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Abstract.
The integration of Schema.org markup in web pages has resulted in the creation of billions of RDF triples, yet approximately

75% of all web pages still lack these essential markups. Large Language Models (LLMs) offer a potential solution by automati-
cally generating the missing Schema.org markups. However, the accuracy and reliability of LLM-generated markups compared
to human annotators remain uncertain. This paper introduces LLM4Schema.org, a novel approach to evaluate the performance
of LLMs in generating Schema.org markups. Our study identifies that 40-50% of the markup produced by GPT-3.5 and GPT-
4 are either invalid, non-factual, or non-compliant with the Schema.org ontology. We show that these errors can be identified
and removed using specialized agents powered by LLMs. Once errors are filtered out, GPT-4 outperforms human annotators in
generating accurate and comprehensive Schema.org markups. Both GPT-3.5 and GPT-4 are capable of making improvements in
areas where human annotators fall short. LLM4Schema.org highlights the potential and challenges of using LLMs for semantic
annotation, emphasizing the importance of curation to achieve reliable results.

Keywords: Schema.org, Large Language Model, Knowledge Graph Construction

1. Introduction

"The price of this book is 30C, this product is in stock, that recipe will take 30 minutes, this job is full-time.” Search
engines use the Schema.org markup embedded in web pages to better understand their content and enrich search
results with precise information. This markup can be authored directly by humans when writing their web pages
or indirectly generated by software such as Web Content Management Systems configured to produce Schema.org
markup 1. Schema.org markup adheres to the Schema.org ontology, which consists of 806 types and over 1400
properties to describe entities such as people, organizations, creative works, events . . . The nature of entities and in-
formation differs significantly when comparing Schema.org markup to a public knowledge graph like Wikidata. For
example, Wikidata has approximately 43K books registered, whereas Schema.org markup encompasses over 3,5M
books [10]. While Wikidata tends to describe well-known books, people, and organizations, Schema.org describes
any book, any shop, or any individual, providing a broader scope. Additionally, Wikidata includes encyclopedic in-
formation (e.g., a book’s literary genre), while Schema.org includes specific information (e.g., the price, the vendor,

*Corresponding author. E-mail: minh-hoang.dang@univ-nantes.fr.
1Through the paper, we refer to this as human markup
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etc.). Thus, Schema.org markup can offer valuable information absent in public knowledge graphs, contributing to
more comprehensive and diverse knowledge. Ensuring the availability of such knowledge is crucial to maintaining
knowledge graphs that reflect the wealth of information available on the web.

Currently, semantic annotations are present in 41% of the world’s web pages, and 25% specifically using
Schema.org markup [7, 10]. This leaves 75% of web pages without Schema.org markup and, thus, lacking structured
data about their content. Large Language Models (LLMs) can generate Schema.org markup from text [22], essen-
tially "reading" the web as text to generate the missing Schema.org markup. However, ensuring that the Schema.org
markup is generated correctly and comprehensively, regardless of the types of entities involved or the web page’s
text, is a critical question.

Previous researches [15, 24, 26, 34] have explored using LLMs to generate RDF triples from text according
to ontology, but these studies have focused on small ontologies and brief sentences from the text benchmarks.
Consequently, there is a gap in understanding the performance of LLMs on real, potentially lengthy web pages with
a real ontology like Schema.org, which includes 806 types and 1476 properties2.

To address this gap, we propose LLM4Schema.org, a novel approach to assess whether LLMs can generate
better Schema.org markup than humans. This comparison poses scientific challenges: LLMs might generate more
complete markup through hallucination, i.e., fabricating data, while humans might introduce markup from external
sources.

We propose that humans and LLMs start annotating from the same input: the web page’s text to enable fair com-
parison. Only correct Schema.org markup will be considered, i.e., syntactically and semantically valid Schema.org
markup grounded in the text. Under these conditions, the more complete Schema.org markup wins the match.

The paper presents the following scientific contributions:
1. We created a diversified corpus of webpages containing Schema.org markup by sampling WebDataCom-

mons [7, 10].
2. We developed three agents to curate Schema.org markup : 1) The Validity agent checks if the markup is

valid, ensuring syntactic conformance. 2) The Factuality agent verifies that every markup statement can be
accurately extracted from the text of the web page. 3) The Compliance agent ensures semantic conformance,
i.e., that each markup value complies with the expected values declared in the Schema.org documentation.

3. To compare the performance of humans vs LLMs in the task of annotating real web pages with Schema.org
markup, we propose MIMR, a metric to evaluate the completeness of two verified markups. We devised a
simple yet effective metric by comparing them to an ideal merged markup. We evaluated the accuracy of this
metric with a user-study.

4. Lastly, we constructed a comprehensive pipeline enabling a fair comparison between LLMs and Humans for
our corpus. Thanks to this pipeline, we estimate that approximately 40-50% of the markup produced by GPT-
3.5 or GPT-4 from the text with state-of-art prompts is either non-factual or non-compliant. Without curation,
the LLM-generated markup is clearly not reliable. After curation, we estimate that GPT3-curated markup is
worse than Human-generated markup, but GPT4-curated markup is better than the one produced by humans.

This paper is organized as follows: Section 3 details the methodology of LLM4Schema.org for comparing Hu-
mans and LLMs Schema.org markups. Section 4 presents our experimental study. Section 5 explains the positioning
of this work compared to related works. Section 6 concludes and outlines future work.

2. Background and motivations

Schema.org 3 is a lightweight ontology that includes 806 types, 1476 properties, and 14 Datatypes [14]. It enables
the description of various entities such as a person, a place, a product, an event . . . Schema.org markup can be
embedded in web pages using different formats; in this paper, we focus on the JSON-LD format 4.

2https://schema.org/docs/schemas.html, as by 23 June 2024
3https://schema.org/docs/schemas.html
4https://www.w3.org/TR/json-ld11/

https://schema.org/docs/schemas.html
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<!DOCTYPE html>
<html lang="fr">
<head>

<meta charset="UTF-8">
<meta name="viewport" content="width=device-

width, initial-scale=1.0">
<title>Classic American Apple Pie</title>
<script type="application/ld+json">

{ "@context": "http://schema.org/",
"@type": "Recipe",
"name": "Simple Apple Pie",
"recipeCategory": "Dessert",
"recipeCuisine": "American",
"recipeIngredient": [

"6 medium apples (Granny Smith and Honeycrisp
mix)",

"3/4 cup sugar",
"2 tablespoons all-purpose flour",
"1 teaspoon ground cinnamon",
"The Eiffel Tower",
"2 tablespoons unsalted butter",
"2 premade pie crusts",
"1 beaten egg (optional for brushing)",
"A little sugar (optional for sprinkling)"

],}

</script>
</head>
<body>
Preheat your oven to 375F (190C). Peel, core, and

slice 6 medium apples (a mix of Granny Smith
and Honeycrisp works well for flavor and
texture). In a large bowl, mix the apple
slices with 3/4 cup of sugar, 2 tablespoons of
all-purpose flour, 1 teaspoon of ground
cinnamon, and a pinch of salt. Roll out one
premade pie crust and place it in a 9-inch pie
dish. Trim the edge to 1/2 inch over the rim
of the dish. Fill the crust with the apple
mixture, and dot with 2 tablespoons of
unsalted butter cut into small pieces. Roll
out the second pie crust and place it over the
filling. Trim, seal, and flute or crimp the
edges. Cut slits in the top crust to allow
steam to escape. Optional: For a golden crust,
brush the top with abeaten egg and sprinkle
with a little sugar. Enjoy your homemade
american dessert apple pie!

</body>
</html>

Fig. 1. The Apple HTML web page

_:b0 <http://schema.org/name> "Simple Apple Pie" .
_:b0 <http://schema.org/recipeCategory> "Dessert" .
_:b0 <http://schema.org/recipeCuisine> "American" .
_:b0 <http://schema.org/recipeIngredient> "1 beaten egg (optional for brushing)" .
_:b0 <http://schema.org/recipeIngredient> "1 teaspoon ground cinnamon" .
_:b0 <http://schema.org/recipeIngredient> "2 premade pie crusts" .
_:b0 <http://schema.org/recipeIngredient> "2 tablespoons all-purpose flour" .
_:b0 <http://schema.org/recipeIngredient> "2 tablespoons unsalted butter" .
_:b0 <http://schema.org/recipeIngredient> "3/4 cup sugar" .
_:b0 <http://schema.org/recipeIngredient> "6 medium apples (Granny Smith and Honeycrisp mix)" .
_:b0 <http://schema.org/recipeIngredient> "A little sugar (optional for sprinkling)" .
_:b0 <http://schema.org/recipeIngredient> "The Eiffel Tower" .
_:b0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://schema.org/Recipe> .

Fig. 2. RDF triples of the Apple Pie Markup of Figure 1

Figure 1 presents a simple example of an HTML web page describing an Apple Pie recipe. The page includes
Schema.org markup in JSON-LD format between the tags <script>, </script>. This markup instantiates
the Recipe Schema.org type to describe the content of the <body> section of the web page. The Schema.org
markup is formatted using JSON-LD 5. JSON-LD is a compact representation of an RDF graph using the types and
properties defined in the Schema.org ontology. This markup is equivalent to the RDF representation in Figure 2.

The JSON-LD markup describes a Recipe entity along with its ingredients. For simplicity, the apple pie webpage
includes one entity of one type (Recipe). Typically, a single web page may include many entities, and each entity
can belong to multiple Schema.org types.

To enhance understanding, we will introduce the following simple definitions.

Definition 1 (Markup property and value). Given a set of triples of markup T , let a triple t ∈ T be defined as
t = (S , P,O), P refers to the markup property and O to the markup value.

Definition 2 (Markup entity). Given an RDF graph G, a markup entity, denoted by its subject s, is the set of triples
that contains at least one Schema.org type and all triples reachable from s.

5https://www.w3.org/TR/json-ld11/
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"@context": "https://schema.org",
"@type": "Recipe",
"name": "Homemade American Dessert Apple Pie",
"recipeIngredient": [
"6 medium apples (Granny Smith and Honeycrisp)",
"3/4 cup sugar",
"2 tablespoons all-purpose flour",
"1 teaspoon ground cinnamon",
"Pinch of salt",
"2 premade pie crusts",
"2 tablespoons unsalted butter" ],

"recipeInstructions": [
{ "@type": "HowToStep",
"text": "Preheat your oven to 375F (190C)." },

{ "@type": "HowToStep",
"text": "Peel, core, and slice the apples."},

{ "@type": "HowToStep",
"text": "In a large bowl, mix the apple slices with

↪→ sugar, flour, cinnamon, and salt."},
{ "@type": "HowToStep",
"text": "Roll out one premade pie crust and place it in

↪→ a 9-inch pie dish. Trim the edge to 1/2 inch
↪→ over the rim of the dish."},

{"@type": "HowToStep",
"text": "Fill the crust with the apple mixture, and dot

↪→ with unsalted butter cut into small pieces."

↪→ },
{"@type": "HowToStep",
"text": "Roll out the second pie crust and place it

↪→ over the filling. Trim, seal, and flute or
↪→ crimp the edges."},

{"@type": "HowToStep",
"text": "Cut slits in the top crust to allow steam to

↪→ escape."},
{ "@type": "HowToStep",
"text": "Optional: For a golden crust, brush the top

↪→ with a beaten egg and sprinkle with a little
↪→ sugar."},

{"@type": "HowToStep",
"text": "Enjoy your homemade American dessert apple pie

↪→ !"} ],
"recipeCategory": "Dessert",
"recipeCuisine": "American",
"nutrition": {
"@type": "NutritionInformation", {
"calories": "Varies",
"servingSize": "1 slice",
"fatContent": "Varies",
"carbohydrateContent": "Varies",
"proteinContent": "Varies" }}

Fig. 3. GPT3-5 Generated Schema.org markup from the Apple pie text of Figure 1

In our example in Figure 2, there is one markup entity denoted by the blank node _:b0 that contain all triples
presented in Figure 2.

Given the text of a web page, an LLM can generate a schema.org markup with a simple prompt such as:

Given the text above, please generate a schema.org markup in JSON-LD where
all elements adhere to the text.

With this prompt, GPT-3.5 produces the Schema.org markup shown in Figure 3. In this simple example, GPT-3.5
generates a fairly good markup, but the nutrition information at the end of the markup is not grounded in the text.
As such, the primary challenge lies not in generating Schema.org markup using a large language model (LLM)
but in assessing the accuracy and completeness of the generated markup relative to the webpage’s content. In our
simple motivating example, although the LLM’s markup appears comprehensive compared to the recipe text, it lacks
correctness.

Evaluating the correctness and the completeness of schema markup given a web page traditionally requires a
ground truth. However, such ground truth does not exist and might be difficult to build. Indeed, building such a
ground truth requires to consider the 806 types of Schema.org, and thousands of properties. In the example of
Figure 3, we can observe that each howToStep is a typed entity referenced by the Recipe entity. As a markup
is linked to text, we must consider a representative corpus of webpages with different sizes, maybe in different
languages. For each page, determining if the markup is complete compared to the text is difficult, even for a human.
Related works [15, 24, 34] focused on small ontologies, where the text is just a sentence and the ground truth a
small set of triples. Scaling to full web pages with a large lightweight ontology raises our research question: How
can we evaluate the correctness and completion of generated markup? More generally, can we trust the LLM in the
task of generating Schema.org markup for web pages?

3. LLM4Schema.org Overview

To evaluate the quality of LLM-generated markup, LLM4Schema.org aims to answer a straightforward question:
Do LLMs produce better Schema.org markup than humans for real web pages? The WebDataCommon project [7]
gives access to a corpus of 1 billion real web pages that already embed Schema.org markup in JSON-LD. By
comparing the Schema.org markup generated by an LLM for these pages to the existing human-generated markup,
we can assess which is more complete for any sample of the corpus.
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H:HTML
T:Type

Humans
Markup(H,T): Mh
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Prompt(Text(H),T):Ml
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v
V(Ml,S):Ml
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Mh
c

Ml
c

R=Text(H)

Fig. 4. LLM4Schema.org overall pipeline

1 {
2 "@context": "http://schema.org/",
3 "@type": "Recipe",
4 "name": "Simple Apple Pie",
5 "recipeCategory": "Dessert",
6 "recipeCuisine": "American",
7 "recipeIngredient": [
8 "6 medium apples (Granny Smith and Honeycrisp

↪→ mix)",
9 "3/4 cup sugar",

10 "2 tablespoons all-purpose flour",
11 "1 teaspoon ground cinnamon",
12 "The Eiffel Tower",
13 "2 tablespoons unsalted butter",
14 "2 premade pie crusts",
15 "1 beaten egg (optional for brushing)",
16 "A little sugar (optional for sprinkling)"
17 ],
18 }

(a) Human Markup before curation.

1 {
2 "@context": "http://schema.org/",
3 "@type": "Recipe",
4 "name": "Simple Apple Pie",
5 "recipeCategory": "Main Dish",
6 "cookoo": "PT50M",
7 "recipeInstructions": [
8 {
9 "@type": "HowToStep",

10 "text": "Preheat oven to 375F (190C)."
11 },
12 {
13 "@type": "HowToStep",
14 "text": "Roll out one premade pie crust and

place it in ,a 10-inch pie dish. Trim
the edge to 1/2 inch, over the rim of
the dish."

15 },
16 {
17 "@type": "Dataset",
18 "text": "Peel, core, and slice apples."
19 }
20 ],
21 }

(b) LLM Markup before curation.

Fig. 5. Illustrative Schema.org Markups for the Apple Pie Recipe. Strikeout color: blue = non-compliant properties, red = non-valid properties,
green = non-factual properties.

Establishing a fair comparison is challenging; evaluating the completeness of a markup should only consider
correct markup. LLMs should not gain an advantage by generating hallucinations, and there is no guarantee that
humans authored the correct markup for a webpage. Therefore, only valid and accurate markup can be used for
comparison.

To ensure a fair comparison between LLM-generated and human-authored markup, we used the text of the web
page as the common input for both. This means that any markup fragment for either LLMs or humans that is not
grounded in the webpage’s text should be removed. Grounding markup in text aligns with the general recommen-
dations of both the Schema.org 6 and Google 7.

Figure 4 outlines the overall pipeline for comparing human-generated vs. LLM-generated Schema.org markups.

6https://schema.org/docs/gs.html#schemaorg_expected.
7https://developers.google.com/search/docs/appearance/structured-data/sd-policies#content.

https://schema.org/docs/gs.html#schemaorg_expected
https://developers.google.com/search/docs/appearance/structured-data/sd-policies#content


6 M.-H Dang et al. / Generating Schema.org Markups with Large Language Models

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

The pipeline begins with a webpage with Schema.org markup in JSON-LD format sampled from the WebData-
Commons project [7]. The method for extracting a representative sample from this corpus is explained in Section 4.3.

From this web page, we choose a type T belonging to the page’s markup. For the Apple Pie example in Figure 1,
there is only one type T = Recipe. The objective is to compare markup entities of type T for humans and LLMs:

For humans we select markup entities of type T noted Mh. An illustrative example is presented in Figure 5a for
our motivating example of Apple Pie (cf Figure 1).

For LLMs we first extract the text of the webpage (the <body> text in Figure 1) and ask an LLM to generate
the markup Ml for the given type T . The prompt we used is detailed in Section 3.1. An illustrative example of the
output is presented in Figure 5b.

For both humans and LLMs, markups presented in Figures 5a and 5b, some errors have been intentionally
introduced to illustrate subsequent steps.

As we consider neither LLM-generated nor human-generated markup to be inherently reliable, we subject them
to the following evaluation procedures:
1) Validity Agent takes a markup and the schema.org ontology as input and verifies whether the markup is syntac-

tically correct. It returns only a valid markup. This process is detailed in Section 3.2.
2) Factuality Agent takes a markup and a text as input. It verifies if the markup statements are grounded in the

text, checking each markup property individually, and retaining only factual statements. This process is detailed
in Section 3.3.

3) Compliance Agent takes a markup and the schema.org documentation as input. It verifies that each markup
value complies with the property’s expectations as defined in the Schema.org documentation. It returns a markup
with only compliant statements. This process is detailed in Section 3.4.
We consider markups that pass these agents to be correct and compare them using a scoring metric MIMR detailed

in Section 3.5. The idea of the metric is to merge the Human and LLM markup and evaluate each contribution to
this final markup. A score of 0.5/0.5 indicates that both humans and LLMs produced half of the final markup. The
MIMR metric cannot determine if a markup is complete; it can just indicate if a markup is more complete than
another markup.

3.1. Schema.org Markup Generation with LLMs

Given a webpage and a set of Schema.org types, we use LLMs to generate Schema.org markup by employing
prompt engineering techniques [8]. We adapted the prompt of Text2KgBench[24] to fit our context. We use the
following prompt (the template on the left, and an example of the instantiated template on the right):

Given the Schema.org type(s),
properties, content, please write
the Schema.org JSON-LD markup that
matches the content according to the
Schema.org type(s).
Only output JSON-LD markup.
The Schema.org types:
<types> [TYPES] </types>
Properties for [TYPES]:
<properties>[PROPS]</properties>
Example [INDEX] for [TYPE]:
- Example content:
<ex_content>[ECONTENT]</ex_content>
- Example markup:
<ex_markup>[EMARKUP]</ex_markup>
The content:<content>[CONTENT]</content>

Given the Schema.org type(s), properties, content, please
write the Schema.org JSON-LD markup that matches the content
according to the Schema.org type(s).
Only output JSON-LD markup.
The Schema.org types:
<types> Recipe </types>
Properties for Recipe:
<properties>cookTime, cookingMethod, nutrition,
RecipeCetagory, RecipeCuisine,...</properties>
Example 1 for Recipe:
- Example content:
<ex_content> Mom’s World Famous Banana Bread By John Smith,
May 8, 2009
This classic banana bread recipe comes from my mom - the
walnuts add a nice texture and flavor to the banana bread.
Prep Time: 15 minutes
Cook time: 1 hour </ex_content>
- Example markup:
<ex_markup> { "@context": "https://schema.org",
"@type": "Recipe",
"author": "John Smith",
"cookTime": "PT1H", "description": "This classic banana
bread recipe comes from my mom - the walnuts add a nice
texture and flavor to the banana bread.",} </ex_markup>
The content:<content>Preheat your oven to 375F (190C).
Peel, core, and slice 6 medium apple... Enjoy your homemade
american dessert apple pie! </content>
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– TYPES represents the types of the entity. In our example, there is only one Recipe.
– PROPS represents the properties that can be filled for TYPES, including supertypes. For Recipe, the list

of properties includes cookTime, cookingMethod etc, in addition to the properties of its supertypes
HowTo, CreativeWork, and Thing.

INDEX represents the index of the example; there can be several examples for one type.
– ECONTENT and EMARKUP represent one example from the Schema.org documentation for a type. For our

example, this corresponds to the example at the bottom of https://schema.org/Recipe. ECONTENT is the text
of the example, and EMARKUP is the JSON-LD markup for the text of the example.

– CONTENT is the text of the page to annotate, i.e., the text of the web page shown in Figure 1.

To address the limitation of an LLM’s context window, such as the 16,385 token context window and 4,096
token output limit of GPT-3.5-turbo, we divide the text T XT into chunks while maintaining a 10% overlap between
adjacent chunks to preserve context. The goal is to minimize the number of chunks C and maximize the number
of tokens in each chunk to ensure context preservation. The number of chunks is estimated using the following
formula:

chunk_tokens = context_window− output_tokens− |Tokens(prompt)|

C =
|Tokens(TXT)|

0.90× chunk_tokens
account for 10% overlap

Subsequently, we merge the JSON-LD output from each chunk to create the final markup for the text. For the
sake of simplicity, a mock example of the results of LLM markup generation is illustrated in Figure 5b.

3.2. Schema.org Markup Validity Agent

Existing validation tools like Google’s Rich Results Test 8 or Schema Markup Validator 9 typically identify
invalid properties and values in the markup, prompting human annotator to make corrections. For instance, consider
the LLM-generated markup shown in Figure 5b at the line 6: the property “cookoo” is not a valid property of
schema:Recipe.

These tools suffer from two limitations: (1) they are designed for human interaction and lack an API for automa-
tion, (2) their validation rules are not transparent, making it difficult to understand their inner workings.

To address these limitations, we developed a simple validator based on shape constraints validation. Schema.org
is intentionally designed to be "semantically imperfect and not formally strict" in order to facilitate the vocabulary
development [30], as well as the adoption by the community 10. As a result, we only check for the following rules:

(1) The type must be defined in Schema.org ontology. For example, Recipe is a valid type, but Recette is
not.

(2) The property must be defined in the type’s ontology or inherited from parent types. For example,
recipeIngredient is a valid property for Recipe, but cookoo is not. Additionally, name is a valid
property for Recipe because it is inherited from Thing.

(3) The value must approximately match the expected property type. For instance, the value of recipe-
Instruction can be either CreativeWork, Text or ListItem. In our example, HowToStep entity
(child type of CreativeWork), the string "Preheat oven ..." are valid, but the Dataset entity is
not.

Based on these rules, we generated SHACL 11 shapes for the entire Schema.org ontology 12, following these
simple steps for each shape: (1) Use OWL, RDFS terms for inference. (2) Propagate all properties from parent type
to children types. (3) Close the shapes to enable reasoning under Closed World Assumption.

8https://search.google.com/structured-data/testing-tool
9https://validator.schema.org/
10https://schema.org/docs/datamodel.html#Conformance
11https://www.w3.org/TR/shacl/
12https://github.com/schemaorg/schemaorg/blob/main/data/releases/23.0/schemaorg-all-http.nt

https://schema.org/Recipe
https://search.google.com/structured-data/testing-tool
https://validator.schema.org/
https://schema.org/docs/datamodel.html#Conformance
https://www.w3.org/TR/shacl/
https://github.com/schemaorg/schemaorg/blob/main/data/releases/23.0/schemaorg-all-http.nt
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1 schema1:Recipe a schema1:CreativeWork, schema1:HowTo, schema1:Thing, rdfs:Class, sh:NodeShape ;
2 rdfs:label "Recipe" ;
3 rdfs:subClassOf schema1:CreativeWork,
4 schema1:HowTo,
5 schema1:Thing ;
6 sh:closed true ;
7 sh:ignoredProperties ( rdf:type owl:sameAs ) ;
8 sh:property schema1:CreativeWork-about,
9 schema1:CreativeWork-video,

10 schema1:CreativeWork-workExample,
11 schema1:CreativeWork-workTranslation,
12 schema1:HowTo-estimatedCost,
13 schema1:HowTo-performTime,
14 schema1:HowTo-prepTime,
15 schema1:HowTo-yield,
16 schema1:Recipe-cookTime,
17 schema1:Recipe-recipeCategory,
18 schema1:Recipe-recipeCuisine,
19 schema1:Recipe-recipeIngredient,
20 ...
21
22 schema1:Recipe-recipeIngredient a sh:PropertyShape ;
23 rdfs:label "recipeIngredient" ;
24 rdfs:comment "A single ingredient used in the recipe, e.g. sugar, flour or garlic." ;
25 rdfs:subPropertyOf schema1:supply ;
26 sh:or ( [ sh:class schema1:URL ] [ sh:datatype xsd:string ] [ sh:class schema1:XPathType ] [ sh:class

schema1:Text ] [ sh:class schema1:PronounceableText ] [ sh:class schema1:CssSelectorType ] ) ;
27 sh:path schema1:recipeIngredient .

Fig. 6. Example of SHACL shape for Recipe type (excerpt).

Figure 6 shows an excerpt of the resulting SHACL shape13 for the Recipe type.
We use RDFLib pySHACL 14 to validate the markup against these shapes, subsequently removing any invalid

property-value pairs from the markup.

3.3. Schema.org Markup Factuality Agent

The Factuality agent takes a text and a markup as inputs, verifying whether the properties and values mentioned
in the markup are grounded in the webpage text. It is LLM based. While it may seem surprising to verify the output
of an LLM with another LLM, the precision of LLMs varies depending on the task. The initial task in this paper is
to generate a complete markup starting from a text, which is quite complex. The Factuality Agent’s task is simpler;
it merely verifies that each markup fragment is grounded in the text. We utilize the following prompt:

You are an expert in the semantic web and have deep knowledge about
writing Schema.org markup. You will be given a document, a question and
a series of hints. Your task is to give an answer using the hints. Reply
using only Yes or No.
Given the document below:
<content>[CONTENT]</content>
Hint 1: Check whether the [VALUE] is in the text.
Hint 2: Check whether the [VALUE] is [PROP].
Is [VALUE] a [PROP] of [TYPE]?

If the Factuality agent rejects a markup property, this signifies the detection of a hallucination in LLM-generated
markup. In our context, there are two possible types of hallucination as defined in [17]:

1. Intrinsic Hallucination: The property-value-type triple contradicts the webpage content. For example, in the
markup of Figure 5b, the how-to step of line 14 indicates a 10-inch pie, while it is a 9-inch pie in the text.

13https://github.com/GDD-Nantes/LLM4SchemaOrg/tree/main/schemaorg/shacl
14https://github.com/RDFLib/pySHACL.git

https://github.com/GDD-Nantes/LLM4SchemaOrg/tree/main/schemaorg/shacl
https://github.com/RDFLib/pySHACL.git
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2. Extrinsic Hallucination: The property-value-type triple cannot be supported or contradicted by the webpage
content. For example, in the markup of Figure 5b, the pair {"text": "Main Dish"} (line 5) is not
supported by the webpage content.

For each property in the markup, we instantiate the prompt template as follows:

Given the document below:
<content>Preheat your oven to 375F (190C). Peel, core, and slice 6 medium
apple... Enjoy your homemade american dessert apple pie! </content>
Hint 1: Check whether the [Main Dish] is in the text.
Hint 2: Check whether the [Main Dish] is [RecipeCategory].
Is [MainDish] a [RecipeCategory] of [Recipe]?

Because the prompt includes the entire web page text, it may encounter the token limit in LLMs, where the text’s
size may exceed the maximum token count supported by LLMs. To address this issue, we employ a technique of
text chunking with overlaps, similar to our method for markup generation (Section 3.1). We aim also to minimize
the number of chunks C, i.e., maximize the number of tokens in each chunk to preserve context. The number of
chunk is estimated using the modified formula from Section 3.1:

chunk_tokens = max_tokens− | P
max
i=1

Tokens(pi)| P is a set of prompts

C =
|Tokens(T )|

0.90× chunk_tokens
account for 10% overlap

Note that the number of output tokens is omitted from the equation because the model only replies with "yes" or
"no", making the number of output tokens negligible compared to other terms. The Factuality agent then validates
each chunk, producing a boolean vector for each chunk. The final factuality score is computed as the element-wise
logical OR of these vectors. Finally, we remove the invalid property-value-type triples from the markup.

3.4. Schema.org Markup Compliance Agent

The Compliance agent takes a markup as input and ensures that each property’s value aligns with the ontology ex-
pectations outlined in the Schema.org documentation. For example, the expected value for recipeIngredient
is defined as "A single ingredient used in the recipe, e.g., sugar, flour, or garlic." 15. When analyzing the human-
generated markup depicted in Figure 5a at line 12, it becomes evident that "The Eiffel Tower" does not constitute a
complaint recipe ingredient. The Compliance agent is LLM-based; we rely on language comprehension of LLMs to
verify that property values are compliant with Schema.org expectations described in the documentation. We use the
following prompt:

You are an expert in the semantic web and have deep knowledge about
writing Schema.org markup. You will be given a JSON-LD markup and a
Schema.org definition for a property and your task is to assert whether
the markup align with the given definition. Answer Yes if the value aligns
with the definition; if not, answer No. Reply using only Yes or No.
Given the markup below for property [PROP]:
<markup>[MARKUP]</markup>
Given the property definition below for [PROP]:
<definition>[DEFINITION]</definition>
Does the value align with the property definition?

[PROP] is a placeholder for a property of the input markup, and [DEFINITION] is replaced by the expectation
for this property in the Schema.org documentation.

For each property in the markup, we send a query to the LLM, for instance:

15https://schema.org/recipeIngredient

https://schema.org/recipeIngredient
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Algorithm 1: Compute MIMR Score between Human and LLM
Markup

Data: Human markup H, LLM markup L
Result: (scoreh, scorel)

1 Ch ← ∅, Cl ← ∅, Cm ← ∅ ;
2 foreach p ∈ (H ∨ L) do
3 Ch[p] = |{o|(s, p, o) ∈ H}| ;
4 foreach p ∈ (H ∨ L) do
5 Cl[p] = |{o|(s, p, o) ∈ L}| ;
6 foreach p ∈ (Ch[p] ∨Cl[p]) do
7 Cm[p] = max(Ch[p],Cl[p]) ;

8 (scoreh, scorel)← (JM(Ch,Cm), JM(Cl,Cm)) ;

Ch Cl Cm

type 1 2 2
name 1 1 1
recipeCategory 1 0 1
recipeCuisine 1 0 1
recipeIngredient 8 0 8
recipeInstruction 0 1 1
text 0 1 1

TOTAL 12 5 15

Fig. 7. Computing Scores

Given the markup below for property [RecipeIngredient]:
<markup> recipeIngredient "the Eiffel Tower" </markup>
Given the property definition below for [RecipeIngredient]:
<definition> A single ingredient used in the recipe, e.g., sugar or
garlic. </definition>
Does the value align with the property definition?

This prompt is instantiated for each property-value pair in the markup. By analyzing the LLM responses, we
identify and remove any non-compliant property-value pairs from the markup.

3.5. MIMR: Markup Ideal Match Ratio

We designed the MIMR metric to estimate the contribution of human and LLM-generated markups to an ideal
merged markup. This metric calculates the percentage of markup contributed by humans/LLM in the final merged
markup. For example, applying the MIMR metric to the curated markup presented in Figures 5a and 5b, the MIMR
yields scores of (0.8, 0.33), where 0.8 is the ratio contributed by humans and 0.33 by LLMs. In this case, humans
win the match.

Algorithm 1 details how the MIMR metric is computed.
For each property p in either human markup H or LLM markup L, we count the number of the occurrences of the

property and store these counts in Ch[p] and Cl[p] respectively.
Then, for each property p in the union of Ch[p] and Cl[p], we determine the maximum count and store it in Cm[p].

We choose properties with larger counts to represent the ideal markup. The values of Ch,Cl,Cm for our motivating
example are represented in Table 7.

The final scores (scoreh, scorel) are computed using the generalized Jaccard similarity coefficient JM defined as:

JM(Ca,Cb) =

∑
p min(Ca[p],Cb[p])∑
p max(Ca[p],Cb[p])

This allows us to evaluate the contribution of humans and LLMs to the merged markup. For our example, the
resulting scores are : scoreh = 12

15 = 0.8 and scorel =
5
15 ≈ 0.33. This indicates that the human-generated markup

is closer to the ideal merged markup I than the LLM-generated markup.
The MIMR metric remains coarse-grained and purely quantitative. Given two markup M1,M2, the MIMR metric

might indicate M1 <MIMR M2, however, from the qualitative perspective M1 can be considered better than M2.
For instance, a markup with fewer properties might include properties that are considered more important. In our
experiments, we assess the qualitative perspective of the MIMR metric using human evaluations.
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(P1 = description,V1) ∈ M1

{ "@context": "https://schema.org/",
"@type": "Product",
"name": "Crew neck white t-shirt",
"description": "White t-shirt made of soft andotton jersey,

ensuring comfort, a refinedre adds sporty appeal.",
"hasGS1DigitalLink": "https://gs1.appareldemo.com

↪→ /01/09506000164908",
"gtin": "09506000164908" }

M1 ∩ M2 = ∅

(P2 = aggregateRating,V2) ∈ M2

{ "@context": "https://schema.org",
"@type": "Product",
"aggregateRating": {

"@type": "AggregateRating",
"bestRating": "100",
"ratingCount": "24",
"ratingValue": "87" },

"image": "dell-30in-lcd.jpg",
"name": "Dell UltraSharp 30\" LCD Monitor", ... }

Text T1 https://schema.org/Product#eg-3475
# Crew neck white t−shirt

White t-shirt made of soft and lightweight cotton
jersey, ensuring comfort, a refined melange texture adds sporty appeal.

[Manufacturer information](https://gs1.appareldemo.com
/01/09506000164908)

Text T2 https://schema.org/Product#eg-0011
![A Dell UltraSharp monitor](dell−30in−lcd.jpg)
Dell UltraSharp 30" LCD
Monitor 87 out of 100 based on 24 user ratings

$1250 to $1495 from 8 sellers
Sellers:
[ Save A Lot Monitors − $1250](save−a−lot−monitors.com/dell−30.

html)
[ Jon Doe\’s Gadgets − $1350](jondoe−gadgets.com/dell−30.html)

Fig. 8. Example of ground truth generation for Extrinsic Hallucination.

4. Experiments

The experimental study aims to address the following questions:

1 How reliable is the Factuality agent? As the Factuality agent relies on LLM prompts, we have to evaluate the
accuracy of the Factuality agent.

2 How reliable is the Compliance agent? As The Compliance agent relies on LLM prompts, we have to evaluate the
accuracy of the compliance agent.

3 How can we obtain a representative sample of the Schema.org corpus?
4 Is the MIMR metric reliable for comparing markups? The MIMR metric is a purely quantitative metric. Between

2 markups, does humans choose the same one than the MIMR metric?
5 Are LLM-generated markup better than human-generated markup?

All experimental results and the code for reproducibility are available on the project website 16.

4.1. How reliable is the Factuality agent?

As the Factuality agent is based on an LLM, we must assess its accuracy in detecting the presence or absence of
property-value-type triples in the input text.

4.1.1. Ground truth dataset for Factuality agent
We build a ground truth based on the many examples provided in the Schema.org documentation 17. Each

example associates a JSON-LD Schema.org markup M with a concise text snippet τ. Figure 8 illustrates two
such examples denoted (M1, τ1) and (M2, τ2). As we rely on the official documentation of Schema.org, we as-
sume that each property-value-type triple (property, value, type) in M is present in τ. For example, the pair
(P1 = "description",V1 = "white t-shirt...",T1 = Product) is found in τ1, and this is true for all properties of
M1.

By reusing examples from the Schema.org documentation, we can generate 785 positive tests. To generate nega-
tive examples, we follow two principles:

Intrinsic Principle: For a pair ((Pi,Vi,Ti), τ), we modify the numeric values from Vi to V j, where i ̸= j to avoid
matching these values in τ. Consequently, we generated ((Pi,V j,Ti), τ) such that (Pi,V j,Ti) have no corre-
sponding match in τ. We generated 498 negative examples from the 785 positive examples using this principle.

Extrinsic Principle: For two pairs ((P1,V1,T1) ∈ M1, τ1) and (M2 = (P2,V2,T2) ∈ M2, τ2) where M1 and M2

are disjoint, we create new pairs ((P1,V1,T1), τ2) and ((P2,V2,T2), τ1), as presented in Figure 8. When M1

and M2 are disjoint, there is no match for every property of M1 in τ2 and for every property of M2 in τ1.
Thanks to this principle, we generated 630 negative examples from the 785 positive examples.

https://schema.org/Product#eg-3475
https://schema.org/Product#eg-0011
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Table 1
Number of examples in the ground-truth dataset for Factuality agent

Positive Negative Total

Factual (Intrinsic) 785 498 1283
Factual (Extrinsic) 785 630 1415

Table 2
Precision, Recall, and F1 of the Factuality agent

Prec. Recall F1

Factual (Intrinsic) 0.866 0.938 0.901
Factual (Extrinsic) 0.945 0.945 0.945

Property P1 Description
https://schema.
org/recipeIngredient

recipeIngredient
(Text)

A single ingredient
used in the recipe,
e.g. sugar, flour or
garlic.

(P1,V1) ̸∼ (P2,V2)

property P2 Description
https://schema.
org/recipeYield

recipeYield
(Quatitative-
Value or Text)

The quantity pro-
duced by the recipe
(for example, num-
ber of people served,
number of servings,
etc).

P1 Property value V1

recipeIngredient "3 or 4 ripe bananas,
smashed"

P2 Value V2

"recipeYield" "1 loaf",

Fig. 9. Example of ground truth generation for Compliance agent.

The Factuality ground-truth consists of 785 positive examples, 498 negative intrinsic examples, and 630 negative
extrinsic examples, as shown in Table 1. The ground-truth dataset is available on our GitHub repository18.

4.1.2. Experimental results for the Factuality agent
We evaluate the precision, recall, and F1 score for the factuality agent using its ground-truth dataset described in

the previous section.
For evaluation purposes, We used a quantized version 19 of Mixtral-8x7B-Instruct [18] to mitigate evaluation

costs associated with using using GPT-3 or GPT-4. We set the temperature to 0.0 when prompted to ensure a
deterministic response from the model. The agent produces a numerical value between 0 and 1, where 1 indicates
full factual adherence. We classify property-value-type triples as VALID if their score is ⩾ threshold, and
INVALID otherwise. Naturally, the choice of threshold significantly impacts evaluation outcomes. We opted for a
threshold of 0.5, aligning with the interpretation of SelfCheckGPT-Prompt [20], where property-value-type triples
may exhibit some factual inconsistencies but are overall factually correct. We refer the reader to Appendix F for
more details on the implementation of the Factuality agent.

Table 2 presents the precision, recall, and F1 score of the Factuality agent. The Factuality agent obtains high F1
scores in intrinsic and extrinsic test cases. Higher precision for extrinsic cases indicates that detecting hallucinations
with evidence in the text is more challenging, as the task requires a deeper understanding of the text, leading to
higher false positives (see Appendix A).

4.2. How reliable is the Compliance agent?

Given that the Compliance agent is based on an LLM, it is crucial to assess its accuracy in determining whether
a property value complies with the property expectations specified in the Schema.org documentation. Similarly to
the Factuality agent, this evaluation relies on the many examples provided in the Schema.org documentation.

16https://github.com/GDD-Nantes/LLM4SchemaOrg/
17https://github.com/schemaorg/schemaorg/blob/main/data/releases/23.0/schemaorg-all-examples.txt
18https://github.com/GDD-Nantes/LLM4SchemaOrg/tree/main/schemaorg/examples/factual
19https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF

https://schema.org/recipeIngredient
https://schema.org/recipeIngredient
https://schema.org/recipeYield
https://schema.org/recipeYield
https://github.com/GDD-Nantes/LLM4SchemaOrg/
https://github.com/schemaorg/schemaorg/blob/main/data/releases/23.0/schemaorg-all-examples.txt
https://github.com/GDD-Nantes/LLM4SchemaOrg/tree/main/schemaorg/examples/factual
https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF
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Table 3
Statistics of the ground truth for Compliance agent

Positive Negative Total

Compliance 785 147 932

Table 4
Precision, Recall, and F1 of the Compliance agent

Prec. Recall F1

Compliance 0.9 0.914 0.907

4.2.1. Ground truth dataset for Compliance agent
From the examples in the Schema.org documentation, we consider pairs (P,V) where P is the description of the

property in natural language, and V is a value available in Schema.org examples for the property P. According to
the Schema.org documentation, we consider that a value V is compliant with the description of the property P.

Figure 9 illustrates two compliance pairs: one for the recipeIngredient property and the other for
recipeYield property. In these examples, V1 is compliant with P1 and V2 is compliant with P2.

In addition to the positive examples, we generate negative examples by swapping values between textual prop-
erties that are semantically distant. For example, V1 is considered not compliant with P2 and V2 is considered not
compliant with P1. To ensure that (P1,V1) is distant from (P2,V2) during negative test generation, we measure the
semantic distance between their embeddings using Spacy 20 and retain pairs with the largest distances as negative
examples.

As described in Table 3, we generated 932 tests with positive and negative examples. The ground truth dataset is
available on our GitHub repository 21.

4.2.2. Experimental results of the Compliance agent
We evaluated the Compliance agent’s precision, recall, and F1 score using its ground truth datasets. As for the

Factuality agent, we used a quantized version 22 of Mixtral-8x7B-Instruct [18]. The outputs of the agent are numbers
between 0 and 1, where 1 indicates full compliance of property-value pairs. We assign the label VALID to the
property-value pairs with a score ⩾ threshold, and INVALID otherwise. Naturally, the results are sensitive to
the choice of the threshold. As before, we chose the threshold of 0.5 following the interpretation of SelfCheckGPT-
Prompt. We refer the reader to Appendix F for more details on the implementation of the Compliance agent.

Table 4 presents the precision, recall, and F1 score of the Compliance agent. High Precision and Recall indicate
that the Compliance agent performs well on positive and negative tests (See Appendix B). A high F1 score also
means we can safely integrate the Compliance agent into our pipeline to evaluate the quality of the generated
markup.

4.3. Sampling over WebDataCommons

For practical reasons, we consider a representative sampled subset of the corpus consisting of 877 million web
pages visited in 2022 that feature Schema.org markup in JSON-LD format. This corpus is extracted from the Com-
monCrawl of October 2022 dataset 23, which contains 3.15 billion web pages. Of these, 1.5 billion pages contain
structured data 24, and 877M include Schema.org markup in JSON-LD format.

The corpus is available in RDF as quad files using the format sub ject, predicate, ob ject,URL, where URL is the
URL of the visited web page, predicate is a Schema.org predicate, and the subject can be either a URL or a Blank
node.

Sampling over these 877 million pages is challenging because some Schema.org types/properties are much more
frequent and better described than others [10]. Sampling only frequent Schema.org types or well-described entities
may bias results in favor of LLMs.

To create representative samples, we rely on ideas explored by Schema.org observatory [10]. Schema.org obser-
vatory has computed characteristic sets for WebDataCommons released in October 2021. Characteristic sets (C-sets)

20https://spacy.io/
21https://github.com/GDD-Nantes/LLM4SchemaOrg/tree/main/schemaorg/examples/compliance
22https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF
23https://data.commoncrawl.org/crawl-data/CC-MAIN-2022-40/index.html
24http://www.webdatacommons.org/structureddata/#results-2022-1

https://github.com/GDD-Nantes/LLM4SchemaOrg/tree/main/schemaorg/examples/compliance
https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF
https://data.commoncrawl.org/crawl-data/CC-MAIN-2022-40/index.html
http://www.webdatacommons.org/structureddata/#results-2022-1
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Table 5
Example of C-sets from WebDataCommons 2022.

C-set #instances #properties URLs

address, alternateName, description, im-
age, logo, name, sameAs, telephone, url,
isa:<NewsMediaOrganization>

36 10 https://sports442.com,
http://www.bet88news.net

areaServed, contactPoint, description, im-
age, knowsAbout, legalName, logo, name,
telephone, url, isa:<Organization>

1 6 https://mridt.com/

aggregateRating, description, isSimilarTo,
model, name, offers, isa:<Product>

1 7 https://www.destination-
fougeres.bzh/loisirs/cinema-le-club/,
https://www.ardennes.com/activite-
sportive/balade-a-cheval/

address, contactPoint, descrip-
tion, name, openingHours, url,
isa:<EmergencyService>

3 7 https://www.annarbortow.com/,
https://www.annarbortow.com/about.html,
https://www.annarbortow.com/services.html

name, sameAs, isa:<HowToSection> 6 3 https://breadboozebacon.com/tag/pasta/#id

are sets of properties that are shared by entities across web pages, revealing how humans combine properties to de-
scribe web entities. We extend this work by adding a web page source (URL) for each C-set, allowing us to extract
the textual content and human-generated JSON-LD markup for each C-set. Formally, a C-set for a subject s in a
quad s, p, o, u is defined as:

S C(s) = {p|∃o : (s, p, o, u) ∈ D}

where (s, p, o, u) represents quads in the dataset D. For example, applying this definition using the markup
in Figure 5a yields a C-set of length 5: { isa:Recipe, name, recipeCategory, recipeCuisine,
recipeIngredient }.

For the corpus of 877 million pages, we computed C-sets using Equation 4.3. Within each C-set, we removed
invalid properties and types (outside Schema.org, typographic errors), resulting in a total of 1.2 million C-sets.
Table 5 shows some examples of C-sets from WebDataCommons 2023. The entire C-sets dataset is available on
Zenodo 25.

To select representatives C-sets, we study the C-sets using two features: (1) The number of instances per C-
set measures how frequently a given combination of properties occurs. (2) The number of properties per C-set
indicates how many properties are combined in a given combination.

We observe a very weak monotonic relationship between the number of instances and the number of properties
in a C-set (Spearman ρ = −0.18, p-value = 0.0). This aligns with the observations made in the Schema.org
observatory [10], where longer combinations of properties tend to have fewer instances, but this is not the case for
all types. In other words, longer C-sets do not necessarily share the same instances as C-sets with higher instance
counts and vice versa; hence, both features need to be sampled independently.

Next, we divided the distribution of the number of instances and the number of properties into 3 quantiles:
Low, Medium, and High (Figure 10). This ensures a representative sample of C-sets with different lengths and
cardinalities. For each feature, we grouped the C-sets by quantiles and sampled 30 pages from each, resulting in 180
pages in total.

For each webpage, we extracted the textual content from fully-rendered webpages using HTML2Text 26, and
the human JSON-LD markup using extruct 27. It is important to note that: (i) A webpage can have multiple
JSON-LD markup and (ii) the type in the C-set is not necessarily the same as the type in the JSON-LD markup. For

25https://doi.org/10.5281/zenodo.12080148
26https://github.com/Alir3z4/html2text/.
27https://github.com/scrapinghub/extruct.

https://doi.org/10.5281/zenodo.12080148
https://github.com/Alir3z4/html2text/
https://github.com/scrapinghub/extruct
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(a) #instances per C-set (b) #properties per C-set

Fig. 10. Distribution of C-sets in WebDataCommons 2023.

Table 6
Statistics of the 180 web pages. PV = #property-value pairs (min, avg, max), DP = #distinct Properties, DT = #Distinct Types, DS = Document
Size (min/avg/max in KB).

PV DP DT DS

number of instances
Low 4/27/193 155 26 2/23/78

Medium 4/41/598 131 16 0.2/13/45
High 3/85/924 180 19 2/22/84

number of properties
Low 1/75/1600 109 25 2.5/20/214

Medium 8/28/168 97 20 1.5/19/73
High 15/68/1000 147 20 2/17/53

Overall 1/53/1600 364 78 0.2/19/214

Table 7
Results throughout the evaluation pipeline, where Input is the number of triples in the input. Valid, Fact, and Comp are the number of triples
resulting from the step. The Rejection Rate is the percentage of triples rejected by the pipeline. MIMR: h for Human, l for LLMs.

Input Valid. Fact. Comp. Rejection Rate MIMR

Human 5690 4875 3315 2719 52.2%

GPT-3.5 4190 3369 2489 2055 50.9% (h = 0.687, l = 0.585)

GPT-4 5260 4613 3573 3113 40.8% (h = 0.568, l = 0.707)

example, in the markup in Figure 5b, the C-set is { isa:HowToStep, text } but the markup is of type Recipe.
When extracting the JSON-LD markup, we only retained those containing the C-set and considered the root type,
i.e., the type on the first level in the markup, as input for the evaluating pipeline. This step provides more context to
the LLMs while retaining representativeness with respect to the C-sets. In another word, instead of evaluating the
markup { "@type": "HowToStep", "text": "Preheat oven to 375F (190C)." }, we evaluate
the entire markup of type Recipe in Figure 5b.

Table 6 presents the statistics about our 180 webpages. We can see some diversity in the length of web pages and
number of triples per page.
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Table 8
Results throughout the evaluation pipeline, per feature (number of instances and number of properties), and per quantile (Low, Medium, High).
The Input, Valid, Factuality (Fact.), and Compliance(Comp.) rows show the number of triples after each step. The MIMR for Humans (h) and
LLMs (l), respectively. The Rejection Rate (RR) is the percentage of triples rejected by the pipeline.

(a) Number of instances per C-set

Human GPT-3.5 GPT-4
Low Med High Low Med High Low Med High

Input 910 861 1039 1293 572 401 1286 619 671

Valid. 748 731 812 781 452 373 1064 592 619
Fact. 463 488 602 589 245 284 819 469 513
Comp. 402 346 515 549 222 256 683 441 448

RR 55% 59% 50% 57% 61% 36% 46% 28% 33%

MIMR (h = 0.603,
l = 0.669)

(h = 0.689,
l = 0.577)

(h = 0.802,
l = 0.506)

(h = 0.491,
l = 0.795)

(h = 0.576,
l = 0.673)

(h = 0.653,
l = 0.638)

(b) Number of properties per C-set

Human GPT-3.5 GPT-4
Low Med High Low Med High Low Med High

Input 535 740 1605 812 567 545 849 897 1605

Valid. 369 687 1528 793 474 496 778 713 1528
Fact. 273 457 1032 645 339 387 629 506 1032
Comp. 216 373 867 381 281 366 525 444 867

RR 59% 49% 45% 53% 50% 32% 38% 50% 45%

MIMR (h = 0.585,
l = 0.643)

(h = 0.687,
l = 0.618)

(h = 0.772,
l = 0.480)

(h = 0.434,
l = 0.797)

(h = 0.569,
l = 0.758)

(h = 0.704,
l = 0.567)

4.4. Humans Vs LLMs

We compare human-generated markup to GPT-generated markup (GPT-3.5-Turbo-16k-0613 and GPT-4-0125-
preview)28 for 180 web pages, using the pipeline in Figure 4. According to the MIMR metric, human-generated
markup contributes more to the ideal merge than GPT-3.5-generated markup, but less than GPT-4-generated markup.
This is due to GPT-4 being better at following instructions [2], generating more triples with a lower rejection rate
than GPT-3.5.

Table 7 presents the total number of RDF triples present in the output of each agent for the whole 180 web
pages. For example, for humans, on the 5690 input triples, the validation agent only retained 4875 triples. When
examining the proportion of rejected triples, 52.2% of human-generated triples are rejected. While most of these
triples are valid, they are not factual or compliant. This mainly indicated the text of web pages should be improved
to ground information available in the markup. This may concern information that is only available as images with
no alternative text, for example. As for LLMs, 50.9% of GPT-3.5 generated markup, and 40.8% of GPT-4 generated
markup were incorrect. This finding indicates that LLMs should not be used out-of-the-box to generate Schema.org
markup and require curation to ensure the quality of the generated markup.

Table 8 presents the results throughout the evaluation pipeline per feature (number of instances and number of
properties) and per quantile (Low, Medium, High). We observe the same pattern in both features: the MIMR metric
is higher for Humans in the High quantiles, while it is higher for GPT-4 in the Low quantiles. Although LLMs

28We also tried with Mixtral but had a problem getting JSON-LD outputs.
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Table 9
Contingency tables showing the number of votes for Human and MIMR for different generator models (GPT-3.5 and GPT-4).

GPT-3.5 GPT-4.5

Human MIMR Human MIMR

Markup A (human-generated) 13 12 9 7
Markup B (GPT-generated) 8 7 14 12

Cohen’s Kappa 0.750 0.895

cannot outperform Humans on web pages with the highest number of instances/properties, they can help improve
web pages in the Low and Medium quantiles. This finding suggests that LLMs can help generate the first draft of
Schema.org markup, which humans can further curate to improve its quality.

The in-depth analysis of the errors made by Humans and LLMs is presented in Appendix C.

4.5. Evaluating the accuracy of the MIMR metric

Judging the quality of the generated markup is a challenging task, as there might be multiple valid ways to
represent the same information. The MIMR metric measures the quantity of information that contributes to the ideal
merge of human and LLM-generated markups, but it does not capture the quality of the information. To evaluate the
accuracy of our MIMR metric, we conducted a human evaluation by measuring the perceived quality by humans.
This is done in three steps: (1) we randomly selected a subset of web pages from the dataset, (2) we asked human
evaluators to compare the human-generated markup with the LLM-generated markup for each web page, and (3) we
measured the MIMR-Human agreement.

We selected 10% random web pages to validate the scoring metric. Then, 7 participants were presented with 2 cu-
rated markups of the same web page and were asked to choose between A: human-generated, B: GPT-generated, or
Tie 29. Note that the participants were not aware of the markup’s origin. Table 16 shows the participants’ responses.

From the responses, we counted the votes for "Markup A" and "Markup B" and then added 1 vote to both "Markup
A" or "Markup B" whenever a participant votes "Tie." Table 9 shows the total vote count for Humans and MIMR for
different generator models (GPT-3.5 and GPT-4). To determine whether the MIMR metric is consistent with human
preferences, we measure the inter-rater reliability using Cohen’s Kappa coefficient following [13]. The high Kappa
statistic indicates a substantial agreement between the human judgments and the MIMR metric.

5. Related Work

In this paper, we propose LLM4Schema.org, a comprehensive pipeline leveraging large language models (LLMs)
and prompting techniques to generate Schema.org markup for web pages. The pipeline employs two LLM-based
agents to ensure the factual accuracy and compliance of the generated markups, as well as to evaluate their reliability.
The LLM-generated markups are curated and compared to human-generated markups.

The most related works to LLM4Schema.org pertain to LLM-augmented Knowledge Graph Construction (LLM-
KGC) [19, 26], where knowledge graphs (KGs) are built using LLMs and prompting from raw texts. These in-
clude PiVE [15], AutoKG [34] and Text2KGBench [24]. These approaches rely on relatively simple ontologies
and work at the sentence level of granularity. For instance, Text2KGBench targets small-sized ontologies by design
(up to 20 types and 68 relations), using short text to accommodate the token size limitations of LLMs and validat-
ing LLM-generated triples against manually constructed ground truths. Additionally, KGValidator [6] proposes a
ground-truth-free evaluation pipeline incorporating shape validation for validity and uses both internal and external
knowledge sources (e.g., Wikidata, Retrieval Augmented Generation) to detect factual inconsistencies. While exter-
nal sources effectively mitigate factual inconsistencies with respect to the world knowledge [17], in the context of

29https://github.com/GDD-Nantes/MarkupGeneratorABTest.

https://github.com/GDD-Nantes/MarkupGeneratorABTest
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Schema.org, markups should only include information visible to visitors, as recommended by Schema.org [27] and
Google [12].

Regarding Schema.org specifically, a few works related to LLM-KGC aim to procure Schema.org from unstruc-
tured data [1, 11, 22]. For instance, Abbasi et al. [1] use earlier pre-trained language models to extract Schema.org
from 12 web pages in HTML format. They leverage Long-Short-Term Memory (LSTM) networks to classify HTML
blocs using 8 Schema.org classes/properties and generate the markup using a predefined template. Gonzales et
al. [11] aim to complete the Wikidata knowledge graph with triples procured from the Web for Tourism domain.
They perform entity linking to recognize Wikidata entities within the Schema.org markup, use LLMs to transform
Schema.org triples into Wikidata triples, and evaluate the system using test and validation sets. Overall, these works
are limited in the application domain and oftentimes require ground truth for validation, impeding scalability.

In LLM4Schema.org, we consider Schema.org, with 806 types and 1476 properties30, we process real-world
significant web pages, where obtaining ground truth is impractical [17]. In an open-ended task such as Schema.org
markup generation, it is challenging to establish a ground truth [5] as two stochastic outputs from the same input
might still be valid/factual/compliant despite being different. We address the problem of unavailable ground truth
by making our validation process rely only on the web page content (Factuality) and Schema.org documentation
(Validity and Compliance). This adheres to Schema.org guidelines that the markup should only include information
visible to visitors.

The Factuality and Compliance agents are LLM-based binary classifiers. In this context, hallucinations could lead
to false positives and false negatives. Therefore, we need to assess their reliability before integrating them into the
ground-truth-free pipeline. Previous works [3, 20, 21, 25, 31] rely on consistency-based methods [17], which suggest
that predictions with lower confidence are more likely to be hallucinations. To detect hallucinations, these methods
involve aggregating multiple outputs generated stochastically from the same input to determine a final judgment.
However, this process is computationally expensive and time-consuming as the number of sample outputs increases.
Additionally, KGValidator [6] uses LLMs out-of-the-box to validate the output triples. The paper also highlights the
"inherent knowledge insufficiency" of LLMs, which can lead to factual errors in the KGs.

In LLM4Schema.org, Factuality and Compliance agents use a modified prompt from SelfCheckGPT-Prompt
[20] with one deterministic output instead of multiple stochastic outputs. By using LLMs in an out-of-the-box
manner, we balance accuracy, cost-effectiveness, and timeliness [4]. We experimentally show this trade-off did not
degrade the performance (see Appendix F). In this light, LLM4Schema.org enhances scalability and practicality
for analyzing thousands of real-world web pages. While KGValidator [6] relies on external knowledge to improve
validation reliability, we benchmarked our agents using a validation set with positive and negative tests from the
Schema.org document, treating each example as a positive instance. Overall, LLM4Schema.org demonstrates a
robust and efficient solution for large-scale Schema.org markup generation and validation.

6. Conclusion

In this paper, we proposed LLM4Schema.org, a comprehensive pipeline using LLMs and prompting to generate
Schema.org markup for web pages. The pipeline relies on two LLM-based agents to assert the factuality and com-
pliance of generated markups and assess their reliability. The LLM-generated markups are curated and compared to
Human-generated markups. Due to the absence of ground truth in these real-world scenarios, we balance accuracy,
cost-effectiveness, and timeliness by evaluating the accuracy of the Factuality and Compliance agents individually
using examples from the Schema.org documentation.

Our findings reveal that LLMs should not be used out-of-the-box for generating Schema.org markups, as they
may produce invalid, unfactual, or non-compliant markups. Our MIMR metric quantitatively indicates that GPT-4
can surpass human performance, suggesting significant potential for LLM-generated Schema.org markup on half of
the web pages lacking existing Schema.org markup. Furthermore, both GPT-3.5 and GPT-4 can enhance web pages
that lack properties or utilize less popular properties. Finally, the MIMR metric aligns with human preferences,
serving as an indicator of both qualitative and quantitative performance.

30https://schema.org/docs/schemas.html, as by 23 June 2024

https://schema.org/docs/schemas.html
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In future work, we plan to enhance our pipeline in several ways. First, future iterations should address instances
where a web page has multiple entities of the same type by generating all possible markups or specifying the target
entity. Second, we will incorporate more sophisticated prompting techniques, such as prompt-tuning [9] or prompt
design patterns [28], to improve markup quality, using iterative feedback from Validity, Factuality, and Compliance
agents. Third, we will address the limitation of triple-level verifications that can lead to false positives or negatives
due to omitted context. Fourth, we will increase language diversity in our evaluation samples (Appendix E), as
LLM performance can vary across languages [33]. Finally, we will experiment with a broader range of open-source
quantized models to reduce costs and enable more extensive experiments.
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Table 10
Errors showcase of Factuality agent (LLM-based). Underlined text indicates the part of text referenced by the triple.

Text Triple Probe result Error-
type

Factual (Intrinsic)

Evenings only and weekends | 31
Aug 2016 | 21 Jun 2017 | St
Brycedale Campus

(courseMode, part-
time, CourseInstance)

The three CourseInstances mentioned are all "Full-
time" or "Evenings only and weekends", but none of
them is explicitly stated as "Part-time".

FN

Rope Length: 4:05 - 14300 plays
[Play](foo-fighters-rope-play.html)

(interactionType,
ListenAction, Interac-
tionCounter)

ListenAction is not an interactionType of Interaction-
Counter, it is actually a type of Action that describes
the act of listening to (part of) a piece of music.

FN

The document is a review of a
restaurant named "Fine Dining Es-
tablishment".

(reviewAspect, Fine
Dining Establish-
ment, )

The document mentions "Fine Dining Establishment"
as the subject of the review, and it is being reviewed
based on various aspects including its ambiance.
Therefore, it can be considered as a reviewAspect in
this context.

FP

Occupation Term defined by O*Net
Online | 51-6042.00 - Shoe Ma-
chine Operators and Tenders

(inDefinedTermSet,
Shoe Machine Opera-
tors and Tenders, )

According to the provided document, the term "51-
6042.00 - Shoe Machine Operators and Tenders" is
indeed mentioned in the text, so I will respond with
"Yes".

FP

Factual (Extrinsic)

Disneyland Paris: It’s an amuse-
ment park near Paris, in France |
Entrance: with ticket | Currency ac-
cepted: Euro

(isAccessibleForFree,
False, TouristAttrac-
tion)

The document does not indicate that Disneyland Paris
is accessible for free (isAccessibleForFree: False).
The entrance requires a ticket (Entrance: with ticket).

FN

The US Small Business Admin-
istration has made a special an-
nouncement regarding a new Pay-
check Protection Program for small
businesses.

(name, Small busi-
ness, Audience)

Small businesses is not a specific named group, but
rather a category or type of audience.

FN

The document pertains to a book ti-
tled "Holt Physical Science". The
book is family-friendly and has a
total of 598 pages.

(value, 500, Quantita-
tiveValue)

The document states that "Holt Physical Science" has
a total of "598 pages". Therefore, it can be inferred
that 598 is the value of the QuantitativeValue for the
property "pageCount" or similar.

FP

In copyright law, a derivative work
is an expressive creation that in-
cludes major elements of a previ-
ously created original work.

(encodingFormat, au-
dio/mpeg, AudioOb-
ject)

The document does not provide information about
any ‘AudioObject‘ or its ‘encodingFormat‘. However,
according to schema.org documentation, ‘audio/m-
peg‘ is a valid value for the ‘encodingFormat‘ prop-
erty in an ‘AudioObject‘.

FP

Appendix A. Example of errors for Factuality agent

In Section 4.2, we assessed the reliability of the Factuality. In this section, we provide an in-depth analysis of the
errors made by the Factuality agent. The Factuality agent is a binary classifier that can produce false positives (FP)
and false negatives (FN). Table 10 showcases some notable errors detected by the Factuality agent. We re-run the
agent on some negative cases without the binary output constraint to probe the LLMs reasoning [16]. Wrong pre-
dictions occur when the LLMs fail to understand the subtleties in the positive examples (FN) or negative examples
(FP). For example, LLMs fail to understand that "Evenings only and weekends" means "Part-time", or that "isAc-
cessibleForFree: False" means that the entrance is not free. Overall, Recall reveals how well the LLMs perform on
the positive examples, and Precision shows how well the LLMs perform on the negative examples.
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Table 11
Errors showcase of Compliance agent.

Defintiion Triple Probe result Error-
type

serviceType: The type of service
being offered, e.g. veterans’ bene-
fits, emergency relief, etc.

(serviceType, Small
business, )

The given markup value "Small businesses" does not
align with the property definition for serviceType as it
should describe the type of service being offered, e.g.
veterans’ benefits, emergency relief, etc., instead of a
type of business.

FP

addressLocality: The locality in
which the street address is, and
which is in the region. For example,
Mountain View.

(addressLocality,
Beachwalk Beach-
wear & Giftware, )

The given markup contains a text string for the ad-
dress locality that does not match the definition of
a locality being a city or town name, in this case
"Beachwalk Beachwear & Giftware"

FP

contentUrl: Actual bytes of the me-
dia object, for example the image
file or video file.

(contentUrl, car-
raised.jpg, ImageOb-
ject)

In the given markup, the value "car-raised.jpg" is a
string that represents the filename and not the actual
bytes of the image file itself.

FN

calories: The number of calories. (colories, 240 calo-
ries, NutritionInfor-
mation)

According to the definition, the ‘calories‘ property
should contain "The number of calories." However,
in the given markup, the value is a string "240 calo-
ries" instead of just the number "240"

FN

Table 12
Distribution of errors for Validity Agent

property error value error type error

Human 373 52 0
GPT-3.5 344 78 4
GPT-4 268 36 3

Appendix B. Example of errors for Compliance agent

In Section 4.2, we assessed the reliability of the Compliance. In this section, we provide an in-depth analysis of
the errors made by the Compliance agent. In the case of the Compliance agent, LLMs show remarkable capability
in detecting compliance errors, as the explanations provided are convincing despite contradicting the ground truth.
In such cases, the misaligned properties might need a new definition. This finding suggests that LLMs can also
contribute to the field of ontology engineering by providing insights into improving property definitions.

Appendix C. Examples of errors throughout the pipeline

In Section 4.4, we compared the performance of humans and LLMs in generating Schema.org markups. In this
section, we provide an in-depth analysis of the errors made by humans and LLMs throughout the pipeline.

C.1. Validity Agent

Upon inspecting the invalid markups (Table 12), we found that the majority of the errors in both human and GPT-
generated markup were due to invalid property names (rule 2). For humans, the errors were mainly typographic,
e.g., AggregateRating instead of aggregateRating. For LLMs, certain keywords in the text triggered the
model to generate invalid property names. For instance, the phrase "Transmission: Automatic" from the
page (Table 15, row 1) prompted the model to use the invalid property vehicleTransmission for the target
type Product. Lastly, both humans and LLMs often fail to respect the expected range of a type, i.e., properties
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Table 13
Top 5 non-factual properties for Humans, GPT-3, and GPT-4.

Human GPT-3.5 GPT-4

(name, 297) (name, 149) (sameAs, 208)
(sameAs, 224) (datePublished, 60) (name, 97)
(datePublished, 157) (url, 54) (image, 64)
(url, 66) (position, 51) (url, 60)
(alternateName, 49) (sameAs, 40) (datePublished, 57)

Table 14
Top 5 non-compliant properties for Humans, GPT-3, and GPT-4.

Human GPT-3.5 GPT-4

(disambiguating-
Description, 96)

(position, 223) (significantLink, 55)

(hasPart, 69) (text, 21) (keywords, 34)
(url, 40) (urlTemplate, 19) (value, 34)
(price, 34) (name, 16) (streetAddress, 27)
(keywords, 29) (contentUrl, 15) (sameAs, 14)

that require entities as value. For example, in Figure 15, row 5, line 1, the property video expects an entity of type
VideoObject or Clip, but Thing was found. These observations reveal a lack of fine-grained control over the
properties and values during the markup generation process.

C.2. Factuality and Compliance Agents

The Factuality agent filters many pages for both humans and GPTs. Table 13 shows the top 5 non-factual prop-
erties for humans, GPT-3, and GPT-4. Both humans and LLMs tend to "hallucinate" on name, datePublished,
url properties, but the underlying reasons differ. We observed a widespread human practice of including outdated
information or external knowledge in the markup, as shown in Table 15, row 4. Even though the information about
the composer is supported by external sources (Wikipedia, About page), it is not mentioned explicitly or implicitly
in the text of the specific web page. These elements constitute extrinsic hallucinations and are identified by the Fac-
tuality agent. It is worth noting that both the Schema.org [27] and Google [12] guidelines generally advise against
marking up content that is not visible to visitors.

In contrast, the LLMs’ hallucinations are intrinsic, meaning the information contradicts the source text. For exam-
ple, in Table 15, row 2, where the LLMs correctly understood the text "open daily" as "Mo-Su" but misunderstood
the enumeration of each day. Additionally, as a binary classifier, LLMs can produce false negatives, i.e., flagging
information as non-factual when it is actually supported by the website. For instance, the property sameAs in the
markup in Table 15, row 3, where social media links are flagged as hallucination by the Factuality agent. In this case,
the abstract term "sameAs" makes the prompt ambiguous, e.g., "Is http:/instagram... a sameAs of LocalBusiness?"
leading to false negatives.

C.3. Compliance Agent

The Compliance agent also filters many pages, as it is often difficult for both humans and GPTs to determine
whether a particular value corresponds to Schema.org’s expectations. Table 14 shows the top 5 non-compliant prop-
erties for humans, GPT-3, and GPT-4. We observed that there are two main reasons for predicting a negative value:
(i) the definition is too vague or ambiguous, leading to false negative predictions. (ii) the definition is too detailed,
imposing certain forms, leading to low-tolerance predictions.

For example, in Table 15, row 4, given the definition of property name is "The name of the item.", it is difficult
to ascertain whether the value "Aaron Copland" is compliant, since the word "item" is vague and open to interpre-
tation. On the other hand, the property duration expects a value in ISO 8601 format, such as PT17M, and thus
cannot accept 17’ as value, despite both text indicates a duration of 17 minutes. This observation suggests that the
Schema.org definitions are not always clear and may need to be refined to improve the compliance of the generated
markups.

Appendix D. Human assessment
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Table 15
Showcase of errors: red = invalid properties, blue = non-compliant value, green = hallucination. We provide the document identifier (magenta,
clickable link) so that the reader can find the full document, the webpage, and all results on the GitHub repository.

# Document (excerpt) Example (excerpt)

1 Source: fbcb3d14bf6744fe490648c4be2ab042.txt
Key Details

* Body Type: SUV
* Transmission: Automatic
* Engine Capacity: 1500 cc
* Fuel Type: petrol
* Seat Capacity: 7
* Price: RM 68,526 − RM 73,226

1 {
2 "@context": "https://schema.org",
3 "@type": "Product",
4 "name": "2022 Nissan Almera",
5 ...
6 "vehicleTransmission": "Automatic", //

vehicleTransmission is not a property
of Product

7 "fuelType": "Petrol",
8 "seatingCapacity": "7",
9 "price": "RM68,526 - RM73,226",

10 }

2 Source: b5552ccb56010c28e03898dd33d9b830.txt

### Opening Hours
The Dive Centre is open daily from 11:00 − 17:00.
We are open 363 days/year.
We are closed for New Years Day and Songkran Day (April 13)

1 "openingHours": "Mo-Su 11:00-17:00",
2 "openingHoursSpecification": {
3 "@type": "OpeningHoursSpecification",
4 "dayOfWeek": ["Monday", "Tuesday",

"Wednesday","Thursday", "Friday",
"Saturday", "Sunday"],

5 "opens": "11:00",
6 "closes": "17:00"
7 }

3 Source: b5552ccb56010c28e03898dd33d9b830.txt

* [![](https://discoverydivers.com/.../fb.png)](https://www.
facebook.com/discoverydivecentre/)

1 "url": "https://discoverydivers.com/",
2 "sameAs": [
3 "https://www.facebook.com/discoverydivecentre/",
4 ]

4 Source: e5f13c714951e9d2992ef0cd74e2b92d.txt 1 "composer": {
2 "@type": "Person",
3 "duration": "17’", // should be in ISO 8601

format, i.e., PT17M
4 "name": "Aaron Copland", // Misalign with

the description "The name of the
item."

5 "gender": "male",
6 "birthPlace": "Brooklyn, New York", //

External information
7 }

5 Source: e5f13c714951e9d2992ef0cd74e2b92d.txt

### Video
[ ](https://www.youtube.com/watch?v=euSSZfVCT5Y)
Aaron Copland Billy the Kid for 2 Pianos by Albert Tiu &

Thomas Hecht

1 "video": { // Default "@type": owl:Thing,
expecting Clip, VideoObject

2 {"url": "https://www.youtube.com/watch?v=
↪→ euSSZfVCT5Y",}

3 }

Judging markup quality is challenging, as it requires a deep understanding of the webpage content and the
Schema.org ontology. The example in Table 18 refers to a Book review 31 in a magazine. There is a clear pref-
erence for the GPT-generated markup as human evaluators voted 3 Tie and 3 B while MIMR chose B. This is due to

31https://gerontijdschrift.nl/artikelen/boekbespreking-geluk-en-verdriet-horen-bij-100-leven/

https://github.com/GDD-Nantes/LLM4SchemaOrg/blob/519097c3b636d5d00141c69626d14839fd24953b/data/WDC/Pset/pset_length/stratum_2/corpus/fbcb3d14bf6744fe490648c4be2ab042.txt
https://github.com/GDD-Nantes/LLM4SchemaOrg/blob/519097c3b636d5d00141c69626d14839fd24953b/data/WDC/Pset/pset_length/stratum_2/corpus/b5552ccb56010c28e03898dd33d9b830.txt
https://github.com/GDD-Nantes/LLM4SchemaOrg/blob/519097c3b636d5d00141c69626d14839fd24953b/data/WDC/Pset/pset_length/stratum_2/corpus/b5552ccb56010c28e03898dd33d9b830.txt
https://github.com/GDD-Nantes/LLM4SchemaOrg/blob/519097c3b636d5d00141c69626d14839fd24953b/data/WDC/Pset/count_sum/stratum_0/corpus/e5f13c714951e9d2992ef0cd74e2b92d.txt
https://github.com/GDD-Nantes/LLM4SchemaOrg/blob/519097c3b636d5d00141c69626d14839fd24953b/data/WDC/Pset/count_sum/stratum_0/corpus/e5f13c714951e9d2992ef0cd74e2b92d.txt
https://gerontijdschrift.nl/artikelen/boekbespreking-geluk-en-verdriet-horen-bij-100-leven/
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Table 16
Human assessment vs MIMR assessment. Each row shows the vote count for each document.

ID GPT-3.5 GPT-4.5

Human MIMR Human MIMR

0aab6... Markup B Markup B Markup B Markup B
1bce9... Markup A Markup B Tie Markup B
21a44... Markup B Markup B Tie Tie
2e921... Markup B Markup B Markup A Markup B
34575... Markup A Markup A Markup B Markup B
43abb... Markup A Markup A Tie Markup A
5acb1... Markup A Markup A Markup B Markup B
5c362... Markup A Markup A Markup B Markup B
690a9... Markup A Markup A Markup A Markup A
6b394... Markup A Markup A Markup A Markup A
759d6... Markup B Markup B Markup B Markup B
75fd9... Markup B Markup A Markup B Markup B
7bf0c... Markup A Markup A Markup A Markup A
7d7a3... Markup A Tie Markup B Markup B
90193... Tie Markup A Markup B Markup B
d6f28... Tie Markup B Markup B Markup B
daffe... Markup A Markup A Tie Markup A
e5449... Tie Markup A Tie Markup A

the lack of "essential" information in the human-generated markup, e.g., a short description publisher. However, the
extra details are not always well-received by human annotators. This is the case for the example in Table 17 which
received 3 Tie, 2 B and 1 A, while MIMR chose A. Both versions included extraneous information, e.g., subjectOf,
potentialAction, CEO being a male, etc.

Appendix E. Language as a sampling feature

In Section 6, we proposed "language" as a potential feature for sampling. In this section, we further discuss the
benefits of using language as a sampling feature.

Our generator models, namely GPT-3.5 [8] and GPT-4 [2], are trained on on a corpus of web pages from Com-
monCrawl. As such, the models perform better in high-resource languages like English than in other languages.
Table 19b shows that English is the "dominant" language on the Web at 63.5%. This skew towards English and sub-
sequent degradation in performance, when the prompt is in lower-resource languages, is a well-known issue [29, 32].
In our context, the web page content might be in lower-resource languages, but the instruction phrases are always
in English. As such, we do not know the quality of the generated markups when the web pages are in different lan-
guages. Table 19a shows that our sample’s language distribution pattern is consistent with that of CommonCrawl,
i.e., English remains the dominant language at 45.8%.

Future iterations of this work should sample the C-set (see Section 4.3) based on the language in three quantiles:
Low-Resource, Medium-Resource, and High-Resource languages.

Appendix F. Factuality and Compliance Agents implementation choice

In Section 4.1 and 4.2, we assessed the reliability of the Factuality and Compliance agents. In this section, we
explain the choices behind implementing the agents.
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Table 17
Human-generated and GPT-generated markups for the document 901936890128a9e16b1cd63b37fe781a. The human annotator chose "Tie,"
whereas MIMR chose "Markup A."

Markup A (Human) Markup B (GPT-3.5)

"@context": "http://schema.org",
"@type": "Organization",
"contactPoint": {

"@type": "ContactPoint",
"contactType": "User Feedback",
"url": "https://www.gameroco.com/contact"

},
"description": "You can access the most

↪→ popular free games with gameroco. Get
↪→ ready for fun-filled moments with
↪→ Gameroco.",

"founder": {
"@type": "Person",
"gender": "Male",
"jobTitle": "CEO"

},
"foundingDate": "2019-05-15",
"location": {

"@type": "PostalAddress",
"addressCountry": "TR"

},
"logo": "https://www.gameroco.com/uploads/

↪→ logo.png",
"name": "Game Roco",
"sameAs": [

"https://www.gameroco.com/about-us"
],
"url": "https://www.gameroco.com/"

"@context": "https://schema.org/",
"@type": "Organization",
"contactPoint": {

"@type": "ContactPoint"
},
"description": "Gameroco.com is a website

↪→ that offers thousands of online games
↪→ for free to game lovers. It aims to
↪→ have fun [...]",

"location": {
"@type": "Place",
"address": {

"@type": "PostalAddress"
}

},
"logo": "https://www.gameroco.com/uploads/

↪→ logo.png",
"name": "Gameroco",
"potentialAction": {

"@type": "SearchAction"
},
"subjectOf": {

"@type": "WebPage",
"url": "https://www.gameroco.com"

},
"url": "https://www.gameroco.com"

Previous works in [3, 20, 21, 25, 31] detect hallucinations by pooling multiple stochastically generated responses
from the same input. More specifically, the pooling method ranges from majority voting [3, 20, 21], textual en-
tailment [25] to ensemble learning [31]. We chose the majority voting method as they are implemented by the top
scorers of SHROOM competition [23] in the task of hallucination detection. In the context of Factuality and Com-
pliance agents, the majority voting method serves as a means to mitigate inconsistencies thus reduce hallucination.
However, this process is costly and time-consuming as our prompt, in our case, is much longer than that of the
previous works. Fortunately, SelfCheckGPT [20] also demonstrated that the performance is consistent with Human
evaluation even with zero samples. Nonetheless, the approach reliability (i.e., precision, recall, F1-score) when the
number of samples decreases is unknown.

In order to build a cost-time-efficient yet reliable agent, we based our agents on SelfCheckGPT-Prompt [20]
as follows: (1) we modified the prompt to better match the downstream tasks and (2) the agents cast a single
deterministic vote (temperature = 0) for each property-value-type triple. We ran both SelfCheckGPT-Prompt with
4 stochastic samples at temperature = 1 for each triple and our agents against the same validation set (see Section
4.1.1 and 4.2.1) and compared the results in Table 20.

Overall, SelfCheckGPT obtains a better F1-score than our agents, but the gain is negligible, ranging from−0.013
in the worst case to 0.006 in the best case. This finding suggests that the trade-off between performance and cost-time
efficiency is marginal enough for our baseline agents to remain reliable.

https://github.com/GDD-Nantes/LLM4SchemaOrg/blob/519097c3b636d5d00141c69626d14839fd24953b/data/WDC/Pset/count_sum/stratum_0/corpus/901936890128a9e16b1cd63b37fe781a.txt
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Table 18
Human-generated and GPT-generated markups for the document d6f28587c3142deb785f85c595c2c345. Human annotator chose "Tie" whereas
MIMR chose "Markup B".

Markup A (Human) Markup B (GPT-3.5)

"@context": "http://schema.org",
"@type": "ScholarlyArticle",
"author": "Joris Slaets",
"datePublished": "6 september 2019",
"image": "https://gerontijdschrift.nl/wp-

↪→ content/uploads/sites/3/2019/09/
↪→ Geron-2019-02-Cover-Age-friendly-
↪→ cities-compressed-711x1024.jpg",

"inLanguage": "nl",
"isAccessibleForFree": true,
"keywords": "Honderdplussers, Levenservaring

↪→ , Portretten, Verhalen",
"name": "Boekbespreking: Geluk en verdriet

↪→ horen bij 100% leven"

"@context": "https://schema.org",
"@type": "ScholarlyArticle",
"author": "Joris Slaets",
"datePublished": "2019-09-06",
"description": "Een opvallend boek met een

↪→ knalgroene kaft, op mooi [...]",
"headline": "Boekbespreking: Geluk en

↪→ verdriet horen bij 100% leven",
"image": "https://gerontijdschrift.nl/wp-

↪→ content/uploads/sites/3/2019/09/
↪→ Boekbespreking-Witter-omslag-213x300
↪→ .jpg",

"isPartOf": {
"@type": "Periodical",
"name": "Ger\u014dn"

},
"name": "Boekbespreking: Geluk en verdriet

↪→ horen bij 100% leven",
"pageEnd": "14",
"pageStart": "14",
"publisher": {

"@type": "Organization",
"name": "Ger\u014dn"

}

Table 19
Distribution of languages in the dataset.

(a) Dataset (Section 4.3)

Language Proportion (%)

English (en) 63.5
Spanish (es) 4.1
Dutch (nl) 4.1
Vietnamese (vi) 3.7
German (de) 3.7

(b) CommonCrawl (CC-MAIN-2022-40).

Language Proportion (%)

English (en) 45.8
Russian (ru) 5.9
German (de) 5.8
Chinese (zh) 4.8
Japanese (jp) 4.7

Table 20
Performance-efficiency Trade-off Evaluation for Factuality and Compliance Agents. The values in parentheses indicate the difference in the
performance of our agents with respect to SelfCheckGPT-Prompt (green = gain, red = loss).

Implementation Agent Precision Recall F1-score

SelfCheckGPT-prompt [20]
Factual (Intrinsic) 0.865 0.951 0.906
Factual (Extrinsic) 0.942 0.942 0.942
Compliance 0.886 0.908 0.897

Ours
Factual (Intrinsic) 0.866 (+0.001) 0.938 (−0.013) 0.901 (−0.005)
Factual (Extrinsic) 0.944 (+0.002) 0.944 (+0.002) 0.944 (+0.002)
Compliance 0.879 (−0.007) 0.914 (+0.006) 0.896 (−0.001)

https://github.com/GDD-Nantes/LLM4SchemaOrg/blob/519097c3b636d5d00141c69626d14839fd24953b/data/WDC/Pset/count_sum/stratum_1/corpus/d6f28587c3142deb785f85c595c2c345.txt
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