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Abstract. Recent advancements in declarative knowledge graph generation have led to the development of multiple mapping
languages, their various versions, and different mapping engines that can interpret these languages and execute the mapping
process. The field has progressed to the extent that current studies are now more focused on optimizing the knowledge graph
generation process. Although different mapping engines share the common functionality of generating knowledge graphs from
heterogeneous data sources, sharing the various optimization techniques and features of these engines remains challenging due to
the lack of formal operational semantics for the general mapping processes. A set of algebraic mapping operators can provide the
necessary operational semantics for general mapping processes, establish a theoretical foundation for mapping languages, and
facilitate the introduction and evaluation of a compliant implementation, that is capable of interpreting and executing multiple
mapping languages. In this paper, we propose such an algebra based on the SPARQL algebra. This allows us to maximally reuse
established definitions, and further bridge the world of knowledge graph generation with query engines. To evaluate that our
work is not limited to a single specific mapping language, we translated mapping languages ShExML and RML to our mapping
plan composed of algebraic mapping operators. The results of our completeness evaluation shows that our algebraic operators
cover the operational semantics of RML and partially for ShExML. To fully cover ShExML, further analysis into ShExML’s
concise operational semantics is needed (e.g. for joining data from two input sources). For performance evaluation, our proof-
of-concept algebraic mapping engine has a consistent memory usage of around 500 MB across the different workloads, and
achieved second place in the Knowledge Graph Construction Workshop’s performance challenge. Algebraic mapping operators
decouple mapping engines from the mapping languages, enabling multilingual mapping engines. Furthermore, the mapping
plan can incorporate optimization techniques as a separate process from the mapping itself, allowing us to benefit from state-
of-the-art mapping process optimizations. The proposed set of algebraic mapping operators will lay the foundation for future
studies on the theoretical analysis of complexity and expressiveness of mapping languages, and will provide consistency in the
execution semantics of mapping engines. Furthermore, the alignment of our algebra with SPARQL will enable further research
into advanced methods such as virtualization, enabling heterogeneous data querying.

Keywords: Mapping Algebra, Semantic Web, Mapping Language, Knowledge Graph Generation

1. Introduction

There exist several use-case-agnostic and declarative mapping languages [1–7] to generate a Knowledge Graph
(KG) using the Resource Description Framework (RDF) [8]. Mapping rules – described using such mapping lan-
guage – specify the mapping process: how to generate a KG from existing semi-structured data [8]. These map-
ping languages’ increasing popularity and importance is signified by the establishment of the W3C Knowledge
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Graph Construction Community Group, and a diverse ecosystem of mapping engines based on these mapping lan-
guages [8]. For example, several mapping engines based on the RDF Mapping Language (RML) [7] have been
implemented [3, 9–13], and there are plans to establish a RML W3C Working Group in the future [14].

However, these mapping languages typically provide no formal description of the operational semantics through
mapping plans: the formally defined steps a mapping process should follow to generate a KG based on mapping
rules. This prevents the static analysis of the mapping languages to prove the correctness of the mapping process,
and analyse the expressiveness and the complexity of the mapping languages. Attempts have been made to formalize
these mapping languages, however, these formalizations are mostly used in the context of proving the correctness of
an optimization technique [15] or restricted to a particular mapping language [16, 17]. To the best of our knowledge,
there is currently no research on the theoretical foundations, independent of specific mapping languages, that is
applicable to multiple mapping languages.

Hence, different mapping engine implementations typically individually infer the operational semantics of the
mapping plan based on the syntax of the mapping language. As a result, the operational semantics of the mapping
engines are different even when using the same mapping rules. These individual inferences of the operational seman-
tics lead to a slow-down in mapping engine development, with repetitive implementations of the same operational
semantics in different flavours. Additionally, performance optimizations are scattered across different engine im-
plementations; all incompatible with each other due to the aforementioned individual inferences of the operational
semantics.

In this work, we provide such a mapping language-independent theoretical foundation by defining a set of alge-
braic operators for the mapping process called mapping algebra, adapting the algebra [18] of SPARQL, an RDF data
query language. These algebraic mapping operators can be composed together to form a mapping plan. We provide
a proof-of-concept implementation on par – both in performance as in functionality – with existing mapping engine
implementations. This shows how to translate mapping rules from multiple mapping languages into a mapping plan,
and thereby providing operational semantics for mapping languages.

This approach can lead to more aligned mapping engines, and allows proving correctness across different map-
ping languages. Adapting the SPARQL algebra [18] to formulate the mapping algebra allows us to maximally
reuse established definitions, and closes the gap between KG materialization and KG virtualization (i.e. translating
SPARQL to a data source query language such as SQL to provide on-the-fly KG generation [19]).

The outline of this paper is as follows: in Section 2, we explore the state-of-the-art on mapping languages and
their operational semantics. In Section 3, we discuss our methodology and its rationale. In Section 4, we provide
the formal terms and definitions of the set of algebraic mapping operators used to construct the mapping plan. In
Section 5, we introduce a reference implementation that consists of an algebraic mapping translator and a proof
of concept engine. In Section 6, we provide an overview of our evaluation methodology and results, to show the
viability of the algebraic mapping operators without it impeding the performance of a mapping engine. Finally, we
conclude and discuss future work in Section 7.

2. Related Works

In this section, we provide an overview of existing mapping languages (Section 2.1) and existing formalizations
(Section 2.2), and provide concluding discussions (Section 2.3).

2.1. Mapping Languages

Declarative mapping languages allow describing how to generate a knowledge graph by mapping existing data.
These languages can be categorized based on the number of input data source types that they support: i) homoge-
neous mapping languages or ii) heterogeneous mapping languages.

On the one hand, homogeneous mapping languages only support one input data source type, e.g. D2RQ [20],
R2RML [1], TARQL [21], and SML [2]. For example, R2RML only allows mapping relational databases to RDF
using Turtle syntax [22], while TARQL maps only CSV data to RDF using SPARQL syntax [23].
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On the other hand, heterogeneous mapping languages support multiple input data source types, i.e. multiple data
formats (CSV, JSON, XML, etc. . . ) and multiple data access (websocket, files, databases, etc. . . ). Heterogeneous
mapping languages can be further categorized [8]: i) query-based mapping languages, ii) dedicated mapping lan-
guages, and iii) constraint-based mapping languages.

Query-based mapping languages extend or adapt the SPARQL syntax to map heterogeneous data to a KG, e.g.
XSPARQL [24] combines XQuery and SPARQL, SPARQL-Generate [5] extends SPARQL with generation-specific
operators, and SPARQL-Anything [17] applies extended SPARQL (CONSTRUCT) queries over an input data meta-
model called Façade-X [25].

Dedicated mapping languages extend existing mapping languages or use custom syntax. RML [3, 7],
xR2RML [26], and D2RML [27] are examples of dedicated mapping languages which extend R2RML to sup-
port more than just relational databases. Amongst them, RML is the most matured mapping language, taken up
by the W3C KG-Construct Community Group1 for ongoing standardization [7]. D-REPR [4] is the only dedicated
mapping language with its own syntax.

Currently, ShExML [6] is the only constraint-based language based on the ShEx [28] syntax with extensive
modifications and with a focus on making a user-friendly language.

2.2. Formalizations

Several formalization works have been conducted to formalize the aforementioned languages. For homogeneous
mapping languages, Stadler et al. [2] provide a unified model, focussed on relational databases as input data source
type. However, there are 2 limitations to their approach. First, the formalizations are only applied to the authors’
own mapping language, SML. Last, the translation of R2RML to SML – to demonstrate the completeness of their
unified model – is informally described. Therefore, it is uncertain if the model is suitable for providing operational
semantics for a generic mapping process. Priyatna et al. [19] provide formalizations for the translation of SPARQL
to SQL based on the mapping definitions in an R2RML document, extending the works of Chebotko et al. [29]
and improving the works of SparqlMap [30]. Since the formalization is not applied directly upon R2RML, it only
provides partial operational semantics to R2RML.

For heterogeneous mapping languages, on the one hand, query-based mapping languages benefit from the us-
age of SPARQL semantics, which results in having partial operational semantics out-of-the-box. XSPARQL [24]
provides partial operational semantics on the combination of XQuery and SPARQL, using SPARQL’s semantics.
Similarly, SPARQL-Anything and SPARQL-Generate extend the existing SPARQL syntax to ensure that their oper-
ational semantics inherit SPARQL’s well-defined semantics [18]. For SPARQL-Anything, it formally describes the
heterogeneous input data with their RDF meta-model Façade-X [25], and uses SPARQL to query the RDF meta-
model [17], leading to SPARQL-Anything having provided formal operational semantics of its mapping process.
SPARQL-Generate [5] also provided the operational semantics for KG generation from heterogeneous data based
on its extended SPARQL syntax.

On the other hand, dedicated mapping languages such as RML requires the authors to analyze the mapping
language syntax and formulate their own operational semantics. RML Fields [31] extended RML’s syntax to also
allow mapping of nested heterogeneous data, provided an informal operational semantics of how it works. Iglesias et
al. [15], and Arenas et al. [9] provide formalizations for RML, used to optimize the mapping process by grouping the
execution order using the concept of mapping assertions, and mapping partitions respectively. Mapping assertions
are formalized using Horn clauses, whereas mapping partitions are formalized using set theory. This mismatch on
the formalizations techniques makes it difficult to determine the similarity between the two optimization approaches.
The formalizations employed in both works are successfully used to prove the optimization techniques, however,
they are tailored to RML and do not to introduce general operational semantics of a mapping process.

1https://www.w3.org/community/kg-construct/

https://www.w3.org/community/kg-construct/
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Figure 1. Breakdown of the mapping process: the green labelled steps can be derived from existing query algebra, and the orange labelled steps
need to be formally defined. The exemplary Data Access step can read data from a relational database, and a CSV file while the exemplary Target
step, writes the generated output to both a file and a SPARQL endpoint.

2.3. Discussion

We observe that existing formalizations are typically partial, in the case of query-based languages partially rely-
ing on SPARQL semantics, and exclusively applicable to a specific syntax: they do not provide a unified model for a
generic mapping process independent of the mapping language. Currently, there is only a single work on providing
a unified model for mapping languages through an ontology [14]. However, it is not formal and does not provide op-
erational semantics. Hence, no KG generation operational semantics independent of the mapping language currently
exists.

The lack of such operational semantics impedes using an optimization technique proposed in one mapping lan-
guage in another mapping language. Furthermore, static analysis cannot be executed for verification of the mapping
rules described using these languages. For example, mapping engines such as SDM-RDFizer [15] and Morph-
KGC [9] employ their own concept of operational semantics for optimizing the mapping process. This makes it
impossible to formally verify the combination of both techniques without a translation between the two operational
semantics.

3. Methodology

In this section, we discuss our methodology for developing a mapping algebra and the rationale behind our design
choices in selecting a specific set of algebraic mapping operators to represent our mapping algebra.

A mapping process can typically be decomposed into the followings steps: i) data access, ii) data querying,
iii) data transformations, iv) data serialization, and v) target output. Figure 1 shows the breakdown of the mapping
process.

One way to define the operational semantics of the mapping process is through the definitions of algebraic oper-
ators, similar to the query languages. It is beneficial to extend and adapt the SPARQL algebra with new algebraic
operators as a foundation for defining algebraic mapping operators in a mapping algebra: i) we already have query-
based mapping languages successfully leveraging SPARQL’s semantics (Section 2.2), and ii) this approach allows to
align dedicated and query-based mapping languages, allowing for a generic mapping plan that can support multiple
mapping languages.

To apply the SPARQL algebra approach, we must define the corresponding algebraic operators for the 5 steps
in the mapping process (Figure 1). Formal operational semantics of the querying and transformation operators are
well-defined in querying languages such as SPARQL [18, 23] and SQL. Querying operators are defined, in this
work, as operators that do not change the value associated with an attribute of a data record, in contrast to the
transformation operators, which derive newvalues through operations such as string concatenation. An example for
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a querying operator is the SPARQL’s projection operator which we redefine Section 4.3 with minor modifications.
The same is also done for other querying operators such as join, and rename in Section 4.7 and 4.5 respectively.
Similarly, we adapt SPARQL’s extend operator (Section 4.4) to provide operational semantics for the transformation
step. The remaining steps – data access, data serialization, and target output – need to be defined formally with an
extended set of algebraic operators which we define in Section 4.2, 4.8, and 4.9 respectively. As shown in Figure 1,
a target operator can write the generated RDF into multiple data sinks, such as a file or a SPARQL endpoint. In
the original SPARQL algebra, there exists no algebraic operators which could do a fan-out operation and direct
the output to multiple downstream operators. Thus, we extended SPARQL algebra with the concept of fragment
(Definition 1) and the fragmenter operator (Section 4.6) for handling this situation.

4. Mapping Algebra

In this section, we introduce our mapping algebra. We first describe the needed terms and then define the al-
gebraic mapping operators: Source, Projection, Extend, Rename, Fragmenter, Natural join, θ-join, Left outer-join,
Union, Serialize, and Target. The algebra described in this section substantially extends our previous work [32], in-
troduces seven more operators, and improves the mapping tuple definition. Since this work is inspired by SPARQL
algebra, existing definitions and terms by Perez et al. [18] will be reused where possible. We only briefly introduce
the notations and concepts re-used from SPARQL algebra, readers are referred to the literature for more in-depth
definitions [18]. Throughout this section, examples will be provided by applying these algebraic mapping operators
sequentially on a small dataset.

4.1. Preliminaries

The following pairwise disjoint infinite sets are used in the definition of mapping algebra: V (variables), I (IRIs),
B (RDF blank nodes), and L (RDF literals). A solution mapping µ is a mapping from variables V with associated
data values of type I ∪ B ∪ L. More formally, it is defined as partial function µ : V → T with T = I ∪ B ∪ L. A
multiset of solution mapping is noted as Ω [18].

Two solution mappings µ1 and µ2 are compatible, if and only if, ∀v ∈ dom(µ1) ∩ dom(µ2), µ1(v) = µ2(v);
extending this, the union of µ1 and µ2, µ1∪µ2, is also a solution mapping. Given two multisets of solution mappings
Ω1 and Ω2, SPARQL algebra [18] defined the join (1), the union (∪), and the difference (\) between Ω1 and Ω2 as
follows [18]:

Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2} (1)

Ω1 1 Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1, µ2 are compatible. } (2)

Ω1 \ Ω2 = {µ1 ∈ Ω1 | ∀µ2 ∈ Ω2, µ1 and µ2 are not compatible. } (3)

When writing sequences of the join and the union operators, parentheses can be avoided since both operators are
associative and commutative [18]:

Ω1 1 Ω2 ∪ Ω3 = Ω1 1 (Ω2 ∪ Ω3) (4)

Now, we are ready to define the tuple type that our algebraic operators will operate upon. Unlike querying in
SPARQL, mapping languages enable users to fragment the generated data into different data sinks (e.g. multiple
files or web sockets). For example, using Logical Targets [33], RML engines can export the generated RDF output
to different data sinks based on the description provided in the Logical Targets. In contrast, query languages do not
allow users to specify where to export the queried data. Thus, we introduce the concept of fragments [32].
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Table 1
Two mapping tuples describing information related to John. The tuples are fragmented according to personal information about John and
information about John’s friends

Multiset of Solution Mappings

Fragment Solution Mapping ?name ?age ?email

fpersonal µ1 John Doe 23 john.doe@example.com

f f riends µ2 Susan Sue 25 susan.sue@example.com
f f riends µ3 Alice Joe 26 alice.joe@example.com

Definition 1. Let Ω be a multiset of solution mappings. A fragment, f ∈ F, is a grouping of a submultiset [34] of
Ω. The set of fragments, F, is infinite and pairwise disjoint with the other sets defined in Section 4.1.

Using the definition of fragments, the core data model of the mapping algebra, the mapping tuple is defined as
follows.

Definition 2. Let Ω be a multiset of solution mappings, and P(Ω) the powerset of the multiset Ω [34]. A mapping
tuple, ξ, is a partial function which maps fragments to mulitsets of solutions mappings: ξ : F → P(Ω). A multiset
of mapping tuples is Ξ. Note, from now on, we shall use the notation ω, as an element of the powerset P(Ω) with
ω ∈ P(Ω), to make the definitions of the algebraic operators more accessible to read. In this case, ω itself is also a
multiset of solution mappings.

Utilizing fragments in the mapping tuple enables mapping processes to broadcast solution mappings across mul-
tiple downstream operators. Furthermore, it enables the partitioning of the solution mappings during construction
based on either user defined conditions or some abstract concept such as personal or friend’s information as shown
in Table 1.

4.2. Source

In an algebraic mapping plan, the source operators are the leaf nodes of the mapping plan: they generate the
required mapping tuples for further processing by the downstream algebraic operators.

A way to extract data records from heterogeneous data formats needs to be defined to generate the mapping
tuples. Especially, when the input data has a nested data structure. ShExML [6] enables data records extraction
from nested data structures, using iterators and fields. Furthermore, it also enables referencing of data records on
different hierarchical level through the use of the pushed and the popped fields2. RML Fields [31] expanded upon
the concept of iterators and fields used in ShExML to also allow data records extraction from nested heterogeneous
data formats. For example, RML Fields can extract a JSON data record in a CSV table cell using a nested reference
formulation, unlike ShExML where only nested data structures of the same data format is supported. This work has
been recently continued as RML Logical Views3.

To support the extraction of data records from a nested data structure, we define the iterators and fields, as part of
the source operator, as follows. The definition is similar to the work of RML Fields [31].

Definition 3. An iterator, I, consists of one or more fields, ϕI , an iterator path, and a reference formulation. An
iterator extracts a list of records from the data source according to the given iterator path [31], while the reference
formulation determines the data format [3] of the data source. This is the entry point to further extract nested data
structures with fields.

Definition 4. Fields, ϕI , consist of a reference path, a name, an optional reference formulation and an optionally
nested one or more subfields, ϕI

sub. The reference path is used to extract part of the data record generated from the
iterator. The name of the field is used to provide an alias to the extracted part of the data record. Aligning with the

2ShExML pushed and popped fields: https://shexml.herminiogarcia.com/spec/#pushed-and-popped-fields
3RML Logical Views: https://github.com/kg-construct/rml-lv.

https://shexml.herminiogarcia.com/spec/#pushed-and-popped-fields
https://github.com/kg-construct/rml-lv
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Table 2
Representation of the mapping tuples generated by the source operator using data from Listing 1

Multiset of Solution Mappings

Fragment Solution Mapping ?name ?age ?email ?pet.type ?pet.name

fde f ault µ1 John Doe 23 john.doe@example.com dog Bax
fde f ault µ2 Susan Sue 25 susan.sue@example.com

definition of solution mappings, the name of the field determines the variables of the solution mappings, v ∈ dom(µ).
The associated value, t, is then assigned to the range(µ). The reference formulation is optionally used to determine
the data format of the part of the data record the associated field is extracting. This enables extraction of data records
with mixed data formats in nested data structures as defined in RML Fields [31]. Fields can be nested with subfields
to further extract nested data structures at a deeper hierarchical level.

Definition 5. Given a data access configuration Caccess, and an iterator I which consists of one or more fields ϕI . The
source operator generates a multiset of mapping tuples, ξ ∈ Ξ, where a default fragment f0 is mapped to a multiset
of solution mappings ω. Data access configuration Caccess consists of metadata information about utilizing the data
source (e.g. connection ports and credentials for Kafka4). Iterators enable querying of the data source to extract data
records and generate our solution mappings µ. The field names are used as the variables, and the associated extracted
data value is generated as a Literal. The extracted data value can have a datatype in the Literal if the datatype can be
inferred from the data source. This is to align the data records with the definition of solution mappings µ : V → T .

f0 = a default fragment

µ = flattened data record iterated according to I and fields ϕI

ω = a multiset containing µ

Source(C, I) = {ξ | ξ = f0 → ω}

(5)

To clarify the workings of the source operator with root and subiterators, Example 1 shows how a source operator
generates mapping tuples from a simple JSON file with nested data.

Listing 1: Example input data in JSON format

1 {
2 " p e o p l e " : [
3 {
4 " name " : " John Doe " ,
5 " age " : 23 ,
6 " e m a i l " : " j ohn . doe@example . com " ,
7 " p e t " :
8 {
9 " t y p e " : " dog " ,

10 " name " : " Bax "
11 }
12 } ,
13 {
14 " name " : " Susan Sue " ,
15 " age " : 23 ,
16 " e m a i l " : " s u s a n . sue@example . com " ,
17 }
18 ]
19 }

Example 1. As an example, provided with an input data source such as the JSON file in Listing 1, the source
operator could be configured with the following C and I:

4Kafka: https://kafka.apache.org/
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Table 3
Projection operator from Example 2 applied on the mapping tuple shown in Table 2

Multiset of Solution Mappings

Fragment Solution Mapping ?name ?pet.type ?pet.name
fde f ault µ1 John Doe dog Bax
fde f ault µ2 Susan Sue

– C: path to the JSON file.
– I: $.people[*] with reference formulation "JSONPath"

The iterator I also contains the following fields:

– ϕI
1: with name "?name" and reference $.name

– ϕI
2: with name "?age" and reference $.age

– ϕI
3: with name "?email" and reference $.email

– ϕI
4: with name "?pet.type" and reference $.pet.type

– ϕI
5: with name "?pet.name" and reference $.pet.name

The iterators are using the JSONPath reference formulation5. The source operator generates a mapping tuple as
shown in Table 2 with a default fragment fde f ault. The fields are executed relative to the iterator, I, and assign the
extracted value to the variable described by the name of the field.

After the source operator generates the mapping tuples from heterogeneous data sources, these mapping tuples
are further processed and transformed by the intermediate algebraic mapping operators. The intermediate algebraic
mapping operators are defined as follows: Projection, Rename, Extend, Fragmenter, and the various Join operators.

4.3. Projection

In SPARQL algebra, a projection restricts solution mappings to a set of variables. This is useful in reducing
the amount of data that needs to be further processed by the downstream operators. The corresponding projection
operator in the mapping algebra is defined as follows.

Definition 6. Given a set of variables P ⊆ V , the projection operator restricts the variables in the solution mappings
µ, associated with the mapping tuple ξ, according to P.

Project(µ, P) = µ restricted to variables in P

Project(ω, P) = {Project(µ, P) | ∀µ ∈ ω}

Project(ξ, P) = {( f ,Project(ω, P)) | ∀( f , ω) ∈ ξ}

Project(Ξ, P) = {Project(ξ, P) | ξ ∈ Ξ}

(6)

Example 2. A projection operator, configured with a set of variables {"?name", "?pet.name", "?pet.type"} ∈ P,
applied on the generated mapping tuple in Table 2 generates a mapping tuple in Table 3.

4.4. Extend

A core operation of the mapping process is the derivation of new values using existing values in the data record.
For example, given a data record containing the weight and height of a person, we can calculate the body mass
index (BMI) of the person using their weight and height. The following definition of the extend operator enables the
mapping algebra to derive new values from existing values.

5JSONPath: https://goessner.net/articles/JsonPath/

https://goessner.net/articles/JsonPath/
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Table 4
Extended mapping tuple as described in Example 3

Multiset of Solution Mappings

Fragment Solution Mapping ?name ?pet.type ?pet.name ?firstname_iri
fde f ault µ1 John Doe dog Bax <http://example.com/John>
fde f ault µ2 Susan Sue <http://example.com/Susan>

Definition 7. Given a set of pairs (vnew, expr) ∈ E, with vnew /∈ dom(µ), vnew ∈ V and expr : Ω → T an expression
statement. The extend operator derives a new value by evaluating the expr expression on the solution mapping,
and extends the solution mapping with the generated value, which is coupled to the new variable vnew. If evaluating
expr causes an error and vnew /∈ dom(µ), the extend operator behaves like an identity operator. It is undefined if the
variable restriction is violated, which means vnew ∈ dom(µ). Formally, it is defined as follows.

Extend(µ, E) = µ ∪ {(vnew, value) | (vnew, expr) ∈ E, vnew /∈ dom(µ) and value = expr(µ)}

Extend(ω, E) = {Extend(µ, E) | ∀µ ∈ ω}

Extend(ξ, E) = {( f ,Extend(ω, E)) | ∀( f , ω) ∈ ξ}

Extend(Ξ, E) = {Extend(ξ, E) | ξ ∈ Ξ}

(7)

Example 3. Provided {(? f irstname_iri, iri f y(_))} ∈ E. The extend operator applied to the mapping tuple shown
in Table 3 generates the mapping tuple shown in Table 4.

4.5. Rename

In order to avoid variable collision when processing mapping tuples, an algebraic operator must be able to re-
name the variables inside the solution mappings associated with the mapping tuples. The rename operator, which
introduces aliasing of the existing variables in the solution mappings, is defined as follows.

Definition 8. Given a set of pairs of variables {(va1, vb1)..(van, vbn)} ∈ R. The rename operator, applied on a
multiset of mapping tuples Ξ, renames the variables of the solution mappings associated with the mapping tuples as
follows: if µ ∈ range(ξ), for each (va, vb) ∈ R rename va → vb if va ∈ dom(µ). If the rename operator is configured
with an alias string salias instead of R, the rename operator will concatenate salias as the suffix ∀v ∈ dom(µ) as
salias∥v.

Rename(µ,R) = {(vb, d) | ∀(va, vb) ∈ R,∀(v, d) ∈ µ, v = va} ∪

{(v, d) | ∀(va, vb) ∈ R,∀(v, d) ∈ µ, v ̸= va}

Rename(ω,R) = {Rename(µ,R) | ∀µ ∈ ω}

Rename(ξ,R) = {( f ,Rename(ω,R)) | ∀( f , ω) ∈ ξ}

Rename(Ξ,R) = {Rename(ξ,R) | ξ ∈ Ξ}

(8)

Rename(µ, salias) = {(valiased, d) | ∀(v, d) ∈ µ, valiased = salias∥v}

Rename(ω, salias) = {Rename(µ, salias) | ∀µ ∈ ω}

Rename(ξ, salias) = {( f ,Rename(ω, salias)) | ∀( f , ω) ∈ ξ}

Rename(Ξ, salias) = {Rename(ξ, salias) | ξ ∈ Ξ}

(9)
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Table 5
Output of the rename operator as described in Example 4

Multiset of Solution Mappings

Fragment Solution Mapping ?fullname ?pet.type ?pet.name ?firstname_iri

fde f ault µ1 John Doe dog Bax <http://example.com/John>
fde f ault µ2 Susan Sue <http://example.com/Susan>

Readers would also realize that the rename operator can also be derived by first extending the solution mapping
with a new variable (Extension), copying the value associated with the old variable, and finally projecting away the
old variable (Projection). We defined the rename operator to describe the execution of the rename operation in one
operator instead of two operators. This reduces the complexity and redundancy of the generated mapping plan using
the operators. The extend and project operator chaining to represent the rename operation is formally defined as
follows.

R = {(va1, vb1) . . . (van, vbn | n ∈ N}

Prenamed = {v | v ∈ dom(µ)} ∪ {vb | ∀(va, vb) ∈ R}/ {va | ∀(va, vb) ∈ R}

Erename = {(vb, copyData(va)) | ∀(va, vb) ∈ R}

Rename(Ξ,R) = Project(Extend(Ξ, Erename), Prenamed)

(10)

Example 4. Provided with a set of variable pairs {(?name, ? f ullname)} ∈ R. Applying the rename operator on
the mapping tuples in Table 4, generates the mapping tuples in Table 5. The old variable, ?name, in the solution
mappings is renamed to ? f ullname.

4.6. Fragmenter

The aforementioned operators do not manipulate the fragments part of the mapping tuples, but only process the
associated solution mappings. To manipulate the fragments of the mapping tuples, the fragment operator is defined
as follows.

Definition 9. The fragmenter operator fragments the mapping tuple into a new fragment fnew. Given a partial
transformation function, δ : F → F. A fragmenter operator applies δ on the mapping tuple ξ = f → µ, and map it
into a new mapping tuple ξmapped = fnew → µ if dom(δ) ⊆ dom(ξ) and fnew ∈ range(δ). When dom(δ) ⊈ dom(ξ),
fragmenter operator acts like an identity function. More formally, it is defined as follows.

δ = {( fold, fnew) | fold, fnew ∈ F}

δ(ξ) = {( f , ω) | ( f , ω) ∈ ξ, f ̸= fold} ∪ {( fnew, ω) | ( fold, ω) ∈ ξ, ( fold, fnew) ∈ δ}

Fragment(ξ, δ) =

{
δ(ξ) if dom(δ) ⊆ dom(ξ)

ξ otherwise

Fragment(Ξ, δ) = {Fragment(ξ, δ) | ξ ∈ Ξ}

(11)

Example 5. Continuing with the output of the extend operator as shown in Table 4. A fragmenter operator with
δ : {( fde f ault, fcontacts)} applied on the mapping tuples generates new mapping tuples shown in Table 6, where the
old fragment, fde f ault, is mapped to the new fragment, fcontacts.
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Table 6
Fragmentation of mapping tuple as described in Example 3

Multiset of Solution Mappings

Fragment Solution Mapping ?fullname ?pet.type ?pet.name ?firstname_iri

fcontacts µ1 John Doe dog Bax <http://example.com/John>
fcontacts µ2 Susan Sue <http://example.com/Susan>

4.7. Binary operators

Previously defined operators are unary: they only work on a single multiset of mapping tuples Ξ. To combine two
multisets of mapping tuples Ξ1, and Ξ2, binary algebraic operators need to be defined, along with the definition of
compatibility between the mapping tuples. Thus, to support the binary operations for combining mapping tuples, the
mapping algebra defines the compatibility of mapping tuples, the natural join, the θ-join, and the left-join between
Ξ1 and Ξ2 as follows.

Definition 10. Two mapping tuples, ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2, are compatible, if and only if, ∀ f ∈ dom(ξ1)∩dom(ξ2),
for the associated multisets of solution mappings ξ1( f ) = ω1 and ξ2( f ) = ω2, ∃µ1 ∈ ω1, ∃µ2 ∈ ω2 where µ1 and
µ2 are compatible so that ω1 1 ω2 ̸= ∅. See Section 4.1 for solution mappings compatibility. If dom(ξ1) and
dom(ξ2) are disjoint, ξ1 and ξ2 are compatible.

4.7.1. Natural join
Definition 11. Natural join is a binary operator that combines two multisets of mapping tuples Ξ1 and Ξ2 if they
are compatible (Definition 10). It produces mapping tuples, ξ1 1 ξ2, which is a combination of two mapping tuples,
ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2 that have common fragments, ∀ f ∈ dom(ξ1) ∩ dom(ξ2), for which the associated multisets
of solution mappings ω1 = ξ1( f ) and ω2 = ξ2( f ) are joined as ω1 1 ω2 according to Equation 2. It is formally
defined as follows.

NatJoin(ξ1, ξ2) = {( f , ω1 1 ω2)) | ∀ f ∈ dom(ξ1) ∩ dom(ξ2), ξ1( f ) = ω1, ξ2( f ) = ω2}

NatJoin(Ξ1,Ξ2) = {NatJoin(ξ1, ξ2) | ξ1 ∈ Ξ1, ξ2 ∈ Ξ2, ξ1 and ξ2 are compatible}
(12)

Natural join operator joins mapping tuples if they have common fragments, and they also have equal values
for all the common variables of the associated solution mapping of the fragment. It does not allow users to join
mapping tuples based on the different variables of dom(µ1) and dom(µ2). Furthermore, natural join only checks for
the equality condition on the common variables and fragments: it does not use other predicate functions such as ⩽
or ⩾.

4.7.2. θ-join
θ-join enables the use of a predicate function, θ, on the specified variables to join two multisets of mapping tuples.

Thus, it is a more general form of the natural join operator. In order to execute θ-join, the following conditions must
be satisfied: ∀va ∈ µa ∧ ∀vb ∈ µb. va ̸= vb. Otherwise, µa and µb can be incompatible and cannot be joined as
µa ∪µb (see Section 4.1 for compatibility definition). Thus, to make sure that µa and µb are compatible, the mapping
plan planner should apply the rename operator before the θ-join operator to ensure that none of variables in µa and
µb are equal to each other. It is defined as follows.

Definition 12. Given a binary predicate function, v1θv2 : Ω × Ω → boolean, with variables v1, and v2, where
v1 ∈ dom(µ1), v2 ∈ dom(µ2), and two multisets of mapping tuples Ξ1 and Ξ2. Provided that ∀va ∈ dom(µ1),∀vb ∈
dom(µ2), va ̸= vb. Theta-join then combines two mapping tuples ξ1 ∈ Ξ1, and ξ2 ∈ Ξ2, if for the same fragment
f ∈ dom(ξ1) ∩ dom(ξ2), the following condition is satisified: µ1 ∈ ω1, µ2 ∈ ω2, v1θv2(µ1, µ2) = true with ω1 =
ξ1( f ) and ω2 = ξ2( f ).



12 S. Min Oo et al. / Algebraic Mapping Operators

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

v1θv2(µ1, µ2) =

{
true, if µ1(v1) = µ2(v2)
f alse, otherwise

ThetaJoin(ω1, ω2, v1θv2) = {µ1 ∪ µ2 | µ1 ∈ ω1, µ2 ∈ ω2, v1θv2(µ1, µ2) evaluates to true }

ThetaJoin(ξ1, ξ2, v1θv2) = {( f ,ThetaJoin(ω1, ω2, v1θv2)) | ∀ f ∈ dom(ξ1) ∩ dom(ξ2),

ξ1( f ) = ω1, ξ2( f ) = ω2}

ThetaJoin(Ξ1,Ξ2, v1θv2) = {ThetaJoin(ξ1, ξ2, v1θv2) | ξ1 ∈ Ξ1, ξ2 ∈ Ξ2}

(13)

Natural and θ-join filters out solution mappings which do not satisfy the predicate function. The filtering of
solution mappings results in the loss of information which might require extra processing steps to retain them.
Thus, a new binary algebraic operator, which retains the solution mappings that do not satisfy the given predicate
function, needs to be defined. SPARQL and relational algebra have definitions for such a group of binary operators
called outer-joins.

4.7.3. Left outer-join
Left outer-join operator is a binary operator that retains the solution mappings from the left multisets of mapping

tuples even if the given solution mappings do not satisfy the predicate function. Other outer-join operators, such as
right outer-join, and full outer-join operators, can be derived from the left outer-join operator.

Definition 13. Given two multisets of mapping tuples, Ξ1 and Ξ2, with ξ1 ∈ Ξ1, ξ2 ∈ Ξ2, ω1 ∈ ξ1, ω2 ∈ ξ2, µ1 ∈
ω1, µ2 ∈ ω2, and a predicate function, v1θv2 . Similar to θ-join, left outer-join requires the application of a rename
operator beforehand to ensure compatibility between the solution mappings. If Ξ1 and Ξ2 are incompatible, left
outer-join keeps the mapping tuples from Ξ1 but drops everything from Ξ2. If Ξ1 and Ξ2 are compatible, Left
outer-join combines two multisets of mapping tuples, Ξ1 and Ξ2 based on the boolean condition after evaluating
v1θv2(µ1, µ2) as follows. If it is true, it behaves the same as the θ-join operator producing µ1 ∪ µ2 for the associated
mapping tuple ξ. Otherwise, only µ1 is added to the mapping tuple ξ while µ2 is dropped. Thus, left outer-join
operator can be broken down into a taking a union of two steps: the union of the θ-join operator and the difference
operator. The difference operator is used internally to define the left outer-join operator, similar to the definition of
left-join in SPARQL algebra [18]. More formally, it is defined as follows.

Differenceθ(ω1, ω2, v1θv2) = (ω1 \ ω2) ∪ {µ1 | µ1 ∈ ω1,∃µ2 ∈ ω2, v1θv2(µ1, µ2) evaluates to f alse }

Differenceθ(ξ1, ξ2, v1θv2) = {( f ,Differenceθ(ω1, ω2, v1θv2)) | ∀ f ∈ dom(ξ1) ∩ dom(ξ2),

ω1 = ξ1( f ), ω2 = ξ2( f ) }

∪ {( f , ω) | ∀ f ∈ dom(ξ1) \ dom(ξ2), ω = ξ1( f )}

Differenceθ(Ξ1,Ξ2, v1θv2) = {Differenceθ(ξ1, ξ2, v1θv2) | ξ1 ∈ Ξ1, ξ2 ∈ Ξ2, ξ1 and ξ2 are compatible. }

Difference(Ξ1,Ξ2, v1θv2) = {ξ1 | ξ1 ∈ Ξ1,∀ξ2 ∈ Ξ2, ξ1 and ξ2 are not compatible} ∪

Differenceθ(Ξ1,Ξ2, v1θv2)

LeftJoin(Ξ1,Ξ2, v1θv2) = ThetaJoin(Ξ1,Ξ2, v1θv2) ∪ Difference(Ξ1,Ξ2, v1θv2)

(14)

We provide the following three examples, where the three aforementioned join operators are applied on the
mapping tuples shown in Table 6 and Table 7 as Ξ1 and Ξ2 respectively.

Example 6. Since natural join assumes solution mappings to have common variables, this example adjusts the
solution mappings in Table 7 by renaming the variables of the solution mappings with the prefix "?pet.". The natural
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Table 7
Mapping tuples generated from another data source about pets

Multiset of Solution Mappings

Fragment Solution Mapping ?type ?name ?age

fcontacts µa1 dog Bax 10
fcontacts µa2 cat Coco 3
fcontacts µa3 dog Max 5

Table 8
Output of the natural join operator as described in Example 6. Only the common variables ?pet.name and ?pet.type are checked.

Multiset of Solution Mappings

Fragment Solution Mapping ?fullname ?pet.type ?pet.name ?firstname_iri ?pet.age

fcontacts µ1 ∪ µa1 John Doe dog Bax <http://example.com/John> 10

Table 9
Output of θ-join operator as described in Example 7. Only the variables ?pet.type and ?animal_type are checked for equality.

Multiset of Solution Mappings

Fragment Solution Mapping ?fullname ?pet.type . . . ?animal_age ?animal_type ?animal_name

fcontacts µ1 ∪ µa1 John Doe dog . . . 10 dog Bax

fcontacts µ1 ∪ µa3 John Doe dog . . . 5 dog Max

join operator joins the mapping tuples from Table 6 and the adjusted Table 7 (renamed with the suffix "?pet."), and
it produces the output as shown in Table 8. The natural join merges solution mappings based on the value of the
common variables. In the example, the common variables between the two different multisets of solution mappings
are ?pet.name and ?pet.type. Since only µ1 and µa1 have the same values for the variables ?pet.name and ?pet.type,
the output only contains µ1 ∪ µa1 and drops the other solution mappings.

Example 7. To satisfy the precondition that the variables in the solution mappings should not collide, we rename
the variables in the solution mappings from Table 7 with a prefix string "animal_". In practice, the renaming is done
by using a rename operator right before the θ-join operator. Provided with the predicate function, ?pet.typeθ?animal_type,
for equality check on the variable ?pet.type and the variable ?animal_type. θ-join operator, applied on Ξ1 and Ξ2,
produces the output in Table 9. Unlike the natural join operator, the θ-join operator joins the mapping solutions
only if they satisfy the conditions of the provided predicate function: in this case, an equality check on the variables
?pet.type and ?animal_type.

Example 8. Provided with the predicate function, ?pet.typeθ?animal_type, for equality check on the variable ?pet.type
and the variable ?animal_type. Left outer-join operator, applied on Ξ1 and Ξ2, produces the output in Table 10.
In this example, the left outer-join retains the solution mapping µ2, even though it does not satisfy the predicate
function. For solution mapping µ1, it produces the same result as Table 9.

4.7.4. Union
The aforementioned join operators have a limitation where they cannot merge mapping tuples without comparing

the actual data values in the solution mappings. In order to collect mapping tuples from multiple operators, without
data value comparisons, we need to define a union operator. The algebraic mapping union operator is based on
SPARQL’s union operation. It is defined as follows.

Definition 14. Given two multisets of mapping tuples, Ξ1 and Ξ2. Union operator produces a new multiset contain-
ing mapping tuples from either Ξ1 or Ξ2. More formally, it is defined as follows.
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Table 10
Output of left-join operator as described in Example 8. Only the variables ?pet.type and ?animal_type are checked for equality and all solution
mappings from Ξ1 are retained.

Multiset of Solution Mappings

Fragment Solution Mapping ?fullname ?pet.type . . . ?animal_age ?animal_type ?animal_name

fcontacts µ1 ∪ µa1 John Doe dog . . . 10 dog Bax

fcontacts µ1 ∪ µa3 John Doe dog . . . 5 dog Max

fcontacts µ2 Susan Sue . . .

Union(ξ1, ξ2) = {( f , ω1 ∪ ω2) | ∀ f ∈ dom(ξ1) ∩ dom(ξ2), ω1 = ξ1( f ), ω2 = ξ2( f )}

∪ {( f1, ω) ∈ ξ1 | f1 /∈ dom(ξ2)}

∪ {( f2, ω) ∈ ξ2 | f2 /∈ dom(ξ1)}

Union(Ξ1,Ξ2) = {Union(ξ1, ξ2) | ξ1 ∈ Ξ1, ξ1 ∈ Ξ2}

(15)

4.8. Serialize

The aforementioned operators process and transform the mapping tuples generated from heterogeneous data
sources, they do not define how to process the mapping tuples to the target data format. Serialize operator enables
the transformation of mapping tuples to the target data format. In order to keep the operator algebraic, the output
of the serializer operator is a special mapping tuple containing a solution mapping with only a single variable
?serialized_output containing the serialized data. A serializer expression configured with C, ΨC : Ω → D, is
provided to the serialize operator based on the desired output format. ΨC is the function which generates the data
by using the input mapping tuples. Configuration on the data format specific serialization is given to the serializer
operator in the form of C. Since we focus on the generation of knowledge graphs in this work, the configuration
C for the serializer operator uses quad patterns (QPs) as defined in SPARQL6. Since the blank nodes labels may
be created using the extend operator and bound to a variable, we do not require the functionality to handle blank
nodes separately in the serializer operator. Thus, ΨC is, in this case, defined as a straightforward string templating
function, which binds the variables in the quad pattern with values from the associated solution mappings in the
input mapping tuples.

Definition 15. Provided with the serializer expression ΨC : Ω → T , C the serialization configuration, and a multiset
of mapping tuples Ξ. The serialize operator is defined using the extend and projection operator. It first applies the
extend operator configured with (vserialized,ΨC) ∈ E, Extend(Ξ, E). Afterwards, it projects the extended mapping
tuples using the projection operator, Project(Ξ, P) configured with P = {vserialized}. More formally, it is defined as
follows.

C = QPs representing the triples or quads output

ΨC = replace the variables in the QPs based on the input solution mapping µ

E = {(vserialized,ΨC)}

P = {vserialized}

Serialize(Ξ,ΨC) = Project(Extend(Ξ, E), P)

(16)

6SPARQL Quad Pattern: https://www.w3.org/TR/sparql11-query/#rQuadPattern

https://www.w3.org/TR/sparql11-query/#rQuadPattern
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Table 11
Output of the serialize operator as described in Example 9.

Multiset of Solution Mappings

Fragment Solution Mapping ?serialized_output
fcontacts µ1 <http://example.com/John> <http://example.com/name> "John Doe";

<http://example.com/petName> "Max".

Listing 2: Example QP configuration for the serialize operator

1 ? f i r s t n a m e _ i r i < h t t p : / / example . com / name> ? f u l l n a m e ;
2 < h t t p : / / example . com / petName> ? pet_name .

Example 9. Provided with a QP configuration C as shown in Listing 2. Serialize operator evaluates the QP on each
solution mappings from the mapping tuple and binds the variables, {? f irstname_iri, ? f ullname, ?animal_name}
with the associated values. In this example, the variable vserialized is ?serialized_output. The output of the serialize
operator, applied on the input mapping tuples in Table 8, is shown in Table 11.

4.9. Target

Finally, depending on the configuration of the data sink, the serialized data is written to heterogeneous data
sinks such as files, websockets or Apache Kafka topics7. In mapping algebra, the fragments of the mapping tuple
determine where the associated solution mappings will be written to. Target operator writes the data value of the
specified variable, vserialized from the solution mapping to a target data sink associated with a particular mapping
tuple with the target fragment ftarget. If the target sink does not exist or an error occurs during the process of writing
the data to the sink, the default error handling procedure of the target operator is to stop the whole mapping process
and shows the cause of the error. An optional configuration can be provided to the target operator to change the
default error handling behaviour, such as silencing the errors to continue the mapping process as much as possible.

Definition 16. Provided with a target fragment ftarget, a target variable vtarget, and a configuration of data sink T .
Target operator process the mapping tuples, ξ ∈ Ξ, by writing all the values d = µ(vtarget) to the data sink T ,
∀( f , ω) ∈ ξ where f = ftarget.

Target(vtarget, ω,T ) = {write d to data sink T | ∀µ ∈ ω, (v, d) ∈ µ, v = vtarget}

Target( ftarget, vtarget, ξ,T ) = {Target(vtarget, ω,T ) | ( f , ω) ∈ ξ, f = ftarget}

Target( ftarget, vtarget,Ξ,T ) = {Target( ftarget, vtarget, ξ,T ) | ∀ξ ∈ Ξ}

(17)

Example 10. Given the input mapping tuples shown in Table 11 as Ξ, and a configuration T specify-
ing a file path /target/output.nt. The target( fcontacts, ?serialized_output,Ξ) will write the serialized triples in
µ1(?serialized_output) to the file /target/output.nt. If multiple solution mappings exist, the target operator will
append the serialized data to the file.

5. Implementation

As a reference implementation utilizing the aforementioned algebraic mapping operators, we implemented an
algebraic mapping interpreter, and a proof-of-concept engine. The interpreter translates mapping rules in different

7Apache Kafka: https://kafka.apache.org/

https://kafka.apache.org/


16 S. Min Oo et al. / Algebraic Mapping Operators

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

mapping languages to a uniform mapping plan consisting of the algebraic mapping operators, while the proof of
concept engine executes the mapping plan to generate RDF statements from heterogeneous data sources. Since our
mapping algebra extends the SPARQL algebra (and thus naturally aligns with query-based mapping languages), we
choose RML and ShExML from the categories of dedicated mapping languages, and constraint-based languages,
respectively, to implement our translation algorithms described in Section 5.1 and Section 5.2. We specifically
generate the mapping plan for the following versions: i) RML v1.1.1 [3]8, and ii) ShExML [6] from 2020 (ShExML
v2020).

We choose RML v1.1.1 as RML is the prevalent declarative mapping language [8] – as evidenced by its ongoing
support via the W3C Knowledge Graph Construction Community Group9 – and the v1.1.1 version is mature with
large implementation coverage10. The more recent version of RML [7] is backwards compatible with the previous
version11, hence, we do not expect breaking changes. We choose ShExML v2020 as it is independent of the other
major mapping language families used in this work

This selection thus shows that our mapping algebra covers the semantics of of at least one mapping language
from the 3 categories of mapping languages mentioned in Section 2: RML-based languages are represented by
RML v1.1.1 to compare against ShExML, and SPARQL-based languages are represented by the algebra definitions
on which we based our algebraic operators on. This way, we ensure that our approach is language agnostic.

Our proof-of-concept is used to demonstrate current coverage and practical feasibility of our proposed mapping
algebra, but is not exhaustive in its current form, specifically concerning the ShExML interpretation. Syntactic sugar
such as Query declarations are not supported since it is used to make the ShExML document more human-readable
and do not add or change mapping steps. We currently only support one ShExML transformation operation (string
concatenation), and no joins. We do not support the ShExML v2020 join – currently known as substitution12 –
since it was defined with the usage of both the UNION and the JOIN keywords without detailed clarification on the
operational semantics [6].

The algebraic mapping interpreter is implemented in Rust13 and utilizes Sophia [35] as a library for handling RDF
types. The interpreter14 is called “Algebraic Mapping Loom: Weaving Mapping Languages” (“AlgeMapLoom”,
v0.4.0), and contains different modules to implement a mapping language interpreter. The proof-of-concept alge-
braic mapping engine15 is implemented in JavaScript, called “RMLWeaver-JS” (v0.1.1), to show that the translated
mapping plan is mapping and programming language agnostic. For this work, we only support processing CSV
files16 with RMLWeaver-JS. As the mapping plan is source-independent – except for the extensible source opera-
tor – only supporting CSV files is sufficient to prove the working of our proof-of-concept. We employed the reactive
programming paradigm17 when implementing RMLWeaver-JS to ensure that input data is processed in a streaming
manner, resulting in lower memory usage. The following sections give an overview of the respective algorithms
used to translate RML and ShExML into a mapping plan consisting of algebraic mapping operators.

5.1. RML translation

RML v1.1.1 describes how triples maps are used to generate RDF statements. A triples map is linked to a source
– called logical source in RML – which provides the necessary data to generate the RDF statements described by
the triples map. Multiple triples maps can have the same RML logical source. For translating a logical source to a
Source operator (Section 4.2), we extract the iterators and fields related to a logical source from the triples map, as
described in the work on RML Fields [31].

8https://rml.io/specs/rml/v/1.1.1/
9https://www.w3.org/community/kg-construct/
10https://rml.io/implementation-report/
11https://kg-construct.github.io/rml-resources/portal/backwards-compatibility.html
12https://shexml.herminiogarcia.com/spec/#substitution
13https://www.rust-lang.org/
14https://github.com/RMLio/algemaploom-rs/releases/tag/v0.4.0
15https://github.com/RMLio/rmlweaver-js/releases/tag/v0.1.1
16With some limitations in error handling for malformed CSV records and handling deduplication.
17https://rxjs.dev/

https://rml.io/specs/rml/v/1.1.1/
https://www.w3.org/community/kg-construct/
https://rml.io/implementation-report/
https://kg-construct.github.io/rml-resources/portal/backwards-compatibility.html
https://shexml.herminiogarcia.com/spec/#substitution
https://www.rust-lang.org/
https://github.com/RMLio/algemaploom-rs/releases/tag/v0.4.0
https://github.com/RMLio/rmlweaver-js/releases/tag/v0.1.1
https://rxjs.dev/
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Then, all triples maps are grouped according to their associated Source operators. The grouped triples maps are
then iterated over individually and the associated term maps18 are translated into corresponding Projection, Join,
Extend, Serialize operators as follows. For each term maps (subject, predicate, and object maps), the references19 are
extracted as projection attributes to create projection operators. The created Projection operators are applied directly
after the previously created Source operators. This results in a partially projected mapping plan, used throughout
the rest of the algorithm to build the final mapping plan representing the mapping process described by the RML
document.

Once the Projection operators are created, the triples maps are partitioned into groups with and without referenc-
ing object map20 to be further translated into sub-mapping plans with and without joins.

For triples map with referencing object maps, a Fragmenter operator and a Join operator is created to join the
partially projected mapping plan involving the child and parent triples map for each referencing object map as-
sociated with the triples map. The Fragmenter operator is created with the fragment mapping, ( fde f ault, f join), to
broadcast the output of the previous operator to go to both the Join operator and the other downstream operator
not involved in the join operation. If multiple Join operators must be created, the previously created Fragmenter
operator is updated with new fragment mappings to broadcast the output to more operators. The type of the Join
operator is determined by the presence of join conditions21. If the join condition exists, a θ-join operator is created
using the attributes specified by the child and the parent references. Otherwise, a natural join operator is created.
For triples map without referencing object maps, the aforementioned step for the Join operator creation is skipped.

Then, information about the term maps are utilized to create expression statements. For example, a constant-
valued term map with the term type IRI is translated to generate a nested expression statement (Definition 7) where
an IRI data typing expression statement is applied to the return value of the constant value generating expression
statement (e.g. irify(constant(value))). The new variable, vnew, to which the corresponding expression statement is
bound to, is generated uniquely for each term map. The Extend operator is generated from the aforementioned
pairs of variables and expression statements, and applied after the previously created operator (i.e. either a Join or a
Projection operator, depending on the presence of the referencing object maps).

Finally, the Serialize operator is created based on the combination of term maps for the triples map. Subject,
predicate, object, and graph maps are used to generate quad patterns22 with variables for each term.

The proposed RML logical target [33] is partially supported: only the default logical target is interpreted by
creating a default Target operator that pipes the generated RDF quads to the terminal’s standard output, for all the
mapping tuples having the default fragment.

5.2. ShExML translation

Unlike RML, ShExML documents23 have a structure split into two blocks: i) declarations and ii) generators. The
declarations block contains individual lines defining sources, iterators, prefixes, and expressions. The declarations
have the following structure: <type> <variable> <statement>. Each declaration is aliased with a variable which
can be used within other declarations - introducing interdependency between different declarations. Thus, it is
important to group related declarations together to generate our mapping plan. The generators block contains shapes
and graphs, which in turn can contain nested shapes. The syntax for defining the graphs and shapes are the same
with the ShEx specifications24 with some modifications by ShExML.

First, unique combinations of the source and the iterators variables, used inside the expressions’ statements, are
used to generate the algebraic Source operators. One Source operator is generated for each unique combination of
a source and an iterator variables. The generated Source operator is grouped with the variables of the expression

18RML term maps: https://rml.io/specs/rml/#term-map
19RML reference: https://rml.io/specs/rml/#reference
20Reference object map: https://rml.io/specs/rml/#logical-join
21RML join conditions: https://rml.io/specs/rml/#join-condition
22Quad Pattern: https://www.w3.org/TR/sparql11-query/#rQuadPattern
23https://github.com/herminiogg/ShExML
24https://shex.io/shex-semantics/

https://rml.io/specs/rml/#term-map
https://rml.io/specs/rml/#reference
https://rml.io/specs/rml/#logical-join
https://rml.io/specs/rml/#join-condition
https://www.w3.org/TR/sparql11-query/#rQuadPattern
https://github.com/herminiogg/ShExML
https://shex.io/shex-semantics/
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Figure 2. A simple mapping plan generated from the straight forward mapping process described by the RML document in Listing 3

definitions, which reference the same source as the Source operator. This results in pairs where every Source operator
is paired with a set of expression variables. We shall annotate the set of expression variables as Vexpr which will be
referred to in the remaining algorithm steps.

For each pair of Source operator with Vexpr, we perform a two-step processing: i) generation of the RDF quad
patterns that could be generated for the current Source operator, and ii) generation of the relevant algebraic mapping
operators.

RDF quad patterns are derived from the shapes and graphs in the generator block of ShExML document. These
RDF quad patterns also contain metadata such as RDF data type or term type (IRI, Blank node, Literal) to aid in
the generation of the value to be bound to the variables in the RDF quad pattern. RDF quad patterns are generated,
and added to the set of RDF quad patterns, if the subject node and the object node of a ShExML shape references
one of the expression variables v ∈ Vexpr. Predicate nodes in ShExML are predefined as a constant IRI. If there is
a linking shape25, and the expression variable used in the subject node of the nested shape is vsub j ∈ Vexpr, an RDF
quad pattern is generated where the object term variable is the same as the subject term variable of the nested shape,
and it is added to the set of RDF quad patterns. The generated set containing the RDF quad patterns are used later
for the creation of the Serialize operator (Section 4.8).

Once the RDF quad patterns are generated, we generate the relevant algebraic mapping operators based on the
type of expression declarations with expression variable v ∈ Vexpr. If the expression declarations are transforma-
tions, such as string operation26, the relevant built-in expression statements (Definition 7) are created. The expression
statements are paired with the ShExML expression variable to which the generated value will be bound. These pairs
of variables and expression statements are used to create an Extend operator which is applied on the Source operator
currently being processed. This step is optional depending on the presence of the transformation expressions.

Basic expressions27 are translated after the transformation expressions. Basic expressions in ShExML behave
just like a Rename operator (Section 4.5), where the values generated from the <statement> are aliased with the
associated expression variable. Thus, a Rename operator is generated, with the rename pairs derived from the basic
expressions whose v ∈ Vexpr. The Rename operator is applied directly as the next step of the mapping plan. This
step can also be optional depending on the presence of basic expressions.

Afterwards, the expression statements (Definition 7) for type casting, derived from the metadata of the generated
RDF quad patterns, are generated and paired with the corresponding variable in the RDF quad pattern. For example,
an IRI type casting statement is generated for a subject node and paired with the variable of the subject node in the
RDF quad pattern. The generated pairs of variables and expression statements are used to create an Extend operator,
with typecasting expression statements. The created Extend operator is applied after the previous step.

Finally, the previously generated RDF quad patterns are used to generate the Serialize operator. Since ShExML
can not specify targets, the default Target operator is created to pipe the generated RDF quads to the terminal’s
standard output.

5.3. Mapping plan

Once we apply the aforementioned algorithms to translate RML or ShExML documents, a mapping plan is
generated. Figure 2 shows an example mapping plan that could be generated from RML document, Listing 3, using
the algorithm described in Section 5.1. The Projection operator, in the figure, projects the attributes referenced by
the term maps in RML. The projected attributes are ID and Name, which are referenced in the subject map’s template

25ShExML linking shapes: https://shexml.herminiogarcia.com/spec/#linking-shapes
26https://shexml.herminiogarcia.com/spec/#string-operation
27https://shexml.herminiogarcia.com/spec/#basic-expression

https://shexml.herminiogarcia.com/spec/#linking-shapes
https://shexml.herminiogarcia.com/spec/#string-operation
https://shexml.herminiogarcia.com/spec/#basic-expression
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Listing 3: Example RML document, with 1 subject and 1 predicate-object map, processing data from a CSV file.

1 @pref ix r r : < h t t p : / / www. w3 . org / ns / r 2 r m l #> .
2 @pref ix rml : < h t t p : / / semweb . mmlab . be / ns / rml #> .
3 @pref ix q l : < h t t p : / / semweb . mmlab . be / ns / q l #> .
4 @pref ix r d f s : < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f −schema #> .
5 @base < h t t p : / / example . com / base / > .
6

7 < Tr ip le sMap1 >
8 a r r : T r ip l e sMap ;
9

10 rml : l o g i c a l S o u r c e [
11 rml : s o u r c e " s p o r t . c sv " ;
12 rml : r e f e r e n c e F o r m u l a t i o n q l :CSV
13 ] ;
14

15 r r : sub jec tMap [
16 r r : t e m p l a t e " h t t p : / / example . com / r e s o u r c e / s p o r t _ {ID} " ;
17 r r : c l a s s < h t t p : / / example . com / o n t o l o g y / S p o r t > ;
18 ] ;
19

20 r r : p r e d i c a t e O b j e c t M a p [
21 r r : p r e d i c a t e r d f s : l a b e l ;
22 r r : ob jec tMap [ rml : r e f e r e n c e "Name" ] ;
23 ] .

and the object map respectively. The Extend operator contains expression statements for type casting (IRIs, Literals)
and string templating as specified by rml:template in the given example RML document. The QP (Listing 4), used by
the Serialize operator for serializing the data into N-Triples, is derived from the usage of the subject and predicate
object maps in the RML document. As there are no logical targets specified in the example RML document, the
default Target operator is generated: the generated N-Triples are piped to the standard output of the terminal.

Listing 4: The QP derived from the term maps of RML document in Listing 3

1

2 ?sm a ? s m _ c l a s s ;
3 r d f s : l a b e l ?om .

6. Evaluation

This work introduces the definitions of algebraic mapping operators. We conduct an empirical evaluation of the
algebraic mapping operators, using the aforementioned RML and ShExML mapping languages (Section 5). We
implemented a reference algebraic mapping engine for the evaluation. Two types of empirical evaluation are carried
out for this work: i) completeness of the defined algebraic mapping operators, and ii) the impact on performance
of a mapping engine utilizing algebraic mapping operators. The first evaluation shows that this work is sufficient to
create complete mapping engines. The second evaluation shows that utilizing algebraic mapping operators results in
performance of real-world mapping engines comparable to the state of the art. Figure 3 shows an example execution
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Figure 3. Algebraic mapping engine pipeline where an RML document is first translated into an algebraic mapping plan which is used to generate
the KG.

pipeline consisting of AlgeMapLoom-rs and RMLWeaver-JS used to translate and execute RML document. The
same pipeline setup is also used for ShExML evaluation.

6.1. Completeness of algebraic mapping operators

Evaluating the completeness of the algebraic mapping operators is done by translating test cases, provided by the
RML and ShExML reference implementations, into a mapping plan using the defined algebraic mapping operators.
We then execute the generated mapping plan with our reference implementation, RMLWeaver-JS, and check the
output of our implementation against the output of the reference implementations of RML and ShExML.

For RML, we use the RML v1.1.1 specification conformance test cases. Since RMLWeaver-JS only sup-
ports processing CSV files, we only chose the test cases using CSV files as input data source. The test cases
for RML are available at the RMLWeaver-JS repository: https://github.com/RMLio/rmlweaver-js/tree/v0.1.1/test/
rml-mapper-test-cases-csv.

For ShExML, the test cases provided with the reference implementation utilize heterogeneous data formats and
sources such as a mix of JSON and XML or SPARQL endpoints. Since RMLWeaver-JS only supports input data files
in CSV format, we adapted the test cases to utilize only CSV files as input. ShExML reference implementation’s
test cases evaluates multiple features of the ShExML language per test case. Therefore, we also split up the existing
test cases into multiple smaller test cases to conduct a more granular evaluation of RMLWeaver-JS’s execution of
ShExML documents. For example, ShExML test case called MultipleElementTest tests for the usage of both multiple
Iterators, and multiple Basic Expressions statements. We split it into two smaller test cases which evaluates the usage
of multiple iterators and multiple basic expressions statements separately. This resulting set of test cases for ShExML
are available at the RMLWeaver-JS repository: https://github.com/RMLio/rmlweaver-js/tree/v0.1.1/test/shexml.

6.1.1. Results and discussion
RMLWeaver-JS produces the same output as the reference RML implementation28 for all 39 out of the 39 RML

CSV test cases (100%), covering 100% of the operational semantics of the RML CSV test cases (Table 12).
For adapted chosen ShExML test cases, RMLWeaver-JS generates the same output as the reference v0.5.1

ShExML implementation29. Table 12 shows the number of features supported by RMLWeaver-JS in execution
for both RML v1.1.1 and ShExML v2020. RMLWeaver-JS supports 13 out of 20 (65%) of ShExML features, and
supports 11 out of 11 (100%) of RML v1.1.1 features. All testing code and results are published on GitHub30.

6.2. Performance of an algebraic mapping engine

To show that the implementation of an algebraic mapping engine does not have a large negative impact on the
performance, we participated [36] in the first part of the performance track of the 2024 Knowledge Graph Construc-

28https://github.com/RMLio/rmlmapper-java/releases/tag/v7.0.0, https://doi.org/10.5281/zenodo.11518178
29https://github.com/herminiogg/ShExML/releases/tag/v0.5.1
30https://github.com/RMLio/rmlweaver-js/blob/v0.1.1/test/rml_tests.js

https://github.com/RMLio/rmlweaver-js/tree/v0.1.1/test/rml-mapper-test-cases-csv
https://github.com/RMLio/rmlweaver-js/tree/v0.1.1/test/rml-mapper-test-cases-csv
https://github.com/RMLio/rmlweaver-js/tree/v0.1.1/test/shexml
https://github.com/RMLio/rmlmapper-java/releases/tag/v7.0.0
https://doi.org/10.5281/zenodo.11518178
https://github.com/herminiogg/ShExML/releases/tag/v0.5.1
https://github.com/RMLio/rmlweaver-js/blob/v0.1.1/test/rml_tests.js
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Table 12
Our solution supports 65% of ShExML v2020 features and 100% of RML v1.1.1 features. The features are aligned across the two languages
in terms of their functionality in mapping heterogeneous data to RDF. For example, string operations in ShExML is equivalent to the usage of
template-valued term maps in RML.

ShExML v2020 feature Is supported RML v1.1.1 feature Is supported

Declarations 4/5 2/2
Prefix ✓

Source ✓ Logical source ✓

Query
Iterator ✓ Logical iterator ✓

Nested Iterator ✓

Expressions 3/7 2/2
Basic ✓

Union ✓

String Operation ✓ Template-valued term maps ✓

Join Referencing object map + join condition ✓

Matcher
Autoincrement
Dynamic Function
Shapes & Graphs 6/8 7/7
Basic ✓ Reference-valued term maps ✓

Basic (constant) ✓ Constant-valued term maps ✓

Link shapes ✓ Referencing object map ✓

Matcher
Datatypes static + dynamic ✓ Object map + datatype ✓

Langtype static + dynamic ✓ Object map + language tag ✓

Conditional + dynamic functions
Predicate map ✓

Graphs ✓ Graph map ✓

tion Challenge31. We highlight results of that participation in this paper, extend on its descriptions, put it in context
with the other participating mapping engines, and align the results with learnings concerning our proposed mapping
algebra.

The performance track’s first part evaluates the mapping engines’ performance when handling diverse knowledge
graph construction parameters with synthetic datasets, using RML mapping rules. Mapping engines are evaluated by
changing the following properties of the data: the number of data records, data properties, duplicates, empty values,
and input files. It also changes the following properties of the mapping rules: the number of subjects, predicates
and objects, and finally, the number and type of joins used. For the measurements, the following metrics of the
participating mapping engines are measured: i) maximum RAM usage (GB), ii) CPU usage (s), and iii) execution
time (s). The interpretation of CPU usage is as follows: 100% CPU usage is achieved when the CPU usage time (in
seconds) equals the product of the execution time and the number of CPU cores available on the machine. In our
evaluation setup, 100% CPU usage is four times the execution time as our machine has 4 cores available.

There are 5 mapping engines, including RMLWeaver-JS, participating in the performance track of the challenge.
The engines can be classified into two major groups: those based on data processing frameworks (e.g. Apache
Spark and Flink), and those without using data processing frameworks. RPT-Sansa [37], Mapping-template [38],

31https://kg-construct.github.io/workshop/2024

https://kg-construct.github.io/workshop/2024
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Table 13
FlexRML is the most performant engine when constructing knowledge graph from varying triples maps and predicate-object maps. It performs
best when the number of triples maps (TM) is closer to the number of CPU cores on the machine.

Test cases Engines Execution time (s) CPU usage (s) Peak RAM (GB)

1TM 15POM Mapping-template - - -
FlexRML 6.54 6.81 0.47

RMLWeaver-JS 11.26 13.21 0.54
RPT-Sansa 43.25 133.92 4.50

RMLStreamer 44.76 113.01 6.10

3TM 5POM Mapping-template - - -
FlexRML 3.79 9.59 0.51

RMLWeaver-JS 15.66 17.73 0.55
RPT-Sansa 44.18 122.37 4.40

RMLStreamer 43.52 116.28 6.06

15TM 1POM Mapping-template - - -
FlexRML 6.34 18.02 0.46

RMLWeaver-JS 42.57 46.65 0.55
RPT-Sansa 48.68 99.80 3.99

RMLStreamer 40.74 108.58 6.09

and RMLStreamer [13] are based on Apache Spark32, Apache Velocity33, and Apache Flink34 data processing
frameworks respectively. The other 2 engines are FlexRML [39, 40], implemented in C++, and our JavaScript
implementation RMLWeaver-JS.

All the engines are evaluated on a virtual machine provided by the organizers, which has a standardized speci-
fication to ensure a fair evaluation. Each engine is provided with its own separate virtual machine for evaluation.
The virtual machine has an 64 bit architecture, and it is configured with an Intel(R) Xeon(R) Gold 6161 CPU at
2.20GHz with 4 cores, 16765 MB of RAM memory, and 150 GB of storage space. The operating system of the
machine is Ubuntu 22.04.03 LTS. The execution of the experiment is done using the tools provided by the challenge
organizers [41], isolated via Docker container35.

Since the results are significantly more verbose than the completeness evaluation in Section 6.1, we present our
results and discuss their causes separately.

6.2.1. Results
The full results of the challenge for knowledge graph parameters can be found on Zenodo36 by downloading the

file System-Results-Challenge-2024.zip. These results are based on the submissions by the authors of their respective
engines. Thus, we can not conclude whether the engine failed at executing the test case or the results are omitted
from the list. We skip the presentation of the results for duplicates and empty values test cases, since RMLWeaver-JS
does not deduplicate the generated triples nor handle empty values in the columns by ignoring them. We discuss
the results of the other test cases and compare our performance against the other participants in the following
paragraphs.

Table 13 shows the engines’ performance when the number of triples map (TM) and predicate-object maps
(POM) in the RML document changes, while the input dataset size stays the same. For the other engines, there
is no difference in CPU usage and execution time increase when compared to RMLWeaver-JS. Where for FlexRML
execution time shortens and CPU usage maximizes for the test case with 3 TM and 5 POM, for RMLWeaver-JS

32https://spark.apache.org/
33https://velocity.apache.org/
34https://flink.apache.org/
35Docker: https://www.docker.com/
36https://zenodo.org/doi/10.5281/zenodo.10721874

https://spark.apache.org/
https://velocity.apache.org/
https://flink.apache.org/
https://www.docker.com/
https://zenodo.org/doi/10.5281/zenodo.10721874
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Table 14
Number of properties in CSV data records has little to no impact on the memory usage of RMLWeaver-JS.

Test cases Engines Execution time (s) CPU usage (s) Peak RAM (GB)

1 column Mapping-template 5.71 1.73 2.10
FlexRML 5.63 5.80 0.42

RMLWeaver-JS 17.78 19.52 0.47
RPT-Sansa 40.12 86.10 2.82

RMLStreamer 37.11 93.08 6.09

10 columns Mapping-template 15.26 3.73 3.22
FlexRML 43.66 43.82 0.79

RMLWeaver-JS 65.63 69.78 0.52
RPT-Sansa 100.24 351.04 11.14

RMLStreamer 168.16 425.24 6.11

30 columns Mapping-template 39.34 7.80 5.22
FlexRML 137.30 140.21 1.72

RMLWeaver-JS 172.80 194.09 0.50
RPT-Sansa 319.38 1203.27 5.37

RMLStreamer 462.99 1311.78 6.15

Table 15
RMLWeaver-JS manages to keep memory usage constant around 0.5 GB with increasing input data size, while FlexRML is the fastest.

Test cases Engines Execution time (s) CPU usage (s) Peak RAM (GB)

10K rows Mapping-template 2.41 0.55 1.04
FlexRML 1.23 1.33 0.40

RMLWeaver-JS 2.56 3.34 0.48
RPT-Sansa 33.06 97.43 1.68

RMLStreamer 23.49 51.06 1.75

100K rows Mapping-template 4.95 1.16 1.48
FlexRML 8.28 8.40 0.46

RMLWeaver-JS 13.51 14.76 0.49
RPT-Sansa 48.35 152.83 5.12

RMLStreamer 49.84 129.47 6.16

10M rows Mapping-template - - -
FlexRML 943.34 963.50 11.82

RMLWeaver-JS 1116.40 1249.97 0.54
RPT-Sansa 1569.04 5909.89 6.75

RMLStreamer 1768.58 6918.19 6.17

execution time and CPU usage increases across the test cases. It even has a 4-fold increase for execution time and
CPU usage for the test case with 15 TM and 1 POM.

Table 14 shows the results of the test cases to evaluate the performance impact by increasing the number of
columns in the input CSV dataset. RMLStreamer and RMLWeaver-JS maintain constant memory usage, while
for the other engines memory usage increases with the number of columns. RMLWeaver-JS maintains the lowest
memory usage amongst engines for the 10 and 30 columns CSV data records test cases. For all engines, execution
time and CPU usage increases with the number of columns. Mapping-template is the fastest in terms of execution
time and lowest CPU usage. FlexRML is only slightly faster, by 0.08 seconds, than Mapping-template for the first
test case with 1 column CSV data records.
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Table 16
Performance of the mapping engines, on a test case Join N-M, depends on min(N,M). 100% of the data records are eligible to be joined in the
test cases presented.

Test cases Engines Execution time (s) CPU usage (s) Peak RAM (GB)

Join 10-1 Mapping-template - - -
FlexRML 15.35 19.57 0.56

RMLWeaver-JS 30.03 33.75 0.64
RPT-Sansa 40.41 121.75 5.11

RMLStreamer 66.98 222.97 6.36

Join 1-10 Mapping-template - - -
FlexRML 15.03 19.14 0.50

RMLWeaver-JS 30.04 33.60 0.64
RPT-Sansa 38.97 119.19 4.13

RMLStreamer 60.14 195.16 6.36

Join 5-5 Mapping-template - - -
FlexRML 23.41 32.29 0.59

RMLWeaver-JS 82.04 90.99 0.81
RPT-Sansa 50.70 149.82 5.32

RMLStreamer 109.65 403.17 6.36

Join 5-10 Mapping-template - - -
FlexRML 22.51 31.44 0.59

RMLWeaver-JS 81.64 90.94 0.79
RPT-Sansa 47.73 149.37 4.83

RMLStreamer 120.97 421.70 6.35

Table 15 contains the results of the test case with increasing number of CSV data records. For the test case
with 10K rows, FlexRML is the fastest engine (1.23 seconds) using the lowest memory (0.4 GB) while Mapping-
template’s CPU usage is the lowest at 0.55 seconds. Once the number of rows reaches 100k, Mapping-template
becomes faster than FlexRML and uses noticeably less CPU time (8 times less than FlexRML), but memory usage
increases with 0.44 GB compared to the 10k rows test case. However, Mapping-template fails to produce any results
for 10M rows of CSV data. Throughout the experiment, RMLWeaver-JS maintains a constant memory usage of
approximately 0.5 GB even for the 10M rows test case. RMLStreamer uses the same amount of memory of around
6.1 GB for both 100k and 10M rows of CSV data. This is similar to the amount of memory RMLStreamer uses for
the test cases in Table 14.

Table 16 provides the measurements of evaluating on the join related test cases where 100% of the data records
are eligible to be joined. All engines maintain similar performance across test cases Join N-M based on min(N,M).
For example, FlexRML has similar performance for test cases Join 5-5 and Join 5-10 across all metrics measured.
Furthermore, FlexRML is the fastest engine across all join test cases with the lowest memory and CPU usage.

6.2.2. Discussion
Analysing the results presented in Section 6.2.1 reveals several potential improvements for implementing a more

efficient algebraic mapping engine.
Compared to the other engines, RMLWeaver-JS exhibits an abnormal behaviour for the test cases where the

number of TMs and POMs changes inversely in the RML document (Table 13). For example, RMLWeaver-JS is
the only engine with a significant spike in execution time from 11.26 seconds to 42.57 seconds for the test cases
1TM 15POm, and 15TM 1POm respectively. This can be explained due to the manner in which AlgeMapLoom
(Section 5) translates the RML document into the algebraic mapping plan used by RMLWeaver-JS. The test cases
include multiple TMs, each with its own definition of a logical source, all referring to the same CSV data file and
using the same iterator. Due to the lack of detection for semantically similar data sources, the interpreter generates
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a distinct source operator for each logical source definition identified. In the specific test case of 15 TMs and 1
POM, a total of 15 source operators are generated, with each TM associated with one of these source operators.
RMLWeaver-JS is implemented in JavaScript without worker threads, thus inherently single-threaded and can only
execute one task at a time. Thus, processing the CSV data file 15 times instead of just once is done sequentially.
This results in a noticeable increase in both execution time and CPU usage.

For the test cases regarding increasing number of properties and records, RMLWeaver-JS and RMLStreamer
managed to maintain constant memory even if the input data columns or rows increase. This consistent memory
usage is due to the way both engines process data. On one hand, RMLStreamer – built on the Apache Flink stream
processing framework – processes input CSV rows one at a time. Consequently, RMLStreamer maintains a con-
stant memory usage of around 6.1 GB, even for inputs with a higher number of columns and records. On the
other hand, RMLWeaver-JS, implemented based on reactive programming paradigm, also processes the input CSV
records one at a time, leading to the same constant memory usage. The substantial difference in memory usage, with
RMLWeaver-JS using around 0.5 GB and RMLStreamer using approximately 6 GB, is due to the overhead of the
underlying Apache Flink framework. Apache Flink allocates a fixed amount of heap memory for the Java Virtual
Machine on which RMLStreamer is executed. Thus, RMLWeaver-JS has a lower memory usage than RMLStreamer
due to the implementation not relying on data processing frameworks.

As observed in Table 16, all engines demonstrate the same performance across two different test cases in Join N-
M, depending on the min(N,M). We attempt to provide an explanation for such behaviour for RMLWeaver-JS [36],
however, the same conclusion cannot be extended to other engines since we lack the details of their implementations.
The explanation is as follows. Join N-M is a test case containing two sources S n and S m, where there are N records
from S n eligible to be joined with M records from S m. RMLWeaver-JS employs a simple hash-join algorithm to
join data from two different sources. It creates two hash maps – one for each source – for bookkeeping when joining
the CSV records. Assuming the data are going to be joined on an attribute A, and provided M < N with M records
coming from S m and N records coming from S n. In order for RMLWeaver-JS to achieve the same performance as
presented in this work for the joins, M records from S m needs to arrive first at the join operator and be stored in
the hash map HashMapS m(A). This ensures that the amortized cost of joining the N records from S n is lower since
it only requires HashMapS m(A) to be looped through M times, where M < N. Otherwise, the amortized cost will
be higher if N records from S n arrives first, causing the HashMapS n(A) to be looped through at least N times with
M < N. The aforementioned explanation applies to both Join 5-5 and Join 10-5, where RMLWeaver-JS exhibits
similar performance in terms of execution time, CPU usage, and memory usage.

Summarizing the results, RMLWeaver-JS achieved the second place for the Track 2 performance challenge in
Knowledge Graph Construction Workshop, handing first place to FlexRML [41]. This achievement shows that an
algebraic mapping engine implemented in a garbage-collected programming language like JavaScript is efficient in
terms of CPU usage, memory usage, and execution time. A performant algebraic mapping engine in JavaScript for
web browsers could potentially empower web clients and servers with knowledge graphs generated from heteroge-
neous data sources.

7. Conclusion

In this paper, we presented a mapping language-independent mapping algebra consisting of algebraic mapping
operators Source, Projection, Extend, Rename, Fragmenter, Natural join, θ-join, Left outer-join, Union, Serialize,
and Target. We empirically showed how this mapping algebra provides (partial) operational semantics by translating
mapping rules of two existing but very different mapping languages (RML and ShExML, 100% and 63% of feature
coverage, respectively), to a mapping plan consisting of our introduced algebraic mapping operators. We showed
practical feasibility of our approach via a proof-of-concept algebraic mapping engine, RMLWeaver-JS, achieving
second place in the Knowledge Graph Construction Workshop’s performance challenge.

For future work, we will exploit this mapping algebra for theoretical research in mapping processes: translating
mapping rules – in multiple mapping languages – into mapping plans conforming to our mapping algebra opens
the door to static analysis of mapping rules, e.g. for verification and optimization. Specifically, we will investigate a
mapping plan optimizer to improve the mapping process independent of the used mapping language. We will start
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by considering existing optimizations, such as mapping partitions [9] and mapping assertions [15], and present and
benchmark them in a unified mapping algebra model.

With the advent of this mapping algebra and algebraic mapping engines, users are no longer locked into using a
specific mapping language for knowledge graph generation. The performance across languages will become con-
sistent by having an algebraic mapping engine that is multilingual, hence mapping language design can focus on
functionality, decoupled from performance.
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