
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Possible Hyperworlds:
representing Kripke models in RDF
Christopher Leturc a,*, Fabien Gandon b and Maxime Lefrançois c

a MDSC, Université Côte d’Azur, CNRS, I3S, France
E-mail: christopher.leturc@univ-cotedazur.fr
b Wimmics, Inria, Université Côte d’Azur, CNRS, I3S, France
E-mail: fabien.gandon@inria.fr
c Mines Saint-Étienne, Univ. Clermont Auvergne, INP Clermont Auvergne, CNRS, UMR 6158 LIMOS,
F-42023, Saint-Étienne, France
E-mail: maxime.lefrancois@emse.fr

Abstract. Modal logic extends propositional logic by adding modal operators, and enables us to reason with concepts
such as necessity, possibility, knowledge, belief, obligation, or consequences of actions. The most common way to
interpret modal logic formulas is to apply the possible worlds semantics and to formally represent it with a Kripke
model. Kripke models consist of a set of possible worlds, accessibility relations between possible worlds, and a
valuation function that assigns to propositional atoms a truth value relative to those worlds. Existing work explored
the connection between modal logic and Description Logics, including Modal Description Logics, and consider the
inclusion of a Kripke model in their semantics. We are interested in considering a novel perspective, where we
aim to represent in RDF a Kripke model, formulas from a modal logic language, and in which possible worlds
such formulas are verified. Such a representation could have several applications: 1. contributing to a standard
exchange format for modal logic applications, including reasoners; 2. facilitating the Open Science initiative in
the modal logic research community; 3. supporting the representation and management of uncertainty or other
modalities; and 4. facilitating interoperability between heterogeneous systems. As a starting point, our intuition
is that a set of triples could be translated to a formula, and one could explicit in what possible worlds a formula
is verified using metadata about this set of triples. Following that intuition, the main contribution of this article
is to provide an RDF representation of normal Kripke models, applying the linked data principles and standards,
focusing on identifying possible worlds and expressing the (N+1)-ary accessibility relations between them. We call
possible hyperworld the result of this hypermedia approach to representing possible worlds. We discuss the different
modeling alternatives for linking sets of triples to possible worlds, and for representing accessibility relations. We
motivate one modeling choice, and compile our design rationale in a formal vocabulary for describing Kripke models:
the Possible Worlds and Kripke Structures Ontology (PWKSO). Adopting a simple and generic usage pattern, we
illustrate PWKSO with examples from epistemic multi-modal logic, dyadic deontic logic, and the dynamic logic
of mental attitudes and joint actions (DL-MA). Perspectives and future work include 1. defining a translation,
in the context of an RDF dataset, of sets of triples to modal logic formulas; 2. querying, instantiating, reasoning
with possible hyperworlds; 3. nesting possible worlds or Kripke structures as a way to model Dynamic Epistemic
Logics (DEL) or Propositional Dynamic Logics (PDL); 4. potential applications that leverage existing modal logic
formalisms for example to merge knowledge graphs, represent the knowledge or beliefs of agents, represent the
effects of actions or norms, or develop model checking applications.

Keywords: Modal Logic, Possible Worlds Semantics, Kripke Models, Ontology, RDF annotation, N-ary relations

*Corresponding author. E-mail: christopher.leturc@univ-cotedazur.fr.

1570-0844/$35.00 © 0 – IOS Press. All rights reserved.

mailto:christopher.leturc@univ-cotedazur.fr
mailto:fabien.gandon@inria.fr
mailto:maxime.lefrancois@emse.fr
mailto:christopher.leturc@univ-cotedazur.fr

2 C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1. Introduction

Modal logic is a branch of philosophical logic that extends propositional logic and adds modal operators,
such as for describing necessity, possibility, knowledge, belief, consequences of actions, or obligations [1].
The most widely applied semantics for interpreting modal logic formulas is the possible world semantics [2].
A possible world is an abstract representation of a state in which the real world could be. For instance,
if we do not know if a statement S is true, we can represent that situation with two possible worlds: one
world where S is true and another where S is false. To represent the fact that we do not know about S, we
declare a binary relation between the two possible worlds representing the fact that we cannot distinguish
between these two possible worlds. Such a combination of possible worlds and relations between them is
called a Kripke frame [2]. A Kripke frame combined with a valuation function that assigns a truth value
to propositional atoms is called a Kripke model.

Kripke frames have been widely used in areas such as formal verification, artificial intelligence, and
philosophy, where they provide a powerful tool for reasoning about uncertainty, knowledge, and belief. They
can be used to model a wide range of scenarios, from the behavior of complex systems to the interpretation
of natural language statements. These models can be used, e.g., to reason about the consequences of actions,
such as determining what effects an action will have on the possible worlds that are accessible from a given
starting point. Kripke models are used to formalize many different concepts in logic and computer science,
such as modal logic, epistemic logic i.e., reasoning about knowledge of agents [3], temporal logic, and
dynamic logics, i.e., reasoning about actions and their consequences [4], or deontic logics, i.e., reasoning
about norms and laws [5]. They are also useful for reasoning about knowledge and beliefs in multi-agent
systems and, in this context, the accessibility relation R they provide is used to capture what each agent
knows or believes about the world.

One of the main limitations of modal logic is that the models that are used to interpret formulas must
be given a priori. This requires a lot of effort and expertise to create those models, and it can be difficult
to ensure that the models are consistent, or adequately represent what was aimed. Additionally, because
models must be given a priori, they are not always able to capture the full range of possibilities that might
be relevant to a given problem, which can limit the applicability of modal logic to certain situations. In
this context, the Semantic Web could provide an interoperable and standard way to capture and share
Kripke frames, facilitating their reuse across different applications and domains. This has the potential to
contribute to a standard exchange format for modal logic applications, including modal logic reasoners,
and to facilitate the Open Science initiative in the modal logic research community.

In recent years, there has been a growing interest in integrating modal operators into the Semantic
Web [6–9]. Let us consider the case of inconsistency that may arise when merging multiple knowledge
graphs. In that case, possible worlds can be used to separate two pieces of contradictory information
into two distinct possible worlds. This approach not only helps to prevent inconsistencies when merging
knowledge but also opens up new avenues for representing knowledge of agents, beliefs, norms, etc. on the
Semantic Web. In a context where more and more systems are exposed on the Web and use or combine
different AI techniques, the possible world semantics can support the representation and management of
uncertainty or other modalities, and facilitate interoperability between heterogeneous systems.

The main contribution of this article is to propose an RDF representation of Kripke frames following the
linked data principles and standards. We call possible hyperworld the result of this hypermedia approach
to representing possible world. We show that one can use several alternatives to represent possible worlds
and accessibility relations between them, but we recommend a specific pattern and we provide the formal
vocabulary for describing such Kripke frames. As a summary, our contribution aims at enabling different
families of motivating scenarios:

– contribute to a standard exchange format for modal logic applications, including reasoners;
– facilitate the Open Science initiative in the modal logic research community;
– support the representation and management of uncertainty or other modalities;
– facilitate interoperability between heterogeneous systems.

C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

The rest of this article is organised as follows. Section 2 presents a running example for the whole
article, taken in the third family of motivating scenarios. Section 3 presents the relevant state of the
art : we introduce the Kripke models, discuss existing approaches that introduce modal operators in the
Semantic Web, and present different approaches for RDF metadata representation. Section 4 evaluates
the alternative RDF metadata representations for possible worlds as linked data and Section 5 does the
same for representing accessibility relations. Section 6 compiles the main contributions of the paper: the
resulting design pattern and ontology, which we refer to as the Possible Worlds and Kripke Structures
Ontology (PWKSO). Section 7 presents a discussion of the proposal and suggests direct future work,
possible extensions, and applications. Section 8 concludes the article.

2. Running example

In this section we introduce a running example for this article, illustrated in Figure 2. This example is
related to the management of uncertainty, and more specifically to source reconciliation, and it involves
two agents, Bob and Alice. Bob asks Alice about the list of current presidents. Alice has access to two
huge databases (ex. DBpedia and Wikidata) to provide Bob with an up-to-date answer. However, Alice
encounters a problem: in DBpedia, it is said that {<x> ex:isPresidentOf <France>} (triple t1), while in
Wikidata, it is said that {<x> ex:isPresidentOf <England>} (triple t2). If we assume that ex:isPresidentOf
is functional and that <France> and <England> are different individuals, then this leads to a contradiction.
To resolve this issue, Alice adopts an approach based on the possible world semantics by separating the
two inconsistent pieces of information into two distinct worlds: w1 containing t1, and w2 containing t2.
This way, Alice can communicate her beliefs to Bob without making any decisions or assumptions about
which triple should be taken as true.

DBpedia

Wikidata

Alice Bob

1. query

2.a. query

2.b. query

3.a. answer

3.b. answer

4. answer

Fig. 1. Running example: a simple yet representative data integration situation.

This situation could also lead to a cooperation between Alice and Bob. Bob may inform Alice that there
is no president in England, and she would therefore lean towards w1. This example illustrates the interest
of being able to represent and exchange knowledge and beliefs accurately. If Alice had chosen to remove
triple {<x> ex:isPresidentOf <France>}, then she would have spread false information to Bob. Instead, by
transferring both possible worlds, Alice defers to Bob the trustworthiness assessment of the information
she transmits. Bob may confront the facts with other knowledge using some reasoning means to identify
that world w2 is impossible, and remove it from the information he received. Bob may further solicit other
agents, potentially more knowledgeable or having better reasoning capabilities.

Therefore, to manage possibly contradicting information and allow differed processing, our proposed
approach is to represent both possibilities using a Kripke model. Semantic Web technologies offers ways
to identify, represent and exchange any volume of knowledge on the Web, and is therefore a good enabler
for this scenario. More generally, we believe our contribution in this article will support a wide range of

4 C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

scenarios from the different families mentioned in Section 1. In the next sections we will survey existing
representation alternatives, and evaluate how appropriate they are to represent Kripke models.

3. State of the art

In this section, we first recall the fundamentals of the Kripke formalism to represent possible worlds.
Then, we survey related approaches from the Semantic Web literature that considered modal logic and
which, so far, mostly focused on Modal Description Logics. Finally, to prepare for possible worlds represen-
tation, we describe and compare five alternatives for annotating data in RDF: RDF reification, singleton
properties, named graphs, RDF-star, and N3.

3.1. Kripke models

Kripke models [2] are used in modal logic to represent possible worlds and the relationships between
them. As illustrated in Figure 2, each possible world of a Kripke model is represented by a node, and the
relationships between worlds are represented by directed edges. These relationships represent accessibility
relations (which worlds are accessible from other worlds), which can represent a variety of different concepts
including temporal relations (which worlds come before or after another world), or epistemic relations
(which worlds have a similar state of knowledge than in another world).

Formally, given a set of propositional atoms P, a basic Kripke model [2] is a tuple M = (W,R,V) where:

– W is a non-empty set of possible worlds,
– R ⊆ W × W is the accessibility relation on W,
– V : P → 2W is a valuation function, i.e., V(p) is the set of possible worlds where p is true.

The pair (W,R) is called a Kripke frame. (w, v) ∈ R or wRv indicates that that world v is accessible
from world w. Some work define R as a function from W to W, giving the equally common notation R(w)
to indicate the set of worlds accessible from w (also written: accessible worlds from w). The interpretation
of the accessibility relation R depends on the application. For example in epistemic logic it is usually an
equivalence relation noted K over the set of worlds, and is also called an indistinguishability relation.

The basic modal logic language L is generated by the following grammar given in Backus-Naur Form:

ϕ ::= ⊥ | p | ¬ϕ | ϕ1 ∧ ϕ2 | □ϕ

□ is a modal operator, and there are various interpretations of formula □ϕ depending on the application.
For example it may mean “it is necessarily true that ϕ holds” in epistemic modal logic, or “it is believed
that ϕ holds” in doxastic modal logic. The dual modality represented by ♢ refers to the possibility and is
usually syntactically defined as: ¬♢¬ϕ ≡ □ϕ.

A modal logic language may define more than one modal operators such as Ki to represent that “agent
i knows that ϕ is true” in epistemic multi-modal logic, or Bi to represent that “agent i believes that ϕ is
true” in doxastic multi-modal logic. The corresponding Kripke frame holds more than one relations, such
as (W, {Ki}i∈I) for the epistemic multi-modal Kripke frame, where I is the set of agents.

A Kripke model M = (W,R,V) is used to encode the truth value of a modal formula ϕ ∈ L in a possible
world w ∈ W, noted M, w |= ϕ if ϕ is true (or verified) in world w, or M, w ̸|= ϕ if ϕ is false in world w.
For all w ∈ W and given any two formulas ϕ, ψ ∈ L and any propositional atom p ∈ P, M is such that :

1. M, w ̸|= ⊥
2. M, w |= p iff w ∈ V(p)
3. M, w |= ¬ϕ iff M, w ̸|= ϕ
4. M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
5. M, w |= □ϕ iff ∀v ∈ W, if wRv then M, v |= ϕ, i.e., ϕ is true in all accessible worlds from w

C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Modality ♢ corresponds to an existential definition: M, w |= ♢ϕ iff ∃v ∈ W s.t. wRv and M, v |= ϕ,
i.e., there exists some world v accessible from w where ϕ is true.

We say that ϕ is valid in M, noted M |= ϕ, if, and only if, it is verified in all possible worlds, i.e.,
∀w ∈ W, M, w |= ϕ.

Example 3.1. Let us consider the agents of our scenario from Section 2. Let t1 and t2 be two propositional
atoms such that t1 :={<x> ex:isPresidentOf <France>} and t2 :={<x> ex:isPresidentOf <England>}. Let
W = {w1, w2} be the set of possible worlds for Alice, and V be a valuation function such that V(t1) = {w1}
and V(t2) = {w2}. In this situation, w1 represents {<x> ex:isPresidentOf <France>}, i.e., t1 is true at
w1, and t2 is false, i.e., M, w1 |= t1, and M, w1 |= ¬t2. Similarly, w2 represents {<x> ex:isPresidentOf
<England>}. Figure 2 illustrates the accessibility relation KAlice that models the point of view of Alice.

w2w1

Fig. 2. The epistemic Kripke structure modeling the state of knowledge of Alice.

In Figure 2, both worlds w1 and w2 are accessible from themselves and from each other, and are there-
fore indistinguishable for Alice. This situation is formally described by the fact formulas ¬□t1 (it is not
necessarily true that t1 holds) and ¬□t2 (it is not necessarily true that t2 holds) are valid in M. Let us
detail the first case. t1 is false in w2 and w2 is accessible from w1, so there exists a world v ∈ KAlice(w1)
s.t. M, v |= ¬t1. Therefore, M, w1 |= ¬□t1. Actually, w2 is also accessible from w2, so M, w2 |= ¬□t1.
Therefore, M |= ¬□t1. The same holds for t2 (t2 is false in w1, and w1 is accessible from w1 and w2).

In Example 3.1, the knowledge of Alice is expressed using a unary modal operator. The definition
of basic Kripke structure has been generalized to N-ary modal operators. For example dyadic deontic
logic [10] would be useful in our example to express: “when t1, it ought to be ¬t2” and “when t2, it ought
to be ¬t1”, i.e., someone cannot be the president of both countries. This would be described with the
binary dyadic deontic modal operator O and two formulas: O(t1,¬t2) and O(t2,¬t1). The corresponding
Kripke frame uses a ternary relation T ⊆ W3. By abuse of notation, we either write (v, w, z) ∈ T , or
(w, z) ∈ T (v). Dyadic deontic logic imposes that for all possible worlds z, we have M, z |= O(ϕ, ψ) if and
only if ∀(x, y) ∈ T (z), if M, x |= ϕ then M, y |= ψ.

Example 3.2. The Kripke frame representing the fact that someone cannot be the president of both France
and England uses P and W from Example 3.1, and defines a ternary relation T such that T (w1) = T (w2) =
{(w1, w1), (w2, w2)}. With this frame, we can prove that the formula O(t1,¬t2) (1) and O(t2,¬t1) (2) are
valid in M . Let us sketch the demonstration for case (1). We need to prove that M, w1 |= O(t1,¬t2) (1.a),
and M, w2 |= O(t1,¬t2) (1.b). To prove (1.a), we first consider (w1, w1) ∈ T (w1) (1.a.a). M, w1 |= t1
and M, w1 |= ¬t2. Then we consider (w2, w2) ∈ T (w1) (1.a.b) M, w2 ̸|= t1. Therefore it is true that
∀(x, y) ∈ T (w1), if M, x |= t1 then M, y |= ¬t2, which proves (1.a). The rest of the demonstration follows.

Extending to operators with higher arity may also be interesting in practice, for example to consider
exceptions to a context in deontic applications. That is why Blackburn et. al. introduced a general definition
for normal modal logics with N-ary modal operators [2]. A normal Kripke model is a tuple M = (W,R,V)
and generalizes the notion of basic Kripke model as follows:

– W is a non-empty set of possible worlds,
– R ⊆ WN+1 is a (N + 1)-ary accessibility relation on W, with N ⩾ 0.
– V : P → 2W is a valuation function.

6 C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(w, v1, . . . , vN) ∈ R or wR(v1, . . . , vN) denotes an (N + 1)-ary edge in R. Some work define R as a
function from W to WN , giving the equally common notation R(w) to indicate the set of (N + 1)-ary
edges having w as the first argument.

The normal modal logic language L is generated by the following grammar given in Backus-Naur Form:

ϕ ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | ∇(ϕ1, . . . , ϕN)

Where ∇ is a N -ary modal operator that generalizes □. Point 5 in the caracterization of M above is
generalized as follows. Given w ∈ W and given formulas ϕ1, . . . , ϕN ∈ L:

5’. M, w |= ∇(ϕ1, . . . , ϕN) iff ∀(v1, . . . , vN) ∈ WN , if wR(v1, . . . , vN) then ∃k ∈ [[1, N]], M, vk |= ϕk

The dual N -ary modal operator △ is defined syntactically by ∇(ϕ1, . . . , ϕN) := ¬△(¬ϕ1, . . . ,¬ϕN).
It thus generalizes the operator ♢ and satisfies the following definition:

M, w |= △(ϕ1, . . . , ϕN) iff ∃(v1, . . . , vN) ∈ WN s.t. wR(v1, . . . , vN) and ∀k ∈ [[1, N]], M, vk |= ϕk

Let us notice that, as for basic modal logic, one may define normal modal logic formalisms with more
than one modal operator, potentially with different arities, and intertwine their axiomatization [2]. Also,
some formalisms define unary relations R which then correspond to nullary modal operators. The Dynamic
Logic of Mental attitudes and joint Actions (DL-MA) [11, 12] is an example where a set of nullary modal
operators represent actions. In this paper, we associate the following semantics: ∀w ∈ W, M, w |= △1 iff
w ∈ △1. This may be used in our example to describe the worlds where we have “One proclaims oneself
President of France”. Here, △1 denotes both the modal operator and the Kripke relation.

In Section 4 onward, we will specifically consider how to represent normal Kripke models in RDF.

3.2. Related work on modal logic and the semantic web, and positioning

Description Logics (DLs) serve as a foundational framework for representing and reasoning about knowl-
edge, providing the formal basis for the Web Ontology Language (OWL) [13]. While our article introduces
a novel perspective, it’s worth presenting and positioning existing work that explored the connection
between modal logic and DLs, including Modal Description Logics.

Very early on, it has been observed that there is a strong connection between modal logic and DLs
when mapping roles to accessibility relations. Using a transformation function f from a ALC concept to a
K-formula such that f(∀R.C) = KRf(C), Schild showed that the ALC Description logic can be considered
as notational variant of the multi-modal logic K, and that the satisfiability of an ALC-concept aligns with
the satisfiability of the corresponding K-formula [14]. This realization highlights the close relationship
between the two formalisms and underlines the significance of roles in capturing notions of accessibility
and connectivity within the logical framework.

Baader and Laux introduced modal operators explicitly in the description logic ALCM to extend expres-
siveness and provide a formalism for reasoning about concepts and roles in a more fine-grained manner [9].
This first combination of DLs with modal logics was followed by various modal extensions of DLs, which all
provide a richer language for knowledge representation and reasoning. For instance, [8] proposes modal-
ized DLs by modilizing roles. Modalized DLs extend the standard DLs by adding modal operators to
the language. The modal operators provide a way to reason about concepts and roles in terms of their
modal properties, such as possibility and necessity. Modalized DLs have been applied to the representa-
tion of knowledge of agents in multi-agent systems [15, 16], to reason about actions and changes [17], and
temporality [18].

The use of hybrid logics is another way of introducing DLs into modal logics [19]. Hybrid logics extend
modal logics by allowing for direct reference to individuals in the model, rather than only referring to

C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

them indirectly through modal operators. Nominals in hybrid logic enable assertional ABox reasoning, in
addition to standard terminological TBox reasoning, which closely links hybrid logic and description logic.
This approach allows for a more direct way to reason about individuals, and has been applied to DLs to
provide a more fine-grained way to express and reason about concepts and roles.

Positioning. As a summary, previous existing works focus on Modal DLs and consider in their semantics
a Kripke frame. However, we claim that our running example does not need such expressive extension to
DLs, and that RDF would be sufficient to represent the Kripke structures we require. Furthermore, some
use cases from the families of motivating scenarios listed in Section 1 demand an explicit representation of
a Kripke frame. In this article, we are therefore interested in considering a different perspective where we
start from RDF and its minimal system [20] to represent Kripke frames, focusing on identifying possible
worlds and expressing the relations between them. To the best of our knowledge, this perspective is yet
unexplored.

Our intuition is that, in the context of an RDF dataset, a Kripke structure (W,R), formulas from a
modal logic language L, and in which possible worlds such formulas are verified, could be represented all
at once. A set of triples g ∈ G could be translated to a formula f(g) ∈ L using a function f , and one could
explicit in what possible worlds a formula f(g) is verified using metadata about this set of triples g. A
propositional atom p ∈ P could be a set of RDF triples. The valuation function V of a Kripke model, i.e.,
the truth of p w.r.t. the possible worlds, would then be represented by RDF metadata that would link sets
of triples to possible worlds. All in all, one should therefore be able to represent and exchange a model
M = (W,R,V) and formulas from L, and reason about them.

As a first increment in this new direction, in this article we focus on a simple version of f where triples
map to propositional atoms. This article thus only provides an RDF representation of Kripke models, but
it is sufficient to support many use cases from the families of motivating scenarios listed in Section 1. In
the next section, we recall a number of alternatives found in the literature to support RDF statements
about RDF statements. Then in Section 4 and 5 we propose to evaluate and select one representation
among the possible alternatives, and summarize our choices in Section 6. We open the discussion on the
desired characteristics of a general function f in Section 7.1.

3.3. RDF about RDF: approaches for RDF metadata representation

To the best of our knowledge there are typically five ways to represent RDF metadata: the native
RDF 1.0 reification syntax, the singleton property non standard extension, the RDF 1.1 named graph
standard extension, the historical non standard N3 quoted graphs, and the RDF* quoted graphs currently
under consideration for standardization as part of RDF 1.2 [21]. In addition, we also include the N-ary
relation design patterns to go beyond the binary model of relations in RDF in particular to qualify a
instance of a relation or its value. We review these existing options here as an input to Sections 4 and 5
where we consider means to represent possible worlds and (N+1)-ary accessibility relations in RDF.

RDF 1.0 reification syntax. Reification is an historical standard technique in the Semantic Web that
allows to create metadata about a triple by turning it into a resource [21, 22]. One of the pros of using
reification is that it can be used in native RDF since its version 1.0. However, one of the disadvantages of
this technique is that it turns one triple into four triples: the rdf:Statement instance declaration, and three
triples linking the statement to its subject, predicate, and object. This can be problematic depending on
the storage used. Additionally, there is no direct link between the reified triple and the original triple, as
the former is represented as four separate triples. Finally, different individual rdf:Statement instances may
have the same values for their rdf:predicate, rdf:subject and rdf:object properties, yet RDF doesn’t
prescribe these instances to be equivalent.

N-ary relation design patterns. The N-ary relation design patterns [23] were introduced in a group note
produced by the W3C Semantic Web Best Practices and Deployment Working Group for when we may
want to represent properties of a relation beyond the imposed RDF binary relation linking two individuals

8 C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

or an individual and a value. These patterns can be used when the relation needs to be among multiple
individuals or when there is a need to identify and qualify a relation instance (e.g., uncertainty, units,
weight, timestamp, etc.).

The first proposed pattern consists in introducing a new class for a relation. This pattern covers three
use cases: 1. additional attributes describing a relation, where there may be multiple instances of the
same relation linking different individuals, and one participant holds and links to the relation instance;
2. different aspects of the same relation, where different instances of the same relation with the same
arguments are equivalent, and are recommended to be represented as blank nodes; 3. N-ary relation with
no distinguished participant, where the relation instance only has outgoing links. The second pattern is to
use lists for arguments in a relation, defining a dedicated vocabulary for representing linked lists.

Compared to RDF reification, N-ary relations add additional arguments in the relation and do not
usually characterize the statement but rather provide additional information about the relation instance
itself. These patterns are purely RDF representations, but there are a few reasons why one might choose
not to use the N-ary relation patterns. They are essentially the same as for the RDF reification (e.g.,
increased data volume, more complexity, etc.).

Singleton property non standard extension. The singleton property approach [24] is a non standard tech-
nique to represent reified statements. It essentially creates a dedicated sub-property for every triple that
needs to be annotated. This method has the advantage of being usable in any version of RDF. However,
it requires a dedicated vocabulary and a very specific implementation that is not found in any common or
commercial implementation. Also, it generates a high number of unique property types, which causes the
schema to grow proportionally to the number of reified triples.

RDF 1.1 named graphs. Since RDF 1.1, named graphs [25, 26] provide an elegant alternative to reification
and singleton properties. They provide a way to give a specific name (URI) to an RDF graph, making
it easier to modularize, reference, annotate and use sets of triples. Using named graphs can also help
to manage different sources of information and in general provide and use metadata for provenance,
traceability, etc. Named graphs do not have any standard semantics attached to them which makes them
very versatile but also used for very different purposes and with very different ad-hoc semantics [27].

RDF*, RDF-star and RDF 1.2. RDF* provides explicitly integrates reification as part of RDF, providing
users with means to write more complex and expressive knowledge graphs. The abstract syntax of RDF* is
defined as an extension of that of RDF, by adding quoted triples to express statements about statements,
i.e., reification. Thus, RDF* is a technique that offers simplicity in expressing statement-level metadata.
At the time of writing this article, RDF* (renamed to RDF-star) [28, 29] is not yet a standard but has
entered the W3C process for it and could be part of RDF 1.2. However, it currently requires specific RDF
engines to be used, which can limit its applicability and adoption in certain contexts. Furthermore, only
one triple can be annotated at a time.

N3, the historical non standard Notation 3. N3 (also known as Notation 3) [30] is a language that inspired
the Turtle syntax and builds on top of RDF to extend its capabilities [31]. It allows for the representation
of logical statements using a concise and easy-to-read textual syntax. In addition to the RDF data model,
N3 includes features such as variables, logical implication, and functional predicates. It also introduces
the concept of formulae, which are literals that represent subgraphs of RDF triples. This allows for the
creation of nested and more complex structures than what is possible with RDF alone. N3 is designed to be
a superset of RDF, which means that any valid RDF document can be interpreted as a valid N3 document,
but the converse is not always true. While N3 provides a compact and readable way to represent reified
statements, it is not widely adopted nor implemented outside its community.

Comparing alternative approaches for metadata. In addition to the alternatives mentioned in the previous
sections, several other proposals were made. For example, the companion properties [32] extends singleton
properties with a fixed naming scheme for these. The labeled k-partite graphs [33] extend RDF 1.1 to
introduce an alternative graph data model with mapping to RDF and RDFM [34] that integrates attributes

C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

to the predicates. We do not discuss them because they don’t have enough visibility at the moment of
writing this article to be considered as usable alternatives for our purpose here. Table 1 lists the alternatives
we consider in this article and some of their relevant features.

Table 1
Comparison of RDF metadata representation approaches

Alternative\features standardized size impact large adoption annotates

RDF Reification yes large graphs yes 1 triple
N-ary patterns no large graphs yes 1 N-ary relation
Singleton property no large schema no 1 triple
Named graphs yes small yes sets of triples
RDF* in progress small not yet 1 triple
N3 no small no sets of triples

4. Possible Hyperworlds: representing possible worlds as linked data

In this section, we consider and discuss each of the approaches mentioned in the previous section to
represent possible worlds from a normal Kripke model M = (W,R,V). We call possible hyperworlds these
representations of possible worlds as linked data. We use Example 3.1 as a running example, with two
possible worlds: w1 represents {<x> ex:isPresidentOf <France>}, and w2 represents {<x> ex:isPresidentOf
<England>}. These statements are incompatible, and need therefore to be separated in two possible worlds.

As a starting point, we represent possible worlds in W as resources of type :PossibleWorld. For instance,
we identify the possible worlds w1 (resp. w2) by <w1> (resp. <w2>), and represent them as follows:

1 <w1> a :PossibleWorld .
2 <w2> a :PossibleWorld .

The class :PossibleWorld is part of the PWKSO ontology. We will introduce other pieces of it as
we progress in the analysis conducted this paper. The complete ontology is provided in Section 6 as a
conclusion to all the discussions of this paper. Note that although we focus on RDF and approaches for
annotating RDF, we do allow ourselves to use OWL constructs and axioms to enrich the PWKSO ontology
itself whenever it may be appropriate.

4.1. Alternative representations for possible worlds

Our intuition is that in the context of an RDF dataset, some IRI i ∈ I or sets of triples g ∈ G could be
translated to a formula ϕ ∈ L using a function f . We will discuss this translation in Section 7.1, but for
the sake of simplicity we assume in this article that f maps some statements to propositional atom. For
example, t1 := f({<x> ex:isPresidentOf <France>}), and t2 := f({<x> ex:isPresidentOf <England>}).

We associate statements to each possible world where this statement is true using the property
:verifiedIn. With our assumption, and given propositional atoms are atomic formulas, this property
provides a direct representation of the valuation function V. In our example, M, w1 |= t1 and M, w2 |= t2.
Therefore the valuation function is such that w1 ∈ V(t1) and w2 ∈ V(t2).

To have Example 3.1 completely represented, we also need some sort of negation. In this section we make
the closed-world assumption, which implies that M, w1 ̸|= t2 (resp. M, w2 ̸|= t1), therefore M, w1 |= ¬t2
(resp. M, w2 |= ¬t1), and the valuation function is such that w1 ̸∈ V(t2) (resp. w2 ̸∈ V(t1)). We will
discuss the open vs. closed-world assumption in Section 4.2.

10 C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

RDF reification for possible worlds. The RDF reification allows us to represent statements, and link them
to the possible worlds where they are verified. Property :verifiedIn is then used to map a rdf:Statement
to a :PossibleWorld. Using RDF reification, our example is written as follows:

1 ## world w1
2 <t1> a rdf:Statement ;
3 rdf:subject <x> ;
4 rdf:predicate ex:isPresidentOf :
5 rdf:object <France> .
6

7 <t1> :verifiedIn <w1> .
8

9 ## world w2
10 <t2> a rdf:Statement ;
11 rdf:subject <x> ;
12 rdf:predicate ex:isPresidentOf ;
13 rdf:object <England> .
14

15 <t2> :verifiedIn <w2> .

Singleton property for possible worlds. In this approach, a singleton property is defined as a unique
property that can have only one value per individual, i.e., one per statement we need to represent. Property
:verifiedIn is then used to map a singleton property to a :PossibleWorld. Using singleton properties, our
example is written as follows:

1 ## world w1
2 <x> <isPresidentOf#t1> <France> .
3 <isPresidentOf#t1> rdf:singletonPropertyOf ex:isPresidentOf .
4

5 <isPresidentOf#t1> :verifiedIn <w1> .
6

7 ## world w2
8 <x> <isPresidentOf#t2> <England> .
9 <isPresidentOf#t2> rdf:singletonPropertyOf ex:isPresidentOf .

10

11 <isPresidentOf#t2> :verifiedIn <w2> .

Named graphs for possible worlds. This approach uses RDF 1.1 named graphs to group statements.
Property :verifiedIn is then used to map a named graph to a :PossibleWorld. Using named graphs, our
example is written as follows:

1 ## world w1
2 <t1> { <x> ex:isPresidentOf <France> . }
3 <t1> :verifiedIn <w1> .
4

5 ## world w2
6 <t2> { <x> ex:isPresidentOf <England> . }
7 <t2> :verifiedIn <w2> .

RDF* for possible worlds. The RDF* specification extends RDF with the ability to attach properties
directly to quoted triples. Property :verifiedIn is then used to map a quoted triple to a :PossibleWorld.
Using RDF*, our example is written as follows:

C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1 << <x> ex:isPresidentOf <France> >> :verifiedIn <w1> .
2 << <x> ex:isPresidentOf <England> >> :verifiedIn <w2> .

N3 for possible worlds. With the N3 notation, one can use curly braces to group statements. Property
:verifiedIn is then used to map a group of statements to a :PossibleWorld. Using N3, our example is
written as follows:

1 { <x> ex:isPresidentOf <France> } :verifiedIn <w1> .
2 { <x> ex:isPresidentOf <England> } :verifiedIn <w2> .

Comparison and choice of an alternative. All the approaches above can successfully represent Exam-
ple 3.1. Some offer a more natural and concise representation than others, with the RDF reification
approach being the least concise, and the singleton property arguably being the least natural. The RDF
reification, singleton properties, and named graphs approaches allow to identify the propositions t1 and
t2, and use this identifier as the subject of :verifiedIn. Also, we only dealt with a simple case where
the function f transforms statements to propositional atoms. In the general case where the function f
transforms sets of triples to formulas, property :verifiedIn should map sets of triples to a :PossibleWorld.
This leaves only the named graphs and the N3 approaches as sufficiently generalizable. Finally, given that
N3 is not standardized and not largely adopted, and given it may be useful to identify formulas, we choose
to adopt the named graphs approach.

4.2. Closed-world assumption vs open-world assumption

In the previous section, we described explicitly what propositional atom (a triple) a possible world
verifies, giving a direct representation of the valuation function V. In our example, M, w1 |= t1 and
M, w2 |= t2, therefore the valuation function is such that w1 ∈ V(t1) and w2 ∈ V(t2). However, the
definition of the valuation function is not necessarily exhaustive: how to represent that V(t1) = {w1}
and V(t2) = {w2}? Exhaustivity comes naturally if we adopt the closed-world assumption: a principle
in knowledge representation and reasoning where any statement or proposition that is not known to be
true is considered false. In other words, in a closed-world assumption, the absence of evidence for a fact is
treated as evidence against that fact. This means that the knowledge base is assumed to be complete, and
any information that is not explicitly stated is considered false. The closed-world assumption is commonly
used in database systems and some logic-based reasoning systems.

With the open-world assumption, any statement or proposition that is not known to be true is considered
unknown or uncertain, rather than being considered false. This means that the knowledge base is assumed
to be incomplete, and any information that is not explicitly stated is not assumed to be false but rather
left open or unknown. The open-world assumption is commonly used in many logical and knowledge
representation systems, including semantic web technologies and most real-world reasoning scenarios.

As an alternative to exhaustively describing the set of worlds where a propositional atom is verified,
one may want to explicitly represent that w2 ̸∈ V(t1) and w1 ̸∈ V(t2). This is possible using property
:notVerifiedIn, that associates statements to possible worlds where this statement is false. Using this
property and the named graph approach, the complete Example 3.1 is written as follows:

1 ## propositional atoms
2 <t1> { <x> ex:isPresidentOf <France> . }
3 <t2> { <x> ex:isPresidentOf <England> . }
4

5 ## world w1
6 <t1> :verifiedIn <w1> .
7 <t2> :notVerifiedIn <w1> .
8

12 C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

9 ## world w2
10 <t1> :notVerifiedIn <w2> .
11 <t2> :verifiedIn <w2> .

Using the open-world assumption, the truth value of a formula f(g) where the set of triples g is not
explicitly asserted to be verified or not verified in a world w cannot be determined solely based on the
representation. It must then be determined using additional information, context, or inference mechanisms.

In the PWKSO ontology, an instance of :PossibleWorld can be explicitly typed with :OpenPossibleWorld
or :ClosedPossibleWorld to express that one or the other assumption is expected to be used.

Section 7.1 discusses other ways of representing negation using the open-world assumption.

5. Representing accessibility relations with N-ary patterns

In this section we move from representing individual possible worlds to representing their Kripke rela-
tions. We will discuss the different ways to do so, illustrating the alternatives with our running example
from Section 2 and the example Kripke models from Section 3.1. Section 5.1 focuses on binary relations,
Section 5.2 on (N+1)-ary relations using lists for arguments, and Section 5.3 on (N+1)-ary relations using
a new class for the relation instance.

5.1. Representing binary accessibility relations between worlds

This section uses Example 3.1 where Alice cannot distinguish between the two possible worlds w1 and
w2, and Bob knows that {<x> ex:isPresidentOf <France>}.

Our objective is to represent the epistemic multi-modal Kripke frame (W, {KAlice,KBob}) where W =
{w1, w2} is the set of possible worlds, KAlice is such that KAlice(w1) = KAlice(w2) = {w1, w2}, and KBob is
such that KBob(w1) = {w1}, KBob(w2) = {}.

The most straightforward option to represent a binary relation between possible worlds is to define a
dedicated binary property in RDF. For instance a property :hasAccessTo could be defined as follows:

1 :hasAccessTo a owl:ObjectProperty ;
2 rdfs:domain :PossibleWorld ;
3 rdfs:range :PossibleWorld .

This property :hasAccessTo could then be used to represent relation KAlice:

1 <w1> :hasAccessTo <w1>, <w2> .
2 <w2> :hasAccessTo <w1>, <w2> .

This option offers a simple way to explicit frame conditions that hold on the relation using OWL, such as
when it is reflexive (axiom T), reflexive and symmetric (axiom B), or reflexive and transitive (axiom S4).
The Euclidian condition (necessary for axiom S5) could be modelled using a sub-property chain axiom.
This way, one would be able to reason with accessibility relations using a OWL reasoner, provided the
ontology has an expressivity the reasoner can manage. For example, property :indistinguishableFrom
models the indistinguishable relation K in epistemic logic, which is an equivalence relation. It could be
modeled as follows:

1 :indistinguishableFrom a owl:ObjectProperty ;
2 a owl:ReflexiveProperty , owl:SymmetricProperty , owl:TransitiveProperty ;
3 rdfs:subPropertyOf :hasAccessTo .

On the other hand, this representation does not allow us to separate the indistinguishable relations
KAlice and KBob of Alice and Bob in the case of epistemic multi-modal logic. We would then need to
introduce one property per agent as for instance in:

C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1 ## Agent dedicated properties
2 <aliceCannotDistinguish> a owl:ObjectProperty ;
3 rdfs:subPropertyOf :indistinguishableFrom .
4

5 <bobCannotDistinguish> a owl:ObjectProperty ;
6 rdfs:subPropertyOf :indistinguishableFrom .
7

8 ## Agent views
9 <w1> <aliceCannotDistinguish> <w2>, <w1> .

10 <w2> <aliceCannotDistinguish> <w1>, <w2> .
11

12 <w1> <bobCannotDistinguish> <w1> .

Alternatively, we could annotate statements using one of the approaches presented in Section 3.3, to
indicate according to which agent the worlds are indistinguishable. For instance using RDF-star:

1 << <w1> :indistinguishableFrom <w1> >> :associatedToAgent <alice> .
2 << <w1> :indistinguishableFrom <w2> >> :associatedToAgent <alice> .
3 << <w2> :indistinguishableFrom <w1> >> :associatedToAgent <alice> .
4 << <w2> :indistinguishableFrom <w2> >> :associatedToAgent <alice> .
5 << <w1> :indistinguishableFrom <w1> >> :associatedToAgent <bob> .

Or using named graphs:

1 <#ngAlice> { <w1> :indistinguishableFrom <w2>, <w1> .
2 <w2> :indistinguishableFrom <w1>, <w2> . }
3 <#ngAlice> :associatedToAgent <alice> .
4 <#ngBob> { <w1> :indistinguishableFrom <w1> . }
5 <#ngBob> :associatedToAgent <bob> .

This need to qualify more precisely a Kripke relations may arise in many other situations. Although
the binary relation approach is simple at first, it can become clumsy as the Kripke relations become more
complex. As a result, we will prefer a more general N-ary relation pattern to capture all the arguments
and indices that may be involved in asserting a Kripke relation between possible worlds. In the rest of this
article, and in the ontology and design pattern we present in Section 6, we will not support the case of
direct binary relations.

5.2. Representing (N+1)-ary accessibility relations using lists for arguments

As an alternative to using properties to model the binary accessibility relations, one may use the design
pattern for representing N-ary relations using lists for arguments (See Section 3.3). In such representation,
a set of accessible worlds could be represented as a special list:

1 :PossibleWorldList rdfs:subClassOf
2 [a owl:Restriction ;
3 owl:onProperty rdf:first ;
4 owl:cardinality 1] ,
5 [a owl:Restriction ;
6 owl:onProperty rdf:first ;
7 owl:allValuesFrom :PossibleWorld] ,
8 [a owl:Restriction ;
9 owl:onProperty rdf:rest ;

10 owl:allValuesFrom :PossibleWorldList] .

The entry-point property could be defined as follows.

14 C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1 :hasRelationTo a owl:ObjectProperty ;
2 rdfs:domain :PossibleWorld ;
3 rdfs:range :PossibleWorldList .

When describing an edge wR(v1, . . . , vN) with this approach we would follow the following pattern.

1 <w> :hasRelationTo (<v1> ... <vN>) .

For example to represent the dyadic deontic Kripke structure (W, T) from Example 3.2, one would
write:

1 :hasDyadicDeonticRelationTo a owl:ObjectProperty ;
2 rdfs:subPropertyOf :hasRelationTo .
3

4 <w1> :hasDyadicDeonticRelationTo (<w1> <w1>) , (<w2> <w2>) .
5 <w2> :hasDyadicDeonticRelationTo (<w1> <w1>) , (<w2> <w2>) .

However, this notation is not natural for binary relations, as for example representing the Kripke frame
(W, {KAlice,KBob}) from Section 5.1 would write:

1 <aliceCannotDistinguish> a owl:ObjectProperty ;
2 rdfs:subPropertyOf :hasRelationTo .
3

4 <w1> <aliceCannotDistinguish> (<w1>) , (<w2>) .
5 <w2> <aliceCannotDistinguish> (<w1>) , (<w2>) .
6 <w1> <bobCannotDistinguish> (<w1>) .

Also, our definition of :PossibleWorldList employs rdf:first and rdf:rest to allow for concise list
notations in Turtle, and uses them to identify object properties in OWL. This use of IRIs in the reserved
vocabulary violates a condition on object properties from the OWL 2 DL profile specification.

Finally, another disadvantage of this modeling choice is that parameters inside the list cannot be named,
although it may sometimes be desirable. For example in the case of the dyadic deontic relation from
Example 3.2, it is meaningful to refer to the first parameter in the list with a dedicated property :hasContext
(the condition), and to the second parameter with a dedicated property :itOughtToBe (the ideal world).

To overcome these drawbacks we propose in the next section to follow the second pattern for representing
N-ary relations using a new class for relation instances. This next pattern will be our recommended
modeling choice for representing (N+1)-ary accessibility relations.

5.3. Representing (N+1)-ary accessibility relations using a new class for relation instances

We propose here a general pattern to represent (N+1)-ary Kripke relations using the pattern “Introduc-
ing a new class for a relation” introduced in the W3C Working Group Note [23]. This pattern has three
variants covering different use cases: 1. additional attributes describing a relation, where there may be
multiple instances of the same relation linking different individuals, and one participant holds and links
to the relation instance; 2. different aspects of the same relation, where different instances of the same
relation with the same arguments are equivalent, and are recommended to be represented as blank nodes;
3. N-ary relation with no distinguished participant, where the relation instance only has outgoing links.

As we represent mathematical objects, we only consider variants 2 and 3. Variant 3 corresponds to N-ary
relationships that link individuals that play different roles without any single individual standing out as
the subject. Representing an (N+1)-ary edge (w, v1, . . . , vN) ∈ R with this pattern would write:

1 [] a :KripkeRelation ; :param1 <w> ; :param2 <v1> ; ... ; :paramNPlus1 <vN> .

C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

However, in [2], an accessible N-uplet is defined as from a possible world w, leading to the more common
notations wR(v1, . . . , vn). Some work define it as a function from W to WN , giving the equally common
notation (v1, . . . , vn) ∈ R(w). The relation is thus directed by nature: on one side we have the possible world
w, and on the other side the set of accessible N-uplets of possible worlds. As a result, we adopt Variant 2,
supporting a distinguished participant to preserve the direction. We introduce property :hasRelation to
link the subject possible world to the N-ary relation instance:

1 :KripkeRelation a owl:Class .
2

3 :hasRelation a owl:ObjectProperty ;
4 rdfs:domain :PossibleWorld ;
5 rdfs:range :KripkeRelation .
6

7 ## Pattern
8 <w> :hasRelation [a :KripkeRelation ;
9 :param1 <v1> ;

10 ## ...
11 :paramN <vN>] .

This patterns allows us to represent all accessibility relations simply and uniformly, disregarding their
arity. One downside with respect to modeling binary accessibility relations using a properties as in Sec-
tion 5.1, is that here we cannot use OWL axioms to represent standard frame conditions such as reflexivity
(axiom T), symmetry (necessary for axiom B), or transitivity (necessary for axiom S5) of binary relations.
However, class :KripkeRelation can be specialized and its sub-classes could be attached specific entailment
rules or constraints to model these frame conditions. An example is given in Section 7.2.

6. Summary and resulting ontology

In this section we draw together all the previous analysis we made on the RDF representation of possible
worlds and Kripke structures and compile our design rationale in a corresponding ontology. We name this
ontology Possible Worlds and Kripke Structures Ontology (PWKSO).

Section 6.1 overviews the PWKSO ontology, Section 6.2 provides a generic usage pattern and usage
recommendations, and Section 6.3 applies this pattern to illustrate how the different example Kripke
models from Section 3.1 can be represented.

6.1. The PWKSO ontology for representing possible (hyper)worlds and Kripke structures

Given a normal Kripke model M = (W,R,V), PWKSO allows us to represent possible worlds in W
(:PossibleWorld) and assert that triples are verified (:verifiedIn) or not verified (:notVerifiedIn) in
these worlds using different approaches for RDF metadata representation. We motivated in Section 4.1
the adoption of the named graph approach as it is standardized, largely adopted, and it annotates any
number of triples. In PWKSO, possible hyperworlds can be declared as using the closed-world assumption
(:ClosedPossibleWorld) or the open-world assumption (:OpenPossibleWorld) as suggested in Section 4.2.

As mentioned before, to support the general case of (N+1)-ary accessibility relations R, PWKSO
adopts the pattern for representing N-ary relations with a dedicated top class for Kripke relations
(:KripkeRelation), and distinguished top properties to identify the parameters (:param) and indices
(:index) of the relations. Following the W3C design pattern1, it is recommended to use blank nodes
to identify instances of a relation, and the instances of the same relation with the same arguments are
regarded as equivalent.

1W3C pattern https://www.w3.org/TR/swbp-n-aryRelations/#anonvnamed

https://www.w3.org/TR/swbp-n-aryRelations/#anonvnamed

16 C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

We assume a function f from IRIs and sets of triples to modal logic formulas in L, and as a first increment
we only consider in this article that f maps some statements to propositional atoms, providing a direct
representation of the valuation function V. PWKSO does not include specific constructs to explicitly
express modal logic formulas in L, but the named graph approach allows for future extensions as is
discussed in Section 7.1.

The resulting PWKSO is a lightweight OWL 2 DL ontology that groups the terminology introduced
in Sections 4 and for the (N+1)-ary pattern defined in Section 5.3. It contains 6 classes and 5 object
properties. The HTML documentation and the Turtle code of the PWKSO ontology is published under
license CC-BY 4.0 at its IRI http://ns.inria.fr/pwkso/ using content negotiation. The preferred prefix is
pwsko: and is registered at prefix.cc.

1 @base <http://ns.inria.fr/pwkso/> .
2 @prefix : <> .
3 @prefix owl: <http://www.w3.org/2002/07/owl#> .
4 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
5 @prefix cc: <http://creativecommons.org/ns#> .
6 @prefix vann: <http://purl.org/vocab/vann/> .
7 @prefix dct: <http://purl.org/dc/terms/> .
8
9 : a owl:Ontology ;

10 dct:title "Possible Worlds and Kripke Structures Ontology"@en ;
11 dct:description "an ontology for representing possible worlds and Kripke structures."@en ;
12 cc:license <https://creativecommons.org/licenses/by/4.0/> ;
13 vann:preferredNamespacePrefix "pwkso" ;
14 vann:preferredNamespaceUri : .
15
16 :PossibleWorld a owl:Class ;
17 rdfs:label "possible world"@en ;
18 rdfs:comment "a consistent representation of how the world is, could have been or would be"@en .
19
20 :verifiedIn a owl:ObjectProperty ;
21 rdfs:label "verified in"@en ;
22 rdfs:comment "links triples to a possible world in which their associated formula is verified"@en ;
23 rdfs:range :PossibleWorld ;
24 owl:propertyDisjointWith :notVerifiedIn .
25
26 :notVerifiedIn a owl:ObjectProperty ;
27 rdfs:label "not verified in"@en ;
28 rdfs:comment "links triples to a possible world in which associated formula is not verified"@en ;
29 rdfs:range :PossibleWorld ;
30 owl:propertyDisjointWith :verifiedIn .
31
32 ## Closed vs open possible worlds
33
34 :ClosedPossibleWorld a owl:Class ;
35 rdfs:subClassOf :PossibleWorld ;
36 rdfs:label "closed possible world"@en ;
37 rdfs:comment "represents a possible world with the Closed-World Assumption"@en .
38
39 :OpenPossibleWorld a owl:Class ;
40 rdfs:subClassOf :PossibleWorld ;
41 rdfs:label "open possible world"@en ;
42 rdfs:comment "represents a possible world with the Open-World Assumption"@en .
43
44
45 ## Representation using the (N+1)-ary pattern: Introducing a new class for a relation with a

distinguished participant↪→
46

http://ns.inria.fr/pwkso/
https://prefix.cc/pwkso

C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

47 :KripkeRelation a owl:Class ;
48 rdfs:label "Kripke relation"@en ;
49 rdfs:comment "represents the Kripke relations between possible worlds. Instances of :KripkeRelation

are recommended to be represented as blank nodes"@en .↪→
50
51 :param a owl:ObjectProperty ;
52 rdfs:label "parameter"@en ;
53 rdfs:comment "parameter of a Kripke relation"@en ;
54 rdfs:domain :KripkeRelation ;
55 rdfs:range :PossibleWorld .
56
57 :index a owl:ObjectProperty ;
58 rdfs:label "index"@en ;
59 rdfs:comment "index of a Kripke relation"@en ;
60 rdfs:domain :KripkeRelation .
61
62 :hasRelation a owl:ObjectProperty ;
63 rdfs:label "has relation"@en ;
64 rdfs:comment "links a possible world to one of its N-ary relations"@en ;
65 rdfs:domain :PossibleWorld ;
66 rdfs:range :KripkeRelation .
67
68 :BinaryKripkeRelation
69 rdfs:label "binary Kripke relation"@en ;
70 rdfs:comment "relation that links a possible world with another to represent a unary modal

operator"@en ;↪→
71 rdfs:subClassOf :KripkeRelation,
72 [a owl:Restriction ;
73 owl:cardinality 1 ;
74 owl:onProperty :param] .
75
76 :UnaryKripkeRelation
77 rdfs:label "unary Kripke relation"@en ;
78 rdfs:comment "relation that links a possible world with another to represent a nullary modal

operator"@en ;↪→
79 rdfs:subClassOf :KripkeRelation,
80 [a owl:Restriction ;
81 owl:cardinality 0 ;
82 owl:onProperty :param] .

6.2. Generic usage pattern for the PWKSO ontology

To facilitate the use of the ontology we provide a generic usage pattern below. This pattern takes the
example of applying and extending PWKSO to define operators and use them to instantiate possible
worlds:

1 ## Generic usage pattern
2 @base <http://example.org/> .
3 @prefix : <> .
4 @prefix pwkso: <http://ns.inria.fr/pwkso/>
5 @prefix owl: <http://www.w3.org/2002/07/owl#> .
6 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
7
8 :MyRelation rdfs:subClassOf pwkso:KripkeRelation .
9

10 :param1 rdfs:subPropertyOf pwkso:param ;
11 rdfs:domain :MyRelation .
12 ## ...
13 :paramN rdfs:subPropertyOf pwkso:param ;

18 C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

14 rdfs:domain :MyRelation .
15
16 :index1 rdfs:subPropertyOf pwkso:index ;
17 rdfs:domain :MyRelation .
18 ## ...
19 :indexM rdfs:subPropertyOf pwkso:index ;
20 rdfs:domain :MyRelation .
21
22 :a_possible_world a :PossibleWorld ;
23 pwkso:hasRelation [
24 a :MyRelation ;
25 pwkso:param1 :arg1 ;
26 ## ...
27 pwkso:paramN :argN ;
28 pwkso:index1 :value1 ;
29 ## ...
30 pwkso:indexM :valueM .
31] .

6.3. Complete examples

In this section, we illustrate the chosen pattern on the binary, ternary, and unary accessibility relations
from the example Kripke models of Sections 3.1 and 5.1.
Representing an indistinguishable relation (epistemic case). The PWKSO generic usage pattern offers a
simple way for adding information about binary Kripke relations. For instance, if we want to specify the
agent associated with the relation, we can simply use the index property pwkso:index as in:

1 :IndividualKnowledge a owl:Class ;
2 rdfs:label "Individual Knowledge"@en ;
3 rdfs:comment "The equivalence Kripke relation of epistemic logic"@en ;
4 rdfs:subClassOf pwkso:BinaryKripkeRelation ,
5 [a owl:Restriction ;
6 owl:cardinality 1 ;
7 owl:onProperty pwkso:index] ,
8 [a owl:Restriction ;
9 owl:allValuesFrom :CognitiveAgent ;

10 owl:onProperty pwkso:index] .
11
12 :CognitiveAgent a owl:Class ;
13 rdfs:label "Cognitive Agent"@en ;
14 rdfs:comment "The class of cognitive agents"@en .

The epistemic multi-modal Kripke frame (W, {KAlice,KBob}) of Section 5.1 can then be represented as
follows:

1 <w1> pwkso:hasRelation [a :IndividualKnowledge ;
2 pwkso:param <w2> ;
3 pwkso:index <alice>] ,
4 [a :IndividualKnowledge ;
5 pwkso:param <w1> ;
6 pwkso:index <alice>] .
7

8 <w2> pwkso:hasRelation [a :IndividualKnowledge ;
9 pwkso:param <w2> ;

10 pwkso:index <alice>] ,
11 [a :IndividualKnowledge ;
12 pwkso:param <w1> ;

C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

13 pwkso:index <alice>] .
14

15 <w1> pwkso:hasRelation [a :IndividualKnowledge ;
16 pwkso:param <w1> ;
17 pwkso:index <bob>] .

Representing a ternary accessibility relation (deontic case). The dyadic deontic operator, e.g., O(ψ, ϕ)
expresses that “It ought to be that ϕ is verified when ψ”. The corresponding Kripke relation is a ternary
relation that maps a possible world to a couple of possible worlds, where the first represents the context
that should be satisfied, and the second represents what should ideally be verified. We model the relation
with class :DyadicObligation which represents an obligation. It is defined by a context capturing when the
obligation is applicable (parameter property :fromContext) and by what the obligation intends to enforce
(parameter property :itOughtToBe):

1 :DyadicObligation a owl:Class ;
2 rdfs:label "Dyadic Obligation"@en ;
3 rdfs:comment "The dyadic obligation Kripke relation"@en ;
4 rdfs:subClassOf pwkso:KripkeRelation ,
5 [a owl:Restriction ;
6 owl:cardinality 1 ;
7 owl:onProperty :fromContext] ,
8 [a owl:Restriction ;
9 owl:cardinality 1 ;

10 owl:onProperty :itOughtToBe] .
11
12 :fromContext a owl:ObjectProperty ;
13 rdfs:label "from context"@en ;
14 rdfs:comment "links a dyadic obligation to the context world"@en ;
15 rdfs:subPropertyOf pwkso:param ;
16 rdfs:domain :DyadicObligation ;
17 rdfs:range pwkso:PossibleWorld .
18
19 :itOughtToBe a owl:ObjectProperty ;
20 rdfs:label "it ought to be"@en ;
21 rdfs:comment "links a dyadic obligation to the ideal world"@en ;
22 rdfs:subPropertyOf pwkso:param ;
23 rdfs:domain :DyadicObligation ;
24 rdfs:range pwkso:PossibleWorld .

The dyadic deontic Kripke structure (W, T) from Example 3.2 can then be represented as follows:

1 <w1> pwkso:hasRelation [a :DyadicObligation ;
2 :fromContext <w1> ;
3 :itOughtToBe <w1>] ,
4 [a :DyadicObligation ;
5 :fromContext <w2> ;
6 :itOughtToBe <w2>].
7 <w2> pwkso:hasRelation [a :DyadicObligation ;
8 :fromContext <w1> ;
9 :itOughtToBe <w1>] ,

10 [a :DyadicObligation ;
11 :fromContext <w2> ;
12 :itOughtToBe <w2>] .

As a second example of a dyadic deontic Kripke structure (W ′, T ′), let us assume that in a possible
world wNorm ∈ W ′, there is a norm n :=“Alice must answer to Bob when she receives a request from Bob”.
The context world wContext ∈ W ′ and the ideal world wIdeal ∈ W ′ may be represented as follows:

20 C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1 ## world wContext
2 <p> { <alice> ex:receivedARequestFrom <bob> . }
3 <p> pwkso:verifiedIn <wContext> .
4

5 ## world wIdeal
6 <q> { <alice> ex:answeredTo <bob> . }
7 <q> pwkso:verifiedIn <wIdeal> .

Then, to express that the norm n holds in wNorm, we represent (wContext, wIdeal) ∈ T (wNorm) as follows:

1 <wNorm> pwkso:hasRelation [a :DyadicObligation ;
2 :fromContext <wContext> ;
3 :itOughtToBe <wIdeal>].

This norm is applicable if the following holds:

1 <p> pwkso:verifiedIn <wNorm> .

And the norm will be fulfilled if in addition:

1 <q> pwkso:verifiedIn <wNorm> .

Representing a unary relation for nullary modal operators. The action formalism DL-MA presented in
Section 3.1 describes actions that have been done in a possible world using nullary modal operators. Their
associated Kripke relations is unary. For example, one can represent that the Kripke relation △1 (“One
proclaims oneself President of France”) is true in world w as follows:

1 :ProclaimsPresidentOfFrance a owl:Class ;
2 rdfs:subClassOf pwkso:UnaryKripkeRelation .
3

4 <w> pwkso:hasRelation [a :ProclaimsPresidentOfFrance] .

7. Discussion and possible extensions

This section aims to discuss different important open questions related to possible hyperworlds. We first
discuss the function f between a set of triples and a formula in L. Then, we give examples of how to
query, instantiate, and reason with possible hyperworlds using SPARQL request. Next, we notice that the
framework enables the definition of nested possible worlds and nested kripke structure in a possible world.
Thus, we discuss the meaning of defining possible worlds contained in a possible world and the link with
propositional dynamic logics. Finally, we discuss how existing modal logic formalisms could be leveraged
for example to merge knowledge graphs, represent the knowledge or beliefs of agents, represent the effects
of actions or norms, or develop model checking applications.

7.1. Discussing the function f

Our intuition is that in the context of an RDF dataset D, some IRI i ∈ I or sets of triples g ∈ G
could be translated to a formula ϕ ∈ L using a function f ⊆ I ∪ G × L. We do not want to prescribe one
unique way to define the function f , and, in this section, we only open a discussion of some of its desired
characteristics. As a reminder, the normal modal logic language L is generated by the following grammar
given in Backus-Naur Form:

ϕ ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | ∇(ϕ1, . . . , ϕN)

C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

We adopt the usual notations T and G = 2T for the set of RDF triples and the set of RDF graphs,
respectively. An RDF dataset is noted D = (g, {n, gn}n∈I) where g ∈ G is the default graph, I is a set of
IRIs, and for all n ∈ I, gn ∈ G is the graph named n. At least, f must be such that: ∀n ∈ I, f(n) = f(gn).

Representation of ⊥ (or ⊤). One could explicitly represent ⊥ (or ⊤) using a dedicated vocabulary. For
example:

1 :top :verifiedIn <w> .
2 :bottom :verifiedIn <w> .

We see immediately that some reasoner should treat such situations as violating the definition of Kripke
models. In fact, by definition ⊥ is verified in no world. One could also choose to define f such that no set
of triples translates to ⊥. That is, ∀g ∈ G, f(g) ̸= ⊥. Thus, using :bottom as the name of a graph would
immediately violate this rule.

Representation of propositional atoms. Our simplification in Section 4.1 consists in considering that f
maps some statements to propositional atoms. Although this seems like a reasonable assumption, not
all statements should be mapped to propositional atoms. For example, triple {<t1> :verifiedIn <w> .}
describes that a formula f(<t1>) is valid in a possible world, and should not be mapped to a propositional
atom itself. Doing so would result in a strange loop, where the representations of the semantics and of the
language are mixed. To deactivate such cases, such triples could be left out of the domain of f . One could
also define some sort of punning where this triple is considered to describe the semantics in some context,
and to represent a propositional atom in other contexts.

We can imagine at least two other ways to represent propositional atoms. First, propositional atoms
could be resources explicitly typed with a class such as :Atom. For example propositional atom p could be
defined as f(<p>) = f({<p> a :Atom}) = p. Second, propositional atoms could require more than one triple
in their representation. As an example, the code below is an alternative representation of propositional
atom t1:

1 [] a :Presidency ;
2 :agent <x> ;
3 :country <France> .

Representation of negation. Assuming the closed-world assumption, or using property :notVerifiedIn,
are only indirect ways to represent negation in our formalism. There are different alternatives to represent
negation explicitly.

For instance, one can define a specific property, such as ex:isNotPresidentOf, and interpret {<x>
ex:isNotPresidentOf <France>} as the negation of {<x> ex:isPresidentOf <France>}. This approach allows
for more explicit and fine-grained representation of negated statements, but it assumes some shared under-
tanding on the fact that ex:isNotPresidentOf is the negation of ex:isPresidentOf. A dedicated vocabulary
could be proposed to explicit this, such as {ex:isNotPresidentOf :isNegationOf ex:isPresidentOf}.

The OWL negative object property assertions provide an alternative way of modeling that <x> is not
connected by the property ex:isPresidentOf to <France>. This would be written as follows:

1 [] a owl:NegativePropertyAssertion ;
2 owl:sourceIndividual <x> ;
3 owl:assertionProperty ex:isPresidentOf ;
4 owl:targetIndividual <France> .

Another alternative uses as a starting point that ¬ϕ is a construct where formula ϕ itself may be the
translation of an IRI n, potentially being the name of a graph gn. The default graph in the dataset below
could represent ¬t2:

22 C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1 <t2> { <x> ex:isPresidentOf <England> . }
2 [] a :Negation ;
3 :isNegationOf <t2> .

Representation of conjunction (and disjunction). As a simple extension of our example in Section 4.1,
consider the following representation where named graph <t1_and_t2> contains the two triples that repre-
sent t1 and t2:

1 ## world w3
2 <t1_and_t2> {
3 <x> ex:isPresidentOf <France> .
4 <x> ex:isPresidentOf <England> .
5 }
6 <t1_and_t2> :notVerifiedIn <w1> .

It seems natural that function f maps <t1_and_t2> to t1 ∧ t2, and that the above dataset represents
M, w1 ̸|= t1 ∧ t2. More generally, for any two sets of triples g1 and g2, the function f may be defined such
that f(g1 ⊕ g2) = f(g1) ∧ f(g2), where g1 ⊕ g2 is the merge2 of g1 and g2.

Another alternative is to consider that ϕ1 ∧ ϕ2 is a construct where formula ϕ1 and ϕ2 themselves may
be the translation of IRIs i1 and i2, potentially being the names of graphs g1 and g2. Then, the default
graph in the dataset below could represent t1 ∧ t2:

1 ## world w1
2 <t1> { <x> ex:isPresidentOf <France> . }
3 <t2> { <x> ex:isPresidentOf <England> . }
4 [] a :Conjunction ;
5 :member <t1> , <t2> .

Some similar representation could be defined for disjunction using class :Disjunction, offering some
syntactic sugar.

Translation of the empty graph. Consider the following RDF representation involving an empty graph
g0 = {} ∈ G, whose corresponding formula f(g0) is valid in world w, i.e., M, w |= f(g0):

1 <g0> { }
2 <g0> :verifiedIn <w> .

If we assume that ∀g1, g2 ∈ G, f(g1 ⊕ g2) = f(g1) ∧ f(g2), then the empty graph represents an empty
conjunction, and should therefore always be translated to ⊤ by postulate. f(g0) = ⊤.

Representation of the modal operator. Depending on the arity of the modal operator, there may be
different ways to represent formula ∇(ϕ1, . . . , ϕN) in a natural manner. We will only present one option,
that uses as a starting point the idea that for every k, ϕk is a translation of an IRI ik, potentially being
the name of a graph gk. The default graph in the dataset below could represent O(t1,¬t2):

1 <t1> { <x> ex:isPresidentOf <France> . }
2 <t2> { <x> ex:isPresidentOf <England> . }
3 <not_t2> { [] a :Negation ; :isNegationOf <t2> . }
4

5 [] a :OughtTo ;

2Merging RDF graphs takes care of the fact that blank nodes are considered local to a named graph, and that their
identifier may need to be changed in the merge.

C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

6 :firstArgument <t1> ;
7 :secondArgument <not_t2> .

and the dataset below could represent that M, w1 |= O(t1,¬t2)

1 <t1> { <x> ex:isPresidentOf <France> . }
2 <t2> { <x> ex:isPresidentOf <England> . }
3 <not_t2> { [] a :Negation ; :isNegationOf <t2> . }
4 <ot1nott2> {
5 [] a :OughtTo ;
6 :firstArgument <t1> ;
7 :secondArgument <not_t2> .
8 }
9

10 <ot1nott2> :verifiedIn <w1> .

Conclusion of the discussion about f . In this section, we only scratched the surface of the representation
of formulas from the normal modal logic language. We consider that this task goes beyond the scope of
this article and requires some sort of consensus in the Modal Logic and the Semantic Web communities.
Therefore, the identifiers introduced in this section (:Negation, :Conjunction, etc.) just served as examples,
and are not part of the PWKSO ontology. It is important to note that representing formulas in RDF can
be context-specific and dependent on the particular requirements of the application or domain. The choice
of a representation method should be guided by the desired semantics, compatibility with existing tools
and systems, and the specific reasoning capabilities needed for the given use case. Additionally, one could
employ some query language (e.g., SPARQL), rule languages, and inference mechanisms to support some
reasoning about consequences with these syntactic representation. Finally, one may wonder how one may
interpret OWL constructs and axioms mixed with such representations. Thus, this section just opened the
door for more research.

7.2. Querying, instantiating, and reasoning with Kripke models

A potential application and extension of the proposed framework is the ability to query and instantiate
Kripke models using SPARQL. This section briefly discusses querying, instantiating, and reasoning with
Kripke models expressed using PWKSO.

Querying Kripke models. SPARQL query can be used to extract information from RDF data and
SPARQL update can be used to instantiate Kripke models. For example, the SPARQL query below ex-
tracts all the pairs of indistinguishable worlds according to Alice, and optionally the associated named
graphs verified in these worlds.

1 SELECT ?w1 ?w2 ?g WHERE {
2 ?w1 pwkso:hasRelation [
3 a :IndividualKnowledge ;
4 pwkso:param ?w2 ;
5 pwkso:index <alice>] }
6 OPTIONAL { ?g pwkso:verifiedIn ?w2 }
7 }

Round-tripping with existing binary representation Although we promote one pattern for representing
accessibility relations using (N+1)-ary relations, it is possible to round-trip with an alternative legacy
representation. The query below translates from the PWKSO n-ary pattern to the binary pattern intro-
duced in the last example of Section 5.1, where a binary indistinguishability relation is represented using
a property, and statements are annotated using named graphs.

24 C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1 INSERT {
2 GRAPH ?g { ?w1 :indistinguishableFrom ?w2 }
3 ?g :associatedToAgent <alice> }
4 WHERE {
5 ?w1 pwkso:hasRelation [
6 a :IndividualKnowledge ;
7 pwsko:param ?w2 .
8 pwkso:index <alice>] . }

The query below is the reciprocal, ensuring the possibility to roundtrip between the two representations.

1 INSERT { ?w1 pwkso:hasRelation [
2 a :IndividualKnowledge ;
3 pwsko:param ?w2 .
4 pwsko:index <alice>] . }
5 WHERE {
6 GRAPH ?g { ?w1 :indistinguishableFrom ?w2 }
7 ?g :associatedToAgent <alice> }

By instantiating such Kripke structure using SPARQL queries, an agent both insure interoperability
and use legacy tools based on binary representations to reason about the relationships between different
possible worlds and use them to make inferences and draw conclusions.

Reasoning with PWKSO and SPARQL SPARQL queries may also be used to model the standard frame
conditions, in particular for binary accessibility relations. For example the query below models symmetry
(necessary for axiom B):3

1 INSERT {
2 ?w2 pwkso:hasRelation ?bn2 .
3 ?bn2 a ?class ;
4 ?param ?w1 ;
5 ?index ?value .
6 }
7 WHERE {
8 ?w1 pwkso:hasRelation ?bn .
9 ?bn a ?class ;

10 ?param ?w2 .
11 ?param rdfs:subPropertyOf* pwkso:param .
12 OPTIONAL{
13 ?bn ?index ?value .
14 ?index rdfs:subPropertyOf* pwsko:index . }
15 BIND(ex:bnode(?bn) as ?bn2)
16 }

7.3. The case of nested possible worlds and nested Kripke structures: possible worlds and Kripke
structures contained in a possible world

In the context of semantic frameworks like Description Logics and modal logics, the notion of one
possible world being contained within another refers to the relationship between different interpretations
or models. In such frameworks, a possible world represents a specific interpretation of a knowledge base

3This query assumes that custom function ex:bnode(_:a) generates a blank node distinct from _:a, but shared across
all the solution mappings of the query. See also https://github.com/w3c/sparql-dev/issues/36

https://github.com/w3c/sparql-dev/issues/36

C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

or a set of statements. Each possible world provides an assignment of truth values to atomic statements
or propositions within the knowledge base.

When we say that one possible world is contained within another, it means that it represents a possible
world contained and possible w.r.t. the former. It can be useful to represent “possible” Kripke structure to
capture, for example, possible effects of actions in Dynamic Epistemic Logics (DEL) [35] or Propositional
Dynamic Logics (PDL) [4]. Consider the following representation:

1 <t2> { <x> ex:isPresidentOf <England> . } ## Proposition t2: <x> is president of England
2 <p> { <t2> :verifiedIn <w2> . }
3 <p> :verifiedIn <w1> .

This represents two possible worlds w1 and w2. Named graph <p> indicates that proposition t2 is verified
in the world w2. Since we consider that the named graph <p> is verified in w1, by transitivity it means that
the proposition t2 is also verified in w1. We conclude that we have described a situation where possible
world are nested, and w2 is contained in w1.

Representing a Kripke structure within a possible world can be particularly useful when dealing with
dynamic effects, as seen in DEL [35] or PDL [4]. These logics are concerned with capturing changes and
updates to knowledge, beliefs, or states over time. By verifying a Kripke structure in a possible world, we
can assess the truth and validity of modal formulas within that specific world, considering the dynamic
aspects of the system. This allows us to reason about how knowledge, beliefs, or states evolve and interact
within different possible worlds.

The representation of a Kripke structure within a possible world enables the modeling of dynamic effects,
such as the updates to knowledge or the evolution of states, by using the accessibility relations between
worlds. These relations define the transitions or changes that are possible between states, providing a
framework for reasoning about the dynamics of the system.

In DEL for example, the verification of a Kripke structure in a possible world allows us to reason
about the knowledge updates or belief revisions that occur in different situations. We can analyze how the
knowledge or beliefs of agents change over time and in response to various events or actions.

Similarly, in PDL, the representation of a Kripke structure within a possible world facilitates the mod-
eling and analysis of dynamic effects in systems that involve state transitions, actions, and updates.

By representing Kripke structures within possible worlds, PWKSO offers a powerful framework to cap-
ture and reason about dynamic effects in formal systems, providing insights into the evolution of knowledge,
beliefs, or states over time.

7.4. A large panel of applications and domain specific extensions

PWKSO and extensions can be directly applied for different use cases from the families of motivating
scenarios mentioned in Section 1. In addition, this section details a number of potential applications that
leverage existing modal logic formalisms.

Capturing agents’ knowledge and beliefs. Firstly, although we propose a general framework to handle
(N+1)-ary Kripke relations, we leave abstract the representation of these Kripke relations. Therefore, a
primary perspective is to define an epistemic frame not only to represent knowledge but also to capture
the beliefs of agents using a doxastic frame [36]. As demonstrated in this article, this RDF representation
has potential applications in merging knowledge graphs. Merging knowledge graphs is a common task in
knowledge representation and semantic web applications. With the proposed framework, merging different
knowledge graphs becomes more flexible and efficient. Rather than relying on heuristics to decide which
triples should be deleted to maintain consistency, the framework allows for the representation of these
triples in different possible worlds, which can then be merged without conflicts. Moreover, the use of pos-
sible worlds can facilitate the identification and resolution of inconsistencies in merged knowledge graphs,
which can be challenging with traditional merging approaches. By pinpointing the source of inconsistencies
across different possible worlds, users can address them in a more targeted manner.

26 C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Capturing agents’ norms and actions. Secondly, another application of the proposed framework is to
reason about norms and actions since Kripke frames are also used to represent the effects of actions [37],
or norms [38]. Within the domain of formalizing actions and their effects, various formalisms exist, such as
STRIPS [39], or different modal logics as, e.g., STIT [40], BIAT [41], PDL [4], etc. Thus, this framework
can be used to propose a way to represent actions formalisms. For instance, in STRIPS [39], actions are
depicted through a pre-condition and some effects. The pre-condition outlines the necessary conditions for
the action to be applicable, while the effect delineates how the world undergoes changes upon the execution
of the action. Thus, with PWKSO and the RDF representation of possible worlds and Kripke relation, we
can represent possible effects by the fact some possible world can be reached after some actions have been
performed. This facilitates, e.g., the sharing of actions that agents can perform in their environments, and
their possible effects. Furthermore, by representing the possible effects of actions, we can represent and
deduce what actions are forbidden and allowed w.r.t. their effects [42]. Thus, this framework would also
help us to represent the normative status of actions in different contexts. For example, given a norm “it is
forbidden to drive above a certain speed limit” and a set of actions that include driving at different speed
in different possible worlds, it becomes possible to reason about which actions violate the norm. This could
have applications in legal reasoning, ethical decision-making, and policy development. However detecting
if a norm has been respected or violated implies to check the current state of the system and this is done
with model-checking.

Model checking software agents. A third example of applications is the model-checking of software agents.
Model checking is a formal verification technique used to automatically verify whether a given system
model satisfies a desired property or specification. In model checking, the system behavior is typically
represented as a formal model, such as a finite-state automaton or a transition system. Properties of
interest, expressed in a formal specification language, are then checked against this model. If a property
violation is found, the model checker provides a counter-example, which helps in diagnosing the cause of the
failure. Model checking has applications in various domains, including hardware and software verification,
concurrent and distributed systems, protocol verification, and cybersecurity. It is particularly useful for
detecting design errors, software bugs, and security vulnerabilities early in the development process, or
if a norm has not been respected. By leveraging PWKSO to represent Kripke frames, we can represent
systems such as automata, enabling model-checkers to query the system’s current states using SPARQL.
PRISM [43] is a famous example of model-checker which allows the verification of properties expressed in
probabilistic temporal logics such as Probabilistic Computation Tree Logic (PCTL), making it particularly
suitable for systems with uncertain or probabilistic behavior. Integrating our RDF framework with such
model-checking tools opens up new avenues for verifying automatically properties of probabilistic systems
described with PWKSO, enhancing the scalability and efficiency of the verification process.

8. Conclusion

In this article, we represented normal Kripke models using RDF. This approach represents possible
worlds and (N+1)-ary Kripke relations using named graphs and the W3C N-ary pattern.

First, we compared the different approaches for asserting that triples are verified or not verified in
possible worlds: RDF reification, singleton properties, named graphs, RDF-star, and N3. We showed that
all of the approaches allow us to effectively capture the concept of possible worlds and valuation function
under the closed-world or the open-world assumption. We adopted the named graph approach to represent
possible hyperworlds as it is standardized, largely adopted, and it may be useful to represent modal logic
formulas, going beyond simple propositional atoms.

Then we compared the different approaches for representing (N+1)-ary accessibility relations between
worlds, and motivated the adoption of the pattern “Introducing a new class for a relation” introduced
in the W3C Working Group Note [23]. We selected its variant for modeling relation instances with a
distinguished participant, where different instances of the same relation with the same arguments are
equivalent and are recommended to be identified using blank nodes.

C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

The resulting Possible Worlds and Kripke Structures Ontology (PWKSO) compiles our design rationale
as a small OWL 2 DL ontology with 6 classes and 5 object properties, published under license CC-BY
4.0 under the namespace http://ns.inri.fr/pwkso/ using the recommended content negotiation rules. We
proposed a simple usage pattern and illustrated it with different examples: binary indistinguishability
relations in the context of epistemic multi-modal logic, a ternary relation for the dyadic deontic logic, and
unary relations for the dynamic logic of mental attitudes and joint actions (DL-MA).

We thus demonstrated that our framework can represent all classical aspects of modalities as, e.g.,
knowledge of an agent, beliefs, possibility, necessity, effects of actions, or norms. It can also represent
N-ary modalities such as for dyadic deontic operators, mental states or agency operators.

Our approach assumed a function f from IRIs and sets of triples to modal logic formulas. As a first step,
in this article we only considered that f maps some statements to propositional atoms, but we opened
the discussion on its desired characteristics. Therefore, this version of PWKSO does not include specific
constructs to express modal logic formulas, and opens the door for more research in this direction and
more generally for extending the top ontology provided in PWKSO with specific ontologies to cover specific
languages and logics.

Other possible extensions of this work include further investigations regarding querying, instantiating,
and reasoning with possible hyperworlds, and studying of how possible worlds or Kripke structures can be
nested as a way to model Dynamic Epistemic Logics or Propositional Dynamic Logics.

Different direct applications of PWKSO and possible domain extensions have been envisioned and
discussed, including 1. contributing to a standard exchange format for modal logic applications, including
reasoners; 2. facilitating the Open Science initiative in the modal logic research community; 3. supporting
the representation and management of uncertainty or other modalities; 4. facilitating interoperability
between heterogeneous systems; and 5. leveraging existing modal logic formalisms for example to merge
knowledge graphs, represent the knowledge or beliefs of agents, represent the effects of actions or norms,
or develop model checking applications.

Acknowledgment

We thank the 3IA Côte d’Azur ANR-19-P3IA-0002 and the HyperAgents project ANR-19-CE23-0030
for their support.

References

[1] G.H. Von Wright, An essay in modal logic (1951). doi:10.2307/2216596.
[2] P. Blackburn, M. De Rijke and Y. Venema, Modal Logic: Graph. Darst, Cambridge University Press, New York, 2002.
[3] R. Fagin, J.Y. Halpern, Y. Moses and M. Vardi, Reasoning About Knowledge, The MIT Press, 2004. ISBN 9780262256094.

doi:10.7551/mitpress/5803.001.0001.
[4] D. Harel, D. Kozen and J. Tiuryn, Dynamic Logic, in: Handbook of Philosophical Logic, Springer Netherlands, 2001,

pp. 99–217. ISBN 9789401704564. doi:10.1007/978-94-017-0456-4_2.
[5] J. Horty, Agency and Deontic Logic, Oxford University Press, 2001. doi:10.1093/0195134613.001.0001.
[6] T. Dalmonte, A. Mazzullo, A. Ozaki and N. Troquard, Non-Normal Modal Description Logics, in: Logics in Artificial

Intelligence, S. Gaggl, M.V. Martinez and M. Ortiz, eds, Springer Nature Switzerland, 2023, pp. 306–321. ISSN 1611-
3349. ISBN 9783031436192. doi:10.1007/978-3-031-43619-2_22.

[7] F. Baader and S. Ghilardi, Unification in modal and description logics, Logic Journal of IGPL 19(6) (2010), 705–730.
doi:10.1093/jigpal/jzq008.

[8] P. Woltert and M. Zakharyaschev, Modal description logics: modalizing roles, Fundamenta Informaticae 39(4) (1999),
411–438. doi:10.3233/fi-1999-39405.

[9] F. Baader and A. Laux, Terminological Logics with Modal Operators (1995), 808–814.
[10] H. Prakken and M. Sergot, Dyadic Deontic Logic and Contrary-to-Duty Obligations, in: Defeasible Deontic Logic,

Springer Netherlands, 1997, pp. 223–262. ISBN 9789401588515. doi:10.1007/978-94-015-8851-5_10.
[11] E. Lorini, On the Logical Foundations of Moral Agency, in: Deontic Logic in Computer Science, Springer Berlin Heidel-

berg, 2012, pp. 108–122. ISSN 1611-3349. ISBN 9783642315701. doi:10.1007/978-3-642-31570-1_8.

http://ns.inri.fr/pwkso/

28 C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[12] G. Bonnet, C. Leturc, E. Lorini and G. Sartor, Influencing Choices by Changing Beliefs: A Logical Theory of Influence,
Persuasion, and Deception, in: Deceptive AI, Springer International Publishing, 2021, pp. 124–141. ISSN 1865-0937.
ISBN 9783030917791. doi:10.1007/978-3-030-91779-1_9.

[13] F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider and D. Nardi, The Description Logic Hand-
book: Theory, Implementation and Applications, Cambridge University Press, 2007. ISBN 9780521150118.
doi:10.1017/cbo9780511711787.

[14] K. Schild, A correspondence theory for terminological logics: preliminary report, in: Proceedings of the 12th International
Joint Conference on Artificial Intelligence - Volume 1, IJCAI’91, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1991, pp. 466–471–. ISBN 1558601600.

[15] R. Rosati, On the Semantics of Epistemic Description Logics., Description Logics 96 (1996), 05.
[16] F.M. Donini, M. Lenzerini, D. Nardi, W. Nutt and A. Schaerf, An epistemic operator for description logics, Artificial

Intelligence 100(1–2) (1998), 225–274. doi:10.1016/s0004-3702(98)00009-5.
[17] A. Artale and E. Franconi, A temporal description logic for reasoning about actions and plans, Journal of Artificial

Intelligence Research 9 (1998), 463–506. doi:10.1613/jair.516.
[18] A. Artale and E. Franconi, A survey of temporal extensions of description logics, Annals of Mathematics and Artificial

Intelligence 30 (2000), 171–210.
[19] C. Areces and B. ten Cate, 14 Hybrid logics, in: Studies in Logic and Practical Reasoning, Elsevier, 2007, pp. 821–868.

ISSN 1570-2464. doi:10.1016/s1570-2464(07)80017-6.
[20] S. Muñoz, J. Pérez and C. Gutierrez, Minimal Deductive Systems for RDF, in: The Semantic Web: Research and

Applications, Springer Berlin Heidelberg, 2007, pp. 53–67. ISSN 1611-3349. ISBN 9783540726678. doi:10.1007/978-3-
540-72667-8_6.

[21] F. Orlandi, D. Graux and D. O’Sullivan, Benchmarking RDF metadata representations: Reification, singleton property
and RDF, in: 2021 IEEE 15th International Conference on Semantic Computing (ICSC), IEEE, 2021, pp. 233–240.
doi:10.1109/icsc50631.2021.00049.

[22] V. Nguyen, O. Bodenreider and A. Sheth, Don’t like RDF reification? Making statements about statements us-
ing singleton property, in: Proceedings of the 23rd international conference on World wide web, 2014, pp. 759–770.
doi:10.1145/2566486.2567973.

[23] N. Noy and A. Rector, Defining N-ary Relations on the Semantic Web, W3C Working Group Note, W3C, 2006-04.
https://www.w3.org/TR/2006/NOTE-swbp-n-aryRelations-20060412/.

[24] V. Nguyen, H.Y. Yip, H. Thakkar, Q. Li, E. Bolton and O. Bodenreider, Singleton Property Graph: Adding A Semantic
Web Abstraction Layer to Graph Databases., in: BlockSW/CKG@ ISWC, 2019, pp. 1–13.

[25] J.J. Carroll, C. Bizer, P. Hayes and P. Stickler, Named graphs, Journal of Web Semantics 3(4) (2005), 247–267.
doi:10.1016/j.websem.2005.09.001.

[26] R. Crouch and A.-L. Kalouli, Named graphs for semantic representation, in: Proceedings of the Seventh Joint Conference
on Lexical and Computational Semantics, 2018, pp. 113–118. doi:10.18653/v1/s18-2013.

[27] A. Zimmermann, RDF 1.1: On Semantics of RDF Datasets, W3C Working Group Note, W3C, 2014-02. https://www.
w3.org/TR/rdf11-datasets/.

[28] O. Hartig, Foundations of RDF* and SPARQL*:(An alternative approach to statement-level metadata in RDF), in: AMW
2017 11th Alberto Mendelzon International Workshop on Foundations of Data Management and the Web, Montevideo,
Uruguay, June 7-9, 2017., Vol. 1912, Juan Reutter, Divesh Srivastava, 2017.

[29] O. Hartig and P.-A. Champin, Metadata for rdf statements: the rdf-star approach, in: Lotico, 2021.
[30] T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf and J. Hendler, N3Logic: A logical framework for the World Wide

Web, Theory and Practice of Logic Programming 8(3) (2008), 249–269. doi:10.1017/s1471068407003213.
[31] T. Berners-Lee, D. Connolly, E. Prud’hommeaux and Y. Scharf, Experience with N3 rules, in: W3C Workshop on Rule

Languages for Interoperability, 27-28 April 2005, Washington, DC, USA, W3C, 2005. http://www.w3.org/2004/12/
rules-ws/paper/94.

[32] J. Frey, K. Müller, S. Hellmann, E. Rahm and M.-E. Vidal, Evaluation of metadata representations in RDF stores,
Semantic Web 10(2) (2019), 205–229. doi:10.3233/sw-180307.

[33] S. Sen, M.C. Malta, D. Katoriya, B. Dutta and A. Dutta, Labeled k-partite Graph for Statement Annotation in the
Web of Data, in: 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent
Technology (WI-IAT), IEEE, 2020, pp. 63–71. doi:10.1109/wiiat50758.2020.00014.

[34] S. Sen, D. Katoriya, A. Dutta and B. Dutta, RDFM: An alternative approach for representing, storing, and maintaining
meta-knowledge in web of data, Expert Systems with Applications 179 (2021), 115043. doi:10.1016/j.eswa.2021.115043.

[35] H. van Ditmarsch, W. van der Hoek and B. Kooi, Dynamic Epistemic Logic, Springer Netherlands, 2008. ISBN
9781402058394. doi:10.1007/978-1-4020-5839-4.

[36] J.-J.C. Meyer, Modal Epistemic and Doxastic Logic, in: Handbook of Philosophical Logic, Springer Netherlands, 2003,
pp. 1–38. ISBN 9789401745246. doi:10.1007/978-94-017-4524-6_1.

[37] A. Herzig, E. Lorini and N. Troquard, Action Theories, in: Introduction to Formal Philosophy, Springer, Cham, 2018,
pp. 591–607. ISSN 2569-8753. ISBN 9783319774343. doi:10.1007/978-3-319-77434-3_33.

[38] G.H. Von Wright, On the Logic of Norms and Actions, in: New Studies in Deontic Logic, Springer Netherlands, 1981,
pp. 3–35. ISBN 9789400984844. doi:10.1007/978-94-009-8484-4_1.

https://www.w3.org/TR/2006/NOTE-swbp-n-aryRelations-20060412/
https://www.w3.org/TR/rdf11-datasets/
https://www.w3.org/TR/rdf11-datasets/
http://www.w3.org/2004/12/rules-ws/paper/94
http://www.w3.org/2004/12/rules-ws/paper/94

C. Leturc et al. / Possible Hyperworlds: representing Kripke models in RDF 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[39] V. Lifschitz, On the semantics of STRIPS, in: Reasoning about Actions and Plans: Proceedings of the 1986 Workshop,
Elsevier, 1987, pp. 1–9. doi:10.1016/b978-0-934613-30-9.50004-4.

[40] J. Broersen, A Complete STIT Logic for Knowledge and Action, and Some of Its Applications, in: Declarative Agent
Languages and Technologies VI, Springer Berlin Heidelberg, 2009, pp. 47–59. ISSN 1611-3349. ISBN 9783540939207.
doi:10.1007/978-3-540-93920-7_4.

[41] C. Leturc and G. Bonnet, A Deliberate BIAT Logic for Modeling Manipulations, in: 19th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2020), 2020, pp. 699–707. ISBN 9781450375184.

[42] G. Boella, L. van der Torre and H. Verhagen, Introduction to normative multiagent systems, Computational & Mathe-
matical Organization Theory 12(2–3) (2006), 71–79. doi:10.1007/s10588-006-9537-7.

[43] M. Kwiatkowska, G. Norman and D. Parker, PRISM 4.0: Verification of Probabilistic Real-Time Systems, in: Com-
puter Aided Verification, Springer Berlin Heidelberg, 2011, pp. 585–591. ISSN 1611-3349. ISBN 9783642221101.
doi:10.1007/978-3-642-22110-1_47.

	Introduction
	Running example
	State of the art
	Kripke models
	Related work on modal logic and the semantic web, and positioning
	RDF about RDF: approaches for RDF metadata representation

	Possible Hyperworlds: representing possible worlds as linked data
	Alternative representations for possible worlds
	Closed-world assumption vs open-world assumption

	Representing accessibility relations with N-ary patterns
	Representing binary accessibility relations between worlds
	Representing (N+1)-ary accessibility relations using lists for arguments
	Representing (N+1)-ary accessibility relations using a new class for relation instances

	Summary and resulting ontology
	The PWKSO ontology for representing possible (hyper)worlds and Kripke structures
	Generic usage pattern for the PWKSO ontology
	Complete examples

	Discussion and possible extensions
	Discussing the function f
	Querying, instantiating, and reasoning with Kripke models
	The case of nested possible worlds and nested Kripke structures: possible worlds and Kripke structures contained in a possible world
	A large panel of applications and domain specific extensions

	Conclusion
	Acknowledgment
	References

