
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Hierarchical Blockmodelling for Knowledge
Graphs
Marcin Pietrasik a,b,*, Marek Reformat a,c and Anna Wilbik b

a Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
b Department of Advanced Computing Science, Maastricht University, Maastricht, The Netherlands
c Information Technology Institute, University of Social Sciences, Łódź, Poland
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Abstract. In this paper, we investigate the use of probabilistic graphical models, specifically stochastic blockmodels, for the
purpose of hierarchical entity clustering on knowledge graphs. These models, seldom used in the Semantic Web community,
decompose a graph into a set of probability distributions. The parameters of these distributions are then inferred allowing for
their subsequent sampling to generate a random graph. In a non-parametric setting, this allows for the induction of hierarchical
clusterings without prior constraints on the hierarchy’s structure. Specifically, this is achieved by the integration of the Nested
Chinese Restaurant Process and the Stick Breaking Process into the generative model. In this regard, we propose a model
leveraging such integration and derive a collapsed Gibbs sampling scheme for its inference. To aid in understanding, we describe
the steps in this derivation and provide an implementation for the sampler. We evaluate our model on synthetic and real-world
datasets and quantitatively compare against benchmark models. We further evaluate our results qualitatively and find that our
model is capable of inducing coherent cluster hierarchies in small scale settings. The work presented in this paper provides the
first step for the further application of stochastic blockmodels for knowledge graphs on a larger scale. We conclude the paper
with potential avenues for future work on more scalable inference schemes.

Keywords: knowledge graphs, stochastic blockmodels, hierarchical clustering

1 Introduction

In recent years, using graph structures to model and store data has been garnering an increasing amount of
attention among practitioners in sectors ranging from academia to government to industry. Indeed by some measures
[1, 2], graph database management systems are the fastest growing database type over the past decade. One of the
more obvious manifestations of this rise is the recent growth of large scale public graph databases such as DBpedia
[3], YAGO [4], and Wikidata [5]. The last of these, for instance, contains just over 100 million entities as of 2024, a
near seven fold increase over its count in 2014. The open access to such amounts of graph data has spurred on its use
in research related to the Semantic Web, artificial intelligence, and computer science broadly. One field of research
which has received considerable attention is that of mathematically modelling the underlying graph structure that
emerges when a knowledge base is populated by information. The modelling of this structure – which we refer to as
the knowledge graph – proves useful in its application to solve downstream problems such as link prediction, entity
clustering, and hierarchy induction. The last two of these provided the impetus for our work.

Entity clustering refers to the task of grouping together entities in a knowledge graph which share similar prop-
erties. The measure by which entities are judged to be similar varies and is one of the key considerations when
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devising an approach to their clustering. Obtaining an entity clustering allows for the discovery of structures which
are implicit in the knowledge graph and provides insight into the number and types of categories which exist in the
data. The process operates on unlabelled data and is therefore a type of unsupervised learning. As such, it is one of
the first and most useful operations applied to a knowledge graph when performing exploratory analysis. Another
important unsupervised learning task is that of hierarchy induction. The clearest example of a knowledge graph
hierarchy is the class taxonomy which organizes a knowledge graph’s classes through superclass-subclass relations.
The task of inducing such a taxonomy merely amounts to learning how the classes are organized hierarchically in
the knowledge graph. Similarly, hierarchical clustering of a knowledge graph’s entities extends the clustering task
described earlier by imposing a hierarchical organization to the clusters themselves. This allows not only to discover
which entities are semantically similar as per the clustering but also how entities relate to one another hierarchi-
cally. The motivating factors behind learning knowledge graph hierarchies are various. Perhaps the simplest is that
hierarchical structures organize data in a way that is highly intuitive and interpretable to humans. For instance, a
hierarchical clustering of knowledge graph entities makes it apparent which entities constitute the broadest concepts
in the knowledge graph and how they relate to their descendants. Similarly, a taxonomy of classes reveals implicit
relations between entities through its transitive properties. Put plainly, hierarchies induced from knowledge graphs
are useful because they are easy to understand. Indeed, the most widely used knowledge bases – such as the afore-
mentioned DBpedia, YAGO, and Wikidata – are organized by hierarchical structures, namely trees and directed
acyclic graphs. That is to say, these knowledge graphs are hierarchical at their core. Furthermore, hierarchies are
used as components of larger systems to solve common tasks related to knowledge graphs. For instance, hierarchies
are used in learning knowledge graph embeddings, both explicitly as an input feature of the model [6] and implicitly
as a byproduct of the embedding process [7]. As embedding is one of the most common problems in the knowledge
graph community, learning accurate hierarchies is therefore desirable.

In this regard, our work proposes a generative model for knowledge graphs which induces a clustering of entities
and organizes it hierarchically. Our approach belongs to a class of probabilistic graphical models called stochastic
blockmodels. In broad strokes, these models operate by decomposing a knowledge graph into a set of probability
distributions which are then sampled from to generate the knowledge graph. As a byproduct of this sampling process,
a hierarchical clustering of knowledge graph entities is induced. To the best of our knowledge, our approach is the
first to apply stochastic blockmodels to knowledge graphs and one of a very few probabilistic graphical models to be
used for the purpose of knowledge graph hierarchy induction. To highlight this, we position our work in the context
of existing stochastic blockmodels and hierarchy induction methods in Section 2 and provide a gentle introduction
for their understanding in Section 3. The formal definition of our model that follows in Section 4 results in a joint
distribution which is intractable for exact inference. The parameters for our model must therefore be approximated
using collapsed Gibbs sampling. To this end, we provide the full derivation of sampling equations as well as the
marginalization of collapsed variables. Additional information to supplement Section 4 may be found in Appendices
A through D. Section 6 concludes the paper by summarizing its contributions and providing avenues for future
work.

2 Related Work

Our proposed model lies at the intersection of two areas in artificial intelligence which deal with modelling graph
data: stochastic blockmodelling and hierarchy induction. Due to the limited overlap of these fields, we provide
separate summaries of related works for each.

2.1 Stochastic Blockmodels

Stochastic blockmodels are a class of probabilistic graphical models used for generating random graphs with
roots in the fields of social science and mathematics. First proposed in 1983 by Holland et al. [8] for modelling
social networks, they have expanded their utility to fields such as biochemistry [9], education [10], and artificial
intelligence [11–13] among others. In simplest terms, stochastic blockmodels are a type of Bayesian non-parametric
graph partition model in that their approach relies on grouping graph entities together via partitions – often referred
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to as blocks – which share similar structural properties. The generative process by which this partitioning occurs is
realized by sampling from a set of probability distributions, giving rise to the stochasticity of stochastic blockmodels.
The learning process is then to infer the parameters of these distributions using a Bayesian inference scheme. We
provide a technical introduction to stochastic blockmodels in the subsequent section.

The seminal work in this area is the Stochastic Blockmodel [14] which partitions entities into a fixed number
of communities and models the interactions between them as those of their communities. Community relations are
modelled via a community relations matrix which assigns a degree to all pairwise interactions between the com-
munities in the model. This idea was extended to the infinite case allowing for an a priori unspecified number of
communities via the Chinese restaurant process [15] in the Infinite Relational Model [16] and its recent hierarchical
counterpart the Hierarchical Infinite Relational Model [17]. A variant which relaxes the notion of community mem-
bership to allow for entities belonging to multiple communities is the aptly named Mixed Membership Stochastic
Blockmodel [11]. By allowing for mixed membership, the model is better able to capture entities whose belonging
to a community is not crisp. For instance, the belonging of tomatoes to the community of fruits is not perfect since
it can be considered a vegetable in certain contexts such as in cooking. This idea was generalized to the infinite case
in the Dynamic Infinite Mixed Membership Stochastic Blockmodel [18] and the hierarchical case in the Multiscale
Community Blockmodel [12]. The latter of these two is closely related to our model and receives more attention
later in the paper. All of the aforementioned models, however, operate on graphs wherein entities are related to
one another through the same type of edge, making them unsuitable for application to knowledge graphs without
modification.

The underlying structure of a knowledge graph is that of a multilayer graph wherein entities interact with one
another through different types of relations, represented as different types of edges in the graph. These relations
may be thought of as separate layers of graphs which share the same entities. Multilayer graphs have also received
considerable attention in stochastic blockmodelling. Perhaps the simplest approach is to aggregate the layers in the
multilayer graph to a single layer before applying a conventional blockmodelling approach as was done in Berlin-
gerio et al. [19]. A closely related approach is to model each layer in the graph independently as done in Barigozzi
et al. [20] and aggregate the results afterwards. These approaches offer limited success as they don’t capture the
interlayer dependencies in the multilayer graph and treat each layer as equally valuable in its content during mod-
elling, as pointed out by Paul and Chen [21]. To remedy this, the authors propose a multilayer extension of the
aforementioned Stochastic Block Model, aptly named the Multi-Layer Stochastic Blockmodel, which modifies the
original community relations matrix to a community relations tensor to account for graph multilayeredness. Analo-
gously, a multilayer extension for the Mixed Membership Stochastic Blockmodel was proposed by De Bacco et al.
[22]. Finally, the Multilayer Neural Blockmodel [23] was proposed recently as a way to marry neural networks with
the probabilistic approach of stochastic blockmodels for modelling multilayer graphs. A comprehensive review of
stochastic blockmodels and their applications is provided by Lee and Wilkinson [24].

2.2 Hierarchy Induction Models

In the context of our work, hierarchy induction refers to the discovery of hierarchical structures which are implicit
and otherwise unexpressed in a knowledge graph. One concrete way this task is formulated is as that of learning
subsumption axioms for classes in a knowledge graph, thereby discovering a hierarchical organization of a knowl-
edge graph’s entities. To this end, Statistical Schema Induction [25] uses association rule mining on a knowledge
graph’s transaction table to generate subsumption axioms with support and confidence values which are then used
as the basis for a greedy algorithm for constructing an ontology. SMICT [26] transforms a knowledge graph into a
tuple structure wherein entities are annotated by tags and applies a greedy algorithm to learn a taxonomy of classes.
This method was extended to perform hierarchical clustering using the Jaccard coefficient [27]. In general, by trans-
forming a knowledge graph to a tuple structure, various [28–30] methods in the area of tag hierarchy induction can
be leveraged. In a related approach, Chen and Reformat [31] derive a similarity matrix from a knowledge graph’s
tuple structure which serves as the clustering metric for hierarchical agglomerative clustering. Mohamed [32] takes
a similar approach wherein subjects which are described by the same tag pairs are assigned to the same groups. The
similarity between these groups is then calculated to construct a hierarchy. In a method which bears similarity to our
own, Zhang et al. [13] use a non-parametric Bayesian approach to induce a hierarchy of topic communities. Despite
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a similar statistic framework and inference scheme, the hierarchy induced by this work differs significantly from
our own. For instance, relations between communities are not modelled and entities are never explicitly assigned to
communities. Along similar lines is GMMSchema [33] which uses a Gaussian mixture model to generate a schema
graph which can be viewed as a hierarchical abstraction of the original knowledge graph.

Another common approach to learning hierarchies from knowledge graphs is via an intermediate representation
which lends itself well to existing hierarchy induction methods. To this end, knowledge graph embedding is often-
times leveraged. This process involves learning a mapping from the discrete knowledge graph to a continuous vector
space. The vector representation may then serve as the input to machine and deep learning methods for hierarchy
learning. Translation based methods such as the seminal TransE [34] and its extensions [35–37] treat relations in
a knowledge graph as translations between entities. Additive in nature, they operate on the intuition that embed-
dings of subjects and objects should be proximal when translated by the relation of a valid triple. These embed-
dings are learned by minimizing an objective function using an optimization method such as stochastic gradient
descent. Bilinear methods [38–41] operate on the binary adjacency tensor of the knowledge graph and factorize
entities and relations into vectors and matrices. Triples are then modelled as their resulting product. These methods
tend to perform well on measures of performance compared to translation based methods but suffer from higher
training complexity. Deep learning models have also been proposed in the context of knowledge graph embeddings.
For instance, the Relational Graph Convolution Network [42] leverages graph convolutions to learn neighbourhood
information of entities, thereby explicitly incorporating structural information into its modelling. Another widely
used deep approach, ConvE [43], stacks subject and predicate embeddings as a matrix and convolves over them in
two dimensions using a neural framework. This approach was extended in ConvKB [44] which incorpoates objects
into the convolution process and CapsE [45] which uses a similar architecture with capsule layers to yield scores for
triples. A recent and comprehensive comparative analysis of various embedding methods may be found in [46].

Having obtained an embedded representation of a knowledge graph, hierarchical clustering methods can be ap-
plied to induce a hierarchy. For instance RESCAL [38], a bilinear embedding method, was used in conjunction
with OPTICS [47], a density based hierarchical clustering algorithm, in Nickel et al. [48] to obtain a hierarchical
clustering of entities. They found that such an approach achieves more coherent results for concepts which appear
at the top of the hierarchy, largely due to data sparsity for descendant concepts. Along similar lines, TIEmb [49]
generates embeddings using RDF2Vec [50], an embedding method based on the skip-gram language model [51],
before learning a hierarchical structure based on the proximities of class centroids in the embedded space. The same
embedding approach was used in Martel and Zouaq [52] wherein the embeddings were then clustered using hier-
archical agglomerative clustering and assigned types. This type of clustering was used in the field of cybersecurity
in Ding et al. [53] wherein a bag-of-words representation of a knowledge graph served as input. Compared with
the aforementioned subsumption axiom induction methods which rely largely on frequencies and co-occurrences
between type classes, embedding based approaches typically embed an entire knowledge graph, thus leveraging a
larger and much richer body of information. As such, when compared to subsumption axiom methods, one would
expect embedding based methods to be more robust to datasets poorly structured in terms of their type information.
To the best of our knowledge, there is yet to be an analysis performed which compares the two approaches.

3 Preliminaries

Before describing the details of our proposed model, we provide a basic overview of several concepts necessary
for its understanding. These concepts are described only insofar as to provide readers with the foundation on which
the explanation of our model can be built. We implore readers unfamiliar with knowledge graphs or Bayesian
nonparametrics to follow the relevant citations provided in each of the subsequent subsections. To aid in readability
we use the following conventions in our notation: lowercase italic Latin letters for iterators and indexers; uppercase
italic Latin letters for scalar variables; lowercase boldface Latin letters for vectors; uppercase boldface Latin letters
for matrices and tensors; uppercase stylized Latin letters for sets; lowercase Greek letters for hyperparameters; and
uppercase Greek letters for functions.
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3.1 Knowledge Graphs

We refer to Hogan et al. [54] for their definition of knowledge graphs as “a graph of data intended to accumulate
and convey knowledge of the real world, whose nodes represent entities of interest and whose edges represent
potentially different relations between these entities.” Concretely, information is stored as a collection of triples
wherein each triple relates a subject entity, ei, to an object entity, e j, via a predicate, pr. Formally, we define a
knowledge graph, G, as a set such that G = {⟨ei, rp, e j⟩ ∈ E × R × E} where ⟨ei, rp, e j⟩ is a triple, E is the set
of entities in G, and R is the set of predicates in G. When put together, the triples form a directed graph with
nodes corresponding to entities and edges corresponding to predicates. Each triple in a knowledge graph describes
one piece of information or fact. For instance, ⟨Henry Ford, occupation, Engineer⟩ relates the subject
Henry Ford to the object Engineer through the predicate occupation and states, in plain English, that
Henry Ford’s occupation is being an engineer. Notice that this definition of knowledge graphs allows for cycles
and entity self-relations to exist. This is made clear when analyzing a knowledge graph’s binary adjacency tensor
which may be asymmetric and containing non-zero values in its main diagonal. Knowledge graphs are oftentimes
represented in their tensor form as it allows for easier numerical operation and thus opens the door to various tools
and methods in artificial intelligence. A binary adjacency tensor is obtained from a knowledge graph by ordering its
entities and predicates along an |E|×|E|×|R| tensor, G, that takes on values gi jr = 1 if there exists a triple in G from
entity ei to entity e j on predicate rp and gi jr = 0 otherwise. This representation is used in stochastic blockmodelling
and is the one we will use in this paper henceforth. The left half of Figure 1 depicts a simple knowledge graph
along with its adjacency tensor representation. A comprehensive introduction to knowledge graphs is provided by
Gutierrez and Sequeda [55].

3.2 Stochastic Blockmodels

Stochastic blockmodels are a heterogeneous collection of generative models united in their adoption of two char-
acteristics: stochasticity in the generative process and the partitioning of nodes into communities. Describing them
by referring to a concrete instance is thus bound to include definitions which do not apply to all members of the
class. With this in mind, our introduction to stochastic blockmodels draws on their key characteristics to motivate
a toy stochastic blockmodel for generating a knowledge graph. All stochastic blockmodels are defined by a set of
probability distributions from which samples are obtained to generate the adjacency tensor of the knowledge graph,
G, indexed by gi jr where the subscript i jr indicates the value associated with the triple from ei to e j on predicate
pr. In order to perform this generation, the knowledge graph’s entities must first be assigned to one of the model’s
communities. This is done by sampling the model’s variables responsible for this assignment. Let A be a tensor
representing these variables with a corresponding hyperparameter α responsible for parameterizing their prior dis-
tribution. In stochastic blockmodels, the probability of an interaction between two entities is modelled as the degree
of interaction between their respective communities. It is necessary, therefore, to capture these community relations
by sampling their corresponding model variables. Let B be a tensor representing this subset of variables with a
prior hyperparameter β. The joint distribution of this model is obtained by applying the chain rule of probability as
follows:

P(G,A,B | α, β) =
∏

gi jr∈G

P(gi jr|Ai jr,Bi jr, α, β)P(Bi jr | Ai jr, β)P(Ai jr | α) (1)

Where Ai jr and Bi jr indicate the latent variables in A and B associated with sampling gi jr. Notice that the probability
of drawing a value in the knowledge graph’s adjacency tensor, P(gi jr|Ai jr,Bi jr, α, β), is conditioned on A and B.
Thus, in order to generate the knowledge graph, it is necessary to first infer the values of A and B. This inference
process is analogous to the training phase of other machine and deep learning models. In most cases, the solution is
intractable for exact inference and must be approximated using an inference scheme. Perhaps the simplest inference
scheme used in stochastic blockmodelling is Gibbs sampling, a Markov chain Monte Carlo method which can be
used for sampling from a joint distribution. Gibbs sampling approximates this distribution by iteratively sampling
from its variables’ full conditional distributions. This iterative sampling creates a Markov chain of samples wherein
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Fig. 1. Toy example of a knowledge graph and how it may be modelled by a stochastic blockmodel. Starting from top left quadrant and proceeding
clockwise: graphical representation of a knowledge graph with entities e0 through e7 and predicates r0 through r2; graphical representation of
aforementioned knowledge graph as modelled by a stochastic blockmodel with communities t0 through t2; potential community relations tensor
induced by stochastic blockmodel; adjacency tensor of knowledge graph above it.

its stationary distribution approximates the joint distribution of the model. Continuing the example above, to infer
the blockmodel’s parameters for gi jr, namely Ai jr and Bi jr, inference is performed on their conditional distributions
P(Ai jr | G,B, α) and P(Bi jr | G,A, β), respectively. We apply Bayes’ theorem to obtain these distributions. Recall
that by this theorem the posterior distribution is proportional to the product of the likelihood and the prior. We can
therefore express the conditionals of Ai jr and Bi jr as follows:

P(Ai jr | G,B, α) ∝ P(G | Ai jr,B)P(A | α) (2)

P(Bi jr | G,A, β) ∝ P(G | Bi jr,A)P(B | β) (3)

Where P(G | A,B) and P(G | B,A) are the likelihoods, and P(Ai jr | α) and P(Bi jr | β) are the priors of Ai jr

and Bi jr, respectively. The likelihood may be understood as the of chance observing the data given the model
parameters. In Equations 2 and 3, it is the likelihood of drawing G from our model with parameters A and B. The
prior represents the assumptions about a variable before any data is taken into account. They are oftentimes chosen
in order to leverage a conjugacy with their dependant variables. Priors are parameterized by hyperparameters which
must be specified a priori. The choice of these hyperparameters influences the density of the prior and can thus
change the output of the model. Gibbs sampling draws from the variables’ full conditional distributions iteratively
for a predetermined number of iterations, iters. To highlight this, the superscript iter is added to denote the value of
a variable at the corresponding iteration. The Gibbs sampling process may be summarized as follows:

1. Initialize A0
i jr and B0

i jr for each gi jr ∈ G
2. For iteration iter in 1, 2, ..., iters



M. Pietrasik et al. / Hierarchical Blockmodelling for Knowledge Graphs 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

t0

e0 e2

e4

t1

e1

t2

e3 e5

t3

Fig. 2. Toy example of the CRP after sitting patrons e0 through e5. Tables t0 through t2 are occupied and table t3 is the next unoccupied table.
We illustrate Equation 4 by calculating the probabilities of sitting patron e6 at tables t0 and t3: P(e6 = t0) = 3

6+γ
and P(e6 = t3) =

γ
6+γ

.

(a) Sample Aiter
i jr ∼ P(Aiter

i jr | G,Biter−1, α) for each gi jr ∈ G using Equation 2
(b) Sample Biter

i jr ∼ P(Biter
i jr | G,Aiter−1, α) for each gi jr ∈ G using Equation 3

In step 1, variables can be initialized by sampling from their prior distributions or specified explicitly if a priori
evidence to suggest their true values exists. Step 2 depicts the iterative sampling of model variables from their full
conditionals. We note that samples obtained early in this process may be drawn from a distribution distant to that of
the desired stationary distribution. As such it is necessary to discard the samples obtained before this distribution has
been reached. This process is commonly referred to as burning in the Gibbs sampler and the number of discarded
iterations as the burn in iterations. Furthermore, as successive samples in this process are autocorrelated, there may
be a lag period applied in obtaining results such that samples in during the lag period are also discarded. Thus, if our
toy example performs 1000 iterations with a burn in of 900 and a lag of 10, only 9 samples will be obtained as the
output of the Gibbs sampler. These 9 samples are then aggregated over to account for the stochasticity in sampling
from the posterior and arrive at a final result. The process by which these samples are aggregated are model specific
and may be as simple as merely taking the sampled mode. An introduction to Gibbs sampling and related sampling
schemes is covered by Mackay [56] and a thorough discussion of stochastic blockmodels along with their concrete
examples is provided by Abbe [57].

3.3 The Chinese Restaurant Process

The Chinese restaurant process (CRP) [15] is a discrete stochastic process that yields a probability distribution in
accordance with the preferential attachment principle. In this view, it is both a Dirichlet process [58] as it generates
a probability distribution and a preferential attachment process [59] as the distribution is generated such that prob-
abilities are proportional to past draws. The process is explained through a metaphor of sitting patrons at a Chinese
restaurant. Consider this restaurant as containing an infinite number of tables with each table having the capacity
to seat an infinite number of patrons. Patrons are seated sequentially, such that the first patron is seated at the first
table and every subsequent patron may be seated at an occupied table or the first unoccupied table. The probability
of being seated at an occupied table is proportional to the number of patrons already seated at it. This process is
illustrated through the toy example in Figure 2 which shows a potential state of the CRP after sitting six patrons
along with the sample probabilities of sitting the seventh. Formally, the probability of seating patron ei

1 at a table tm
in a restaurant where Ti is the set of occupied tables when patron ei arrives is:

P(ei = tm | e0, e1, ..., ei−1, γ) =


#m

i

i + γ
tm ∈ Ti

γ

i + γ
tm /∈ Ti

(4)

Here, #m
i is the number of patrons seated at table tm when patron ei arrives and γ > 0 is a hyperparameter of

the CRP responsible for controlling the probability that an incoming patron is seated at an unoccupied table such

1We shall see later that patrons in this analogy are equivalent to entities in our model, hence the double use of e to represent entities and
patrons. This same principle applies to the use of t to represent both tables and communities.
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t0

e0 e1

e2

e3

e4
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Fig. 3. Toy example of a nCRP truncated to a depth of L = 2 after assigning patrons e0 through e5. Solid lines indicate paths which have been
taken by patrons and thus exist in the tree whereas dashed lines indicate potential paths. We illustrate Equation 6 by calculating the probability
of a patron taking a path through communities t2 and t9: P(e6 = t2) = ( 2

2+γ
)( 2

6+γ
) and P(e6 = t9) =

γ
6+γ

.

that increasing γ increases this probability. Thus, increasing γ values will yield results with an increasing number
of occupied tables. Specifically, the expected number of occupied tables grows logarithmically with respect to the
number of seated patrons:

E

[ ∑
tm∈Ti

I(#m
i > 0) | γ

]
= O(γ log i) (5)

Where I is the indicator function which returns 1 if the condition is met and 0 otherwise. Big-O notation is leveraged
with O to indicate the asymptotic upper bound of the expectation. This principle becomes relevant when controlling
the branching factor of the induced tree as we will see later on. The realization of the CRP yields a partition of
patrons over the infinitely many tables in the restaurant. If we consider each table to be a community, we can
leverage this process to obtain a probability distribution over an infinite number of communities. Indeed this is the
main utility of the CRP, namely to serve as a conjugate prior to infinite non-parametric discrete distributions. While
this approach allows for the modelling of flat communities, it does not account for hierarchical relations between
them. To remedy this, the CRP must be extended to its nested variant.

3.4 The Nested Chinese Restaurant Process

The nested Chinese restaurant process (nCRP) [60, 61] is an extension of the CRP formulated to account for
hierarchical relations between the generated communities. The realization of this process is an infinitely deep and
infinitely branching tree of communities defined by a set of paths, P , taken from the root community to a leaf
community. In principle, the tree is unbounded in depth, however we limit our discussion to a nCRP bounded to
a depth of L. As in the case of the CRP, the allocation of paths along the tree is consistent with the preferential
attachment principle. The tree is generated stochastically by sampling a path at each level in the tree via the CRP
such that drawing a table is analogous to taking a path at that level. To extend the metaphor of seating patrons at a
Chinese restaurant, consider the scenario of an infinite number of restaurants with an infinite number of infinite seat
tables. When patrons are seated at these restaurants they are not served food but rather a table specific reference to
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another restaurant to which they must go. One of these restaurants is designated a root restaurant with no reference
and all other restaurants are referenced exactly once. The seating of patrons at these restaurants is performed as in the
CRP. We can see how realizing this process yields a tree by examining the paths taken by patrons. They first arrive
at the root restaurant before being sent off to one of the root restaurant’s descendant restaurants. At this restaurant
the patron is sent off to another descendant restaurant and this process is repeated until L restaurants have been
visited in the bounded case. The paths taken by patrons generate the tree as illustrated in the toy example in Figure
3. As before, we extend this analogy of patrons and tables to entities and communities, respectively. Thus, when
drawing path pi for entity ei, the process starts by initializing the path at the top level to the root community, namely
p0

i = t0 where the superscript in path pi indexes into the path vector to obtain the community at the corresponding
level and t0 is the root community. The process then continues by drawing a descendent community according to
the CRP. Recall that this draw results in a community which either has or has not been visited before by a previous
entity. The latter case corresponds to branching out a new path in the tree at the descendant level. This process is
repeated L times at which point the specified depth has been reached. We can formalize this process by extending
the previously defined notation. Specifically, let Ti be the set of communities in the tree before entity ei has its path
sampled and Cq

i be the set of children communities for community tq at this time as well. The sampling process is
then expressed as follows: when entity ei arrives at community tq on the (l − 1)th level in the tree, the probability of
selecting an existing community, pl

i ∈ Cq
i or creating a new community, pl

i /∈ Ti, is:

P(pl
i = tc | p0,p1, ...,pi−1,p1: l−1

i , γ) =


#tc

i

#
tq
i + γ

tc ∈ Cc
i

γ

#
tq
i + γ

tc /∈ Ti

(6)

Where #tq
i and #tc

i is the number of entities that have passed through communities tq and tc before entity ei started its
path. The superscript in p1:l−1

i indicates that the probability distribution for sampling pl
i is conditioned on the path

taken by entity ei up until level l. The hyperparameter γ serves a similar function as in the CRP, namely controlling
the branching factor of the tree such that higher γ values yield trees with more branches. The use of the CRP in
the path decision process ensures that probability mass will be pulled towards drawing paths which have been more
frequently drawn before. The resulting distribution allows us to use the nCRP as a non-parametric prior over a tree
structure in our model. In drawing paths, we not only generate a hierarchy but also define a subset of communities
to which an entity can belong to, namely those along the path. This highlights an important difference between the
CRP and the nCRP. That is that while the CRP is sufficient for drawing a community for an entity, the nCRP must
be used alongside another stochastic process in order to determine the level along the path that the entity belongs
to. This provides a segue to one such process, specifically the stick breaking process.

3.5 The Stick Breaking Process

The stick breaking process [62] is – like the CRP and nCRP – a Dirichlet process that draws its name from a
metaphor which describes it. The metaphor starts by breaking a stick of unit length into two fragments at a point in
the interval from 0 to 1 as drawn from the Beta distribution. One of the two fragments is preserved and the other
fragment is broken again, analogously to the initial stick. This process is repeated an infinite number of times to yield
an infinite number of fragments whose combined length is that of the initial stick. These fragments may be viewed as
a probability distribution over the infinite sequence of discrete time-steps used to generate them. In other words, the
stick breaking process is an infinite extension of the Dirichlet distribution insofar as while the Dirichlet distribution
yields a probability distribution over L categories, the stick breaking process yields a probability distribution over
an infinite number of categories. Formally, let the draw from the Beta distribution at the lth iteration of the stick
breaking process be denoted as vl ∼ Beta(µσ, (1− µ)σ). Thus, the lengths of the first fragment, denoted a1, and its
remainder are v1 and 1 − v1, respectively. To obtain the length of the second fragment, a2, draw v1 and break off
that fragment from what remains of the stick, namely a2 = v1(1 − v1). We define this process for an arbitrary lth
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0.125 (1− 0.125)

a1
0.25(1− 0.125) (1− 0.25)(1− 0.125)

a2
(0.5)(1− 0.25)(1− 0.125) (1− 0.5)(1− 0.25)(1− 0.125)

a3

· · ·

Fig. 4. Toy example of the stick breaking process with values v1 = 0.125 v2 = 0.25 v3 = 0.5. Starting at the top of the figure, a unit length
stick is broken at v1. The remainder is then iteratively broken proportionally to draws from the Beta distribution.

time-step as follows:

al = vl
l−1∏
k=1

(1− vk) (7)

A concrete example involving the application of this rule is illustrated in Figure 4 which demonstrates the first three
breaks of the stick along with the respective values of the broken fragments and their remainders. The realized stick
fragments form a probability distribution in that

∑∞
l=1 al = 1. We can thus define the probability mass function of

the stick breaking process, denoted Stick(µ, σ), as follows:

Stick(µ, σ) =
∞∑

l=1

al

=

∞∑
l=1

vl
l−1∏
k=1

(1− vk) (8)

The stick breaking process is a generalization of the Griffiths-Engen-McCloskey distribution [61, 63] which may be
seen as a special case where µσ = 1. The hyperparameters, 1 > µ > 0 and σ > 0, control the mean and variance
of the distribution, respectively. Specifically, increasing µ values will pull the mean towards fragments broken later
in the process and increasing σ values will increase the variance of the distribution. The resulting distribution can
be used in conjunction with the nCRP to obtain a community for an entity given its sampled path. This is because
by sampling the stick breaking distribution an index is obtained which can correspond to the level on the path that
the entity belongs to. This motivates the use of the stick breaking process in our model. Namely, we use the stick
breaking process as a prior over the levels in the induced hierarchy. We explain this in detail in the subsequent
section.

4 Proposed Model

In describing our proposed model, we will adopt the notations used in the previous section to indicate the con-
nection with the ideas discussed in the preliminaries. To aid in understanding, we first provide a summary of the
components of our model before defining the generative process. This is followed by a formalization of the Gibbs
sampling procedure and derivation of sampling equations.
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t0

t1
John Doe

Michael Smith

t3
Brad Pitt

Johnny Depp

t4
Donald Trump

Joe Biden

t2
Europe

Pacific Ocean

t5
Canada

Germany

Entity Path Level Community
Brad Pitt t1 t3 2 t3
Canada t2 t5 2 t5
Donald Trump t1 t4 2 t4
Europe t2 t5 1 t2
Germany t2 t5 2 t5
Joe Biden t1 t4 2 t4
John Doe t1 t4 1 t1
Johnny Depp t1 t3 2 t3
Michael Smith t1 t3 1 t1
Pacific Ocean t2 t5 1 t2

Fig. 5. Toy example depicting a potential hierarchy induced by our model. The table on right side captures the path and level sampled for each
entity in the knowledge graph as well as its corresponding community. The left side provides a visualization of this hierarchy.

4.1 Model Description

Like all stochastic blockmodels, our model is defined as a set of probability distributions such that when these
distributions are sampled from, they generate the adjacency tensor of the knowledge graph. The choice of these
distributions makes assumptions about the underlying structure that governs the graph’s interactions. In devising
our model, we assume a hierarchy of entity communities which are captured in the form of a tree. The entities in
these communities interact with one another as a function of their membership to a community. In other words,
interactions are modelled at the community level and extended downwards to their constituent entities. Unlike most
stochastic blockmodels, these community relations are modelled with respect to a predicate in the knowledge graph.
In other words, the interactions between entities are predicate dependant such that the degree of interaction between
entities, changes depending on the predicate that links them. This allows the model to capture structures extending
beyond those implied by mere interaction density. Thus, in order to generate the knowledge graph’s adjacency
tensor, we need to know its hierarchical community structure, its entities’ memberships to communities, and the
interactions between its communities. The induction of these components, which may be seen as a byproduct of
the generative process, is the objective of our model. We note that the communities’ constituent entities do not
conform to is-a relationships as would be implied by the hierarchy. This is because the hierarchy is imposed on
the communities themselves as opposed to their constituent entities. An example of this is highlighted in Figure 5
where the entity Canada is a descendant of the entity Pacific Ocean. Of course, Canada is not a Pacific
Ocean however the concept modelled by community t5, namely countries, is an instance of the concept modelled
by community t2, namely locations.

4.1.1 Community Memberships
Entities are assigned to communities through the conjunction of two variables: entity paths and level indicators.

Paths define the tree structure over the community hierarchy by sampling from the nCRP as described in the previous
section. We thus denote an entity path as pi for entity ei, such that pi := [p1i , p

2
i , ..., p

L
i ] where pl

i represents the
community at level l. We draw attention to the fact that this definition omits the root community from the path,
namely p0i , since all entities must pass through it. It also allows a hierarchy with a depth of L to have entity path
vectors of dimension L, simplifying the notation. Entity paths are drawn from the nCRP, denoted as pi ∼ nCRP(γ).
Thus, all the entity paths sampled in the model form a |E|× L matrix which we denote as P. γ is the aforementioned
hyperparameter of the nCRP and is responsible for controlling the probability of generating a new branch in the
hierarchy as the path is being sampled. When a new branch is generated at level l such that l > L, L − l new
communities are also generated and populated solely by the sampling entity. Furthermore, if a path is resampled such
that its corresponding entity obtains a new path which leaves behind empty communities, those empty communities
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Donald Trump

Joe Biden

t2
Europe

Pacific Ocean
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Canada

Germany

t1 t2

t1 0.2

t2 0

t1 t2

t1 0

t2 0.3

t1 t2

t1 0.3 0

t2 0 0

t3 t4

t3 0

t4 0

t3 t4

t3 0

t4 0

t3 t4

t3 0.8 0.6

t4 0.7 0.9

t5

t5 0
t5

t5 0.1
t5

t5 0

bornIn

locatedIn

knows

bornIn

locatedIn

knows

bornIn

locatedIn

knows

Fig. 6. The potential community relations induced by our model on the toy example introduced earlier. The hierarchy on the left of the figure
has three sibling groups and three predicates: knows, locatedIn, and bornIn. The three tensors on the right correspond to the community
relations of the three sibling groups.

are removed from the hierarchy. As such, the number of communities in the hierarchy is subject to constant change
throughout the sampling process.

Having sampled entity paths, in order for entities to be assigned to communities, their levels must be obtained.
Entity levels are modelled by two variables in our approach: level memberships and level indicators. Level mem-
berships, denoted ai for entity ei, capture the probability of the entity’s belonging to each of the L levels. As such,
all the level memberships in our model form a |E| × L matrix, A. This is similar to the mixed-membership property
of the Mixed Membership Stochastic Blockmodel wherein an entity has a membership distribution over all commu-
nities. The difference, as pointed out by Ho et al. [12], is that in hierarchical models this distribution is restricted
to communities along the entity’s sampled path, otherwise the process of obtaining paths, and indeed the hierarchy
itself, would lose its meaning. Level memberships are drawn from the stick breaking process, ai ∼ Stick(µ, σ) with
hyperparameters µ and σ. Recall that this process yields an infinite distribution and must therefore be truncated to a
dimension of L to correspond with the depth of the tree. The truncation is performed by removing all probabilities
at levels greater than L and renormalizing. The distribution captured by an entity’s level membership is used to
sample its level indicator. The level indicator indicates the level to which an entity belongs and thus, in conjunction
with its path, assigns it to a community. Level indicators are drawn in the context of an interaction between two
entities. Specifically, when modelling the probability of an interaction from entity ei to entity e j we draw two level
indicators, one for the sender entity and one for the receiver entity denoted as zi→ j and zi← j, respectively. The sender
and receiver level indicators correspond to the levels of entities ei and e j in the context of their pairwise interaction.
Thus, our model samples |E|2 sender and receiver level indicators each leading to two |E| × |E| matrices Z→ and
Z← for all the senders and receivers, respectively. To simplify notation in our inference procedure, we concatenate
these matrices to form a |E| × |E| × 2 level indicator tensor, Z. Since level memberships are themselves probability
distributions, they may be sampled from directly to indicate an entity’s level. Specifically, level indicators are drawn
from multinomial distributions, namely zi→ j ∼ Multinomial(ai) and zi← j ∼ Multinomial(a j), which yield one of
the L levels in the hierarchy. The interplay between paths and levels when assigning entities to communities may be
summarized as follows: paths identify a hierarchy of candidate communities and level indicators select one of the
candidates for the entity. This dynamic is captured in the toy example in Figure 5.

4.1.2 Community Relations
Community relations describe the degree to which entities in any two communities are likely to interact with one

another through a specific predicate. In other words, they model the probability of observing a value of one in the
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knowledge graph’s adjacency tensor. These interactions are captured by a T × T × R tensor, denoted C, where T
is the set of all communities in the hierarchy. We note that because the communities in T are a result of sampling
from the nCRP and are thus subject to change with each successive sample, the dimensionality of C is also subject
to change in the sampling process. This presents a challenge to our sampling scheme since it is possible to sample
communities via the nCRP for which there are no community relation values. We overcome this issue through the
marginalization of community relations as discussed in the subsequent subsection. The community relation cpqr is
an entry in C and captures the probability of interaction between entities in community tp with entities in community
tq through predicate rr. As such, the value of cpqr is bounded to 1 ⩾ cpqr ⩾ 0. In order to preserve the hierarchical
structure that was induced by sampling paths and levels, the community relations must be limited to take on non-
zero values only when interacting with communities which are proximal to them in the hierarchy. This restriction
is vital as allowing for interaction between any two communities in the hierarchy would render it meaningless and
our model would be reduced to a fixed size mixed membership stochastic blockmodel such as the ones described in
Section 2.

In restricting the values of community relations we take an approach similar to that of the Multiscale Community
Blockmodel. Specifically, we borrow the concept of a sibling group which refers to a set of communities that share
the same parent in the hierarchy. Only the community relations between communities in the same sibling group are
modelled in our approach. Thus, when obtaining the interaction degree of two entities whose communities have the
same parent, it is sufficient to merely access the corresponding value in C. When their communities do not share the
same parent, a coarsening procedure is applied to obtain an interaction degree. The coarsening procedure traverses
the paths of the two entities to find the deepest pair of communities which are in the same sibling group. Formally,
to obtain the community relation degree from entity ei to entity e j on predicate rr, we define the function Ψ(i, j, r)
as follows:

Ψ(i, j, r) =

cp
zi→ j
i p

zi← j
j r pzi→ j−1

i = pzi← j−1
j

cΦ(i | j)Φ( j | i)r pzi→ j−1
i ̸= pzi← j−1

j

(9)

Wherein Φ(i | j) and Φ( j | i) are functions that find the ancestor communities of entities ei and e j which share the
same sibling group, respectively. These values are obtained by indexing the entities’ paths on the level at which they
diverge from their interaction partner. This process is made clear in their definitions:

Φ(i | j) = p
min({l : pl

i ̸= pl
j})

i

Φ( j | i) = p
min({l : pl

i ̸= pl
j})

j (10)

This approach differs from the Multiscale Community Blockmodel in that while there are restricted entries in C,
these values are never accessed. Instead, all communities are coarsened to an ancestor which allows for their inter-
action to take on a non-restricted value.

Community relations are drawn from the Beta distribution parameterized by λ > 0 and η > 0 , and denoted as
cpqr ∼ Beta(λ, η). This ensures that community relations take on probability values which can be used in conjunc-
tion with the Bernoulli distribution. λ and η are hyperparameters of our model and determine the density of the
generated knowledge graph such that increasing λ values with respect to η yields denser results. Figure 6 provides a
visualization of a potential sampling of community relations. We note that the three tensors correspond to the three
sibling groups for which community relations take on non-restricted values. The diagonal and off-diagonal values
in these tensors represent the intra and inter community relations, respectively. Thus, based on these values, there is
a probability of 0.8 that Brad Pitt knows Johnny Depp and a probability of 0.6 that Brad Pitt knows
Donald Trump. We provide an exploration of the recovered community relations on real-world data in Section 5.

4.1.3 Generative Process
The generative process of our model refers to the sequential sampling of components which allow for the gener-

ation of the target knowledge graph. In other words, the goal is to draw a binary value for each gi jr ∈ G such that it
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.

p1i

p2
i
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pL
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.

.

pi

. zi→ j

gi jr

µ σ

zi← j

ai a j

cpqr

λ η

|G| ∞

|E|

|E|

Fig. 7. Plate diagram for our model. Circles indicate random variables whereas diamonds indicate model hyperparameters. Shading indicates
observed variables and lack of shading indicates latent variables.

equals the knowledge graph’s adjacency tensor. But before this can be done, it is necessary to sample the variables
it is dependent on. The first components sampled in the generative process are the paths and level memberships for
each entity in the knowledge graph from the nCRP and stick distributions, respectively. Having drawn the paths,
we now have the set of communities in the hierarchy and can draw community relations from the Beta distribution.
At this point in the generative process, entities are not yet assigned to communities. The community memberships
for these entities have been drawn, however, allowing for the sampling of community levels for each pair of entities
in the knowledge graph from the multinomial distribution. With the community levels drawn, all the components
for generating the knowledge graph are in place. The binary value for the interaction from entity ei to entity e j on
predicate rr is drawn from the Bernoulli distribution using each entity’s respective community’s interactions, namely
gi jr ∼ Bernoulli(Ψ(i, j, r)). The plate diagram for this process is illustrated in Figure 7 and the formal definition is
as follows:

– For each entity in the knowledge graph; ei ∈ E

* pi ∼ nCRP(γ)
* ai ∼ Stick(µ, σ)

– For each sender community in the hierarchy; tp ∈ T

* For each receiver community in the hierarchy; tq ∈ T

* For each predicate in the knowledge graph; rr ∈ R

· cpqr ∼ Beta(λ, η)

– For each sender entity in the knowledge graph; ei ∈ E

* For each receiver entity in the knowledge graph; e j ∈ E

* zi→ j ∼ Multinomial(ai)

* zi← j ∼ Multinomial(a j)

* For each predicate in the knowledge graph; rr ∈ R

· gi jr ∼ Bernoulli(Ψ(i, j, r))

We note that this process is unsupervised and does not impose any assumptions about the partition of entities to
communities or the structure of the hierarchy other than to limit its depth. In fact, the depth is the only constraint
imposed on the generative process. The other hyperparameters which must be specified a priori – namely γ, µ, σ,
λ, and η – merely influence the prior distributions of our model. They may pull the latent variables in the assumed
direction but only insofar as the data allows it. This, recall, is due to the sampling of latent variables from their
posterior distribution which is conditioned on the data. As a result, with a strong enough likelihood, the effects of
the hyperparameters and the prior relatively diminish. As with most stochastic blockmodels, the exact inference for
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our model is intractable and must be approximated using an inference scheme. For this we adopt collapsed Gibbs
sampling, an extension of the aforementioned Gibbs sampling.

4.2 Collapsed Gibbs Sampling

Collapsed Gibbs sampling refers to an extension of Gibbs sampling in which a subset of model variables are
marginalized over and therefore do not need to be sampled directly. These variables are said to be collapsed out
of the Gibbs sampler. Collapsing of these variables is done analytically via integration and ensures a faster mixing
process. This is because the calculation of probability distributions for sampling is generally computationally ex-
pensive. Having fewer variables then leads to a faster arrival at the desired stationary distribution. Furthermore, the
calculation of probability distributions which have not been collapsed out of the sampling process is generally faster
in collapsed Gibbs sampling. This is because in regular Gibbs sampling draws are made from the full conditionals
of variables. In collapsed Gibbs sampling, collapsed variables have been integrated out of the process and the re-
maining variables are conditioned on a lower-dimensional space. Collapsing of variables is usually tractable when
they are the conjugate prior of their dependent variables. In our model, community relations and level memberships
are both conjugate priors of their dependant variables, namely level indicators and entity relations, respectively. We
leverage these conjugacies to marginalize over these two variables in our sampling process. After marginalization,
the sampling equations may be derived for the remaining variables.

4.2.1 Marginalizing Community Relations
In order to marginalize out community relations, it is necessary to find a closed form solution which allows for

integration during path sampling. To this end, we can leverage the Bernoulli-Beta conjugacy which ensures that
given a Bernoulli likelihood and Beta prior, the posterior will also be drawn from the Beta distribution. Employing
this conjugacy is possible due to the formulation of our model in which entity relations are drawn from the Bernoulli
distribution and community relations assume a Beta prior. We see this explicitly when applying Bayes’ theorem to
obtain the posterior as follows:

P(cpqr | C−(pqr),G,P,Z, λ, η) =
P(G | C,P,Z, λ, η)P(cpqr | C−(pqr), λ, η)∫

cpqr
P(G | C,P,Z, λ, η)P(cpqr | C−(pqr), λ, η) dcpqr

(11)

Where P(G | C,P,Z, λ, η) is the likelihood of generating entity relations and P(cpqr | C−(pqr), λ, η) is the prior
placed on community relations. C−(pqr) indicates the community relations tensor C without cpqr. Before proceeding
we introduce helper variables #cpqr=1 and #cpqr=0 to indicate the number of existing and non-existing interactions
between entities from community tp to community tq on predicate rr, respectively:

#cpqr=1 =
∣∣∣{gxyz ∈ G : Ψ(x, y, z) = cpqr ∧ gxyz = 1

}∣∣∣
#cpqr=0 =

∣∣∣{gxyz ∈ G : Ψ(x, y, z) = cpqr ∧ gxyz = 0
}∣∣∣ (12)

We can now derive a closed-form solution for the posterior of community relations by applying the distributions
defined in our model:

P(cpqr | C−(pqr),G,P,Z, λ, η)
(1)
=

(∏
gxyz∈G Bernoulli(cpqr, 1− cpqr)

)(
Beta(λ, η)

)∫
cpqr

(∏
gxyz∈G Bernoulli(cpqr, 1− cpqr)

)(
Beta(λ, η)

)
dcpqr

(2)
=

(
c#

cpqr=1

pqr (1− cpqr)
#cpqr=0

)(
cλ−1pqr (1− cpqr)

η−1

B(λ, η)

)∫
cpqr

(
c#

cpqr=1

pqr (1− cpqr)#
cpqr=0

)(
cλ−1pqr (1− cpqr)

η−1

B(λ, η)

)
dcpqr
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(3)
=

c#
cpqr=1+λ−1

pqr (1− cpqr)
#cpqr=0+η−1∫

cpqr
c#

cpqr=1+λ−1
pqr (1− cpqr)#

cpqr=0+η−1 dcpqr

(4)
=

c#
cpqr=1+λ−1

pqr (1− cpqr)
#cpqr=0+η−1

B(#cpqr=1 + λ,#cpqr=0 + η)

= Beta(#cpqr=1 + λ,#cpqr=0 + η) (13)

Such that in the derivation above: (1) is the Bayes’ theorem definition as per Equation 11 using the probability dis-
tributions defined in our model; (2) uses the probability masses and densities of the Bernoulli and Beta distributions
as per Equations A.1 and A.3; (3) is obtained by applying power rules and dividing out the Beta function which
is constant with respect to cpqr in the integral; and (4) utilizes the integral form of the Beta function as derived in
Equation B.1. The posterior as defined in Equation 13 allows for community relations to be integrated out when
sampling paths. As such they are not sampled directly in the inference process.

4.2.2 Marginalizing Level Memberships
There are two ways in which to approach marginalizing level memberships in our model. Firstly, Sethuraman

[62] showed that the realization of the stick breaking process follows the Dirichlet distribution. We can leverage
this because, in practice, the dimensionality of the level memberships gets bounded to the depth of the tree, L. It
is therefore possible to model level memberships with an L dimensional Dirichlet distribution. As discussed in Ho
et al. [12], this prior has the disadvantage of either being too expressive or not expressive enough depending on its
parameterization. Regardless, we show the marginalization of this case in Appendix D. In this subsection, however,
we focus on the infinite case using the stick breaking process as defined in our model. To this end, we use the
multinomial-stick conjugacy to obtain a stick breaking posterior which is used as the prior for the level indicators
later on. The posterior is defined as follows:

P(ai | A−i,Z, µ, σ) =
P(Z | A, µ, σ)P(ai | A−i, µ, σ)∫

ai
P(Z | A, µ, σ)P(ai | A−i, µ, σ) dai

=
Multinomial(ai)Stick(µ, σ)∫

ai
Multinomial(ai)Stick(µ, σ) dai

(14)

Where P(Z | A, µ, σ) and P(ai | A−i, µ, σ) are the likelihood and prior of level memberships, respectively. We
use the definitions from our model and replace these with the multinomial and stick breaking distributions. Before
proceeding, we define zi∗ = {zx↔y ∈ Z : x = i∨y = i} representing all level indicators for entity ei. In this notation
zi↔ j := zi→ j ∨ zi← j is used as shorthand for any level indicator relating entity ei with entity e j regardless of which
entities are taking on the sender and receiver roles. This allows for defining two helper variables, #zi∗=l and #zi∗>l,
to indicate the number of indicators in zi∗ at and below level l in the hierarchy, respectively:

#zi∗=l =
∣∣∣{zi↔ j ∈ zi∗ : zi↔ j = l

}∣∣∣
#zi∗>l =

∣∣∣{zi↔ j ∈ zi∗ : zi↔ j > l
}∣∣∣ (15)

With these definitions in place, we can derive the stick breaking posterior of level memberships:

P(ai | A−i,Z, µ, σ)
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(1)
=

(Γ(
∞∑

l=1

#zi∗=l + 1))

∞∏
l=1

Γ(#zi∗=l + 1))

∞∏
l=1

al
i

)(
∞∑

l=1

vl

l−1∏
k=1

(1− vk)I(al
i = l)

)

∫
V

(Γ(
∞∑

l=1

#zi∗=l + 1))

∞∏
l=1

Γ(#zi∗=l + 1))

∞∏
l=1

al
i

)(
∞∑

l=1

vl

l−1∏
k=1

(1− vk)I(al
i = l)

)
d∞V

(2)
=

(Γ(
∞∑

l=1

#zi∗=l + 1))

∞∏
l=1

Γ(#zi∗=l + 1))

∞∏
l=1

(
vl

l−1∏
k=1

(1− vk)
)#zi∗=l

)(
Beta(µσ, (1− µ)σ)

l−1∏
k=1

Beta((1− µ)σ, µσ)

)

∫
V

(Γ(
∞∑

l=1

#zi∗=l + 1))

∞∏
l=1

Γ(#zi∗=l + 1))

∞∏
l=1

(
vl

l−1∏
k=1

(1− vk)
)#zi∗=l

)(
Beta(µσ, (1− µ)σ)

l−1∏
k=1

Beta((1− µ)σ, µσ)

)
d∞V

(3)
=

(Γ(
∞∑

l=1

#zi∗=l + 1))

∞∏
l=1

Γ(#zi∗=l + 1))
v#

zi∗=l

l (1− vl)
#zi∗>l l−1∏

k=1

v#
zi∗>k

k (1− vk)
#zi∗=k

)

∫
V

(Γ(
∞∑

l=1

#zi∗=l + 1))

∞∏
l=1

Γ(#zi∗=l + 1))
v#

zi∗=l

l (1− vl)#
zi∗>l

l−1∏
k=1

v#
zi∗>k

k (1− vk)#
zi∗=k

)

(
vµσ−1l (1− vl)

(1−µ)σ−1

B(µσ, (1− µ)σ)
l−1∏
k=1

v(1−µ)σ−1k (1− vk)
µσ−1

B((1− µ)σ, µσ)

)
(

vµσ−1l (1− vl)
(1−µ)σ−1

B(µσ, (1− µ)σ)
l−1∏
k=1

v(1−µ)σ−1k (1− vk)
µσ−1

B((1− µ)σ, µσ)

)
d∞V

(4)
=

v#
zi∗=l+µσ−1

l (1− vl)
#zi∗>l+(1−µ)σ−1

l−1∏
k=1

v#
zi∗>k+(1−µ)σ−1

k (1− vk)
#zk∗=k+µσ−1∫

V
v#

zi∗=l+µσ−1
l (1− vl)#

zi∗>l+(1−µ)σ−1
l−1∏
k=1

v#
zi∗>k+(1−µ)σ−1

k (1− vk)#
zk∗=k+µσ−1d∞V

(5)
=

v#
zi∗=l+µσ−1

l (1− vl)
#zi∗>l+(1−µ)σ−1

l−1∏
k=1

v#
zi∗>k+(1−µ)σ−1

k (1− vk)
#zk∗=k+µσ−1

B(#zi∗=l + µσ,#zi∗>l + (1− µ)σ)
l−1∏
k=1

B(#zi∗=k + (1− µ)σ,#zk∗=k + µσ− 1)

= Beta(#zi∗=l + µσ,#zi∗>l + (1− µ)σ)
l−1∏
k=1

Beta(#zi∗>k + (1− µ)σ,#zi∗=k + µσ)

=

∞∑
l=1

vl

l−1∏
k=1

(1− vk) | zi∗
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= Stick(µσ, (1− µ)σ) | zi∗ (16)

Where (1) is an application of the definitions of the Multinomial and stick breaking distributions as per Equations
A.2 and 8 to the posterior as per Equation 14. (2) redefines the likelihood in terms of the Beta samples of the stick
breaking process and the prior leverages the mirror symmetry property of the Beta function. The summation and
indicator function are both removed at this stage to enhance readability. (3) rearranges the likelihood and substitutes
the probability density function of the Beta distribution as per Equation A.3. (4) involves cancelling out terms in
the numerator and denominator which are constant with respect to the integration. (5) utilizes the integral form of
the Beta function as per Equation B.1 and the remainder of the derivation merely reverses the definitions applied
earlier to arrive at the definition of the stick breaking process. We use the notation | zi∗ to denote that the distribution
preceding the notation is conditioned on zi∗.

4.2.3 Sampling Entity Paths
Entity paths are one of the two variables which remain after collapsing the Gibbs sampler and must therefore be

sampled directly. To sample a path for entity ei, it must first be removed from the hierarchy, thereby allowing for
its full conditional distribution to be obtained. The set of paths after having removed path pi is denoted as P−i. We
derive the posterior distribution of pi by applying Bayes’ theorem:

P(pi | P−i,G,Z, γ, λ, η) =
P(Gi∗ | G−(i∗),P,Z, γ, λ, η)P(pi | P−i, γ)∫

pi
P(Gi∗ | G−(i∗),P,Z, γ, λ, η)P(pi | P−i, γ) dpi

∝ P(Gi∗ | G−(i∗),P,Z, γ, λ, η)P(pi | P−i, γ) (17)

Where Gi∗ = {gxyz ∈ G : i = x ∨ i = y} denotes all the triples in the knowledge graph that depend on path
pi and G−(i∗) = G \ Gi∗ is its complement. The integral form of the marginal distribution for generating the
data is a normalizing constant for the posterior distribution. Calculating this integral is not necessary and we can
instead sample paths from its proportional distribution as per Equation 17. The prior for sampling an entity path,
P(pi | P−i, γ), is obtained from the nCRP. We note that due to the iterative nature of the Gibbs sampler, a path for
entity ei may already exist in the hierarchy from a previous iteration. As such, it must first be removed, hence the
conditioning on P−i. We use pi = tq as a shorthand to indicate the path that terminates at community tq, in other
words pi = tq if pL

i = tq. Thus, the prior is calculated as follows:

P(pi = tq | P−i, γ) = P(pL
i = tq | P−i, γ)

= E

[
(I(pL

i = tq)
∣∣ P−i, γ)

]
= P(pL

i = tq | p1 : L−1
i ,P−i, γ)

L−1∏
l=1

P(pl
i = tl

q | p1 : l−1
i ,P−i, γ) (18)

Where tl
q is the ancestor community of community tq at level l. Equation 18 requires the distribution for sampling a

community conditioned on a partially sampled path. Recall that this is defined by the nCRP in Equation 6 and can
be adapted here. Specifically, we calculate the probability of taking community tq on level l having already sampled
its path up to level l − 1 as:

P(pl
i = tq | p1 : l−1

i ,P−i, γ) =


#

tq
−i

#
tl−1
q
−i + γ

tq ∈ T−i

γ

#
tl−1
q
−i + γ

tq /∈ T−i

(19)
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Where #tq
−i extends the notation defined earlier to indicate the number of entities that have gone through community

tq in the hierarchy with path pi removed. T−i indicates all the communities in the hierarchy after path pi has been
removed. We note that this process requires the sampling of a path to start at the root community and proceed
sequentially to a leaf community. Having obtained the prior, it is necessary to update the belief about the posterior
with the data via the likelihood. The likelihood given a sampled path, P(Gi∗ | G−(i∗),P,Z, γ, λ, η), is defined with
the help of the following helper variables:

Ci∗ =
{

cpqr ∈ C : (∃gxyz ∈ Gi∗ : Ψ(x, y, z) = cpqr)
}

#
cpqr=1
−i =

∣∣∣{gxyz ∈ G−(i∗) : Ψ(x, y, z) = cpqr ∧ gxyz = 1
}∣∣∣

#
cpqr=0
−i =

∣∣∣{gxyz ∈ G−(i∗) : Ψ(x, y, z) = cpqr ∧ gxyz = 0
}∣∣∣

#
cpqr=1
i =

∣∣∣{gxyz ∈ Gi∗ : Ψ(x, y, z) = cpqr ∧ gxyz = 1
}∣∣∣

#
cpqr=0
i =

∣∣∣{gxyz ∈ Gi∗ : Ψ(x, y, z) = cpqr ∧ gxyz = 0
}∣∣∣ (20)

The definitions above capture the following: Ci∗ is the set of communities dependant on an interaction in Gi∗;
#

cpqr=1
−i and #

cpqr=1
i are the counts of existing entity relations from communities tp to tq in G−(i) and Gi, respectively;

and #
cpqr=0
−i and #

cpqr=0
i are the counts of non-existing entity relations from communities tp to tq in G−(i) and Gi,

respectively. In the discrete space, the likelihood is understood as the joint probability of generating the data as per a
probability mass function. In our model, the data is obtained by drawing from the Bernoulli distribution conditioned
on community relations. Recall that these parameters are marginalized out of our model and thus never sampled
directly. As such, in order to calculate the likelihood we must integrate with respect to the community relations.
This is possible by leveraging Equation 13 which allows us to obtain a closed form solution:

P(Gi∗ | G−(i∗),P,Z, γ, λ, η)

=
∏

cpqr∈Ci∗

∫
cpqr

P(Gi∗ | G−(i∗),C,P,Z, γ, µ, σ, λ, η)P(cpqr | C−(pqr),G−(i∗),P,Z, λ, η) dcpqr

(1)
=

∏
cpqr∈Ci∗

∫
cpqr

( ∏
gxyz∈Gi∗

Bernoulli(cpqr, 1− cpqr)

)(
Beta(#cpqr=1

−i + λ,#
cpqr=0
−i + η)

)
dcpqr

(2)
=

∏
cpqr∈Ci∗

∫
cpqr

(
c#

cpqr=1

i
pqr (1− cpqr)

#
cpqr=0

i

)(
c
#

cpqr=1

−i +λ−1
pqr (1− cpqr)

#
cpqr=0

−i +η−1

B(#cpqr=1
−i + λ,#

cpqr=0
−i + η)

)
dcpqr

=
∏

cpqr∈Ci∗

1

B(#cpqr=1
−i + λ,#

cpqr=0
−i + η)

∫
cpqr

c
#

cpqr=1

i +#
cpqr=1

−i +λ−1
pqr (1− cpqr)

#
cpqr=0

i +#
cpqr=0

−i +η−1 dcpqr

(3)
=

∏
cpqr∈Ci∗

B(#cpqr=1
i +#

cpqr=1
−i + λ,#

cpqr=0
i +#

cpqr=0
−i + η)

B(#cpqr=1
−i + λ,#

cpqr=0
−i + η)

(4)
=

∏
cpqr∈Ci∗

(
Γ(#

cpqr=1
i +#

cpqr=1
−i + λ)Γ(#

cpqr=0
i +#

cpqr=0
−i + η)

Γ(#
cpqr=1
i +#

cpqr=1
−i +#

cpqr=0
i +#

cpqr=0
−i + λ+ η)

)(
Γ(#

cpqr=1
−i +#

cpqr=0
−i + λ+ η)

Γ(#
cpqr=1
−i + λ)Γ(#

cpqr=0
−i + η)

)
(21)
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In the derivation above: (1) the prior probability of drawing cpqr is obtained from Equation 13; (2) utilizes the
definitions as per Equations A.1 and A.3 as well as the helper variables introduced in Equation 20; (3) leverages the
integral form of the Beta function as per Equation B.1; and (4) expands the Beta function to its Gamma formulation
as per Equation A.3. Having derived the prior and likelihood in Equations 18 and 21, respectively, it is possible to
sample from Equation 17 to obtain entity paths in our model. The time complexity of sampling one such path is
O(|E|2|R|L). This is due to the fact that it is necessary to obtain a sampling probability for all potential paths in the
hierarchy, which has a bound of |E|L in the case where each entity takes a unique path. For each of these potential
paths, the iteration through all |E| entities and |R| predicates is required to determine the effect on the likelihood
selecting such a path would have.

4.2.4 Sampling Level Indicators
Level indicators are drawn from the multinomial distribution conditioned on level memberships. Recall that level

memberships were marginalized over in our inference scheme using the multinomial-stick conjugacy and are thus
never sampled directly. Nevertheless, we draw them indirectly when computing the prior for level indicators. As
with sampling paths, we obtain the distribution proportional to that of level indicators by Bayes’ rule. In what
follows, we provide the derivation for the posterior of zi→ j and note that given its structural symmetry, zi← j is
derived analogously. The posterior distribution of zi→ j is expressed as:

P(zi→ j | Z−(i→ j),G,P, γ, µ, σ, λ, η) =
P(gi j∗ | G−(i j∗),P,Z, λ, η)P(zi→ j | Z−(i→ j), µ, σ)∫

zi→ j
P(gi j∗ | G−(i j∗),P,Z, λ, η)P(zi→ j | Z−(i→ j), µ, σ) dzi→ j

∝ P(gi j∗ | G−(i j∗),P,Z, λ, η)P(zi→ j | Z−(i→ j), µ, σ) (22)

Where gi j∗ = {gxyz ∈ G : i = x∧ j = y} denotes the vector of relations in G from entity ei to e j across all predicates,
G−(i j∗) = G \ gi j∗ is its complement, and Z−(i→ j) is all the level indicators excluding zi→ j. The prior probability
for sampling levels, P(zi→ j | Z−(i→ j), µ, σ), is drawn from the derived posterior of level memberships in Equation
16 . We follow Blei et al. [61] and use the law of total expectations to obtain the probability of zi→ j realizing level l
as the expectation of the size of the stick broken off at the lth break. To do this we define two variables which may
be seen as the directed extensions of those introduced in Equation 15:

#Z−(i→ j)=l =
∣∣∣{zi→ j ∈ Z−(i→ j) : zi→ j = l

}∣∣∣
#Z−(i→ j)>l =

∣∣∣{zi→ j ∈ Z−(i→ j) : zi→ j > l
}∣∣∣ (23)

With these variables in place, we obtain the prior distribution as follows:

P(zi→ j = l | Z−(i→ j),G−(i j∗),P, µ, σ) = E

[
I(zi→ j = l)

∣∣ Z−(i→ j), µ, σ
]

(1)
= E

[
E

[
I(zi→ j = l)

∣∣ v1, v2, ..., vl,Z−(i→ j), µ, σ

]]

(2)
= E

[ ∞∑
m=1

vl

l−1∏
k=1

(1− vk)I(m = l)
∣∣ Z−(i→ j), µ, σ

]

= E

[
vl | Z−(i→ j), µ, σ

] l−1∏
k=1

E

[
1− vk

∣∣ Z−(i→ j), µ, σ
]

(3)
=

µσ+#Z−(i→ j)=l

σ+#Z−(i→ j)=l +#Z−(i→ j)>l

l−1∏
k=1

(1− µ)σ+#Z−(i→ j)>k

σ+#Z−(i→ j)=k +#Z−(i→ j)>k

(24)
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Where (1) is derived by the application of the law of total expectation; (2) is obtained from the probability of drawing
level l from the stick breaking process conditioned on the successive draws from the Beta distribution, denoted
v1, v2, ..., vl, as per Equation 8; and (3) is the expected value of drawing from the Beta distribution conditioned on
Z−(i→ j) as per the level membership posterior obtained in Equation 16. The likelihood, P(gi j∗ | G−(i j∗),P,Z, λ, η),
is obtained analogously to entity paths. To aid in this derivation, we define two constants as follows:

#
cpqr=1

−(i jr) =
∣∣∣{gxyz ∈ G−(i jr) : Ψ(x, y, z) = cpqr ∧ gxyz = 1

}∣∣∣
#

cpqr=0

−(i jr) =
∣∣∣{gxyz ∈ G−(i jr) : Ψ(x, y, z) = cpqr ∧ gxyz = 0

}∣∣∣ (25)

Such that #cpqr=1

−(i jr) and #
cpqr=0

−(i jr) capture the number of existing and non-existing relations from communities tp to tq
not including gi jr. With these in place, we can derive the level indicator likelihood. This process is analogous to
the one for entity paths in that we use the Bernoulli distribution for model output and integrate over community
relations:

P(gi j∗ | G−(i j∗),P,Z, λ, η)

=

∫
cpqr

P(gi j∗ | G−(i j∗),C,P,Z, γ, µ, σ, λ, η)P(cpqr | C−(pqr),G−(i j∗),P,Z, λ, η) dcpqr

(1)
=

∫
cpqr

∏
gi jr∈gi j∗

P(gi jr | G−(i jr),C,P,Z, γ, µ, σ, λ, η)P(cpqr | C−(pqr),G−(i jr),P,Z, λ, η) dcpqr

(2)
=

∫
cpqr

∏
gi jr∈gi j∗

(
Bernoulli(cpqr, 1− cpqr)

)(
Beta(#cpqr=1

−(i jr) + λ,#
cpqr=0

−(i jr) + η)

)
dcpqr

=

∫
cpqr

∏
gi jr∈gi j∗

(
cgi jr

pqr(1− cpqr)
1−gi jr

)(
c
#

cpqr=1

−(i jr) +λ−1
pqr (1− cpqr)

#
cpqr=0

−(i jr) +η−1

B(#cpqr=1

−(i jr) + λ,#
cpqr=0

−(i jr) + η)

)
dcpqr

=
∏

gi jr∈gi j∗

1

B(#cpqr=1

−(i jr) + λ,#
cpqr=0

−(i jr) + η)

∫
cpqr

c
gi jr+#

cpqr=1

−(i jr) +λ−1
pqr (1− cpqr)

(1−gi jr)+#
cpqr=0

−(i jr) +η−1 dcpqr

(3)
=

∏
gi jr∈gi j∗

B(#cpqr=1

−(i jr) + gi jr + λ,#
cpqr=0

−(i jr) + (1− gi jr) + η)

B(#cpqr=1

−(i jr) + λ,#
cpqr=0

−(i jr) + η)

(4)
=

∏
gi jr∈gi j∗

Γ(#
cpqr=1

−(i jr) + gi jr + λ)Γ(#
cpqr=0

−(i jr) + (1− gi jr) + η)Γ(#
cpqr=1

−(i jr) +#
cpqr=0

−(i jr) + λ+ η)

Γ(#
cpqr=1

−(i jr) +#
cpqr=0

−(i jr) + 1 + λ+ η)Γ(#
cpqr=1

−(i jr) + λ)Γ(#
cpqr=0

−(i jr) + η)

(5)
=

∏
gi jr∈gi j∗

gi jr(#
cpqr=1

−(i jr) + λ) + (1− gi jr)(#
cpqr=0

−(i jr) + η)

#
cpqr=1

−(i jr) +#
cpqr=0

−(i jr) + λ+ η
(26)

Where (1) applies the chain rule of probability; (2) utilizes the prior for cpqr obtained in Equation 13; (3) and
(4) leverage the integral and Gamma forms of the Beta function as per Equations B.1 and A.3, respectively; and
(5) simplifies the preceding equation for computational reason by eliminating the Gamma function as shown in
Appendix C. With the prior and likelihood derived in closed form as per Equations 24 and 26, respectively, it is
possible to sample level indicators via Equation 22. The time complexity of sampling a level indicator is O(|R|L)
due to the |R| calculations that need to be performed at each of the L levels in the hierarchy.
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Algorithm 1 Collapsed Gibbs Sampling Procedure for Model Inference
Input: Knowledge graph adjacency tensor, G; model hyperparameters, γ, µ, σ, λ, and η; number of iterations, iters
Output: Paths P; level indicators Z;
community relations C

1: Initialize level indicators using Equation 24
2: Initialize paths using Equation 18
3: for iter = 1, 2, ..., iters do
4: Update level indicators using Equation 22 if Bernoulli(si)
5: Update paths using Equation 17 if Bernoulli(si)
6: end for
7: Obtain final level indicators using Equation 22
8: Obtain final paths using Equation 17

4.2.5 Sampling Procedure
Having marginalized out community relations and level memberships as well as derived the sampling equa-

tions for entity paths and level indicators, it is possible to perform collapsed Gibbs sampling by iteratively
sampling from the remaining variables’ full conditional distributions. This process has a time complexity of
O(|E|2|R|L + |E|3|R|L) for each iteration of the sampler where the former and latter terms are derived from the
sampling complexities of the level indicators and entity paths, respectively. This makes the inference scheme infea-
sible for large-scale datasets. We respond to this issue by modifying one of the characteristics of collapsed Gibbs
sampling, namely that samples are obtained in equal proportions. In its original formulation, one iteration of the
sampler samples |E|2 level indicators and |E| entity paths. One of the assumptions underlying this process is that
the relative importance of all samples is the same. Such an assumption may be ill-adapted for knowledge graphs
which are oftentimes sparse in their adjacency tensors and whose entities exhibit highly imbalanced relation den-
sities. In this regard, the placement of highly connected entities will have a disproportionate effect on the model
likelihood and therefore the induced hierarchy as well. Preferentially sampling these entities may result in faster
arrival at a distribution from which we can obtain output samples. Consider, for instance, a knowledge graph with
the entities Thing and Henry Ford. Assuming that Thing has a higher relation density than Henry Ford,
its proper placement in the hierarchy may be more critical for model output than Henry Ford. With this in mind,
we propose a stochastic sampling scheme in which samples are drawn for an entity in proportion to their proba-
bility of interacting with other entities. Specifically, we introduce a sampling probability, denoted si for entity ei,
which specifies the chance of sampling a variable for the corresponding entity in an iteration of the collapsed Gibbs
sampler. This probability is calculated for each entity as the fraction of entities in the knowledge graph which have
fewer relations than itself. Such as formulation ensures that 1 ⩾ si > 0 which allows si to serve as the parameter of
a Bernoulli distribution to indicate whether a variable will get sampled in the current iteration of the Gibbs sampler.

After the Gibbs sampler has been burned in, it is necessary to obtain final samples to induce a hierarchical
clustering. We take multiple samples to account for the spread in the posterior distribution. A consequence of this
is that samples may differ and need to be aggregated to produce a final result. In this regard, we take the mode over
the final samples to arrive at a final hierarchy. The Gibbs sampling procedure is summarized in Algorithm 1.

5 Evaluation

The evaluation of our model is split into two parts: quantitative and qualitative. The quantitative evaluation pro-
vides objective measures of model performance whereas the qualitative evaluation assesses our model through il-
lustrations and subjective analysis of the results. For both types of evaluations, our model first had to be inferred
before final samples could be drawn. In this regard, we trained our model on three datasets using 200 burn-in sam-
ples using hyperparameters chosen by assessing the model’s log likelihood. After burn-in, ten final samples were
obtained by discarding all but the third of successive samples to account for autocorrelation between samples. All
models we trained to a depth of L = 4. Furthermore, the model was trained five times for each dataset to account
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for stochasticity in the inference process. The implementation of our method as well as the datasets necessary to
recreate our evaluation has been made publicly available on GitHub 2.

5.1 Datasets

Our model was evaluated on three datasets: Synthetic Binary Tree, FB15k-237, and Wikidata. What follows is a
brief description of each dataset as well as how it was generated.

5.1.1 Synthetic Binary Tree
The Synthetic Binary Tree (SBT) dataset was synthetically generated to capture our model’s ability to separate

communities at the lowest level in the hierarchy. The generative process first constructed a binary tree with a depth
of four, assigned entities to communities, and sampled relations for each entity pair. All entities were assigned
uniformly to communities on the lowest level of the hierarchy, resulting in 25 entities per leaf community. The
sampling probability for each entity pair was determined by the level of their lowest common ancestor. Specifically,
sampling probabilities of 0, 0.1, 0.4, and 0.6 were used for levels 0, 1, 2, and 3, respectively. Two entities belonging
to the same community have a sampling probability of 1 and are thus always related. The dataset was generated for
two predicates which shared the aforementioned sampling probabilities. We note that even though these probabilities
are identical, they do not result in a dataset in which entity relations are identical across predicates. The generative
process yielded a dataset of 55880 triples, 400 entities, and 2 predicates.

5.1.2 FB15k-237
The FB15k-237 dataset [64] is a subset of the FB15k dataset [34], created by removing redundant and inverse

triples. The original FB15k dataset is in turn a subset of a 2013 version of Freebase, from which triples were
queried. The FB15k-237 dataset is comprised of 272115 triples, 14541 entities, and 237 predicates thus presenting
a computation challenge to our model if modelled in whole. To address this issue, we generated a subset of the
data and derived ground truth community labels in an approach insipred by Jain et al. [65]. Specifically, entities
were mapped to the WordNet taxonomy [66] through the sameAs predicate, which relates entities from Freebase
and YAGO. Triples were then extracted to contain subjects from the sets provided in Zhang et al. [13]. This pro-
cess yielded a subset of the data containing 103550 triples, 10018 entities, and 190 predicates. Finally, the subset
was reduced even further by extracting only the triples relating to footballers, pianists, journalists, politicians, and
scientists as per the identifiers /m/05vyk, /m/06q2q, /m/0gl2ny2, /m/0fj9f, /m/0d8qb on the predicate
/people/person/profession. This final step resulted in a dataset with 2499 triples, 1142 entities, and 79
predicates.

5.1.3 Wikidata
The Wikidata dataset was generated by querying Wikidata for triples relating to people and locations. Specifi-

cally, artists and footballers corresponding to Wikidata identifiers wd:Q1028181 and wd:Q937857 respectively
were extracted. These entities were then filtered to having been born in cities in four countries: Germany, the United
Kingdom, Canada, and the United States of America. Furthermore, the knowledge graph was reduced to the fol-
lowing predicates: instance of, place of birth, citizen of, occupation, country, and located in which are represented
by the identifiers wdt:P31, wdt:P19, wdt:P27, wdt:P106, wdt:P17, and wdt:P131, respectively. Finally,
the tripleset was further reduced to yield 2525 triples, 716 entities, and 6 predicates.

5.2 Quantitative Evaluation

In our quantitative evaluation, we first analyzed the quality of our learned hierarchical clustering by calculating
two clustering quality metrics at each level of the hierarchy: the Adjusted Rand Index (ARI) [67] and Normalized
Mutual Information (NMI) [68]. This type of evaluation jointly assesses the quality of the learned community
hierarchy as well as the membership of entities to communities. The ARI is an adjustment to the commonly used
Rand Index (RI) [69], corrected to account for chance. Specifically, chance is factored in by calculating the expected

2https://www.github.com/mpietrasik/hb

https://www.github.com/mpietrasik/hb
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SBT FB15k-237 Wikidata
Method ARI NMI ARI NMI ARI NMI

Level 1 0.3055 0.4855 0.5326 0.6646 0.8411 0.7991
±0.0685 ±0.1013 ±0.1308 ±0.0702 ±0.2980 ±0.1581

Level 2 0.5895 0.7826 0.3492 0.5083 0.8057 0.7232

±0.2826 ±0.1434 ±0.2044 ±0.1175 ±0.2839 ±0.1410

Level 3 0.7279 0.8882 0.2851 0.4329 0.4255 0.5880

±0.1656 ±0.0621 ±0.1993 ±0.1030 ±0.2749 ±0.1367

Level 4 0.8337 0.9319 0.1964 0.5334 0.3812 0.4980

±0.1032 ±0.0357 ±0.0438 ±0.0288 ±0.2500 ±0.1309

Overall 0.6141 0.7721 0.3408 0.5348 0.6134 0.6521

±0.2577 ±0.1988 ±0.1867 ±0.1145 ±0.3341 ±0.1770

Table 1
ARI and MNI scores (mean ± standard deviation) of our model on the SBT, FB15k-237 and Wikidata datasets.

SBT FB15k-237 Wikidata
Method ARI NMI ARI NMI ARI NMI

RDF2VEC
k-means 0.8060 0.8928 0.0109 0.1402 0.2672 0.2918

±0.1845 ±0.0707 ±0.0929 ±0.1052 ±0.1582 ±0.1040

Agglomerative 0.8750 0.9317 0.0461 0.1532 0.4674 0.5287
±0.1254 ±0.0575 ±0.0860 ±0.1435 ±0.3281 ±0.2052

DBSCAN 0.5549 0.6904 0.1468 0.2293 0.3831 0.3698
±0.4576 ±0.3032 ±0.1291 ±0.0561 ±0.2343 ±0.0935

Spectral 0.6175 0.7590 -0.0014 0.0347 0.0918 0.1021
±0.3540 ±0.2924 ±0.0082 ±0.03129 ±0.0636 0.0297

TransE
k-means 0.9851 0.9958 0.3559 0.4334 0.7427 0.6504

±0.0334 ±0.0066 ±0.0776 ±0.1096 ±0.1953 ±0.2468

Agglomerative 1.0000 1.0000 0.1362 0.3107 0.3799 0.3650
±0.0000 ±0.0000 ±0.1379 ±0.1104 ±0.4037 ±0.3780

DBSCAN 0.8899 0.9665 0.2768 0.2582 0.2418 0.3128
±0.1213 ±0.03829 ±0.1616 ±0.0728 ±0.1355 ±0.1143

Spectral 1.0000 1.0000 0.1400 0.2509 0.2778 0.3296
±0.0000 ±0.0000 ±0.1920 ±0.2418 ±0.1541 ±0.0153

Our method 0.6141 0.7721 0.3408 0.5348 0.6134 0.6521
±0.2577 ±0.1988 ±0.1867 ±0.1145 ±0.3341 ±0.1770

Table 2
ARI and MNI scores (mean ± standard deviation) of our model on the SBT, FB15k-237 and Wikidata datasets as compared with baseline
approaches.

RI given a random clustering and measuring the obtained clustering’s deviation. Specifically, given an obtained
entity clustering C = {C1, C2, . . . , Co} and the ground truth clustering C∗ = {C∗1 , C∗2 , . . . , C∗t } , the ARI is calculated
as follows:

ARI =

∑
Ci∈C

∑
C∗j ∈C∗

(
#i j
2

)
−
(|E|

2

)−1(∑
Ci∈C

(
#i
2

)∑
C∗j ∈C∗

(#∗j
2

))
2−1
(∑

Ci∈C
(
#i
2

)
+
∑
C∗j ∈C∗

(#∗j
2

))
−
(|E|

2

)−1(∑
Ci∈C

(
#i
2

)∑
C∗j ∈C∗

(#∗j
2

)) (27)
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Fig. 8. Plots of average log likelihood of our model across burn in samples on three datasets.

where #i j = |Ci ∩ C∗j | is the number of entities in common between a ground truth and obtained cluster pair;
#i =

∑
C∗j ∈C∗

|Ci ∩ C∗j | is the total number of entities in obtained cluster Ci; and #∗j =
∑
Ci∈C |Ci ∩ C∗j | is the total

number of entities in ground truth cluster C∗j . The NMI is a normalized extension of the Mutual Information (MI)
score which quantifies the information gained about the obtained clustering given the ground truth clusters. The
normalization of the MI score ensures the result is in the range [0, 1] thereby allowing for its comparison against
clusterings of different sizes. Utilizing the notation defined earlier, we define MI and NMI as follows:

NMI =

∑
Ci∈C

∑
C∗j ∈C∗

|Ci ∩ C∗j |
|E|

log

(
|E||Ci ∩ C∗j |
|Ci||C∗j |

)

mean

(
−
∑
Ci∈C

|Ci|
|E|

log

(
|Ci|
|E|

)
,−
∑
C∗j ∈C∗

|C∗j |
|E|

log

(
|C∗j |
|E|

)) (28)

For both the ARI and NMI, higher scores indicate a clustering of higher quality. We summarize the results of our
clustering as per these two metrics in Table 1.

In general, the results indicate that our model is capable of learning a coherent community hierarchy on each
of the three datasets tested. Perhaps unsurprisingly, communities at higher levels in the hierarchy are judged as
of higher quality as per the two evaluation metrics. This is because the task of clustering entities at higher lev-
els is simpler as the communities are less fine-grained. For instance, on the FB15k-237 dataset, clustering at
level 1 requires the distinction between Place and Person whereas level 4 requires the distinction between
AmericanFootballPlayer and IceHockeyPlayer. We note that the SBT dataset is an exception to this.
This is likely due to the nature of the dataset wherein entity relations are drawn at higher proportions between
neighbouring communities at lower levels of the hierarchy. In this sense, the claim made before gets inverted and
it is easier to assign communities at lower levels in the hierarchy. We also compared our model against embedding
and clustering methods used in conjunction. Specifically, we first embedded each of the knowledge graphs using
the RDF2VEC and TransE embedding methods. Afterwards, we applied four clustering methods: k-means, Ag-
glomerative, DBSCAN, and Spectral. These results are summarized in Table 2 and indicate comparable or superior
performance to baselines.

We can also analyze the results of the complete log likelihood as a function of the number of Gibbs samples taken
in the inference process. Indeed, while this does not provide us with information about the quality of the obtained
results, it does verify the inference process itself. Specifically, we expect to see the log likelihood of our model to
rise given more burn-in samples of the Gibbs sampler. This suggests that the likelihood of generating the knowledge
graph given the current state of the sampler is increasing and learning is taking place. We can see this rise in Figure 8
which plots the complete log likelihoods of our model across Gibbs samples for the three datasets. We note a dip in
log likelihoods on the SBT and Wikidata datasets. This is likely due to the sampler being temporarily stuck in a local
minimum before leaving that area in the sample space. The underperformance on the SBT dataset compared to the
baseline approaches is due to our method’s underperformance on simple datasets, largely attributed to its stochastic
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Root
A

D
H

O : Klaas-Jan Huntelaar, Wayne Dyer, Jonathan Walters
I

P : David Carney, Giuseppe Colucci, Jonathan Forte
B

E
J

Q : Ennio Morricone, Ernest Hemingway, Abraham Lincoln, Winston
Churchill, Aristotle, Leonardo da Vinci, ...

K
R : John Quincy Adams

F
L

S : Julius Caesar
C

G
M

T : England, Canada, Denmark, Scotland, New Zealand, United
Kingdom, Greece, Netherlands ...

N
U : Austria, Russia, Guatemala, France, Italy, Australia,
Germany, Seychelles, Guyana, ...

Fig. 9. Excerpt of our induced hierarchy on the FB15k-237 dataset. Entities in communities O and P are footballers. Ennio Morricone
is a pianist. Ernest Hemmingway is a journalist. Abraham Lincoln, Winston Churchill, John Quincy Adams, and Julius
Caesar are politicians. Aristotle and Leonardo da Vinci are scientists. The entities in communities T and U are countries.

nature. Recall that after burn-in, final samples are drawn and unless the log-likelihood is sufficiently high, these
samples will contain suboptimal allocations. These samples are necessary for Gibbs sampling but result in poorer
quantitative performance. We hypothesize that drawing more burn-in samples would stabilize the final samples and
produce better results. This is supported by the log-likelihoods in Figure 8 but, to establish consistency between the
three datasets, was not explored further.

5.3 Qualitative Evaluation

In our qualitative evaluation, we leverage the qualitative attributes possessed by a useful taxonomy as identified by
Nickerson et al. [70]. Although these attributes were proposed in the context of taxonomy development, we make use
of them in our work as the task of hierarchical clustering shares many of the underlying evaluation principles. Indeed,
a taxonomy is implicitly induced using our method, although never explicitly labelled. The proposed taxonomy
attributes are as follows: concise, robust, comprehensive, extendable, and explanatory. For each of these attributes,
we provide a brief description extended to hierarchical clustering and use it to evaluate our model.

– A concise clustering is limited in both the number of obtained clusters and the semantic diversity of the entities
that constitute each cluster. In our method, this is largely regulated by the hyperparameters γ, allowing for
control over the number of clusters obtained, and the interplay between λ and σ, regulating the intracluster
density. In practice, however, the hyperparameter tuning required is fickle. Figure 9 demonstrates this through
an excerpt of the results obtained on the FB15k-237 dataset. Singleton communities R and S are both composed
of politician entities and, in keeping with the conciseness attribute, warrant a merger. Community Q on the
other hand is composed of a heterogeneous set of entities and requires splitting. It is concise, but, as we shall
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A

E
J

Q : Adrian Kleinbergen, Isaac Rosenberg, Lynd Ward, John William
Inchbold, Walt Disney, Helen Frankenthaler, ...
R : Charles Krafft, Kenneth Armitage, Beth Hart, ...

B
F

K
S : Owen Hargreaves, Thomas Hitzlsperger, Franz Beckenbauer, Andy
Welsh, Paul Breitner, ...
T : Adam Smith

C
H

M
V : Dortmund, Toronto, Ottawa, Munich, ...

N
W : Edmonton, Manchester

D
I

O
X : England, Sweden, Netherlands, Uruguay, Tunisia, ...
Y : Spain, Malta, Japan, Norway, Great Britain, Finland,
Paraguay, Kingdom of Saxony

P
Z : Poland, France

Fig. 10. Excerpt of our induced hierarchy on the Wikidata dataset. Entities in communities Q and R are painters, in communities S and T are
footballers, in communities V and W are cities, and in communities X, Y, and Z are countries as defined in Wikidata.

elaborate upon later, it is not robust. Thus the direction in which to adjust the hyperparameters is not clear. The
induced hierarchy also suffers in terms of conciseness at higher levels in the hierarchy. Communities A and B
are both comprised of people and require a merger at their level. This issue can largely be explained by the
data itself. Footballers in our dataset have structural properties which differ them from the persons clustered
in the community B subtree. In addition to sharing the same profession, they belong to football teams, have
football specific triples such as the position they play, and are more likely than non-footballer persons in the
dataset to have information relating to physical characteristics such as height and weight. In contrast, non-
footballer persons have less structural similarities, even within members of their own professions. For instance,
even though all scientists have their scientific contributions, this is not reflected in the data as uniformly. The
Wikidata dataset – an excerpt of which is displayed in Figure 10 – is simpler than FB15k-237 due to there being
only two professions with largely disjoint neighbourhoods. The induced hierarchy is not concise, however,
in the splitting of persons and places. Specifically, this happens at the first level where persons are split into
communities A and B and places into communities C and D. We note, however, the high ARI and NMI scores
at this level despite this error. A closer inspection reveals that not all runs of our model encounter this issue,
thus the scores are higher than they would be had they been measured only on the hierarchy presented in the
excerpt.

– Robustness in clustering refers to “maximizing both within-group homogeneity and between-group hetero-
geneity, [making] groups that are as distinct (nonoverlapping) as possible, with all members within a group
being as alike as possible [71].” We see robustness as an issue when examining the non-footballer professions
in Figure 9. Pianists, journalists, politicians, and scientists are not sufficiently semantically homogenous to
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Fig. 11. Plots of learned community relations for selected outgoing predicates for the FB15k-237 and Wikidata datasets. Specifically we show-
cased community O (Footballers) and community T (Nations) outgoing relations for the FB15k-237 dataset (top) and community Q (Painters)
and community V (Cities) outgoing relations for the Wikidata dataset.

warrant their inclusion in community Q. Another issue is the splitting of nations into communities O and P
as there is no evident geographic, social, political, or economic distinction made in the clustering. A deeper
look into the data also reveals no apparent structural differences between communities M and N. It is likely,
therefore, that this issue can be due to model inaccuracy and arrival at a suboptimal state after inference. The
Wikidata dataset also suffers from unsubstantiated splits at the lowest levels as seen in communities R, T, and
Y. This issue may be the result of the small size of the data and the model’s resultant sensitivity to the relational
information provided. For instance, close to half of the entities in this dataset have first order neighborhoods of
one or two entities, giving our model little to learn from.

– A taxonomy is comprehensive if it can classify all entities in the domain. Clustering, including the hierarchical
clustering obtained by our method, are induced empirically from the data and thus necessarily classify all
entities into communities. As such, our generative model is comprehensive.

– An extendable clustering is one that allows for the dynamic inclusion of additional information and, in the
hierarchical case, the structural change and adaptability to incoming information. In these two respects, our
method is highly extendable. Indeed, the Gibbs sampling process itself requires the removal of entities from
the hierarchy before they are resampled. Each resampling not only has the potential to change the community
assignment of the entity but also to change the structure of the hierarchy itself. Due to the infinite formulation
of the nCRP and stick breaking process, there is no prior constraint on the structure.
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– The final qualitative attribute identified in a useful taxonomy is that it is explanatory. In this regard, the taxon-
omy should provide useful explanations about the objects it is organizing. In the context of hierarchical clus-
tering, these explanations could, for instance, take the form of community labels. Although our model does not
assign labels to communities, they can be ascertained by examining the type information of their constituent
entities. For instance in Figure 9 the FB15k-237 communities O, X, and P correspond to footballers, nations,
and persons and the Wikidata communities Q, S, V, and X correspond to painters, footballers, cities, and coun-
tries. An explanatory advantage of our method is that it infers community relations as part of the generative
process. A fragment of these relations is conveyed in Figure 11. The results indicate community relations which
are largely expected. For instance, on the FB15k-237 dataset, footballers are much more likely to be related
to nations by predicates nationality and lived in than athlete. Furthermore, we see that nations
are equally unlikely to be the subjects with the other communities or predicates such as lived in, nationality,
and athlete. On the Wikidata dataset, we likewise see explainable results. Painters, for instance, are likely to be
related to cities by place of birth and countries by nationality. They are unlikely to relate to other painters and
footballers on these predicates.

6 Conclusion

In this paper, we demonstrated the use of stochastic blockmodels for learning hierarchies from knowledge graphs
in an approach that is, to the best of our knowledge, the first to marry these two fields in an academic setting. To this
end, we proposed a model which leverages the nCRP and stick breaking process to generate a community hierarchy
composed of a knowledge graph’s constituent entities. The model is defined non-parametrically and thus makes
no assumptions about its structure, allowing it to adapt to the knowledge graph and potentially induce an infinite
number of communities on an infinite number of levels. In addition to the model itself, a Markov chain Monte Carlo
scheme leveraging collapsed Gibbs sampling was devised for posterior inference of the model’s parameters. The
model was evaluated on three datasets using quantitative and qualitative analysis to demonstrate its effectiveness in
learning coherent community hierarchies on both synthetic and real-world data. The qualitative analysis made use of
attributes commonly employed in taxonomy evaluation, presenting a novel and principled approach for qualitative
analysis of hierarchical clusterings. Future work will investigate scalability when applying our model – and indeed
stochastic blockmodels more generally – to knowledge graphs. As discussed earlier, the time complexities of the
inference schemes for these models usually do not allow for scaling to the types of large knowledge bases that are
encountered in real-world applications. The inference scheme proposed in this work is one such instance however
several methods exist in the literature more scalable than collapsed Gibbs sampling. An example of such a method
is variational inference, a scheme that uses the evidence lower bound to guide the inference process and obtain the
posterior distribution. This method is generally faster than Gibbs sampling and, although not asymptotically exact,
produces similar results [72]. The challenge with this approach is that its optimization equations are more difficult
to solve as compared to Markov chain Monte Carlo methods. Despite this, several works have already successfully
applied variational inference to probabilistic graphical models. Indeed, the original inference scheme for the Mixed
Membership Stochastic Blockmodel leveraged variational inference. Furthermore, Blei and Jordan [73] provided a
variational inference scheme for Dirichlet processes and a variational inference scheme for the nCRP was proposed
in Wang and Blei [74]. Departing from the variational approach, Chen et al. [75] propose an evolution of the
Gibbs sampling algorithm for the nCRP with partially collapsed Gibbs sampling. This approach resulted in a time
increase of over two magnitudes over the classic Gibbs sampling approach. Another line of approach to increase
the scalability of stochastic blockmodels is to devise a model which does not require sampling all |E|2|R| relations
in the knowledge graph directly. To this end, the Bernoulli-Poisson link function has been applied successfully to
simple graphs [76–78]. These methods eliminate the need for quadratic time relation sampling and instead rely on
density based sampling which is less computationally demanding, especially on sparse networks. Given that most
knowledge graphs are highly sparse, applying such an approach appears promising. The work presented in this paper
provides evidence for further research in this direction in the Semantic Web community.



30 M. Pietrasik et al. / Hierarchical Blockmodelling for Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

References

[1] solidIT, DBMS popularity broken down by database model, 2022. https://db-engines.com/en/ranking_categories.
[2] B. Jacob, You need to be thinking in knowledge graphs, 2021. https://www.forbes.com/sites/forbestechcouncil/2021/09/20/

you-need-to-be-thinking-in-knowledge-graphs/.
[3] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P.N. Mendes, S. Hellmann, M. Morsey, P. Van Kleef, S. Auer et al., DBpedia–a

large-scale, multilingual knowledge base extracted from Wikipedia, Semantic Web 6(2) (2015), 167–195.
[4] T. Pellissier Tanon, G. Weikum and F. Suchanek, Yago 4: A reason-able knowledge base, in: European Semantic Web Conference, Springer,

2020, pp. 583–596.
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Appendix A. Probability Mass and Density Functions

In this appendix, we provide the probability mass and density functions for the distributions used in our paper.
Probability mass functions capture the probability of a discrete random variable realizing a value, denoted x:

Bernoulli(p, q) = pxq(n−x) (A.1)

Multinomial(p) =
Γ(
∑

i xi + 1))∏
i Γ(xi + 1))

L∏
i

pxi
i (A.2)

Where p, q, and p are the parameters of their respective distributions. Probability density functions capture the
relative likelihood of a continuous random variable realizing the value x:

Beta(α, β) =
xα−1(1− x)β−1

B(α, β)
,B(α, β) =

Γ(α)Γ(β)

Γ(α+ β)
(A.3)

Dirichlet(ααα, L) =
Γ(
∑L

l=1 αl)∏L
l=1 Γ(αl)

L∏
l=1

xαl−1
l (A.4)

(A.5)

Where α, β, ααα, and L are the parameters of their respective distributions.

Appendix B. Integral Form of the Beta Function

In this appendix, we provide the derivation to obtain the integral form of the Beta function. We do this by lever-
aging the definition of the Beta distribution. Specifically, we begin with the identity that the integral of a probability
density function with respect to its support is equal to 1 and proceed with simple integral calculus:∫ 1

0

Beta(α, β) dx = 1
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∫ 1

0

xα−1(1− x)β−1

B(α, β)
dx = 1

1

B(α, β)

∫ 1

0

xα−1(1− x)β−1 dx = 1∫ 1

0

xα−1(1− x)β−1 dx = B(α, β) (B.1)

Appendix C. Simplifying Level Likelihood

In this appendix, we provide the simplification of level likelihood by eliminating the Gamma function. Recall
from Equation 26 that the level likelihood, P(gi j∗ | G−(i j∗),P,Z, λ, η), is expressed as follows:

P(gi j∗ | G−(i j∗),P,Z, λ, η)

=
∏

gi jr∈gi j∗

Γ(#
cpqr=1

−(i jr) + gi jr + λ)Γ(#
cpqr=0

−(i jr) + (1− gi jr) + η)Γ(#
cpqr=1

−(i jr) +#
cpqr=0

−(i jr) + λ+ η)

Γ(#
cpqr=1

−(i jr) +#
cpqr=0

−(i jr) + 1 + λ+ η)Γ(#
cpqr=1

−(i jr) + λ)Γ(#
cpqr=0

−(i jr) + η)

=
∏

gi jr∈gi j∗

1

#
cpqr=1

−(i jr) +#
cpqr=0

−(i jr) + λ+ η

Γ(#
cpqr=1

−(i jr) + gi jr + λ)Γ(#
cpqr=0

−(i jr) + (1− gi jr) + η)

Γ(#
cpqr=1

−(i jr) + λ)Γ(#
cpqr=0

−(i jr) + η)

(C.1)

We can leverage the fact that gi jr ∈ {0, 1} to define the second term as a piecewise function with respect to the value
of gi jr. Doing so allows us to cancel out terms which appear in both the numerator and denominator after expanding
the Gamma function. This process leads to the following simplificaiton:

Γ(#
cpqr=1

−(i jr) + gi jr + λ)Γ(#
cpqr=0

−(i jr) + (1− gi jr) + η)

Γ(#
cpqr=1

−(i jr) + λ)Γ(#
cpqr=0

−(i jr) + η)
=

#
cpqr=1

−(i jr) + λ gi jr = 1

#
cpqr=0

−(i jr) + η gi jr = 0
(C.2)

This allows us to put together Equations C.1 and C.2 to get the following, ass seen in Equation 26:

P(gi j∗ | G−(i j∗),P,Z, λ, η) =
∏

gi jr∈gi j∗

gi jr(#
cpqr=1

−(i jr) + λ) + (1− gi jr)(b + η)

#
cpqr=1

−(i jr) + b + λ+ η
(C.3)

Appendix D. Marginalizing Finite Level Memberships

In order to marginalize finite level memberships, we begin with the definition of its posterior, P(ai | A−i,Z,ααα),
which is defined analogously to Equation 14 with the exception that the Dirichlet prior is used in the this case.
Formally, we obtain the following through Bayes’ rule:

P(ai | A−i,Z,ααα) =
P(Z | A,ααα)P(ai | A−i,ααα)∫

ai
P(Z | A,ααα)P(ai | A−i,ααα)dai

(D.1)

=
Multinomial(ai)Dirichlet(ααα, L)∫

ai
Multinomial(ai)Dirichlet(ααα, L) dai

(D.2)
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Whereααα is a vector of L concentration parameters for each level in the distribution, namelyααα = [α1, α2, ..., αL] such
that αl > 0 and L is the finite number of levels in the hierarchy. In our marginalization, we adopt the notation from
Equation 15 to indicate the number of indicators in zi∗. Furthermore, we define the following vector of concentration
parameters to aid in readability: α′α′α′ = [α1 +#zi∗=1, α2 +#zi∗=2, ..., αL +#zi∗=L]. With these variables in place, we
can derive the Dirichlet posterior for finite level indicators:

P(ai | A−i,Zi∗,ααα)

=
Multinomial

(
ai
)
Dirichlet(ααα)∫

ai
Multinomial

(
ai
)
Dirichlet(ααα) dai

(1)
=

(
Γ(
∑L

l=1 #
zi∗=l + 1)∏L

l=1 Γ(#
zi∗=l + 1)

∏L
l=1(a

l
i)
#zi∗=l

)(
Γ(
∑L

l=1 αl)∏L
l=1 Γ(αl)

∏L
l=1(a

l
i)
αl−1

)∫
ai

(
Γ(
∑L

l=1 #
zi∗=l + 1)∏L

l=1 Γ(#
zi∗=l + 1)

∏L
l=1(a

l
i)
#zi∗=l

)(
Γ(
∑L

l=1 αl)∏L
l=1 Γ(αl)

∏L
l=1(a

l
i)
αl−1

)
dai

(2)
=

(
Γ(
∑L

l=1 #
zi∗=l + 1)∏L

l=1 Γ(#
zi∗=l + 1)

∏L
l=1 Γ(αl)

Γ(
∑L

l=1 αl)

)(∏L
l=1 Γ(α

′
l)

Γ(
∑L

l=1 α
′
l)

Γ(
∑L

l=1 α
′
l)∏L

l=1 Γ(α
′
l)

)∏L
l=1(a

l
i)
α′l−1∫

ai

(
Γ(
∑L

l=1 #
zi∗=l + 1)∏L

l=1 Γ(#
zi∗=l + 1)

∏L
l=1 Γ(αl)

Γ(
∑L

l=1 αl)

)(∏L
l=1 Γ(α

′
l)

Γ(
∑L

l=1 α
′
l)

Γ(
∑L

l=1 α
′
l)∏L

l=1 Γ(α
′
l)

)∏L
l=1(a

l
i)
α′l−1 dai

(3)
=

(
Γ(
∑L

l=1 #
zi∗=l + 1)∏L

l=1 Γ(#
zi∗=l + 1)

∏L
l=1 Γ(αl)

Γ(
∑L

l=1 αl)

∏L
l=1 Γ(α

′
l)

Γ(
∑L

l=1 α
′
l)

)
Dirichlet(α′α′α′)∫

ai

(
Γ(
∑L

l=1 #
zi∗=l + 1)∏L

l=1 Γ(#
zi∗=l + 1)

∏L
l=1 Γ(αl)

Γ(
∑L

l=1 αl)

∏L
l=1 Γ(α

′
l)

Γ(
∑L

l=1 α
′
l)

)
Dirichlet(α′α′α′) dai

(4)
=

(
Γ(
∑L

l=1 #
zi∗=l + 1)∏L

l=1 Γ(#
zi∗=l + 1)

∏L
l=1 Γ(αl)

Γ(
∑L

l=1 αl)

∏L
l=1 Γ(α

′
l)

Γ(
∑L

l=1 α
′
l)

)
Dirichlet(α′α′α′)

(
Γ(
∑L

l=1 #
zi∗=l + 1)∏L

l=1 Γ(#
zi∗=l + 1)

∏L
l=1 Γ(αl)

Γ(
∑L

l=1 αl)

∏L
l=1 Γ(α

′
l)

Γ(
∑L

l=1 α
′
l)

)∫
ai

Dirichlet(α′α′α′) dai

(5)
= Dirichlet(α′α′α′) (D.3)

Where (1) is obtained by applying the definitions of the Multinomial and Dirichlet distributions as per Equations A.2
and A.4, respectively; (2) leverages the definition of ααα′ to group level memberships and introduces cancelling nu-
merator and denominator terms using ααα′ to obtain a Dirichlet probability density function as shown by replacement
in (3); (4) groups terms constant with respect to ai in integration; and (5) leverages the law of total probability.
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