
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

SPARQL federated query debugging tool
Marek Moos a,* and Jakub Galgonek a

a Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Czech Republic
E-mails: marek.moos@uochb.cas.cz, jakub.galgonek@uochb.cas.cz

Abstract. Gaining insight into a complex problem often requires combining data from multiple datasets. For this reason, feder-
ated SPARQL query support is an important technology. However, several pitfalls have been encountered in practice, significantly
complicating the use of federated SPARQL queries. These challenges include uninformative error responses, performance bot-
tlenecks and unintended semantic changes introduced by SPARQL endpoints. To address these pitfalls, this paper introduces a
newly implemented federated SPARQL query debugger, which is available as a web application at https://sparql-debugger.elixir-
czech.cz. It has been developed for the purpose of monitoring, in real time, the execution of federated SPARQL queries. This
monitoring is crucial for error detection and performance optimization. Detailed service execution data (such as SPARQL re-
quests and responses, durations, etc.) can help identify the specific instance of a service responsible for a problem, even if it
is deeply nested within the service execution tree. The tool is based on the principle of redirecting all requests to a debugging
proxy server, so it can be used with all SPARQL-compliant endpoints without the need for their modification. The debugging
tool presented in the paper enables the identification and resolution of issues that are otherwise difficult to address and has proven
its effectiveness in practice.

Keywords: SPARQL Federated Query, debugger

1. Introduction

The Semantic Web is becoming increasingly pivotal across various fields that require managing complex and
diverse datasets interoperably. One notable example is bioinformatics, where researchers focus heavily on the prin-
ciples of Findable, Accessible, Interoperable, Reusable data [11] and seamless data integration, both of which are
inherently supported by Semantic Web technologies. In practice, this entails publishing data in RDF, annotating it
with ontologies and querying it using SPARQL [1, 3, 4, 6, 9, 10, 12]. In bioinformatics, interoperability is impor-
tant because gaining insights into a biological problem often necessitates combining data from multiple research
domains. Because biological datasets are typically produced by independent teams highly specialized in different
fields of interest, it is important to be able to create queries that span multiple datasets.

There are several approaches to spanning multiple RDF datasets. One option is to load the selected datasets,
or relevant portions of them, into a single triplestore, making it possible, for example, to transform and augment
the original data. Another approach is to transparently split a query into subqueries and dynamically identify the
appropriate endpoints for each subquery, as implemented by tools such as FedX [8] or Comunica [16]. Alternatively,
subqueries can be explicitly directed to specific endpoints using the standard SPARQL Federated Query extension
[20]. The advantages of this approach are that it does not require the use of any additional software and that it
provides query developers with a complete overview over query federation. The work presented here focuses on the
latter approach.

*Corresponding author. E-mail: marek.moos@uochb.cas.cz.

1570-0844/$35.00 © 0 – IOS Press. All rights reserved.

mailto:marek.moos@uochb.cas.cz
mailto:jakub.galgonek@uochb.cas.cz
mailto:marek.moos@uochb.cas.cz

2 M. Moos and J. Galgonek / SPARQL federated query debugging tool

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

In the SPARQL Federated Query extension, target endpoints are explicitly denoted by SERVICE patterns. Note
that these patterns can be nested, resulting in a federated query that can be represented as a service pattern tree.
From an operational perspective, as services are executed by individual endpoints, the evaluation of such a query
effectively constitutes a service execution tree. Note that the two trees may differ in general, even though requests
to evaluate service patterns are always initiated by endpoints that evaluate their direct parent patterns.

In practice, several pitfalls have been encountered that significantly complicate the use of federated SPARQL
queries. First of all, in the event of an error, error messages from nested services are often not propagated to the top
level and are effectively swallowed, resulting in uninformative query error responses. Furthermore, when a query
takes an unusually long time to execute, it is not clear what the cause is, leaving users without an understanding
of the problem. Last but not least, some SPARQL endpoints may silently modify subqueries they delegate to other
service endpoints, so these endpoints might then interpret the modified subqueries differently, potentially leading to
unexpected results.

To overcome these pitfalls, the debugging tool presented here has been developed to monitor the entire service
execution tree of a federated query. The ability to monitor federated queries is crucial for both error detection and
performance optimization. Detailed execution data can help identify the specific service responsible for an error,
even if it is nested deep within the service execution tree. Moreover, tracing can reveal services that suffer from high
latency or are executed too many times. This is often related to execution strategies employed by SPARQL end-
points. For instance, using the nested loop join [2] strategy, a specific service may be executed multiple times with
different substitutions of its variables based on values computed beforehand, which can result in an enormous num-
ber of remote requests. By contrast, resolving a service in its original form can lead to excessively large responses.
By pinpointing these bottlenecks, users can optimize their queries for better performance.

Although general monitoring platforms, such as Datadog [14], offer alternatives to our debugging tool, they
require configuration and deployment on service endpoints, which may not always be feasible. By contrast, tools
such as Virtuoso [18] and Jena [13] offer detailed information on executions of directly nested services, but they
cannot debug the execution within those services. Therefore, despite the importance of this functionality, the tool
presented here is, to the best of our knowledge, the first to provide comprehensive tracing across all levels of a
service execution tree, regardless of which SPARQL engine is used at each endpoint.

2. Implementation

The presented tool is provided as a web application 1 intended for SPARQL query developers, designed to en-
capsulate federated query debugging within an intuitive interface. The application features a custom YASGUI [5]
component for query editing, allowing users to work on multiple queries simultaneously using integrated tabs. The
debugging process is initiated by pressing the Debug button. As services are executed by endpoints, the service
execution tree is rendered continuously, showing the progress in real time. For each service call, trace information,
including the state, HTTP status, request and response data, duration and number of solutions, is displayed. If a ser-
vice pattern is invoked multiple times with, for example, varying variable substitutions, these calls are aggregated
into a special bulk execution node. These nodes, highlighted in yellow, are collapsed by default to enhance clarity
and include information about the total number of calls and their combined duration. It is also possible to run a
query directly without debugging by triggering the Run button. Furthermore, both the debugging process and the
query execution without debugging can be terminated using the Cancel button. In the case of debugging, this can
save significant endpoint resources because the expansion of the service execution tree (i.e. the calling of remote
services) is halted. In addition, the application also provides a selection of federated query examples.

2.1. Concept

It is generally assumed that SPARQL developers cannot feasibly modify service endpoints (e.g. configure them
or install additional extensions) and that their interaction with endpoints is limited only to querying via the SPARQL

1https://sparql-debugger.elixir-czech.cz/

https://sparql-debugger.elixir-czech.cz/

M. Moos and J. Galgonek / SPARQL federated query debugging tool 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 1. Debugging proxy server

protocol. The debugging tool presented here is therefore implemented with a proxy server at its core. This server
intercepts and wraps the execution of each service together with detailed trace information such as the request data,
response data, status, etc. When the debugging process is initiated, a query is sent to the proxy server, this execution
acts as the root of the entire service execution tree.

An example of query debugging is illustrated in Fig. 1. In this example, a query, denoted Q, is evaluated at
endpoint-1 and contains one federated service subquery SQ evaluated at endpoint-2. All evaluations are
performed through the proxy server.

Because all service endpoints are treated as black boxes, interaction with them is only possible through SPARQL
requests and responses. To properly trace services, the original service endpoint URLs in the SPARQL query request
are substituted with the proxy server’s URL. Additionally, essential information must be encoded into these URLs
to ensure that, when services are intercepted by the proxy server, they can be properly traced and executed. The
URL of the original service endpoint has to be encoded, allowing the proxy server to know which actual service
endpoint to call. Likewise, the ID of its parent in the service execution tree needs to be encoded to identify where
the new service execution node should be added in the tree. Lastly, the encoded query ID retains information about
the query scope.

To demonstrate the debugging process on a practical example, a federated SPARQL query from the BioSODA
website[15], which retrieves genes that are orthologs of a gene expressed in the fruit fly brain, is used.

The corresponding query service pattern tree and service execution tree are shown in Fig. 3 and Fig. 4.
The query (Fig. 2) is executed at the Oma-browser endpoint 2. It is processed from top to bottom using the

nested loop join execution strategy, where for each substitution of the SPARQL variable ?ID the second service is

2https://sparql.omabrowser.org/lode/servlet/query

https://sparql.omabrowser.org/lode/servlet/query

4 M. Moos and J. Galgonek / SPARQL federated query debugging tool

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

SELECT DISTINCT ?id ?OMA_LINK WHERE {
SERVICE <https://www.bgee.org/sparql/> {

SELECT DISTINCT ?gene ?id {
?gene a orth:Gene .
?gene genex:isExpressedIn ?anat .
?anat rdfs:label 'brain' .
?gene orth:organism ?o .
?o obo:RO_0002162 ?taxon .
?gene dcterms:identifier ?id .
?taxon up:commonName 'fruit fly' .

}
}
SERVICE <https://sparql.omabrowser.org/lode/sparql> {

?cluster a orth:OrthologsCluster .
?cluster orth:hasHomologousMember ?node1 .
?cluster orth:hasHomologousMember ?node2 .
?node2 orth:hasHomologousMember* ?protein2 .
?node1 orth:hasHomologousMember* ?protein1 .
?protein1 dcterms:identifier ?id .
?protein2 rdfs:seeAlso ?OMA_LINK .
FILTER (?node1 != ?node2)

}
}

Fig. 2. Example federated SPARQL query

Fig. 3. Example service pattern tree

Fig. 4. Example service execution tree

executed. These executions are then aggregated into a new bulk execution node in the visualization.
Consider a scenario where the second service pattern subquery contains another nested service pattern. In such

a case, it is impossible to substitute all service endpoints in the query with the proxy server endpoint at once when
the query is submitted to the proxy server. Each proxy URL must encode the identifier of the parent in the service
execution tree. However, for a nested service, this identifier is only determined after a specific instance of bulk
service execution has started at the proxy server. As a result, only the service endpoint URLs at the first level of
nesting in the query are initially replaced with proxy URLs. The remaining service endpoint URLs are gradually
replaced as the nested service endpoints are invoked through the debugging proxy server, elevating them to the first
level of nesting.

M. Moos and J. Galgonek / SPARQL federated query debugging tool 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

SELECT DISTINCT ?id ?OMA_LINK
WHERE
{

SERVICE <sparql_debugger_proxy.org/service/query/78/parent/5676/serviceCall/0/endpoint/4> {
SELECT DISTINCT ?gene ?id {

?gene a <http://purl.org/net/orth#Gene> ;
<http://purl.org/genex#isExpressedIn> ?anat .

?anat <http://www.w3.org/2000/01/rdf-schema#label> "brain" .
?gene <http://purl.org/net/orth#organism> ?o .
?o <http://purl.obolibrary.org/obo/RO_0002162> ?taxon .
?gene <http://purl.org/dc/terms/identifier> ?id .
?taxon <http://purl.uniprot.org/core/commonName> "fruit fly"

}
}

SERVICE <sparql_debugger_proxy.org/service/query/78/parent/5676/serviceCall/1/endpoint/6> {
?cluster a <http://purl.org/net/orth#OrthologsCluster> ;

<http://purl.org/net/orth#hasHomologousMember> ?node1 ;
<http://purl.org/net/orth#hasHomologousMember> ?node2 .

?node2 (<http://purl.org/net/orth#hasHomologousMember>)* ?protein2 .
?node1 (<http://purl.org/net/orth#hasHomologousMember>)* ?protein1 .
?protein1 <http://purl.org/dc/terms/identifier> ?id .
?protein2 <http://www.w3.org/2000/01/rdf-schema#seeAlso> ?OMA_LINK
FILTER (?node1 != ?node2)

}
}

Fig. 5. Request to a root query endpoint generated by the debugging proxy server

SELECT ?OMA_LINK ?protein1 ?protein2 ?node2 ?node1 ?cluster
WHERE

{ ?cluster a <http://purl.org/net/orth#OrthologsCluster> ;
<http://purl.org/net/orth#hasHomologousMember> ?node1 ;
<http://purl.org/net/orth#hasHomologousMember> ?node2 .

?node2 (<http://purl.org/net/orth#hasHomologousMember>)* ?protein2 .
?node1 (<http://purl.org/net/orth#hasHomologousMember>)* ?protein1 .
?protein1 <http://purl.org/dc/terms/identifier> "FBgn0000003".
?protein2 <http://www.w3.org/2000/01/rdf-schema#seeAlso> ?OMA_LINK
FILTER (?node1 != ?node2)

}

Fig. 6. Request to a federated service endpoint generated by the debugging proxy server

Each query can contain more than one directly nested service. In the service execution tree, these executions
share the same parent, but it is necessary to distinguish which nested service they belong to in order to create the
bulk execution node. This is achieved by encoding a sequential number for each nested service, designated as the
serviceCall parameter, into the proxy URL during the proxy URL substitution process.

Following the sample BioSODA query, Fig. 5 presents an example of a request sent to the root query endpoint
by the proxy server, while Fig. 6 presents a request sent to the second service. Both requests are generated by the
proxy server, with endpoints being enumerated by it.

Consider that during bulk execution, the service execution tree may differ from the service pattern tree. This
discrepancy can also occur when service endpoints apply optimizations, such as grouping triple patterns evaluated
by the same endpoint, as, for instance, with the Exclusive Groups in FedX [8]. Another such case is issuing special
SPARQL ASK requests to determine data availability [7].

6 M. Moos and J. Galgonek / SPARQL federated query debugging tool

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2.2. Performance issues

Queries can be traced by the debugging proxy server in parallel. Each execution of a service corresponds to an
HTTP request handled by the proxy server. Service execution trees can become large and deeply nested. Moreover,
some SPARQL engines can be capable of executing multiple service calls concurrently within the same query
execution. Taken together, this creates significant performance pressure on the debugging proxy server, especially
when handling parallel executions at scale.

Note that when a service is executed at an endpoint, it is initiated by a corresponding proxy service execution,
which waits for the result. Additionally, all preceding nodes in the service execution tree must also wait for their cor-
responding service executions to complete. As a result, numerous parallel threads are required, many of which may
be blocked while awaiting responses. To address this, Java Virtual Threads are utilized, allowing each proxy server
request to be handled by its own virtual thread. The benefit of this approach is that virtual threads are lightweight,
enabling the system to efficiently manage thousands of them. If virtual threads get blocked, they do not block system
threads, ensuring that the system remains both responsive and scalable.

A feature allowing users to cancel queries, which terminates all virtual threads associated with a specific query
execution, is also available. Additionally, this feature instructs the proxy server to reject any new proxy calls related
to the query being cancelled, even if they are initiated by the original endpoints during service execution after the
cancellation has begun.

2.3. Frontend

To visualize query execution tracing, an npm package that renders the service execution tree is provided. This
package is implemented as an independent React component. The component’s API consists of callbacks receiving
a SPARQL query and the endpoint where it should be executed. These parameters are then sent to the proxy server,
which initiates the query execution and starts notifying the component about updates to the service execution tree.

After query debugging is started, the service execution tree is rendered in real time. Instead of having the browser
poll the server for updates, the proxy server actively pushes tree node changes to the browser, which re-renders only
the affected parts of the tree dynamically. This real-time update is achieved using the Server-Sent Events (SSE)
protocol [17]. Compared to the WebSocket protocol [19], SSE offers a simpler and more efficient solution for this
use case, as it requires only one-way communication from the proxy server to the browser, following an initial
handshake.

Note that it is impossible to determine when a bulk execution node has fully completed until the parent execu-
tion is finished. Therefore, the bulk execution time is only partially calculated during execution. Additionally, it is
assumed that executions within the bulk can occur in parallel. As a result, the execution time is calculated as the
time interval between the start of the first endpoint call and the completion of the last call within the bulk. Conse-
quently, the displayed execution time continues to increase until it is definitively set when the parent execution node
is completed.

Part of the visualized service execution tree, including bulk execution nodes, is shown in Fig. 7.

3. Discussion

The presented approach has been designed so that, during debugging, each query is evaluated in the same way
as during direct execution. Nevertheless, the service execution trees may differ. For example, if a service endpoint
is declared with the same URL as its parent, the service may bypass a nested service call, executing locally and
potentially using internal optimizations. This can lead to discrepancies in the execution structure. In some cases,
even the results can differ. Certain SPARQL endpoints, such as Wikidata, enforce a whitelist of allowed service
URLs. If the proxy server is not included in this whitelist, service calls made during debugging may result in errors,
while the same service call could succeed in a direct query execution without the proxy. This discrepancy occurs
because the proxy is treated as an unauthorized endpoint during the debugging process.

M. Moos and J. Galgonek / SPARQL federated query debugging tool 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 7. Visualized service execution tree

3.1. Case study from practice

The usefulness of the tool in practice is demonstrated on the example of a query that returns no results, even
though it is known that some solutions matching the query exist. The query (Fig. 8) should return proteins that
catalyse reactions involving cholesterol-like compounds. It is evaluated by the Uniprot endpoint [10] and also in-
cludes nested services using the Rhea [1] and IDSM endpoints [3].

By tracing the query using the SPARQL debugger, it can be observed that the UniProt endpoint alters the original
object term "0.9"^^xsd:double for the predicate sachem:cutoff to the term 0.9 in the innermost service
call. According to the SPARQL specification, the IDSM endpoint interprets 0.9 as a decimal rather than a double.
Because IDSM is strongly typed, this change results in IDSM not returning any results for the given subquery, which
means that not even the entire query will return any results. As a workaround, replacing "0.9"^^xsd:double
in the query with "9E-1"^^xsd:double, which is interpreted as a double even if the type is stripped, resolves
the issue.

In our experience, the Uniprot endpoint first tries to use the nested loop join strategy and execute the respective
service for different substituted values. However, this approach takes a long time and does not lead to the desired
outcome. In subsequent attempts, the endpoint typically choose the option to call the service directly without any
substitution, which allows it to get the result in a short time.

These observations, made possible by the SPARQL debugger, demonstrate its practical utility.

8 M. Moos and J. Galgonek / SPARQL federated query debugging tool

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

SELECT ?CHEBI ?RHEA_REACTION ?PROTEIN WHERE {
SERVICE <https://sparql.rhea-db.org/sparql> {

SERVICE <https://idsm.elixir-czech.cz/sparql/endpoint/chebi> {
ChEBI compounds similar to cholesterol
?CHEBI sachem:similarCompoundSearch [

sachem:query "C1C2(C3(CCC4(C(C3(CC=C2CC(C1)O))(CCC4(C(C)CCCC(C)C)))C))C";
sachem:cutoff "0.9"^^xsd:double]

}

Rhea reactions involving compound ?CHEBI
?RHEA_REACTION rdfs:subClassOf rh:Reaction .
?RHEA_REACTION rh:status rh:Approved .
?RHEA_REACTION rh:side / rh:contains / rh:compound / rh:chebi ?CHEBI .

}

Rhea reactions catalysed by UniProt proteins
?PROTEIN up:annotation/up:catalyticActivity/up:catalyzedReaction ?RHEA_REACTION.

UniProtKB/Swiss-Prot entries
?PROTEIN up:reviewed true.

Human entries
?PROTEIN up:organism taxon:9606.

}

Fig. 8. Retrieval of a list of UniProtKB/Swiss-Prot human proteins that catalyse Rhea reactions involving cholesterol-like compounds

4. Conclusion

The presented software provides SPARQL developers with a debugger tool designed to offer detailed insights into
the execution of complex federated queries. It has already proven itself to be effective in practice and has helped
identify and resolve several errors and performance issues that were previously impossible to simply address.

The source code for both the proxy server 3 and the frontend 4 is available on GitHub. Additionally, a deployment
of the SPARQL federated query debugger5 is ready for use online.

Acknowledgement

This work was supported by the CHIST-ERA grant TRIPLE, by the Technology Agency of the Czech Republic
(TAČR) within the National Recovery Plan, project No. TH86010003. Computational resources were provided
by the e-INFRA CZ project (ID:90254), supported by the Ministry of Education, Youth and Sports of the Czech
Republic.

References

[1] P. Bansal, A. Morgat, K.B. Axelsen, V. Muthukrishnan, E. Coudert, L. Aimo, N. Hyka-Nouspikel, E. Gasteiger, A. Kerhornou, T.B. Neto,
M. Pozzato, M.C. Blatter, A. Ignatchenko, N. Redaschi and A. Bridge, Rhea, the reaction knowledgebase in 2022, Nucleic Acids Res
50(D1) (2022), D693–D700. doi:10.1093/nar/gkab1016. https://www.ncbi.nlm.nih.gov/pubmed/34755880.

[2] C. Buil-Aranda, A. Polleres and J. Umbrich, Strategies for Executing Federated Queries in SPARQL1.1 (2014), 390–405. ISBN 978-3-
319-11914-4. doi:10.1007/978-3-319-11915-1_25.

[3] J. Galgonek and J. Vondrasek, IDSM ChemWebRDF: SPARQLing small-molecule datasets, J Cheminform 13(1) (2021), 38.
doi:10.1186/s13321-021-00515-1. https://www.ncbi.nlm.nih.gov/pubmed/33980298.

3https://github.com/iocbbioinf/sparql_debugger_server
4https://github.com/iocbbioinf/sparql_debugger_component
5https://sparql-debugger.elixir-czech.cz/

https://www.ncbi.nlm.nih.gov/pubmed/34755880
https://www.ncbi.nlm.nih.gov/pubmed/33980298
https://github.com/iocbbioinf/sparql_debugger_server
https://github.com/iocbbioinf/sparql_debugger_component
https://sparql-debugger.elixir-czech.cz/

M. Moos and J. Galgonek / SPARQL federated query debugging tool 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[4] J. Pinero, J.M. Ramirez-Anguita, J. Sauch-Pitarch, F. Ronzano, E. Centeno, F. Sanz and L.I. Furlong, The DisGeNET knowledge platform
for disease genomics: 2019 update, Nucleic Acids Res 48(D1) (2020), D845–D855. doi:10.1093/nar/gkz1021. https://www.ncbi.nlm.nih.
gov/pubmed/31680165.

[5] L. Rietveld and R. Hoekstra, YASGUI: Not just another SPARQL client?, CEUR Workshop Proceedings 1056 (2013), 1–9. ISBN 978-3-
642-38708-1. doi:10.1007/978-3-642-41242-4_7.

[6] A. Rutz, M. Sorokina, J. Galgonek, D. Mietchen, E. Willighagen, A. Gaudry, J.G. Graham, R. Stephan, R. Page, J. Vondrasek, C. Steinbeck,
G.F. Pauli, J.L. Wolfender, J. Bisson and P.M. Allard, The LOTUS initiative for open knowledge management in natural products research,
Elife 11 (2022). doi:10.7554/eLife.70780. https://www.ncbi.nlm.nih.gov/pubmed/35616633.

[7] M. Saleem, A. Potocki, T. Soru, O. Hartig and A.-C. Ngonga Ngomo, CostFed: Cost-Based Query Optimization for SPARQL Endpoint
Federation, Procedia Computer Science 137 (2018), 163–174. doi:10.1016/j.procs.2018.09.016.

[8] A. Schwarte, P. Haase, K. Hose, R. Schenkel and M. Schmidt, FedX: Optimization Techniques for Federated Query Processing on Linked
Data (2011), 601–616. ISBN 978-3-642-25072-9. doi:10.1007/978-3-642-25073-6_38.

[9] SIB RDF Group Members, The SIB Swiss Institute of Bioinformatics Semantic Web of data, Nucleic Acids Res (2023).
[10] C. UniProt, UniProt: the universal protein knowledgebase in 2021, Nucleic Acids Res 49(D1) (2021), D480–D489.

doi:10.1093/nar/gkaa1100. https://www.ncbi.nlm.nih.gov/pubmed/33237286.
[11] M.D. Wilkinson, M. Dumontier, I.J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.W. Boiten, L.B. da Silva Santos,

P.E. Bourne, J. Bouwman, A.J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C.T. Evelo, R. Finkers, A. Gonzalez-Beltran,
A.J. Gray, P. Groth, C. Goble, J.S. Grethe, J. Heringa, P.A. t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S.J. Lusher, M.E. Martone, A. Mons,
A.L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S.A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn, M.A. Swertz,
M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao and B. Mons,
The FAIR Guiding Principles for scientific data management and stewardship, Sci Data 3 (2016), 160018. doi:10.1038/sdata.2016.18.
https://www.ncbi.nlm.nih.gov/pubmed/26978244.

[12] M. Zahn-Zabal, P.A. Michel, A. Gateau, F. Nikitin, M. Schaeffer, E. Audot, P. Gaudet, P.D. Duek, D. Teixeira, V. Rech de Laval, K. Sama-
rasinghe, A. Bairoch and L. Lane, The neXtProt knowledgebase in 2020: data, tools and usability improvements, Nucleic Acids Res 48(D1)
(2020), D328–D334. doi:10.1093/nar/gkz995. https://www.ncbi.nlm.nih.gov/pubmed/31724716.

[13] Apache Jena: A Java Framework for Semantic Web and Linked Data Applications, Accessed: 2024-11-21. https://jena.apache.org/index.
html.

[14] Datadog: Cloud Monitoring as a Service, 2024-11-19. https://www.datadoghq.com/.
[15] Exploring Biological Data Using SPARQL, Accessed: 2024-11-21. https://biosoda.expasy.org/build_biosodafrontend/.
[16] Query Federation with Comunica, Accessed: 2024-11-19. https://comunica.dev/docs/query/advanced/federation/.
[17] Server-sent events, Accessed: 2024-11-21. https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-event.
[18] Virtuoso Universal Server, 2024-11-21. https://virtuoso.openlinksw.com/.
[19] The WebSocket Protocol, Accessed: 2024-11-21. https://datatracker.ietf.org/doc/html/rfc6455.
[20] SPARQL 1.1 Federated Query, 2013, Accessed: 2024-11-19. https://www.w3.org/TR/sparql11-federated-query/.

https://www.ncbi.nlm.nih.gov/pubmed/31680165
https://www.ncbi.nlm.nih.gov/pubmed/31680165
https://www.ncbi.nlm.nih.gov/pubmed/35616633
https://www.ncbi.nlm.nih.gov/pubmed/33237286
https://www.ncbi.nlm.nih.gov/pubmed/26978244
https://www.ncbi.nlm.nih.gov/pubmed/31724716
https://jena.apache.org/index.html
https://jena.apache.org/index.html
https://www.datadoghq.com/
https://biosoda.expasy.org/build_biosodafrontend/
https://comunica.dev/docs/query/advanced/federation/
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-event
https://virtuoso.openlinksw.com/
https://datatracker.ietf.org/doc/html/rfc6455
https://www.w3.org/TR/sparql11-federated-query/

	Introduction
	Implementation
	Concept
	Performance issues
	Frontend

	Discussion
	Case study from practice

	Conclusion
	Acknowledgement
	References

