-bound axioms to the ontology. In this 

paper, the authors use the architecture of TICO as a 

base for stream-guided ontology evolution with a 

focus on the identification of ontology property 

constructors. This is done by analysing extensional 

evidence for and against each of the ontology roles’ 

constructors and ascertain if the data shows enough 

support for their inclusion in newer versions of the 

ontology.  

The work presented in this paper aims to assess the 

degree to which it is possible to identify changes in 

OWL property axioms through the analysis of 

incomplete, unbounded and changing RDF data 

provided by streams, and to establish which metrics 

and assumptions/constraints are more suitable for this 

task. To do so, axiom testing analysis from both 

statistical and possibilistic perspectives will be 

executed. Additionally, when applying the solution to 

an ontology evolution scenario, this work aims to 

assess if and how the knowledge already present in the 

ontology should affect the decision to include/exclude 

suggested axioms. 

The main contributions of this work are therefore: 

1. Adaptation of the possibilistic approach to axiom 

testing as described in the works of Tettamanzi et 

al [9] to the context of streams of RDF 

individuals/instances, followed by an extensive, 

in-depth analysis of the robustness of the 

proposed metrics. This includes the analysis of 

the effects of the number and variety of the 

individuals that can be analysed simultaneously 

when searching for potential axioms in RDF data 

streams. 

2. Combining ARI with other metrics in order to 

accommodate for the potential existence of errors 

in data: the percentage of selective confirmations 

w.r.t the support and an evolving form of the 

acceptance/rejection index which is informed by 

the knowledge present in previous versions of the 

ontology. For this purpose, the approaches will be 

tested against an ontology generated from 

publicly available data, for which no a priori 

information about property characteristics is 

known. 

The rest of the paper is organized as follows: 

Section 2, Background, which contextualizes the work 

in the field of ontology learning/evolution and 

describes existing works on axiom scoring; Section 3, 

Property Axiom Scoring, which describes the solution 

and details the definitions of the axioms pertaining to 

each of the property characteristics in OWL and how 

to evaluate their presence in an RDF data stream. 

Section 4, Effects of Sliding Window size and 

suitability of ARI for axiom scoring, establishes the 

suitability of the possibilistic approach and the 

Acceptance/Rejection Index to axiom scoring in RDF 

streams and compares its performance with that of 

traditional information-retrieval metrics; Section 5, 

titled Accommodating for errors in data and the effects 

of previous knowledge in axiom-inclusion decisions, 

compares a combination of ARI and selective 

confirmations with an evolving form of ARI to assess 

how they deal with potentially incomplete and noisy 

data obtained from public datasets. Finally, Section 6 

presents the Conclusions. 

2.  Background 

Changes to domain knowledge must first be 

identified and quantified, so that they can be 

materialized into executable actions that will modify 

an ontology into a new version of itself – i.e., 

evolutionary actions [10,11]. To identify if there is a 

need for a change at the ontology level – if and which 

evolutionary actions should be considered – it is often 

necessary to analyze data that is external to the 

ontology [12,13]. Examples of this include identifying 

changes in the way end users apply the concepts in the 

ontology to the data [11], evaluating corpora regarding 

the domain to extract new concepts and compare them 

to existing ones [13–15], frequently through the 

application of Natural Language Processing 



algorithms, and the analysis of datasets of structured 

data [10,11]  (such as RDF datasets). It is possible to 

conceive ontology evolution as ontology learning with 

extra steps: new concepts and roles must be derived 

from existing data, but they also must be compared and 

made consistent with previously established ones, or 

otherwise have to update their definitions. 

The identification and execution of evolutionary 

actions when they concern the addition of classes and 

properties – and the hierarchies between them – are 

relatively well documented in literature [6,11,16]. The 

identification of the axioms that could enrich them 

(e.g. class expression restrictions and property 

axioms), however, is not as popular – potentially 

stemming from the fact that many ontologies are often 

used as taxonomies and lack axiomatic complexity 

[16]. This axiomatic complexity, however, is 

particularly relevant for lower-level ontologies, which 

need to describe the intricacies of their domains with 

varying degrees of detail and can be used to determine 

the consistency of data they describe, and to derive 

implicit information using reasoners [17]. For that, it 

is necessary not only to identify changes in concepts 

and roles and their relative novelty, but also to enrich 

them with axioms: ontology evolution is the more 

useful the more it applies the precepts of ontology 

learning. Furthermore, [6,16] detail the relative 

popularity of different types of evolutionary actions as 

they are described in literature, noting that while 

identifying new properties and property hierarchies is 

often considered, identifying and changing their 

property axioms in particular is still a relatively 

understudied field. 

Ontology learning can be defined as the processes 

and techniques applied to design ontologies either 

automatically or semi-automatically [2]. According to 

[18], said techniques can be classified into two main 

categories: (1) linguistic-based approaches and (2) 

machine learning-based approaches, which can be 

further divided into statistics or logic-based.  

Linguistic-based approaches focus on the analysis 

of large corpora of text to identify potential concepts 

and the relationships between them [18–20]. To do so, 

they seek for patterns and syntactic information in the 

text – making them particularly language-dependent. 

Machine learning-based approaches, on the other 

hand, can use different types of input data for their 

training: both structured and unstructured. Statistics-

based approaches are usually applied to identify the 

co-occurrence of terms, association rules and 

hierarchies [16,18]. Logic-based approaches, on 

which the work described in this paper is grounded, 

use logical inference or inductive logic programming 

to derive rules from positive and negative examples 

found in structured datasets. This approach is 

particularly suited for learning rules and formalizing 

axioms. On the Ontology Learning Layer Cake [21], 

which is used to describe the layers of the learning 

process and, by extension, the possible tasks it 

encompasses, rule and axiom extraction is depicted as 

the final sub-task in the process and the least explored 

in literature [18].  

In OWL, an axiom is a statement that expresses 

what is true in the domain described through the 

ontology. The number and type of axioms directly 

affect the expressivity of the ontology by adding more 

information to the description of classes, properties, 

and assertions, among others, and the relationships 

between them. For example, an ontology that can 

specify if a certain property is a mandatory element of 

a class, or how many times that role can be applied to 

an individual, is more expressive (and potentially more 

complete) than one in which those assertions are not 

established [2]. 

Axiom testing is the process of evaluating the 

credibility of a given hypothesis concerning the 

relationships in a domain – the property axiom – by 

assessing whether the individuals of said domain (e.g. 

facts of an RDF dataset) confirm or deny a hypothesis 

[9] – i.e., whether they are confirmations or 

counterexamples of the axiom. The selective 

confirmation [22] principle can be put into effect as 

well: a fact selectively confirms a hypothesis when not 

only it favours that hypothesis but also fails to confirm 

its negation. Not all facts are equally relevant for 

axiom testing, and, as such, the number of examples 

needs to be considered not in the context of all 

analysed instances, but only of those that do entail the 

relationships under scrutiny [9]. 

Property characteristics, from a perspective of 

axiom suggestion for ontology enrichment purposes, 

have been described in [23]. This work describes 

enrichment methods that have been implemented as 

part of the DL-Learner framework. The approach 

involves using different queries to look specifically for 

axiom support in a triple store, considering both the 

count of examples and the average of the 95% 

confidence interval when suggesting axioms to the 

user. However, while the approach tackles the 

discovery and materialization of ontology axioms, 

including property axioms, it depends on (large) 

knowledge bases containing a complete collection of 

samples that can be analysed as a whole – and by 

analysing only these samples to generate possibilities 

it is, in a way, working under a closed world 

assumption. Similarly, [24] describes how to identify 



and materialize changes in property axioms but 

requires large and self-contained datasets to do so, 

falling under the same assumption. 

The possibilistic approach has been applied in the 

works of Tettamanzi et al. [9,25–28] for axiom testing 

against RDF facts in ontology learning and 

validation/evaluation scenarios. As the name 

indicates, the possibilistic approach deals with the 

degree of possibility of an event, such as an axiom – 

which falls in a range between impossible and possible 

[0,1]. Possible, unlike probable (from probability 

distributions), does not mean that the axiom must be 

true: only that it is compatible with the known state of 

the world. While probability theory is suited for the 

representation of random and observed phenomena, 

the possibilistic theory better reflects how to deal with 

incomplete knowledge. In [28] (and, by extension, 

[9]), the authors detail how using such an approach is 

more suitable for candidate axiom scoring than 

statistical/frequentist approaches, claiming that the 

nature of the inductions necessary for ontology 

learning and evolution makes it such that statistical 

analysis ends up with largely arbitrary and unobjective 

results. Through the analysis of the results obtained in 

Section 4, the authors of this paper reached the same 

conclusion, and the possibilistic approach will be used 

to complement the statistical analysis. Being an 

unsupervised approach, the possibilistic approach is 

particularly suited for application to RDF streams and 

can accommodate for the incomplete nature of the data 

they provide. However, to the best of our knowledge, 

the possibilistic approach has only been applied for 

ontology validation, and its applicability to suggest 

new axioms from data analysis is either understudied 

or non-existent.  

3. Property Axiom Scoring 

3.1 Problem Definition 

The application scenario of the TICO framework 

involves the existence of several streams of sensor data 

arriving in near real-time which are subject to 

transformations by data scientists, introducing new 

and unpredicted changes that are not in the original 

ontology. While the original application scenario was 

in the field of Predictive Maintenance, TICO is 

agnostic and can suggest changes to any ontology 

following changes in the individuals of the streams 

under analysis. TICO receives as input an ontology 

and a stream of individuals and outputs a set of 

evolutionary actions that can be executed over the 

original ontology to generate a new, evolved version 

of it. Consider, for example, a stream 𝒮 of individuals 

describing familial relationships between people as 

seen in Figure 1: 

 
Figure 1 – Familial relationships between individuals in a stream 

The individuals are separated into three consequent 

groups, which correspond to different periods of 

analysis, at the end of which the ontology that 

represents these individuals may be updated. When 

analyzing the first group, one can conclude, for 

example, that the properties hasMother and hasFather 

should de functional, and the property hasBrother is 

both symmetrical and transitive. However, upon 

analyzing the second group of individuals, this 

assessment must be revised: the property hasBrother 

is still symmetrical, but no longer transitive, i.e., the 

brother of my brother is not necessarily my brother as 

well. 

Now consider that, as society grows more open to 

different familial structures, individuals in the stream 

may now in fact have two legal parents of the same 

gender (represented by the third group in Figure 1); in 

order to accurately reflect reality, the application of the 

property hasMother must now accommodate for this 

necessity, and this change in how the property is used 

means its functionality is obsolete and should be 

reconsidered: the ontology should evolve to 

accommodate for the change in how the property is 

effectively used. This paper focuses on the changes 

introduced to TICO that go beyond the detection of 

new properties and into recognizing the property 

axioms that should be added with them. Unlike other 

logic-based approaches, TICO does so by analyzing 

positive and negative evidence regarding a set of 

known and predetermined rules – the property axioms 

– to ascertain if they should be added to the ontology. 



To better understand the property axiom testing 

process on which this paper focuses, consider Figure 2 

and the descriptions that follow.  

 
Figure 2 – Data structures concerning the property axiom testing 

process 

The analysis is triggered by the arrival of a new 

individual on the stream. The visualization provided 

by Figure 2 shows: 

− The timeframe 𝓉, the period in which the stream 

𝒮 is analysed and from which to draw conclusions 

− 𝒮𝓌, the sliding window upon which queries are 

executed 

− The named individual 𝑖, which is composed by a 

set of RDF triples with the same Subject 

− The use of 𝑖 and its properties to instantiate query 

patterns for specific property axiom 𝒜𝓍(𝑃)  

− The query results being used to classify 𝑖 as 

selective confirmation or counterexample for 

each 𝒜𝓍(𝑃). 

TICO receives as input a stream of individuals 𝒮, 

arriving continuously. Each named individual 𝑖 in 𝒮 is 

 

1 As such, should the same individual feature in more than one 

timeframe, they are considered distinct by TICO. 

considered complete upon arrival (no new facts about 

𝑖 are analysed a posteriori, guaranteeing each 

individual is only analysed once). Because 𝒮 is 

unbounded – with unknown start and ending points 

and potentially infinite –, it is necessary, at some point, 

to assume sufficient analysis has been done and 

decisions that may result in ontology evolution can be 

made. With this in mind, the analysis the individuals 

delivered by 𝒮 is executed during a particular period 

of time (or timeframe) 𝓉, at the end of which an 

evaluation of the results is made to generate 

evolutionary actions. 𝓉 represents a period in the 

stream that can be determined by the timestamps on 

the individuals themselves, a specific number of 

individuals or an actual time interval. From this setup, 

Definition 1 and Definition 2 can be elicited, such 

that:  

 

Definition 1 (RDF Stream) – An RDF stream is a 

(possibly infinite) sequence of triples <Subject, 

Predicate, Object>, in which: Subject is an IRI or 

blank node; Predicate is an IRI, and Object is a IRI, 

blank node or literal. 

 

Definition 2 (Timeframe) – An RDF stream can be 

divided into subsequences (𝓉1, 𝓉2, …, 𝓉𝑛 , …) of triples 

called timeframes. Data about a particular individual 

𝑖 (i.e., triples for which 𝑖 is the Subject) are bounded 

to a single timeframe, and arrive sequentially.  

 

The consideration noted in Definition 2 stems from 

TICO’s original application scenario – real-time 

sensor data – in which each individual encapsulates a 

sensor reading that took place at a particular moment, 

and no new data is added to previous readings. The 

remaining elements present in Figure 2 are described 

next. Each individual is only analysed once per 

timeframe, and no records about the individuals or the 

statistics they informed are maintained between 

timeframes.1 

 

Sliding Window: With the exception of 

Irreflexivity, all property axioms pertain to the relation 

between one individual and individuals other than 

itself. Since individuals arriving on a stream are 

otherwise lost after arrival, and keeping a permanent 

copy of each is not sustainable nor desirable, they are 

stored in a temporary structure upon which the 

analysis is executed – in a sliding window 𝒮𝓌 of fixed 



length. In a first-in-first-out fashion, every time 𝒮 

delivers a new individual, it is added to  𝒮𝓌, until its 

maximum size is reached – i.e., the size of the sliding 

window is measured by the total number of individuals 

it can store, regardless of how many triples compose 

them. Afterwards, for each new arrival, the oldest 

individual is removed from 𝒮𝓌 and forgotten. 

 

Property Constructor Axiom: property axioms 

𝒜𝓍 - or characteristics [23] - can be used to describe 

how the property must be employed. There are seven 

property axioms in OWL, namely: Functionality, 

Inverse Functionality, Transitivity, Reflexivity, 

Irreflexivity, Symmetry and Asymmetry. The 

definition of Reflexivity, however, is too strong to 

evaluate properly considering the constraints of this 

solution – requiring the analysis of all individuals at 

the Class level, which is not compatible with the 

property-oriented approach – and it is not in the scope 

of this paper. Focusing exclusively on the application 

of property axioms in Object Properties, 𝒜𝓍 denotes 

one of the possible OWL property axioms among: 

− FunctionalObjectProperty (𝐹), 

− InverseFunctionalObjectProperty (𝐼𝐹), 

− TransitiveObjectProperty (𝑇), 

− SymmetricObjectProperty (𝑆), 

− AsymmetricObjectProperty (𝐴𝑆), 

− IrreflexiveObjectProperty (𝐼𝑅) 

and therefore: 

𝒜𝓍 ∈ { 𝐹, 𝐼𝐹, 𝑇, 𝐼𝑅, 𝑆, 𝐴𝑆 } 

All property axioms for a given property 𝑃 can be 

expressed as first order logic implications in the form: 

𝒜𝓍(𝑃): ∀𝑖, ∀𝓍1, … , ∀𝓍𝑛 
𝐵(𝑃, 𝑖, 𝓍1, … , 𝓍𝑛)  →  𝐻(𝑃, 𝑖, 𝓍1, … , 𝓍𝑛)  

where 𝑖 is an individual in the domain of a property 𝑃. 

For example, the functionality of 𝑃 could be written as 

such an implication, in which the body 𝐵 shows the 

simultaneous application of the same property more 

than once for the same individual – 𝐵(𝑃, 𝑖 , 𝓍1, 𝓍2) ∶
 𝑃(𝑖, 𝓍1) ∧  𝑃(𝑖, 𝓍2) – and the head 𝐻 is the resulting 

implication that the ranges of said property must 

therefore be the same – 𝐻(𝑃, 𝑖, 𝓍1, 𝓍2) ∶  𝓍1 = 𝓍2 . 

 

Confirmation, Selective Confirmation and 

Counterexample: In testing a property axiom 

hypothesis 𝒜𝓍(𝑃), we assume the original ontology is 

consistent and does not neither entail 𝒜𝓍(𝑃) nor its 

negation. Contrary to Tettamanzi’s approach [9], 

substitutions occur not at the triple level, but at the 

individual level: a named individual 𝑖 counts as either 

one confirmation or one counterexample, regardless of 

how many triples compose it. 

For a named individual 𝑎0 and a property 𝑃, 

substitutions 𝑖/𝑎0, 𝓍1/𝑎1, … , 𝓍𝑛/𝑎𝑛 for 

𝐵(𝑃, 𝑖, 𝑥1, … , 𝑥𝑛) and 𝐻(𝑃, 𝑖, 𝑥1, … , 𝑥𝑛) may be found, 

such that: 

− If there’s at least one substitution for 𝐵 and the 

negation of 𝐻 under the Unique Name 

Assumption (UNA): the named individual 𝑎0 is a 

counterexample; 

− There is a substitution for both 𝐵 and 𝐻, and no 

substitution for the negation of 𝐻: 𝑎0 selectively 

confirms the hypothesis; 

− There is a substitution for 𝐵, but no substitution 

for 𝐻 nor for ¬𝐻: 𝑎0 does not contain enough 

information to selectively confirm nor deny the 

hypothesis, and therefore is a weak 

counterexample; 

− If there is no substitution for 𝐵, 𝑎0 is a 

confirmation, but not a selective one, and thus not 

considered and it is ignored. 

This distinction between confirmation and selective 

confirmation follows from the selective confirmation 

principle [22]: a selective confirmation is a 

confirmation in which 𝑖  is in the domain of 𝑃, i.e., 

selective confirmations are a subset of all possible 

confirmations.  

Considering both UNA and the fact that only 

individuals in the domain of the property are counted, 

functionality, inverse functionality, irreflexivity and 

asymmetry cannot generate weak counterexamples – 

the imposed constraints guarantee that an individual is 

always classified as either a selective confirmation or 

counterexample – there are always substitutions for 

either 𝐻 or ¬𝐻. The unknown data brought upon by 

the constraints of stream and the sliding window does 

not affect the classification of individuals, as they are 

assumed to arrive complete – furthermore, 

counterexamples rely on more individuals being 

accessible in 𝒮𝓌, meaning there is no uncertainty 

regarding their correct classification. 

On the other hand, the openness of the world and 

unknown facts about individuals in the range of the 

properties greatly affect the classification process for 

the transitivity and symmetry axioms – consider, for 

instance, that the individuals in the range of the 

properties may not be present in the sliding window 

when the query is executed, and therefore it is not 

possible to assess if that individual is also in the 

domain of the property (necessary for both axioms). 



Selective confirmations are indisputable, as their mere 

existence implies that the data was, in fact, complete. 

Counterexamples, on the other hand, imply proving a 

negative, making them particularly harder to identify 

under the constraints and assumptions of the 

methodology employed. As such, any substitutions 

that do not selectively confirm these axioms are treated 

as weak counterexamples. 

Constructor Query Pattern: To classify 𝑖 w.r.t. 

𝒜𝓍(𝑃), it is first necessary to ascertain if 𝑃 is used by 

𝑖. If that is the case, 𝑖 is then used to instantiate a 

specific constructor query pattern – a SPARQL query 

which enforces the pattern associated with 𝒜𝓍(𝑃). 

This query will enforce the substitutions mentioned 

previously, meaning reasoners are not employed. 

Code snippet 1 shows one possible query (for 

symmetry), in which iURI and pURI are known and 

correspond, respectively, to 𝑖 and 𝑃. Each 𝑖 is used to 

instantiate the query patterns only once, although it 

may influence the results of queries coming afterwards 

(as Object).  

Code snippet 1 – Query representing Symmetry 

SELECT * WHERE { 

  { 

    SELECT (COUNT(?obj) as ?B) WHERE  

    {  <iURI> <pURI> ?obj . }  

  } 

 

  { 

    SELECT (COUNT(?obj) as ?H) WHERE  

       {  <iURI> <pURI> ?obj .  

          ?obj <pURI> <iURI> . } 

  } 

  FILTER (?B = ?H) } 

When the query is executed over 𝒮𝓌, any results it 

obtains classify 𝑖 as a selective confirmation of 𝒜𝓍(𝑃) 

(i.e. both the triple and its mirror are present). In this 

case, as it is symmetry, if the query does not obtain at 

least one result, then 𝑖 is considered a weak 

counterexample of 𝒜𝓍(𝑃). 

3.2 Property Constructor Analysis 

The analysis of real-time data can unravel patterns 

regarding a property’s usage that may hint at its formal 

definition. Each property axiom, per virtue of its 

definition, corresponds to a different pattern in the data 

(cf. Table 2). Consider the generic task 

𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐴𝑥𝑖𝑜𝑚, which aims to gather statistics about 

property axioms and is summarized in Algorithm 1. 

𝐸+ and 𝐸− reflect, respectively, how many 

individuals are categorized as selective confirmations 

and strong counterexamples of 𝒜𝓍(𝑃) in 𝒮 during 𝓉. 

Support (𝐸0) is provided by the sum of 𝐸+and 𝐸− and 

reflects the total number of individuals in the domain 

of 𝑃.  

Algorithm 1 – computeAxiom 

Input: 𝒮, 𝒮𝓌,𝒜𝓍, 𝑃 
Output: 𝐸+,𝐸− 

for each 𝑖 in 𝒮 do 
if 𝒮𝓌 is full then 

pop 𝒮𝓌 

push 𝑖 to 𝒮𝓌; 

𝑑𝑃 ← get distinct properties used by  𝑖; 
if 𝑃 in 𝑑𝑃 then 

𝑄𝒜𝑥 ← get query pattern for 𝒜𝓍; 
instantiate 𝑄𝒜𝑥 using 𝑖 and 𝑃; 
if 𝑄𝒜𝑥 has results in 𝒮𝓌 then 

increase 𝐸+; 

else  

increase 𝐸−; 

Consider a 𝒮𝓌 with a size of 8, whose current 

individuals are described in Table 1. Individuals are 

complete but may contain references to individuals 

that are not in the 𝒮𝓌 at the time 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐴𝑥𝑖𝑜𝑚 is 

executed. 

Table 1 - Example individuals in a 𝒮𝓌 and respective properties 

ID hasName hasEvolution

Group 

hasType hatches 

𝒾1 Onix Onix & 

Steelix Line 

Rock, 

Ground 

Mineral EG 

𝒾2 Ditto  Normal Ditto EG 

𝒾3 Caterpie Caterpie Line Bug Bug EG 

𝒾4 Metapod Caterpie Line Bug Bug EG 

𝒾5 Tropius  Flying, 

Grass 

Grass EG, 

Mineral EG 

𝒾6 Bug EG   Caterpie, 

Metapod 

𝒾7 Grass EG   Tropius, 

Maractus 

𝒾8 Maractus  Grass Grass EG 

 

Considering the potential Inverse Functionality of 

the hasEvolutionGroup property, i.e. 

𝐼𝐹(ℎ𝑎𝑠𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐺𝑟𝑜𝑢𝑝), the individuals are 

classified as follows: 

− Samples: 𝒾1, 𝒾3 and 𝒾4, as they use the property 

being analysed. 𝐸0 = 3. 

− Selective confirmations: 𝒾1, as the domain of the 

property is only used once per value. 𝐸+= 1. 

− Strong counterexamples: 𝒾3 and 𝒾4, as they have 

the same property value for different individuals. 

𝐸−= 2. 



Table 2 – Definitions, formula, selective confirmation and counterexamples for each property axiom 

𝓐𝔁 Definition Formula Selective 

Confirmation (𝑬+) 

Counterexamples (𝑬−) Assumptions 

F 

𝑃 can have one and only 

one value per 𝑖. 𝑃 may be 

employed more than once 

by 𝑖 provided the ranges 

are the same individual. 

∀ 𝑖, 𝑦1, 𝑦2 :  
𝑃(𝑖, 𝑦1)
∧ 𝑃(𝑖, 𝑦2) 

→ 𝑦1 = 𝑦2 

𝑖 for which 𝑃 has 

either only one 

value. 

 

𝑖 for which 𝑃 is used more than once and 

the ranges of 𝑃 are distinct. 

Counterexamples of 𝐹(𝑃) are strong 

counterexamples. 

 

Partial closure of the 

world through UNA 

allows for the 

existence of strong 

counterexamples. 

 IF 

𝑃 cannot have the same 

entity on its range for 

more than one 𝑖 (e.g. a 

unique ID cannot be 

shared). 

∀ 𝑖1, 𝑖2, 𝑦: 
𝑃(𝑖1, 𝑦)
∧ 𝑃(𝑖2, 𝑦) 

→  𝑖1 = 𝑖2 

 

𝑖 for which the value 

of 𝑦 has not been the 

range of 𝑃 in any 

previously analyzed 

individual in 𝒮𝓌.  

𝑖 for which the value of 𝑦 was found in 

the range of 𝑃 of other previously seen 

individuals. Counterexamples of 𝐼𝐹(𝑃)  

are strong counterexamples. 

 

T 

If 𝑃 holds between any 

two individuals in a 

sequence, it holds between 

all individuals of that 

sequence.  

∀  𝑖, 𝑦, z
∶ 𝑃(𝑖, 𝑦)
∧  𝑃(𝑦, 𝑧)
→ 𝑃(𝑖, 𝑧) 

𝑖 for which 𝑃 has 

propagated between 

any set of three 

individuals 𝑖, 𝑦, 𝑧, 

for which a 𝑃(𝑖, 𝑧) 

exists. 

𝑖 for which 𝑃 does not propagate 

between any set of three individuals 

𝑖, 𝑦, 𝑧. Non-confirmations of 𝑇(𝑃) are 

considered weak counterexamples, as a 

strong counterexample would have to 

prove ¬𝑃(𝑖, 𝑧). 

Closed World 

Assumption allows 

for the elevation of 

non-confirmations 

to weak 

counterexamples. 

IR 

Characteristic of a 

property that cannot relate 

𝑖 with itself: the domain 

and range of the 𝑃 must 

not be the same individual. 

∀  𝑖 ∶
 ¬𝑃(𝑖, 𝑖) or 

∀  𝑖1, 𝑖2 ∶  
𝑃(𝑖1, 𝑖2)  
→  𝑖1  ≠  𝑖2 

 

𝑖 in which 𝑃 is used 

to relate with 

individuals other 

than itself. 

𝑖 in which 𝑃 is used to relate with itself. 

Counterexamples of 𝐼𝑅(𝑃) are strong 

counterexamples. 

Partial closure of the 

world through UNA 

allows for the 
existence of strong 

counterexamples. 

S 

Property which is its own 

inverse: meaning that if 

𝑃(𝑎, 𝑏), then 𝑃(𝑏, 𝑎) must 

also be true. 

∀  𝑖, 𝑦 ∶  
𝑃(𝑖, 𝑦)
→ 𝑃(𝑦, 𝑖) 

𝑖 in which the range 

of 𝑃 relates back to 

the individual 

through 𝑃. 

 

 

𝑖 for which the range of 𝑃 does not relate 

back to the individual through 𝑃. Non-

confirmations of 𝑇(𝑃) are considered 

weak counterexamples, as a strong 

counterexample would have to prove 

¬𝑃(𝑦, i). 

Closed World 

Assumption allows 

for the elevation of 

non-confirmations 

to weak 

counterexamples. 

AS 

Property which cannot be 

its own inverse: if 𝑃(𝑎, 𝑏), 

then 𝑃(𝑏, 𝑎) cannot hold 

true. 

∀  𝑖, 𝑦 ∶  
𝑃(𝑖, 𝑦)
→ ¬𝑃(𝑦, 𝑖) 

𝑖 for which the range 

of 𝑃 does not relate 

back to the 

individual through 

𝑃.  

𝑖 for which the range of 𝑃 relates back 

to the individual through 

𝑃.  Counterexamples of 𝐴𝑆(𝑃) are 

strong counterexamples. 

Partial closure of the 

world through UNA 

allows for the 

existence of strong 

counterexamples. 

Individuals 𝒾2, 𝒾5, 𝒾6, 𝒾7 and  𝒾8 do not use the 

property and are not used in the analysis of 

𝐼𝐹(ℎ𝑎𝑠𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐺𝑟𝑜𝑢𝑝). They may be used in the 

analysis of axioms for different properties. 

Consider the potential symmetry of the ℎ𝑎𝑡𝑐ℎ𝑒𝑠 

property. For 𝑆(ℎ𝑎𝑡𝑐ℎ𝑒𝑠): 

− Samples: 𝒾1, 𝒾2, 𝒾3, 𝒾4, 𝒾5, 𝒾6, 𝒾7 and  𝒾8. 

𝐸0 = 8.  

− Selective confirmations: 𝒾7, 𝒾8, as both 

ℎ𝑎𝑡𝑐ℎ𝑒𝑠(𝒾7, 𝒾8) and ℎ𝑎𝑡𝑐ℎ𝑒𝑠(𝒾8, 𝒾7 ) are 

present. 𝐸+= 2. 

− Weak counterexamples: 𝒾1, 𝒾2, 𝒾3, 𝒾4, 𝒾5 and 𝒾6 

as they use the property in relation to other 

individuals, but whether those individuals also 

use it in relation to them is not made explicit in 

the data. 𝐸−= 6. 

The details of how each property axiom is defined 

and the formula to search for in the data are described 

in Table 2.  

3.3 The Possibilistic Approach to Axiom Scoring 

The work described in [9] also introduces the 

concept of an acceptance/rejection index (ARI) and its 

application to axiom scoring: positive values 

suggesting acceptance, negative suggesting rejection 

and values close to zero indicating ignorance. For any 

𝐴𝑥(𝑃), it is possible to calculate its necessity 𝑁: the 

degree to which the axiom is corroborated by the data 

while not being contradicted by it; and its possibility 

𝛱: the degree to which it is not contradicted by the 

data. ARI can thus be calculated using [28]:  

𝐴𝑅𝐼(𝐴𝑥(𝑃))  =  𝑁(𝐴𝑥(𝑃)) +  𝛱(𝐴𝑥(𝑃)) −  1  

𝑁 and 𝛱 are calculated differently depending on the 

approach to the data being used. The original 

reasoning behind them can be found in [28]. For the 



purposes of this paper, the computation of 𝑁 and 𝛱 

depends on the relative weight given to selective 

confirmations and counterexamples.  

If counterexamples are strong, a single 

counterexample is sufficient to quash 𝑁, regardless of 

how many selective confirmations are found. Ergo, 

counterexamples have more weight in the decision-

making process than selective confirmations – when 

strong counterexamples are available, the strong form 

of 𝑁 and 𝛱 is applied, as follows [28]: 

𝑁(𝐴𝑥(𝑃)) = {
1, 𝑖𝑓 EAx(P)

− = 0

0, 𝑖𝑓 𝐸𝐴𝑥(𝑃)
− > 0

 

and 

𝛱(𝐴𝑥(𝑃)) = 1 − √1 − (
EAx(P)

+

EAx(P)
0 )

2

  

in which 𝐸𝐴𝑥(𝑃)
0  is the total number of individuals in 

the domain of 𝑃, corresponding to the sum of 𝐸𝐴𝑥(𝑃 )
+  – 

the number of selective confirmations, – and 𝐸𝐴𝑥(𝑃)
−  – 

the number of counterexamples. 

In the cases in which counterexamples are not 

sufficient to exclude a hypothesis – being weak 

counterexamples – the possibility of an axiom being 

true is directly related to the existence of selective 

confirmations. 𝑁 and 𝛱 are calculated according to 

[28]: 

𝑁(𝐴𝑥(𝑃)) = √1 − (
E𝐴𝑥(𝑃)

−

EAx(P)
0 )

2

 

and 

𝛱(𝐴𝑥(𝑃)) = {
0, 𝑖𝑓 EAx(P)

+ = 0

1, 𝑖𝑓 𝐸𝐴𝑥(𝑃)
+ > 0

 

This second set of formulas ensures the decision is 

influenced more by the selective confirmations – with 

𝛱 being at its highest whenever selective 

confirmations are present. 𝑁 cannot be set to 0, as 

counterexamples are weak and the assumption that 

they are, in fact, actual counterexamples cannot be 

made under the Open World Assumption (OWA). For 

the sake of simplicity, the first set of formulas are 

considered the stronger forms and the second the 

weaker forms, after the strength of their respective 

counterexamples. 

Table 3 summarizes which forms of 𝑁 and 𝛱 (ARI 

form for brevity) to use per each property axiom. 

These reflect not only the assumptions made in Table 

2, but also the constraints of the approach itself (under 

UNA, weak confirmations become strong for 

functionality and inverse functionality, for example). 

Table 3 – ARI form to apply for each property axiom  

Property Axiom ARI form 

Functionality Strong 

Inverse Functionality Strong 

Transitivity Weak 

Symmetry Weak 

Asymmetry Strong 

Irreflexivity Strong 

 

Returning to the example in Table 1, not all 

individuals in the domain or range of the hatches 

property are equally available to be analysed – e.g. 

there is mention of an individual “Mineral EG” that is 

not among the individuals currently in 𝒮𝓌. One can 

see that this property relates individuals in a 

symmetrical fashion: 𝒾8 relates to 𝒾7 using this 

property and vice-versa. These would, indeed, count 

as selective confirmations of 𝑆(ℎ𝑎𝑡𝑐ℎ𝑒𝑠) (and for 

𝑇(ℎ𝑎𝑡𝑐ℎ𝑒𝑠)). However, all individuals in the sliding 

window use the property, which results in the data in 

Table 4. 

Table 4 - Axiom scoring for the hatches property using the strong 

forms of 𝑁 and 𝛱 

𝑨𝒙(𝒉𝒂𝒕𝒄𝒉𝒆𝒔) 𝑬+ 𝑬− 𝑵 𝜫 ARI 

F 6 2 0 0,34 -0,66 

IF 5 3 0 0,22 -0,78 

AS 3 5 0 0,07 -0,93 

IR 8 0 1 1 1 

 

By not having information about individuals such 

as Mineral EG and Ditto EG, it is not possible to have 

all the data needed for the remaining individuals to 

count as selective confirmations. In the cases of T and 

S, incomplete data may lead to false negatives, and 

selective confirmations are much harder to find as they 

require more individuals to be on the same sliding 

window. When using the weaker forms to compute 

ARI for T and S, the results reflect the potential for 

those axioms to be present (see Table 5). 

Table 5 - Axiom scoring for the hatches property using the weak 

forms of 𝑁 and 𝛱 

𝑨𝒙(𝒉𝒂𝒕𝒄𝒉𝒆𝒔) 𝑬+ 𝑬− 𝑵 𝜫 ARI 

T 5 3 0,93 1 0,93 

S 2 6 0,48 1 0,66 

 

While ARI can be updated with each new individual 

on the stream, it only influences the ontology 

evolution process at the end of 𝓉. Algorithm 2 shows 

how the decision to include or exclude a property 

axiom from an ontology can be made, considering the 



existence of different thresholds for the weak and 

strong forms of ARI (𝑤𝑓𝑡 and 𝑠𝑓𝑡, respectively). 

Algorithm 2 – ARI Decision and evolving ontology 

Algorithm is executed at the end of 𝓉. 
Input: 𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦, set of <𝒜𝓍(𝑃), 𝐸+, 𝐸−>, 𝑠𝑓𝑡, 𝑤𝑓𝑡 

Ouput: 𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦 (evolved) 

for each 𝒜𝓍(𝑃) do 
if 𝒜𝓍 one of { 𝑇, 𝑆} then 

compute 𝑁(𝐴𝑥(𝑃)) using weak form; 
compute 𝛱(𝐴𝑥(𝑃)) using weak form; 
t ←  𝑤𝑓𝑡; 

else 

compute 𝑁(𝐴𝑥(𝑃)) using strong form; 
compute 𝛱(𝐴𝑥(𝑃)) using strong form; 
t ←  𝑠𝑓𝑡; 

 

𝐴𝑅𝐼(𝐴𝑥(𝑃)) ←  𝑁(𝐴𝑥(𝑃))  +  𝛱(𝐴𝑥(𝑃)) –  1; 
 

if 𝐴𝑅𝐼(𝐴𝑥(𝑃))  >= t then 
add 𝒜𝓍(𝑃) to 𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦; 

else 

remove 𝒜𝓍(𝑃) from 𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦; 

3.4 Applying ARI to evolving ontologies 

Considering the ontology evolution application 

scenario, in which a potential new version (or at least 

for of some of its axioms) is created at the end of each 

𝓉, any conclusion reached over the application of the 

queries must be made in the context of available 

knowledge – i.e., previous known versions of the 

axioms in the ontology. As such, we use a weighted 

average between the newly calculated ARI and the 

previous state of the axiom, which will be referred to 

as Evolving ARI (𝐴𝑅𝐼𝑒). 

 
𝐴𝑅𝐼𝑒(𝐴𝑥(𝑃)) =

= {
𝐴𝑅𝐼(𝐴𝑥(𝑃)), 𝓉 = 0

𝑑(𝐴𝑥(𝑃))
𝓉−1

∗ 𝑤𝑝 + 𝐴𝑅𝐼(𝐴𝑥(𝑃)) ∗ (1 − 𝑤𝑝), 𝓉 ≥ 1
 

 

in which: 

1. ARI is the Acceptance/Rejection Index 

calculated during 𝓉; 

2. 𝑑 (𝐴𝑥(𝑃))
𝓉−1

 is one of [0,1], depending on 

whether the axiom in question was (or was not) 

missing from the previous known version of the 

ontology; 

3.  𝑤𝑝  is the relative weight of previous knowledge 

[0-1]. Lower weights should allow for more 

versatility in the evolutionary process, favouring 

new axioms, while higher ones value a more 

conservative approach. 

A 𝑤𝑝 of 0 would imply that previous knowledge 

does not affect the current decision-making, but a 

 𝑤𝑝  of 1 would equally mean that no change to the 

axioms in the ontology would ever be possible, 

regardless of how much evidence for it is found. 

Both ARI and 𝐴𝑅𝐼𝑒 are on the [-1,1] interval, with 

positive results suggesting acceptance of the axiom 

and the inverse for negative results. When it comes to 

decision-making, however, this may not be sufficient 

(maybe not all positive results are strong enough to 

force asserting an axiom, and it may be interesting to 

allow for errors in the data to exist). For strong-form 

using properties, the decision 𝑑 to accept or reject an 

axiom is informed by: 

𝑑(𝐴𝑥(𝑃)) = {

  𝑎𝑐𝑐𝑒𝑝𝑡, 𝐸𝐴𝑥(𝑃)
+ >  𝑐𝑓𝑡    

𝑎𝑐𝑐𝑒𝑝𝑡, 𝐸𝐴𝑥(𝑃)
+ ≤  𝑐𝑓𝑡   𝑎𝑛𝑑 𝐴𝑅𝐼 >  𝑠𝑓𝑡

𝑟𝑒𝑗𝑒𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

in which E𝐴𝑥(𝑃)
+  is the percentage of selective 

confirmations (w.r.t. the Support), 𝑐𝑓𝑡 the minimum 

percentage of selective confirmations required, and 𝑠𝑓𝑡 

is the threshold to be applied for the strong form of 

ARI computation. For weak-form using properties 

(i.e., T and S) the decision is informed exclusively by 

ARI and a minimum threshold 𝑤𝑓𝑡. Since the 

existence of counterexamples does not have the same 

weight as for the strong form, the reasoning to include 

the percentage of support in the decision-making 

process does not apply. As such, axiom acceptance is 

informed by: 

𝑑(𝐴𝑥(𝑃)) = {
  𝑎𝑐𝑐𝑒𝑝𝑡, 𝐴𝑅𝐼 >  𝑤𝑓𝑡    

𝑟𝑒𝑗𝑒𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

As F and T axioms are incompatible, and F is 

computed on stricter terms (using the stronger-form), 

F is considered to take precedence over T in case of 

both being flagged for inclusion. As such, whenever 

the algorithm concludes that the same property could 

be both F and T, it will only classify it as F. Similarly, 

an axiom cannot be simultaneously T, S and IR. In 

these cases, precedence is given to T and S. 

The following sections will illustrate the application 

the possibilistic approach to axiom scoring in two 

different scenarios: 

- Experiment I: in this experiment, ARI will be 

compared to traditional information retrieval 

metrics to ascertain its applicability to axiom 

scoring in an RDF stream scenario. For this 

purpose, existing ontologies for which the 

property axioms are known will be used. This 

experiment will also assess the effects of 

different sliding window sizes in the proper 



classification of individuals as selective 

confirmations or counterexamples. 

- Experiment II: the experiment will be 

conducted using an ontology automatically 

generated from publicly available datasets to 

establish the applicability of the solution in an 

ontology evolution/learning scenario. 

Information regarding property axioms is not 

known a priori, and the suitability of the 

proposed axioms will be analysed by 

employing a reasoner and verifying if 

inconsistencies are introduced. This 

experiment will show the suitability of the 

solution in cases in which the data is both 

potentially incomplete and with errors. 

Furthermore, the individuals analysed will be 

segregated into different, pre-established 

timeframes, allowing for the application of 

Evolving ARI between them. 

4. Experiment I: Effects of Sliding Window size 

and suitability of ARI for axiom scoring 

To establish the strength of the devised solution, 

experiments were first conducted against a dataset in 

which some property constructors were previously 

known. With the ontologies known and the datasets 

curated, there is no expectation of counterexamples to 

be found for the assertions present in the ontology.  

For a better understanding and discussion of the 

results, they have been separated according to the 

following questions: 

1. What should be the size of the sliding window in 

order to effectively learn property axioms and 

how does the number of samples (i.e., individuals 

that use the property under scrutiny) in the stream 

influence it? Furthermore, the following 

subquestion will be investigated: 

a. How does ARI compare with precision, recall 

and f-measure? How does it compare to the 

application of selective axiom confirmations 

exclusively? 

2. How well do the weak forms of 𝑁 and 𝛱 

compensate for the difficulty in identifying 

selective confirmations under OWA? 

The experiments described below were carried out 

using the set of ontologies in Table 6, which were 

selected for their property axioms and population 

sizes.  

Table 6 – Properties and their respective axioms by class  

C
M

T
 [

2
9
] 

Class Property 𝑨𝒙 

Paper 

(4301 

individuals) 

hasAuthor F 

hasDecision F 

readByMetaReviewer F 

rejectedBy F 

Person 

(4255 

individuals) 

addedBy F 

addProgram 

CommitteeMember 

IF 

assignedByReviewer F 

assignExternalReviewer IF 

rejectPaper IF 

writePaper IF 

writeReview IF 
W

IN
E

 

 [
3
0
] 

Region 

(36 individuals) 

adjacentRegion S 

Region (as 

range) 

locatedIn T 

P
la

n
t 

[3
1
,3

2
] 

Thing  

(82 individuals) 

part_of/has_part T 

 

Each populated ontology was split into samples of 

3000 random individuals, which are then sequentially 

subjected to the analysing queries. To simulate an 

RDF stream scenario, the individuals of the ontology 

are queued (and dequeued when necessary) into the 

sliding window one at a time. Queries are executed 

over the sliding window, guaranteeing they never have 

access to all existing individuals in the ontology 

simultaneously and therefore operate under the 

original restrictions of the TICO solution. Because it 

is not possible for one property to employ all property 

axioms simultaneously, we can restrict the analysis to 

only individuals that make use of the properties shown 

in Table 6 for performance reasons – and individuals 

that work as confirmations for those properties can 

work as counterexamples for others. 

 For the purposes of this work, a modified version 

of the queries described in [23] are used as 

confirmation queries, in which the differences account 

for the streaming nature of the use case and the 

granularity of the search (here at the individual level 

and not at the triple level). Two different types of 

queries can be used for each property axiom: the 

confirmation queries (CQ), which ascertain if a 

property axiom could be present, and the negation 

queries (NQ), which ascertain the opposite. Each class 

of query (CQ or NQ) provides its own confusion 

matrix, and the meaning of their solutions varies 



depending on whether the true class corresponds to the 

existence or non-existence of the axiom. This 

reasoning is illustrated in Table 7. 

Table 7 – Confusion Matrix and respective query results 

 Has 

solution? 

Target 

AXIOM ¬AXIOM 

A
p

p
li

e
d

 Q
u

e
r
y

 

CQ 

Yes 
True Positive 

(TP) 

False Positive 

(FP) 

No 
False Negative 

(FN) 

True Negative 

(TN) 

NQ 

Yes 
False Positive 

(FP) 

True Positive 

(TP) 

No 
True Negative 

(TN) 

False Negative 

(FN) 

 

The confirmation query looks for positive cases of 

functionality: if a given individual is compatible with 

the axiom, either by having only one use of the 

property or the object being a duplicate. An individual 

that can be selected with this query is a selective 

confirmation of the functionality axiom. If the 

property is indeed functional – i.e., if the true class in 

Table 7 is AXIOM – then this result is a true positive. 

On the other hand, if the axiom was present but the 

query does not yield any results, it is a false negative. 

If the true class is ¬AXIOM – i.e., it is known that the 

functionality axiom is not present – and the query 

returns a result, it is a false positive. Following the 

same reasoning, an empty set here is the correct result 

for the individual and therefore a true negative. 

The negation query, on the other hand, looks for 

explicit counterexamples: for an individual to result in 

a non-empty set when queried, it must definitively 

have at least two uses of the property, and their objects 

be distinct. If the true class in Table 7 is AXIOM and 

the negation query returns a non-empty set of 

solutions, it must forcefully be a false positive – there 

should not have been any solutions for the query, as 

functionality is present. If it returns an empty set, it is 

a correct identification and a true negative. In the same 

vein, the true class is ¬AXIOM – and the query has 

results, it is doing so correctly and, therefore, a true 

positive. If it returns none – claiming the axiom is 

present when it should not be – it accounts for a false 

negative. 

Code snippet 2 and Code snippet 3 show one 

possible difference between confirmation and 

negation queries, using the functionality axiom as an 

example. Each query is executed for each individual 

being tested and generates a result set with a size of 

either 0 or 1 query solutions. 

Code snippet 2 – Confirmation Query for Functionality 

SELECT ?o1 WHERE  

{ 

   <iURI> <pURI> ?o1. 

   FILTER NOT EXISTS  

{ <iURI> <pURI> ?o2.  

      FILTER ( ?o1 = ?o2 ) } 

}  

Code snippet 3 – Negation Query for Functionality 

SELECT ?o1 WHERE  

{ 

   <iURI> <pURI> ?o1. <iURI> <pURI> ?o2.  

   FILTER ( ?o1 != ?o2 )  

}  

 

Traditional information retrieval statistics, e.g. 

precision, recall and f-measure are computed as 

follows: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
  𝑟𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

 

𝑓 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 ∗  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
 

To ascertain how “quickly” and effectively the 

queries can identify the possibility/probability of an 

axiom being present for a given individual, three 

different sliding windows sizes are analysed: 10, 50 

and 100 individuals (corresponding, roughly, to 0.2%,  

2.3% and 4.7% of all individuals in the sample, 

respectively). Theoretically, the more individuals in 

the sliding window that can be used to answer a query, 

the more precise the classification of each individual 

as a selective confirmation or counterexample should 

be. However, for performance reasons, it is interesting 

to see if reliable conclusions can be made from as little 

data as possible. 

While all properties used by each class were 

studied, for the sake of brevity, we will focus on 

presenting the results for a property from a class with 

a high variance in the usage of its properties – i.e., not 

all individuals of the same type will use the same 

properties – and those for a class with lower variance, 

in which all individuals always use the same 

properties. 

4.1 Section I – Effects of window size and relevance 

of individuals in axiom support 

This section analyses the effects of both the window 

size and the influence of support in the sample. As 

previously explained, for an individual to constitute 

support, it must be the domain of the property being 

investigated. However, even if a stream is comprised 



only by individuals of the same type, there is no 

guarantee that all of them will employ the same 

properties. For the following experiments, two classes 

from the CMT ontology were selected – Paper and 

Person – as the first always employs all its properties 

and the second has more variety to it, with some 

properties being used in a very low fraction of its 

individuals. To ascertain the influence of the window 

size (𝑤𝑠) of the 𝒮𝓌, three different values (of 10, 50 

and 100 individuals) are applied to each of the classes. 

Considering that the dataset is clean, and no 

counterexamples can be found, the results in favour of 

an axiom are fairly evident regardless of the window 

size applied (perfect precision combined with 

necessity, possibility, and ARI of 1). However, it is 

important to investigate the more interesting cases in 

which counterexamples are indeed possible, by 

analysing the evolution of the metrics in the cases 

where an axiom is known not to be present.  

Table 8 – Number of individuals on the stream to analyse, window 

sizes, and percentage of support in each sample for each of the 

studied properties  

Variable Value 

individuals analysed 2150 

𝑤𝑠 (size of 𝒮𝓌) 10 / 50 / 100 

Property % of Support 

readByMetaReviewer 100% 

rejectedBy ≈50% 

addedBy ≈25% 

 

The values presented in Table 8 are applied on the 

following experiments, assessing how the relevance of 

each individual for support affects the evolution of the 

metrics and the potential results. The following graphs 

show the evolution of specific measure in function of 

the number of individuals analysed. 

The readByMetaReviewer property does not feature 

any of the explored property axioms, but it is present 

in all individuals of the Paper class. The study of the 

evidence for and against the IF axiom for this property 

shows how the proper identification of each individual 

as a selective confirmation or a counterexample is 

affected by the changes in window size – that as more 

individuals are analysed, it becomes apparent that the 

same property is used by more individuals with the 

same value – and the number of counterexamples 

starts to increase. Most of the changes occur when 

analysing the first 60 individuals out of the sample, as 

shown in Figure 3, with most individuals (around 

94%) being incorrectly categorized as selective 

confirmations due to lack of information to the 

contrary. However, by increasing 𝑤𝑠 to 50, the 

categorization improves significantly: the number of 

selective confirmations lowers to around 96%, and to 

90% when 𝑤𝑠 is increased to 100. With recall being 

100% regardless of the window size chosen, Figure 4 

compares the evolution of precision, showing similar 

improvements although with a high propensity for 

misclassification (stabilizing around 10%). 

 
Figure 3 – Evolution of the selective confirmations of IF for the 

readByMetaReviewer property with 𝑤𝑠  of 10, 50 and 100 

 
Figure 4 – Evolution of the precision of IF for the 

readByMetaReviewer property with 𝑤𝑠  of 10, 50 and 100 

Figure 5 – Evolution of 𝑁, 𝛱 and ARI of IF for the 

readByMetaReviewer property with 𝑤𝑠  of 10 (first graph), 50 

(second graph) and 100 (third graph) 
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ARI is always steadily negative, with the 

improvements in the classification of individuals 

changing how negative it skews, improving from -0.36 

to -0.71, as shown in Figure 5 (featuring only the first 

60 individuals, after which the metrics stabilize). The 

metrics evolve differently when not all individuals in 

the stream are considered support.  

Consider the results in Figure 6, which were 

obtained when searching for inverse functionality of 

the rejectedBy property, which is used by 1279 

individuals of the Paper class (≈50%). 

 
Figure 6 – Evolution of selective confirmations of IF for the 

rejectedBy property with 𝑤𝑠 of 10, 50 and 100 

Selective confirmations for the IF axiom start high 

(at 100%), as a single individual with a single use of 

the property cannot be flagged as a counterexample. 

After analysing 60 individuals, counterexamples 

account for more than 70% of the samples; 80% after 

120, and their number finally stabilizes around 85% as 

the analysis progresses. With a sliding window of 50, 

there should be more available evidence for each query 

to ascertain if the axiom is present. This seems indeed 

to be the case: while the 70% threshold obtained with 

a 𝑤𝑠 of 10 is equally obtained after analysing around 

60 individuals, with a 𝑤𝑠 of 50 the 70% threshold is 

reached after analysing only 16 samples. The 

percentage of counterexamples also stabilizes at a 

higher point (at around 94%, after circa 75 

individuals). Increasing 𝑤𝑠 to 100 shows very minor 

increases in both speed and accuracy. The number of 

counterexamples on the sample reaches the 70% 

threshold earlier than with 𝑤𝑠 of 50 – after 12 

individuals – and stabilizing at a negligibly slightly 

higher point – at 97%.  

Precision, recall and f-measure show similar 

evolution patterns as those of support, as seen in the 

first graph of Figure 7. All metrics start low, with a 

quick but unsteady increase until around 50 

individuals have been analysed, and equally 

stabilizing as the analysis progresses. 

 

 
Figure 7 - Evolution of precision, recall and f-measure of IF for the 

rejectedBy property with 𝑤𝑠 of 10 (first graph) and 50 (second 

graph) 

Precision peaks at around 85%, as expected from 

the results presented in Figure 6. Recall stabilizes 

around 45% and f-measure at 60%. With a similar 

evolution to that of the support for the same window 

size, as illustrated in the second graph of Figure 7, 

similar levels of precision, recall and f-measure are 

obtained but with their values stabilizing higher and 

later (f-measure reaching 60% after circa 40 samples 

and 65% after 100). This effectively shows that by 

having a bigger sliding window – i.e., by having more 

individuals available for each query to search in – it is 

possible to track more nuances in the data and better 

classify each individual as a selective confirmation or 

counterexample. In further increasing 𝑤𝑠 to 100, no 

significant improvements are made. Precision, recall 

and f-measure stabilize faster, but improvements 

account for little more than 1%. 

If one were to trust these metrics by themselves, it 

could be concluded that the approach can identify if 

the property is not IF with a certainty of 65%. Here, 

necessity, possibility and ARI can provide a faster and 

more complete idea of the classification that must be 

done when giving the proper weight to the 

counterexamples. The following Figures illustrate the 

evolution of ARI using the same three window sizes 

as before. 

Figure 8 shows necessity starting at 1, as only one 

individual has been analysed, and it is not a 

counterexample. However, as the second individual 

provides a counterexample, it immediately drops and 

stays at 0. Possibility, as determined by the number of 

selective confirmations, suffers a gradual loss as less 

and less selective confirmations are found in the data, 

and stabilizes very close to 0 (but with a positive value, 
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as individuals that do not explicitly contradict the 

axiom can still be found) after around 50 individuals. 

 
Figure 8 – Evolution of 𝑁, 𝛱 and ARI of IF for the rejectedBy 

property with 𝑤𝑠 of 10 

ARI, as a function of the other two metrics, shows 

a similar evolution from 50 individuals onwards, 

stabilizing very close to -1, which strongly advocates 

for axiom rejection, as seen in Figure 9. 

 
Figure 9 - Evolution of 𝑁, 𝛱 and ARI of IF for the rejectedBy 

property with 𝑤𝑠 of 50 

There are no discernible changes in the evolution of 

necessity, possibility and ARI when the window size 

is increased, as the number of selective confirmations 

and counterexamples is not as relevant for these 

metrics as the mere presence of counterexamples is. 

The metrics support the reasoning that a bigger 

window provides a better classification of each sample 

as either a selective confirmation or a counterexample, 

but only to a certain extent.  

 
Figure 10 - Evolution of 𝑁, 𝛱 and ARI of IF for the rejectedBy 

property with 𝑤𝑠 of 100 

Similar to support and information retrieval metrics, 

Figure 10 displays how ARI evolves slightly faster but 

is not significantly improved. Unlike the Paper class 

previously explored, Person has even more variance in 

the application of its properties – e.g. the property 

addedBy is used by 734 of the 3000 individuals studied 

(≈25%), while rejectPaper is used only by 4 of them 

(≈0.1%) – although it is relevant to note that 

rejectPaper is the inverse property of rejectedBy, 

which is more widely used. While this change in 

frequency affects the evolution of the metrics being 

studied, the results follow the same trends as before: 

by allowing the queries to access more individuals, 

metrics are improved, but only until a certain point. 

The speed at which they improve, however, is indeed 

affected by the variety in the data, as shown in Figure 

11. 

Figure 11 - Evolution of confirmations of IF for the property 

addedBy with 𝑤𝑠  of 10, 50 and 100 

The results show that if potential variations in use 

of the properties can be expected, increasing 𝑤𝑠 allows 

for better classification as selective confirmation or 

counterexample. The same conclusion can be drawn 

from the analysis of the differences in precision, recall 

and f-measure for the three values of 𝑤𝑠, shown in 

Figure 12. 

 

 
Figure 12 - Evolution of precision, recall and f-measure of IF for 

the property addedBy with 𝑤𝑠  of 10 (first graph), 50 (second 

graph), and 100 (third graph) 
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Furthermore, it is important to note that for the 

smaller values of 𝑤𝑠, the evolution of the metrics is not 

monotonic (see the first graph of Figure 12). This 

suggests a lower 𝑤𝑠 can be detrimental when parsing 

a large number of individuals. 

Finally, the changes in the evolution of necessity, 

possibility and ARI follow the information retrieval 

ones, by showing how a small window size for a type 

with high property variety takes longer to stabilize, as 

seen in Figure 13. 

  
Figure 13 - Evolution of 𝑁, 𝛱 and ARI of IF for the property 

addedBy with 𝑤𝑠  of 10 

However, while there are significant improvements 

when 𝑤𝑠 is increased from 10 to 50, the same cannot 

be said from increasing it from 50 to 100 (much like in 

the studies for the Paper class), as seen in Figure 14.  

 
Figure 14 - Evolution of 𝑁, 𝛱 and ARI of IF for the property 

addedBy with 𝑤𝑠  of 50 (first graph) and 100 (second graph) 

In conclusion, in the cases where there is a very 

limited number of counterexamples, ARI may never 

reach its lower threshold; but remains reliably 

negative, even when f-measure is at its lowest – 

showing that the possibilistic approach is indeed 

robust and applicable when scoring axioms in streams 

and with limited data, and more so than a strictly 

probability-based one. It nonetheless benefits from 

increased number of counterexamples, implying that a 

𝑤𝑠 of 50 may provide sufficiently reliable results while 

also accounting for the negative effects of variations 

in property use. 

Depending on the completion of the data, the 

incompleteness of the ontology, or simply because no 

such cases have ever been documented – the same 

sample can easily selectively confirm multiple 

property axioms. Consider, for example, that 

falsifying both F and IF axioms rely on the existence 

of more than one sample, or at least that the one sample 

uses the same property more than once. This is an 

unreasonable expectation to have about the data, and 

any decision to include the axioms needs to consider 

the fact that absence of evidence is not evidence of 

absence.  

Since a bigger window size allows for better 

categorization of samples, it is possible to see the 

effect in evolution of IF’s ARI for the functional 

property hasAuthor. Consider the difference between 

the graphs in Figure 15.  

 
Figure 15 - Evolution of 𝑁, 𝛱 and ARI of IF for hasAuthor with 

𝑤𝑠  of 10 (first graph) and 50 (second graph) 

Not only is the number of counterexamples very 

low, but they also take some time to occur in the 

stream. This means that while there are 

counterexamples, since there are so many sequential 

selective confirmations – and they continue even after 

a few counterexamples are encountered – 𝑁 may drop 

to 0, and 𝛱 remains high to accommodate for potential 

errors in data. Therefore, while ARI skews negative, it 

remains relatively close to 0 (full uncertainty). 

However, it is once again interesting to note the 

benefits of the bigger window in the correct 
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categorization of samples, as it allows for the negative 

ARI to be reached sooner (and more negative) as the 

window size increases. 

Again, it is important to reiterate that this is a 

fortunate case: while the counterexamples may have 

taken longer to arrive and be few, they were still 

identifiable. When such is not the case, it has to be 

considered that just because a property is only used 

once per sample, it does not necessarily mean that it 

must certainly be both functional and inverse 

functional (although it is possible to be both at once) – 

even if their 𝛱, 𝑁 and ARI are always at 1.  

4.2 Section II – Using the Weak Forms of 

Possibility and Necessity 

Transitivity was studied using the Wine and Plant 

ontologies, with similar results. Since the Wine 

ontology had more available individuals with 

transitive properties (a total of 82), the following 

results reflect those exclusively. 

 
Figure 16 - Evolution of confirmations and counterexamples of T 

for the property locatedIn with 𝑤𝑠  of 50 

Figure 16 shows how the lack of explicit 

confirmations affects the support for an axiom. It was 

necessary to analyse at least 30 individuals until a 

confirmation could be found, with the number 

increasing steadily until it reaches around 15%. 

Information retrieval metrics, as seen in Figure 17, 

also illustrate the clear lack of selective confirmations, 

which informed the decision to apply the weak forms 

of 𝛱 and 𝑁. 

 

Figure 17 - Evolution of information retrieval metrics of T for the 

property locatedIn with 𝑤𝑠 of 50 

By giving more weight to the very hard to find 

selective confirmations than to the very easily 

incorrectly identified counterexamples, Figure 18 

shows it is possible to obtain a positive, albeit 

conservative, ARI. 

 
Figure 18 - Evolution of the weak forms of 𝛱, 𝑁 and ARI of T for 

the property locatedIn with 𝑤𝑠 of 50 

Should the strong form of possibility and necessity 

been applied instead, ARI would tend towards 

extremely negative (circa -1), even if the possibility 

was seen increasing (very) slowly. 

4.3 Discussion 

Of the three options in window size studied – of 10, 

50 and 100 individuals – the results show that there is 

a significant improvement between going from 10 to 

50, but hardly any from 50 to 100. We find 50 

individuals to be a good middle ground for these 

datasets; while the results can be improved by 

employing bigger sliding windows, they also validate 

our assumption that it is possible to efficiently learn 

property axioms from a relatively small number of 

samples. 

The observation of the previous results show that 

the computation of ARI contains more information 

than that just the percentage of selective confirmations 

and could potentially be used in its place. Additionally, 

ARI shows better performance than traditional 

information retrieval metrics, achieving sharper 

results and considerably earlier. However, since the 

existence of a single counterexample immediately 

skews ARI towards negative, EAx(P)
+  cannot be 

altogether excluded, especially considering that 

potential errors in data could be classified as 

counterexamples. Furthermore, the results suggest that 

some axioms benefit from the application of a higher 

threshold for ARI than others. 

For axioms that are relatively easy to falsify, but not 

so easy to prove, like F and IF, a higher threshold for 

ARI should allow for some errors in the data while still 

strongly advocating for the inclusion of said axioms. 

On a window size of 50 individuals, we argue that ARI 
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should be of 1 for an axiom to be considered for 

inclusion, but have a proportion of EAx(P)
+  of at least 

95%. Alternatively, for axioms for which there may be 

an overabundance of negatively-identified 

counterexamples and therefore make use of the weak 

forms of 𝑁 and 𝛱, a lower threshold for ARI should be 

considered: allowing an axiom to be considered for 

inclusion even though there is relatively little evidence 

for it. For these, we propose a threshold for ARI of 

around 0,5. 

There is a second part to the discussion of the 

existence of counterexamples: axioms that are the 

opposite of one another. While a property can be both 

functional and inverse functional at the same time, it 

cannot be both symmetrical and asymmetrical. 

Furthermore, while a selective confirmation of S is a 

counterexample of AS, a selective confirmation of 

either does not necessarily mean that the property 

axiom must to be present; any decision-making 

processes need to take this in consideration. This is 

especially evident in the case of property hasDecision 

of the CMT ontology, which is functional, but shows 

𝑁, 𝛱 and ARI of 1 for F, IF, AS and IR. 

5. Experiment II: Accommodating for errors in 

data and the effects of previous knowledge in 

axiom-inclusion decisions 

The following experiment pertains to show the 

applicability of the solution for the purpose of 

ontology enrichment/evolution. This is done by 

analysing a stream of individuals in which not only 

new properties are added over time, but the known 

properties are also applied in different ways to 

describe the data. As such, a suitable dataset needs to 

support the following: (1) have several properties that 

connect the individuals in diverse ways, such that all 

different property axioms being studied could be 

tentatively discovered, (2) the application of said 

properties should change over time, as the domain 

naturally evolves, (3) the property axioms are not 

previously known.  

The goal of this experiment is to answer the 

following questions: 

1. When combining ARI and Support, are any 

inconsistencies introduced? To which extent? 

Are the inconsistencies the result of incorrect data 

or valid, but marginal uses of the properties? 

2. If previous knowledge is considered in the 

decision to include/exclude a property axiom, 

does it prevent or increase the amount of 

inconsistencies introduced? 

The ontologies in use pertain to the Pokémon 

domain as it is described in Wikidata [33]. Pokémon is 

a series of games about cataloguing fictional wild 

creatures of the same name. Over the years, several 

games have been released, and each generation of 

games – a total of nine, at the time of writing, – 

introduces (and refines) mechanics, regions and 

creatures. Much of this information is publicly 

available on Wikidata. New subproperties of those 

present in Wikidata were created (but not 

characterized) that pertain to specific relationships in 

the Pokémon domain – Wikidata’s properties, by 

design, are high level and lack the nuance necessary to 

describe specific domains beyond very simple 

connections between its individuals (e.g. part of, 

instance of).  

The experiments detailed below show how axiom 

scoring can be used to determine which axioms could 

be associated with each property, and how their usage 

changes with each new generation of games. Table 9 

shows the values and thresholds employed, and the 

application of both ARI and the percentage of selective 

confirmations (𝑐𝑓𝑡) for axiom scoring are described 

below. Each generation will be analysed as a different 

version of the ontology, provided by its own 

timeframe, and introductions and changes to its 

properties are documented. As previously established, 

an acceptation threshold of 0.5 will be used for both 

strong and weak forms of ARI (𝑠𝑓𝑡 and 𝑤𝑓𝑡, 

respectively) and a window size (𝑤𝑠) of 50.  

Table 9 - Values and thresholds employed in the experiments 

Variable Description Value 

𝑐𝑓𝑡 Percentage of selective confirmations 

w.r.t. support 

95% 

𝑠𝑓𝑡 Threshold for the Strong form of ARI 0.5 

𝑤𝑓𝑡 Threshold for the Weak form of ARI 0.5 

𝑤𝑠 Sliding window size 50 

 

5.1 Section I – ARI and Support 

5.1.1 Generation I  

Generation I (Gen I) features games with relatively 

simple mechanics. It introduces one region, one 

Pokédex (the Pokémon encyclopaedia) and 151 

Pokémon. Using the data available on Wikidata, 

enough information was extracted to ascertain the 

properties described below. Table 10 shows the 



names, percentage of selective confirmations, 

proposed property axioms and ARIs for each.  

Table 10 – Gen I properties 

Property Name Axiom %Cf ARI 

bordersWith T 51% 0.87 

hasEvolutionGroup AS 100% 1 

 F 100% 1 

hasMoveType F 100% 1 

 AS 100% 1 

 IR 100% 1 

hasPart IF 100% 1 

 AS 100% 1 

hasPokedexEntry F 100% 1 

 IF 100% 1 

 AS 100% 1 

 IR 100% 1 

introducedIn F 100% 1 

 AS 100% 1 

 IR 100% 1 

locatedIn F 100% 1 

 AS 100% 1 

 IR 100% 1 

partOf F 100% 1 

 AS 100% 1 

 IR 100% 1 

presentIn F 100% 1 

 AS 100% 1 

 IR 100% 1 

hasValue F 100% 1 

hasHeight F 99% -0.11 

hasWeight F 96% -0.28 

hasFacet F 100% 1 

hasName F 100% 1 

hasPokedexNumber F 100% 1 

hasColor F 99% -0.16 

 

bordersWith, a property that establishes a 

connection between two locations (e.g. cities or roads) 

that share a border, seems a target candidate for S, but 

the results do not support it (selective confirmations 

amounted to 1%). Interestingly, the results show there 

is sufficient positive evidence for T, and adding this 

axiom to the ontology does not make it inconsistent – 

although including it would allow for entailing 

incorrect conclusions about the data. Counterexamples 

were found for AS and IR. locatedIn is another 

property related to the geography of the region. 

However, since only one region has been introduced 

as of Gen I, it is classified as F, with no contradictions 

on the data.  

With each Pokémon belonging to a single evolution 

group (described by the hasEvolutionGroup property) 

but each group having more than one creature, the 

 

2 http://www.hermit-reasoner.com/ 

expected axiom for this property would be F, which 

the results support.  

Of the datatype properties, three of them were 

classified as F even though counterexamples were 

found – since the percentage of selective 

confirmations was considered sufficient, and the 

deviations should pertain to possible errors in the data. 

In this case, we can verify if this was the cause, by 

using the reasoners provided by Protégé (in this case, 

HermiT2) and adding said axioms to the ontology and 

analysing the explanations provided in case 

inconsistencies are found. 

Figure 19 shows the inconsistency explanations for 

the hasWeight property, in which it is possible to see 

there are 6 individuals with more than one entry, and 

the duplicates’ values seem to correspond to the same 

value under different representation systems (metric 

vs imperial), which suggest that using the same 

property to represent both may not be adequate.  

 
Figure 19 - Reasoner's explanation for inconsistency for property 

hasWeight 

 
Figure 20 - Reasoner's explanation for inconsistency in property 

hasHeight 

Figure 20 shows how there is one single individual 

that contradicts the functionality of the hasHeight 

property, with the same apparent justification as the 

hasWeight. 

 
Figure 21 - Reasoner's explanation for inconsistency in property 

hasColor 

Figure 21, on the other hand, shows there are 2 

individuals with more than one colour, both belonging 

to the same evolutionary group. This may be an 

oversight in the data acquisition from Wikidata, which 

often mixes the information of all generations.  



5.1.2 Generation II 

Generation II (Gen II) improves on Gen I by 

introducing a new region (adjacent to the first one), 

while still allowing the player to visit the one 

introduced in Gen I. The Pokédex is expanded to 

accommodate for the new region: the player now 

effectively can access not one, but two Pokédexes, one 

at the national level (with all creatures) and a regional 

one (with the creatures inhabiting the new region 

exclusively, which may or may not be new). 

Therefore, the same creature may now be associated 

with more than one Pokédex entry, but each entry will 

be associated to its own numbering system (and 

potentially, description). Information about the 

creature’s shape is also added, and the number of 

Pokémon grows from 151 to 251. Additionally, some 

new game mechanics are included: creatures can now 

have one of three genders (female, male, and 

unknown), and can reproduce within a given group 

(not necessarily only with members of the same 

species). 

Information about the properties present in Gen II is 

displayed in Table 11. For the sake of brevity, only 

changes in axioms are shown. If an axiom is removed, 

it is preceded by a – symbol, and by a + otherwise. 

Table 11 – Gen II properties 

Property Axiom %Cf ARI 

bordersWith +T 65% 0.94 

hasEvolutionGroup +F 100% 1 

hasMoveType +F 100% 1 

hasPokedexEntry –F 0% -1 

presentIn –F 37% -0.93 

alternateDexEntry +F 50% 0.86 

 +IF 100% 1 

 +T 50% 0.87 

 +S 50% 0.87 

hasGenderRatio +F 100% 1 

 +AS 100% 1 

 +IR 100% 1 

hatches +T 25% 0.66 

hasShape N/A N/A N/A 

 

hasPokedexEntry, which relates a Pokémon to its 

corresponding Pokédex information, loses the F axiom 

– as the new region introduced a new Pokédex, and 

therefore a Pokémon may have more than one entry. 

However, it retains the IF axiom, as each entry relates 

to a single creature. presentIn, a property which 

describes in which generation a given entity or 

mechanic is featured, can now point to more than one 

option and, therefore, is no longer F. Of the new 

properties, alternateDexEntry connects any two 

entries in different Pokédexes that describe the same 

creature and therefore should be classified at least as 

S. The results show not only this happens, but it also 

does not contradict the T, F and IF property axioms. 

With the introduction of genders, each species 

displays one of several possible gender ratios (via the 

hasGenderRatio property), and as such has been 

classified as F. As no evidence was found against it, it 

is also classified as AS and IR. hatches, which relates 

a creature with its reproductive group, and each 

reproductive group with the Pokémon in it, has 

sufficient ARI to be classified as T, but not S. Finally, 

the only datatype property added in Gen II, hasShape, 

does not meet the criteria for any of the property 

axioms. 

When adding the proposed axioms to the object 

properties in the ontology of Gen II, no inconsistencies 

are generated. However, the same cannot be said for 

the datatype properties. According to Figure 22, there 

are some inconsistencies regarding the use of the 

hasName property, namely when describing the 

evolutionary groups. Because new Pokémon were 

introduced in between generations and added to 

existing evolutionary groups, some of their names to 

have undergone changes that have not been corrected.  

 

 
Figure 22 - Inconsistencies with the use of the hasName property 

As seen in Figure 23, in addition and similar to the 

inconsistencies present in Gen I, there are a few (six) 

entities with two or more uses of the property 

hasColor. 

 

 
Figure 23 - Inconsistencies with the use of the hasColor property 

5.1.3 Generation III 

Generation III (Gen III) introduces two more 

regions, and no longer features those of Gens I and II. 

It also introduces two new mechanics: abilities and 

contests. Each Pokémon can now have one or two of 

the 77 possible abilities – some of which are 

considered “signature abilities”, as they are only 

shown for specific Pokémon or specific evolutionary 



groups. Furthermore, 135 new Pokémon are added (to 

a total of 386). The changes and additions to the 

properties and their axioms are shown in Table 12. 

Table 12 – Gen III properties 

Property Axiom %Cf ARI 

hasMoveType –F 0% -1 

alternateDexEntry –F 65% -0.76 

 –IF 53% -0.9 

 –T 35% 0.76 

hasSignatureAbility +F 100% 1 

 +IF 100% 1 

 +AS 100% 1 

 +IR 100% 1 

isSignatureAbilityOf +F 100% 1 

 +IF 100% 1 

 +AS 100% 1 

 +IR 100% 1 

 

With the introduction of contests, moves now have 

no longer only a type in battle, but a type that shows in 

contest (the two are not related). As such, the property 

hasMoveType is no longer compatible with 

functionality. Once again, with the introduction of a 

new region and a new Pokédex, the same Pokémon can 

have multiple entries – and although these are still 

alternatives to each other, and therefore symmetrical, 

there is now more than one possible alternative and the 

property can no longer be classified as either F or IF. 

Finally, hatches maintains its T. Evidence against 

IR was below the minimum threshold (selective 

confirmations amounting to 95% of the data) – but as 

it was already classified as such, the axiom is not 

added. Following the definition of a signature ability 

discussed above, the property is properly classified as 

F (each Pokémon/evolutionary group has only one 

signature ability) and IF (each signature ability is used 

by only one Pokémon/evolutionary group). Since no 

counterexamples for IR and AS are found, these 

axioms are also added to the property. As the 

percentage of counterexamples found for F in 

hasWeight has once again lowered below the 

minimum threshold, the property axiom is reinstated. 

As with Gen II, when the axioms discovered are 

added to object properties in the ontology for Gen III, 

they do not produce inconsistencies. However, with 

support for hasColor at 98% and hasHeight as 99%, 

counterexamples are rare but produce some 

inconsistencies. 

5.1.4 Generations IV and V 

Generation IV (Gen IV) introduces once again a 

new region and, with it, comes a new catalogue and 

new Pokémon (totalling 493). There is also the 

introduction of 47 new abilities and 113 new moves. 

Several evolutionary groups from Gen I were 

expanded with new elements, and moves are now 

classified not only according to their previously 

known contest and type categories, but with an 

additional damage category that is fully independent 

from its type. It is also in this generation that the games 

make use of alternate forms of the same Pokémon 

(including, but not limited to, differences by gender). 

Generation V (Gen V) raises the total number of 

Pokémon to 649, and once again introduces a new 

region while limiting access to the previous ones, but 

does not introduce any new properties.  

Changes and additions to the properties of the 

ontology for Gen IV are displayed in Table 13: 

Table 13 – Gen IV properties 

Property Axiom %Cf ARI 

alternateDexEntry +T 47% 0.85 

hasAlternateForm +T 62% 0.92 

 +S 27% 0.69 

 

The inclusion of these axioms in both Gen IV and 

Gen V ontologies does not cause inconsistencies 

beyond those already discovered in previous 

generations. 

5.1.5 Generation VI 

Generation VI (Gen VI) introduces 72 new 

Pokémon (to a total of 721), 58 new moves and 24 new 

abilities (to a total of 617 and 188, respectively). It also 

adds a new battle mechanic, the Mega Evolution, 

which is a type of alternative form that can be 

(temporarily) triggered in battle. Like previous 

generations, Gen VI introduces a new region and a 

new Pokédex, while also revisiting the region first 

introduced in Gen III. Table 14 shows the changes in 

the property axioms in Gen IV: 

Table 14 – Gen VI properties 

Property Axiom %Cf ARI 

hasMegaEvolution +F 98% -0.21 

 +IF 100% 1 

 +AS 100% 1 

 +IR 100% 1 

uses +F 96% -0.23 

 +IF 100% 1 

 +AS 100% 1 

 +IR 100% 1 

 

hasMegaEvolution, a relationship between a 

Pokémon and its Mega Evolution alternate form, is 

both F and IF (theoretically meaning that a Pokémon 



can only have one mega evolution and that evolution 

belongs to only one Pokémon). The mechanic is 

triggered by the usage (with the uses property) of 

different battle items, and each of them causes a 

specific evolution to occur.  

 

 

 
Figure 24 – Rare, but valid individuals which do not support F for 

the hasMegaEvolution and uses properties 

When the axioms are added to the Gen VI ontology, 

they do not produce inconsistencies – contrary to what 

would be expected when the percentage of 

confirmations is below 100%. However, upon closer 

analysis, it is possible to see that there are indeed few, 

but valid, cases in which a Pokémon can have more 

than one mega evolution, caused by the application of 

more than one item. In the dataset for Gen VI, there 

are two such occurrences, shown in Figure 24. The 

reasoner fails to flag these as inconsistencies unless the 

individuals are explicitly stated as being different 

(which would always be the case under the UNA). 

5.1.6 Generation VII 

Generation VII (Gen VII) sees the introduction of 

regional forms, as the same creature adapts to different 

habitats: effectively another specific type of alternate 

form. It also increases the number of Pokémon to 802 

and introduces a new region and its respective 

Pokédex. It revisits the region introduced in Gen I, 

adding new alternate forms to some previously known 

Pokémon. 

Table 15 – Gen VII properties 

Property Axiom %Cf ARI 

hasRegionalForm +F 97% -0.24 

 +IF 98% -0.19 

hasSignatureAbility –F 94% -0.33 

isSignatureAbilityOf –IF 95% -0.32 

uses –IF 71% -0.7 

 

With the introduction of new abilities, Gen VII 

alters how signature abilities work, and a few 

Pokémon can now have more than one signature 

ability – as such, hasSignatureAbility can no longer be 

F, and isSignatureAbilityOf can no longer be IF. 

Thankfully, in this case, the number of 

counterexamples is above the threshold and the 

axioms are correctly removed. If the axioms are added 

to the ontology, by UNA they generate some 

inconsistencies. Figure 25 shows one such case, in 

which a valid selective confirmation of a creature has 

more than one known regional variant. 

 
Figure 25 – Rare, but valid individuals which do not support the F 

and IF for the hasRegionalForm property 

5.1.7 Generations VIII and IX 

Generation VIII (Gen VIII) introduces two new 

regions, each with its individual Pokédex. The national 

one, which catalogues all creatures, now goes up to 

890, with 19 new regional forms. The mega evolution 

mechanic is removed from the games. Generation IX 

(Gen IX) introduces another region and its respective 

catalogue, and 103 new creatures (raising the total to 

1008). While it introduces the concept of convergent 

evolution – creatures that fill the same ecological 

niches also sharing physical similarities – information 

about this was not present in Wikidata at this time. 

Finally, this generation introduces a few more regional 

forms and a new type of alternative form that is not 

well described in Wikidata. 

Because of alterations on how signature abilities are 

assigned to evolutionary groups between games, Table 

16 shows the changes in the associated properties. 

Table 16 – Gen VIII and Gen IX properties 

Property Axiom %Cf ARI 

hasSignatureAbility +F 96% -0.28 

isSignatureAbilityOf +IF 96% -0.27 

 

Once again, this is a case in which the 

inconsistencies refer to valid uses of the property, 

meaning the application of the axioms is in the wrong, 

as shown in Figure 26: 

 

 
Figure 26 – Evolutionary line with more than one signature ability, 

a counterexample to the F of hasSignatureAbility 



5.2 Section II - Evolving ARI 

Experiments show that allowing for some leeway in 

terms of inconsistency can result in the discovery of 

errors in the data, such as duplicates, or potential 

mistakes in modelling that do not account for the 

possible alternatives. It also shows that not all 

inconsistencies are caused by said incorrections, and 

some valid, but outlier information can get flagged as 

inconsistent.  

Evolving ARI depends not on a minimum threshold 

on the percentage of selective confirmations, 𝑐𝑓𝑡, but 

on the evidence found in the current timeframe and the 

conclusions obtained on the previous one (which may 

be a state of total ignorance, if the property was not 

present). 

The following experiments are divided in two 

different sections, namely: 

1. Applicability and robustness of ARI for axiom 

scoring. Considering the dataset was obtained 

from Wikidata, which is often incomplete and 

sometimes offers incorrect or even contradictory 

information, we consider the percentage of 

selective confirmations does not need to equal 

100% for the axiom to be accepted. Furthermore, 

in this case, the analysis is done from a point of 

complete ignorance, in which no previous 

versions of any axiom are considered. This 

should allow for a more informed decision about 

which thresholds to consider for axiom inclusion 

in the following experiments. 

2. Analysis of 𝐴𝑅𝐼𝑒 over several different 

timeframes, in which previous versions of the 

ontology affect the scoring of the new axioms. 

Using the previously defined thresholds for 

axiom inclusion and window size, it is possible to 

measure the effect of more conservative vs 

progressive approaches to knowledge evolution. 

First, we must consider how conservative the 

approach will be by defining the relative weight of 

previous knowledge, 𝑤𝑝 . Then, we must establish a 

threshold for inclusion or rejection of the hypothesis 

considering the computed 𝐴𝑅𝐼𝑒 (𝑠𝑓𝑡 or  
𝑤𝑓𝑡 , depending on which form was applied). These 

two values cannot be completely independent of one 

another, since we are considering only scalar values 

for the previous state and it is possible for new data to 

directly contradict said state. As such, if the threshold 

for inclusion is too high, it may become impossible to 

change the opinion about an axiom between 

timeframes. 

 To avoid this, 𝑠𝑓𝑡  , 𝑤𝑓𝑡 and  𝑤𝑝  should be inversely 

proportional. Since ARI cannot go over 1, 𝑠𝑓𝑡 must be 

below or equal to 0.5 to allow evolution. Using 𝐴𝑅𝐼𝑒 

also allows for some data in a timeframe to contradict 

the axiom that is asserted in that period.  

Make Table 17 shows the thresholds employed for 

the following experiments – maintaining the 

acceptance thresholds for the strong and weak forms 

of ARI (𝑠𝑓𝑡 and 𝑤𝑓𝑡, respectively) and a window size 

(𝑤𝑠) of 50 –, in which different weights of previous 

knowledge for 𝐴𝑅𝐼𝑒 (𝑤𝑝) will be compared. 

Table 17 - Values and thresholds employed in the experiments 

Variable Value 

𝑠𝑓𝑡, 𝑤𝑓𝑡 0.5 

 𝑤𝑝  0.8 / 0.7 / 0.4 

𝑤𝑠 50 

 

𝐴𝑅𝐼𝑒 depends on the results obtained in previous 

iterations, so its application can be measured from Gen 

II onwards. When previous decisions (valued 0 if not 

present, and 1 for present) about the property axioms 

are not known, an 𝐴𝑅𝐼𝑒 of 0 is assumed, and the 

decision for each previous non-existent axiom is 

scored at 0.5, both to reflect a state of ignorance. The 

rest of this section presents and discusses the cases in 

which the decision supported by 𝐴𝑅𝐼𝑒 is different than 

when using the combination of 𝑐𝑓𝑡  and ARI. 

First of all, it is interesting to see the effects of the 

different weights affect the evolution of 𝐴𝑅𝐼𝑒. Figure 

27 shows how a more conservative approach tends to 

favour whichever initial decisions were taken, while 

lower values require less evidence for a decision to be 

revoked. In this case, the conservative approach would 

be wrong, as classifying hasAlternateDexEntry as F 

would generate a large number of inconsistencies that 

would only grow with each generation. 

 
Figure 27 – Evolution of 𝐴𝑅𝐼𝑒  for hasAlternateDexEntry’s F with 

different relative weights 

Starting with the datatype properties, which were 

the ones creating the most inconsistencies since early 

generations, we can see that without taking 𝑐𝑓𝑡 in 

consideration, the duplicates are taken in consideration 
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and the decision, across all generations, is not to 

include the F axiom. Figure 28 shows the results for 

the hasColor property, although they are similar for 

the others previously mentioned (hasWeight and 

hasHeight). This effectively means that F can no 

longer be employed to identify errors in data that 

resulted in the inconsistencies described above. 

 
Figure 28 - Comparison of the decisions made using 𝐴𝑅𝐼𝑒 and 

ARI+𝑐𝑓𝑡 for F in hasColor 

Differences in the decisions reached ARI, ARI+𝑐𝑓𝑡 

and 𝐴𝑅𝐼𝑒 are shown by the hatches property, as seen 

in Figure 29 for T.  

 
Figure 29 – Decisions regarding the T of the hatches property 

With the more conservative approach to change 

provided by 𝐴𝑅𝐼𝑒, the property is equally classified as 

T for the first two generations, but manages to 

maintain said status afterwards, despite the gradual 

decrease in ARI. In this case, adding the axioms to any 

of the versions of the ontology does not generate any 

inconsistencies. 

In some generations, isSignatureAbilityOf and 

hasSignatureAbility were shown to have valid 

counterexamples that were not considered because of 

the chosen value for 𝑐𝑓𝑡. Figure 30 shows the effect of 

the different 𝑤𝑝  in the decision-making process. The 

results show that employing lower  𝑤𝑝   results 

consistently in a Functional hasSignatureAbility, 

which is known to produce some inconsistencies from 

Gen VIII onwards. The opposite happens with heavier 

 𝑤𝑝 : by making it harder to change opinion, even 

though 𝐴𝑅𝐼𝑒 gets slightly higher – and in some cases, 

even positive – values than ARI, the evidence is not 

sufficient for a change. Figure 31 shows similar trends 

for IF of isSignatureAbility property. 

 
Figure 30 – Comparison of the decisions to include/exclude the F 

axiom for the hasSignatureAbility property 

 
Figure 31 - Comparison of the decisions to include/exclude the IF 

axiom for the isSignatureAbilityOf property 

hasRegionalForm, which was considered F, IF and 

S, is now instead classified as T and S for all 

generations in which it is featured. This happens 

because 𝐴𝑅𝐼𝑒 cannot sustain F, as seen in Figure 32. 

 
Figure 32 - Comparison of the decisions to include/exclude the F 

axiom for the hasRegionalForm property 

Since F is no longer associated with the property, it 

can assume the T axiom, for which it did have 

sufficient ARI and 𝐴𝑅𝐼𝑒, as Figure 33 shows: 

 
Figure 33 - Comparison of the decisions to include/exclude the T 

axiom for the hasRegionalForm property 

The inclusion of the T and S axioms to the 

ontologies of Gens VIII and IX does not produce 

inconsistencies. 
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5.3 Discussion 

Using ARI by itself does not allow for 

inconsistencies to arise, which in turn means that in 

spite of its utility for axiom scoring, it does not allow 

for the very likely possibility of errors and 

inconsistencies in the data – which is especially 

relevant when developing an ontology from publicly-

available information from sources such as Wikidata. 

By combining ARI and 𝑐𝑓𝑡, we allow for some level 

of counterexamples to be possible while still accepting 

an axiom hypothesis. In these cases, only the analysis 

of the data can show if the decision is correct or 

incorrect – for example, by investigating any 

generated inconsistencies to ascertain if they 

effectively correspond to errors, mistakes, or valid 

information. Nonetheless, we find the approach 

helpful for deciding on the inclusion of property 

axioms on evolving ontologies, and to help an 

ontology engineer curating the data by adding those 

axioms and checking any inconsistencies they 

introduce – aiding the process of identifying potential 

errors. 

The results show that is still possible to counter 

some errors in data when using 𝐴𝑅𝐼𝑒, but not as 

effectively as the combination of ARI and 𝑐𝑓𝑡. This is 

because, by favouring previous knowledge, 𝐴𝑅𝐼𝑒 may 

have difficulty changing its opinion even in the face of 

overwhelming evidence. On some occasions, this may 

be beneficial: the experiments show that, when applied 

for T and S – the two property axioms that use the 

weak-form of ARI because of their inherent missing 

information – their inclusion is favoured earlier, and is 

harder to dismiss, with no inconsistencies resulting 

from it. However, for the properties using the strong 

form, the effect is diametrically opposite: axioms are 

maintained, even though they may introduce an 

increasing number of inconsistencies over time. 

Finding a balance between these two outcomes may be 

possible by tinkering with different values for 𝑠𝑓𝑡  and 

𝑤𝑓𝑡. 

6. Conclusions 

This paper presented an adaptation of the 

possibilistic approach to axiom scoring to the context 

of RDF data streams for ontology evolution. The 

different approaches to possibility and necessity 

proposed in literature were recontextualized in terms 

of their bias towards selective confirmations or 

counterexamples, and the assumptions regarding the 

openness of the world under which they operate, and 

proved effective. Some axioms, namely transitivity 

and symmetry, benefit from a more lenient approach, 

relying more on selective confirmations than on 

counterexamples – while the others benefit from 

stricter acceptance conditions to prevent the 

proliferation of inconsistencies.  

 To test the applicability of the solution, it was 

applied in two distinct scenarios: (1) a first one, in 

which the property axioms were previously known, 

and which allowed for the exploration of the 

effectiveness of the approach for their discovery in a 

scenario where no incorrect data was present; and (2) 

a second one, in which the neither the properties nor 

their axioms were known, and the dataset was obtained 

from publicly available sources, possibly both 

incomplete and with errors.  

Regarding Experiment I, results show that 

possibilistic approach is well suited to suggest 

potential axioms for ontology properties in an 

instance-guided ontology evolution scenario, 

achieving conclusions about inclusion/exclusion of 

axioms from a relatively small sample of individuals 

(roughly 2,3%), and substantially faster than using 

traditional information retrieval metrics – making it 

particularly suitable for quickly learning new axioms 

from streams of RDF data. This, however, is not 

achieved without some caveats: the approach is not 

sufficiently robust to cases in which there are 

inconsistences or errors in data, with the strong 

approach being particularly unable to recover from 

counterexamples that may reflect said errors. No 

approach can effectively deal with all potential 

negative side effects of dealing with an open world and 

with incomplete knowledge; if ARI is used 

independently of support, it cannot account for 

missing or incorrect information. 

Additionally, this experiment shows that the size 

and variety of the individuals in the dataset affect the 

speed and accuracy of the identification of axioms, 

suggesting that some finetuning of parameters may be 

necessary to achieve the best results depending on the 

application scenario. 

Experiment II aimed to overcome the issue with 

ARI identified in Experiment I in two ways: (1) by 

combining it with a minimum percentage of selective 

confirmations and (2) by attributing weight to previous 

knowledge between timeframes. Axioms that are not 

100% supported by ARI may therefore be accepted: 

this allows for the identification of potential errors in 

data but may also erroneously suggest discarding valid 

information. Acknowledging the information provided 

by previous versions of the ontology when deciding 

for or against an axiom is helpful in identifying and 



maintaining property axioms for which positive 

evidence is inherently harder to find – however, it also 

allows for the continued integration of incorrect 

axioms.  Here, the combination of support and ARI 

seems to achieve the better results when it comes to 

introducing the least amount of inconsistencies over 

time; the downside being that it may erroneously 

consider valid, but marginal uses of properties as 

irrelevant, and therefore the results still need to be 

analysed on a case-by-case basis. Ultimately, the 

experimental results show that ARI can be made more 

resistant to errors in data, benefiting from being 

combined with other metrics – but more work is 

needed in this regard to further explore which metrics 

– and in which way – can be combined in a more 

systematic fashion that is less dependent of empiric 

analysis of specific use-cases. 

Finally, and although it was out of the scope of the 

experiments performed for this work, it is also 

important to consider the possibility of over-

characterization of the properties in an ontology. The 

results show that the current solution will almost 

always propose one or more axioms for each property 

– which may or may not make sense, depending on the 

application context and purpose of the ontology; 

upper-level ontologies, by definition and application, 

benefit from excluding superfluous axioms. Even for 

lower-level ontologies, there is always an argument to 

be done in favour of simplicity of design, which should 

not be more complex than necessary to achieve its 

goals. In the future, the suitability of the suggested 

axioms should not rely solely on the fact that their 

addition to the ontology does not introduce 

inconsistencies, but be motived too by their capacity 

to allow for richer inference processes to happen in 

order to unlock the data’s true potential. 
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