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Abstract. The Covid-19 pandemic is influenced by many environmental, health, and socioeconomic aspects such as air pollution,
comorbidity, occupation, etc. Decision makers need better data on the mortality and morbidity of Covid-19 to efficiently with-
hold its spread. The majority of the data resources dedicated to Covid-19 focus on spatiotemporal aspects only. Furthermore,
existing research often overlooks the integrated impact of combining multiple factors. In this study, we efficiently model and
analyse Covid-19’s epidemiological data from multiple dimensions, such as time, location, temperature, comorbidity, occupa-
tion, etc. Data warehousing technology is used to model and integrate data from disparate sources in a multidimensional format.
Besides, to make the data interoperable and accessible, they are annotated, integrated, and published semantically using the
Resource Description Framework (RDF) model in accordance with the Findability, Accessibility, Interoperability, and Reusabil-
ity (FAIR) principles. To facilitate Online Analytical Processing (OLAP) compatibility, we annotate the Covid-19 knowledge
graph—referred to as CovKG—with multidimensional semantics using QB and QB4OLAP vocabularies. CovKG is analyzed
through an interactive analytical interface to observe the Covid-19 confirmed cases and deaths from thirteen aspects. Finally,
the performance and quality of CovKG are assessed against prominent data stores modeling Covid-19 data. The ETL workflow
typically takes around 42 minutes to load CovKG, which is connected to 10,951 external resources, has a size of about 5.3 GB,
and consists of around 44 million RDF triples. When evaluated using competency queries, CovKG can answer 100% of the
questions, whereas other prominent data stores can only provide the best answers for 39% of them.
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1. Introduction

The Covid-19 pandemic has affected nearly every country in the world. It is a contagious disease caused by
the SARS-COV-2 virus, which exhibits a high mutation and transmission rate. Since the onset of the pandemic,
numerous studies, datasets, and systems have been proposed and implemented worldwide to monitor the disease’s
epidemiology. Epidemiology is concerned with understanding the incidence, distribution, causes, and potential con-
trol of diseases in populations. In the case of Covid-19, this can be achieved by observing attributes such as daily
confirmed and death cases, recoveries, critical cases, and more. The epidemiology of Covid-19 is influenced by var-
ious factors. While most systems and studies conducted on this issue primarily focus on the spatiotemporal aspect, it
is important to note that environmental, health, and socioeconomic factors also play a significant role in influencing
the spread of Covid-19.

Environmental factors include variables such as air pollution, humidity, temperature, precipitation, and wind
speed, which can contribute to virus incubation and influence individual health. Health-related aspects involve fac-
tors like comorbidity and vaccine hesitancy. Comorbidity, which refers to the presence of another underlying disease,
can impact the immune system and consequently affect the likelihood of contracting Covid-19. The socioeconomic
aspects encompass elements such as occupation, ethnicity, urbanization, and so forth. For instance, occupations that
entail leaving home, such as medical professions and law enforcement, carry a higher risk of exposure to the dis-
ease. Research focusing on these different aspects has often treated them in isolation rather than considering their
integrated effects. Furthermore, the hierarchical structure of these factors is frequently overlooked. For example,
most data repository systems designed to monitor the spatiotemporal spread of Covid-19 only track information at
the country level and do not provide details at finer sub-national levels.

In this study, we utilize Business Intelligence (BI) [1] technologies to construct a robust data framework that
empowers users to comprehensively address the previously mentioned problem. This approach sets itself apart
from prior studies that focused solely on individual aspects and neglected to consider the hierarchical structure
of the factors involved. BI encompasses a collection of disciplines and technological tools that provide intelligent
support to decision-makers within organizations, enabling them to make efficient decisions regarding their business
processes [2]. Therefore, global organizations like the World Health Organization (WHO) can utilize BI on Covid-
19 epidemiological data, including confirmed cases and deaths, to analyze and mitigate the impact of Covid-19 and
its transmission.

To achieve this, the data is procured from disparate sources and integrated into a Data Warehouse (DW) through
an Extract-Transform-Load (ETL) workflow. In the ETL workflow, data are collected from disparate sources, trans-
formed into an agreed upon format, and loaded in a data store that allows analysis, respectively [3]. Furthermore,
to facilitate data analysis from multiple perspectives, the DW is designed in accordance with the Multidimensional
(MD) model. This model offers an easily understandable framework in which data are organized within an n-
dimensional space, commonly referred to as a data cube. This space is composed of dimensions (representing the
cube’s axes) and facts (representing the cells within the cube) [4]. Dimensions are ordered into hierarchies (com-
posed of a number of levels) to explore and (dis)aggregate fact measures (i.e., numeric data) at various levels of
detail [5]. For example, the geographyHierarchy hierarchy (Admin2 → Admin1 → Country → Continent)
of the Geography dimension allows to (dis)aggregate the number of deaths at various administrative levels of
detail.

We model the Covid-19 epidemiological data using fact constellation of data cuboids [6] as it helps managing and
modelling in a sustainable manner. It also enables Online Analytical Processing (OLAP) functionality [7]. OLAP
functionality provides quick and accurate results. It consists of a number of operations, such as roll up (where data is
aggregated to a coarser granularity), drill down (where data is dis-aggregated to a finer granularity), drill out (where
data is spread out along multiple cells), drill across (where data in two cubes is merged through one or more shared
dimensions), slice (where the value of one dimension level is fixed and the analysis is done along the others), dice
(where the value of one or more dimension levels is fixed to one or more levels and the analysis is done along the
others) etc. [1] [8].

To contextualize and enable semantic integration on the data, the DW is implemented as a knowledge graph.
To do this, the data cuboids are represented using the Resource Description Framework (RDF) [9] model. RDF
is the W3C standard web data model designed for flexible data interchange on the web. The resulting knowledge
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graph will truly prove to be beneficial if it is published using the Findability, Accessibility, Interoperability, and
Reusability (FAIR) principles [10]. An efficient way to ensure this is to publish the data as Linked Data [11]. This
will connect the integrated data to the vast ontology preserved in the Linked Open Data (LOD) cloud [12] which
houses more than 1300 interlinked datasets. To achieve this, RDF, RDF Schema (RDFS) [9], and Web Ontology
Language (OWL) [13] vocabularies are used in the data descriptions to apply various constraints to the data. To
annotate data with MD semantics, Data Cube (QB) [14] and QB for OLAP (QB4OLAP) [15] vocabulary are used
as well. Preparing the data in RDF format enables it to be queried using the RDF query language, SPARQL. To
summarize, the unique contributions of this study are as follows:

- Producing a Covid-19 knowledge graph (CovKG)1 with MD semantics from diverse sources. This involves
collecting data from 20 different sources, defining a target model (a schema-level knowledge graph) with MD
semantics by analyzing the source data, and integrating this data into the knowledge graph in a comprehensive
and sustainable manner according to the semantics encoded in the target model.

- Linking data internally and externally with other knowledge graphs available in the LOD cloud.
- Developing an OLAP interactive interface to facilitate users creating OLAP queries using GUI components for

deriving business critical knowledge.
- Conducting qualitative assessment using SPARQL queries and drawing statistical insights regarding the multi-

ple dimensions of Covid-19 epidemiology.

The remainder of the paper is organized as follows. Section 2 defines various terms that are frequently referred
throughout the study. Section 3 discusses the previous related work. Section 4 describes the datasets and methods
used in the study to model the knowledge graph. Section 5 describes the knowledge graph generation process.
Section 6 describes the features of CovKG. Section 7 describes the experimental evaluation. Finally, Section 8
provides the concluding remarks and suggestions for future work.

2. Preliminaries

In this section, we introduce the relevant terms that appear frequently throughout the paper.

2.1. Knowledge Graph

A knowledge graph (KG) is a semantic graph that manifests as interlinked network of real-world entities and
visualizes the relationship between them. The KG comprises two elements: Terminology Box (TBox) and Assertion
Box (ABox). The TBox defines the domain schema, while the ABox represents instances [16]. Formally, the TBox
is defined as a 3-tuple: T Box = (C, P, AO), where C, P, and AO represent the sets of concepts, properties, and
terminological axioms. A concept is the blueprint of a group of instances sharing common properties. Properties
establish relationships between instances of concepts or link instances of a concept to literals. Terminological axioms
describe concepts, properties, and the interconnections and restrictions among them within the domain. The ABox
assertions must conform to the definitions set by the TBox. In our context, the schema and instances of source
datasets are called source TBoxes and ABoxes respectively. The TBox of the KG is formed by integrating and
modelling the source data is the target TBox. It can have one or multiple target ABoxes. We refer to the KG
consisting of the target TBox and ABoxes as the Covid-19 KG (CovKG).

In this paper, we express KG elements using the RDF model [9]. In RDF, real world entities are uniquely rep-
resented using internationalized resource identifiers (IRIs), and the description of the entities is expressed in the
form of RDF triples which are three-part statements containing a subject, a predicate, and an object. For instance, in
Figure 1, the subject cdw:SpatioTemporalDataset has an object cdw:Admin1. The relation between them
is expressed through the predicate cdw:hasAdm1. To express richer constraints on the KG, formal languages like
RDFS and OWL are used in combination with RDF. For example, Figure 1 shows that in CovKG, cdw:Admin1
is annotated as an owl:Class and is externally linked to Geonames KG using the owl:sameAs property. Given

1Here, we use the terms “semantic data warehouse" and “knowledge graph" interchangeably.
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Fig. 1. A visual example of knowledge graphs. Here, cdw:, qb4o:, gn: rdf:, owl: represent their respective namespaces.

our emphasis on MD modeling, data needs to be annotated with MD semantics at both the schematic and instance
levels. For this purpose, we employ the QB4OLAP vocabulary.

2.2. QB4OLAP

QB4OLAP is the extension of the RDF data cube vocabulary [14], which is the W3C standard for publishing sta-
tistical data as RDF. Despite being specialized for data cubes, QB does not facilitate OLAP queries to be conducted
on the RDF data cubes. Thus QB4OLAP was designed as a vocabulary to represent OLAP cubes in RDF. It enables
the implementation of OLAP operators as SPARQL queries directly on the RDF representation. In Figure 2, the
schematic diagram of the QB4OLAP vocabulary is given.

qb:DataStructureDefinition

qb:DataSet

qb:Observation

qb:SliceKey

qb:Slice

qb:ComponentProperty

qb:ComponentSpecification

qb:componentRequired : boolean

qb:componentAttachment : rdfs:Class

qb :order : xsd:int

skos:Concept

qb4o:AggregatinFunction

qb4o:LevelMember

qb:MeasureProperty

qb:AttributeProperty

qb:DimensionProperty

qb4o:LevelAttribute

qb4o:LevelProperty qb4o:HierarchyStep

qb4o:Hierarchy

qb4o:RollupProperty

qb4o:Cardinality

qb4o:Avg

qb4o:Count

qb4o:MIn

qb4o:Max

qb4o:Sum

qb4o:OneToOne

qb4o:OneToMany

qb4o:ManyToOne

qb4o:ManyToMany

qb4o:inLevel qb4o:hasAttribute

qb4o:isCuboidOf

qb:sliceKey
qb:structure

qb:sliceStructure

qb:slice

qb:observation

qb:subSlice

qb:component

Property

qb:component

qb4o:cardinality

qb4o:level

qb4o:aggregationFunction

qb:measure

qb:attribute

qb:dimension

qb:concept

skos:broader

qb:CodedProperty

qb4o:parentLevel

qb4o:childLevel

qb4o:Hierarchy

qb4o:rollup

owl:TransitiveProperty

q
b

4
o

:m
e
m

b
erO

f

qb4o:inDimension

qb4o:hasHierarchy

qb:HierarchicalCodeList

sdmx:Collection

skos:ConceptScheme

<<union>>
qb:codeList

qb4o:hasLevel

qb4o:pcCardinality

qb:componentProperty

LEGEND

Concept

Instance

Object Property

SubClass Of
Instance of

qb:dataSet

Fig. 2. The QB4OLAP vocabulary (reproduced from [6]).

In the figure, the prefix qb: represents the terms defined in the QB vocabulary, QB4OLAP terms are denoted
with the prefix qb4o: and displayed with a gray background. RDF classes, properties, and class instances are



S.M. Raihan et al. / CovKG: A Covid-19 knowledge graph annotated with multidimensional semantics 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

represented by capitalized terms, noncapitalized terms, and capitalized italic terms respectively. An arrow from
class A to class B, with the label rel points out that rel is an RDF property of domain A and range B. White
triangle arrows represent subclass, or subproperty relationships whereas black diamonds represent rdf:type re-
lationships (instances). It can be seen that the vocabulary presents various constructs to represent the dimension
(qb:DimensionProperty), its levels (qb4o:LevelProperty), level members (qb4o:LevelMember),
level attributes (qb4o:LeveAttributes), level’s rollup properties (qb4o:RollupProperty), dimen-
sion hierarchies (qb4o:Hierarchy), and hierarchy steps (qb4o:HierarchyStep). QB4OLAP offers the
qb:Dataset to delineate an observation dataset. The structure of this dataset is outlined using qb:DataStruct-
ureDefinition. This structure can take the form of either a cube, if specified in dimensions and measures, or
a cuboid, if outlined in levels of dimensions and measures. In Section 5, we illustrate the utilization of various
QB4OLAP components for annotating CovKG with MD semantics, both in the TBox (Listing 1) and ABox (List-
ing 4 and 5).

3. Related Work

In this section, we conduct a comprehensive examination of prior relevant research related to the current study’s
topic. Through the analysis of prior studies, datasets, and systems focused on Covid-19, we categorize them into
two specific groups:

1. Relevant research papers within the domain of our interest.
2. Prominent public data repositories dedicated to reporting on Covid-19.

Table 1 presents a summary of the comparative analysis of research papers and prominent data repositories regard-
ing various features associated with COVID-19 data. The table lists the sources of previous research or repositories,
indicating their involvement with confirmed and death cases, the core technologies utilized, usage of knowledge
graphs, adherence to FAIR principles, compatibility with external datasets, provision of query interfaces or dash-
boards, availability of downloadable data, ability to conduct visual data analysis, covered aspects, and consideration
of multiple dimensions. Core technologies serve as indicators of whether: 1) their processes involve either discovery
techniques or surveys, 2) they employ data mining or pattern mining to uncover hidden knowledge, 3) they utilize
DW/OLAP technology for descriptive analysis, 4) RDF technology is used for semantic annotation, and 5) Natural
Language Processing (NLP) is employed for processing scientific open data.

The table reveals that the majority of the research papers focus on analyzing confirmed cases, with only [21]
considering both death and confirmed counts. Most of these studies collect data from secondary sources and utilize
data or pattern mining techniques to unveil hidden insights. However, [20] and [21] employ Data Warehousing
technology to enable OLAP-like analysis. [22] retrieves data from scientific literature using NLP techniques and
apply KG methods to analyze drug-drug interactions. Similarly, [23] also utilizes KGs, covering various aspects,
although they do not enable MD analysis. Both [22] and [23] adhere to FAIR principles and provide downloadable
data. While most of the research papers offer query interfaces, [18] and [19] do not. However, none of the studies
provide a dashboard to facilitate end-users for data analysis.

Since the beginning of the Covid-19 pandemic, various government and non-government organizations worldwide
have made considerable efforts to make real-time Covid-19 data available to the public. These steps have provided
researchers with abundant data to conduct essential research necessary to tackle this global catastrophe. Moreover,
they have made the data publicly available through online platforms, allowing users to search, view, analyze, and
download data related to Covid-19. Articles [24] - [29] are some of the most prominent data repositories dedicated
to monitoring Covid-19 epidemiology. Some of them focus on global Covid-19 scenario, such as Worldometer [24],
while there are those which target a specific region, such as Bangladesh Dynamic Dashboard for Covid-19 [27].
Note that the study in [26] records number of Covid-19 waves instead of death and confirmed counts.

The studies and repositories mentioned are undoubtedly valuable, providing prolific data for analyzing Covid-
19. However, as outlined in Table 1 they are not devoid of shortcomings. For instance, studies [17]- [20] utilized
individual-level data. Although individual-level data offers a large number of influencing parameters, such parame-
ters often have a significant amount of missing data due to undisclosed personal information. In the case of modeling



6 S.M. Raihan et al. / CovKG: A Covid-19 knowledge graph annotated with multidimensional semantics

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table
1:

O
verview

ofrelated
w

orks.

C
ategory

R
eference

D
eath

info
C

onfi-
rm

ed
cases
info

C
ore

Technologies
K

G
?

FA
IR

?
C

om
patible

w
ith

external
dataset?

Q
uery

interface/
D

ash
board

E
nable

visual
D

ata
A

nalysis?

D
ata

D
ow

nlo-
adable?

C
overed

aspects
C

overed
m

ultiple
dim

en-
sions?

D
ata

collection

Pattern/
data

m
ining

D
W

/
O

L
A

P
R

D
F

N
L

P

R
esearch

Papers

[17]
✕

✓
D

D
✕

✕
✕

✕
✕

✕
✕

✓
✕

✕
SP

✕
[18]

✕
✓

D
D

✕
✕

✕
✕

✕
✕

✕
✕

✕
✕

T
✕

[19]
✕

✓
D

D
✓

✕
✕

✕
✕

✕
✕

✕
✕

✕
SE

✕
[20]

✕
✓

D
D

✓
✓

✕
✕

✕
✕

✕
✓

✕
✕

SE
✕

[21]
✓

✓
D

D
✕

✓
✕

✕
✕

✕
✕

✓
✕

✕
E

✓
[22]

✕
✓

D
D

✓
✕

✓
✓

✓
✓

✓
✓

✕
✓

H
✕

[23]
✕

✓
D

D
✕

✕
✓

✕
✓

✓
✓

✓
✕

✓
SP,SE

,H
✕

Prom
inent

D
ata

R
epositories

[24]
✓

✓
S

✕
✕

✕
✕

✕
✕

✕
✓

✓
✕

SP
✕

[25]
✓

✓
S

✕
✕

✕
✕

✕
✕

✕
✓

✓
✓

SP
✕

[26]
✕

✕
S

✕
✕

✕
✕

✕
✕

✕
✓

✓
✓

SP
✕

[27]
✓

✓
S

✕
✓

✕
✕

✕
✕

✕
✓

✓
✓

SP
✕

[28]
✓

✕
S

✕
✕

✕
✕

✕
✕

✕
✓

✓
✓

SE
,SP

✕
[29]

✓
✕

S
✕

✕
✕

✕
✕

✕
✕

✓
✓

✕
SP

✕

C
ovK

G
✓

✓
D

D
✓

✓
✓

✕
✓

✓
✓

✓
✓

✓
SP,T,E

,
H

,SE
✓

∗[D
D

-D
ata

D
iscovery,S-Survey]

†
[SP-Spatial,T-Tem

poral,E
-E

nvironm
ent,H

-H
eath,SE

-Socioeconom
ic]



S.M. Raihan et al. / CovKG: A Covid-19 knowledge graph annotated with multidimensional semantics 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

occupation data, they did not employ any recognized occupation classification model. In contrast, our study aggre-
gated population-level data—specifically, the number of confirmed cases and deaths—rather than individual cases.
Such data are widely available and have the least amount of missing values. We also included occupation as one of
the dimensions for analyzing Covid-19 and followed the ISCO-08 system to model it, which is an internationally
renowned occupation classification system [30].

In [31], a theoretical framework for modeling COVID-19 data was presented, but its implementation was not
realized. The authors in [23] proposed an existing ontology using Wikidata to serve as a knowledge base for COVID-
19. However, it is general-purpose ontology where Covid-19 information is just one facet. Our study designed
and implemented a novel ontology (TBox of CovKG) and CovKG, dedicated and specialized for Covid-19 data
modeling.

The data warehouse modeled in [21], named COVID-WAREHOUSE, specifically focuses on data from Italy.
Our ontology covers twenty-two countries, with Italy being one of them. It also analyzes Covid-19 from thirteen
perspectives, including weather and air pollution aspects. Furthermore, authors in [22] contributed to the study of
relation between comorbidities and Covid-19, but they did not consider structured data. Our ontology is based on
a general-purpose, structured dataset of confirmed cases and deaths, providing the flexibility to conduct interdis-
ciplinary research with ease. The prominent data stores share the common limitation that data is not available in
a semantic format. Our CovKG is a semantic data warehouse created using the RDF model. Users can link its
components to external KGs. This makes data sharing and new knowledge discovery relatively easier.

In summary, our study addresses these research gaps through the application of multidimensional semantic data
integration, forming, and analyzing CovKG from multiple perspectives at fine granularities, and aims to integrate it
as part of linked open data.

4. Methodology and Knowledge Graph Modelling

The entire methodology to generate CovKG by modeling Covid-19 epidemiological data in a multidimensional
format is illustrated in Figure 3. Initially, the data is collected from various data sources, which are obtained from the
Web. Most of the sources present their data in CSV, XLS(X), and JSON formats. After collecting the raw data, we
semantically design the TBox of CovKG (data warehouse) with MD semantics using a demand-driven approach.
Then, the CovKG is populated using an ETL pipeline. In the ETL pipeline, the relevant data is extracted from
the sources, transformed semantically according to the semantics encoded in the target schema, and finally, the
transformed data is loaded into a data warehouse in the form of a semantic graph. Using an OLAP interface, the
OLAP operability of the CovKG is assessed. Finally, using SPARQL queries, qualitative assessment and statistical
analysis are performed.

In this section, we outline data sources and design the target TBox for CovKG. In the next section, we explore
the generation of CovKG’.

4.1. Description of Data Sources

We use different searching techniques ( [32], [33], [34]) for discovering Covid-19 related datasets [35]. Dur-
ing the search process, we highlight the aspects of data and selectively focus on datasets that capture information
from multiple dimensions. For instance, ‘Covid-19 daily province level confirmed case dataset by occupation’ is an
example of a self-explanatory query. We extract the data either directly from the source sites or by utilizing Applica-
tion Programming Interfaces (APIs). The datasets are available as either CSV, Spreadsheets, or JSON files. The data
mainly consist of Covid-19 confirmed cases and death counts. The data are collected with a focus on spatiotemporal,
environmental, health, and socioeconomic aspects. An overview of the data sources is provided in Table 2.

Spatiotemporal dataset: Spatiotemporal data are collected from 11 sources spanning over 18 countries. Addi-
tionally, Turkey and Romania’s data obtained for occupation dataset are also used. Daily data for Austria, Italy,
Lithuania, Poland, Slovakia, and Sweden are available at state, province, county, voivodeship, region, and country
level respectively. Croatia, Denmark and Finland’s data are available at country, municipality and region level re-
spectively. Greece, Ireland and Netherland’s data are available at prefecture, county and municipality level. Indian
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Fig. 3. Incorporation of the ETL workflow to form CovKG from disparate data sources, followed by conducting analysis on CovKG.

data are available at states and unions level whereas South Africa’s data are at provincial level. Finally, country level
data for USA are collected.

Weather dataset: Historic weather data for various geographic locations specified by latitude and longitude are
available. The collected data contains information such as temperature (degrees Celsius), humidity (%), precipitation
(millimeters), and wind speed (kilometers per hour).

Air pollution dataset: We collect the daily state-level air pollution data for South Africa and India. The pollutants
considered are ground-level Ozone (O3), particulates (PM2.5 and PM10), Sulfur dioxide (S O2), Carbon monoxide
(CO), and Nitrogen dioxide (NO2). These pollutants are commonly measured in monitoring air pollution, as per
[54].

Vaccine hesitancy dataset: Questionnaire data are collected, which document and classify hesitant behavior of
the subjects regarding vaccination.

Comorbidity dataset: Monthly death counts at the state level, grouped by comorbidity in the U.S.A. are available.
Ethnicity dataset: USA death counts of various races at the state level on a monthly basis are available.
Place of death dataset: Monthly death counts at the state level based on place of death in the U.S.A. are available.
Occupation dataset: Occupation datasets are collected in light of ISCO-08 standard for occupation classification.

Data on deaths among various occupations due to Covid-19 in England and Wales are collected. Both Romania and
Turkey’s data are available at the provincial level.

Urbanicity Dataset: Urbanicity indicates how rural or urban a region is. The urbanicity dataset is constructed
from the spatiotemporal data collected for the USA by mapping counties to levels of urbanicity using the urban-rural
classification scheme for US counties [55].

4.2. Modeling the Target TBox of CovKG

In this section, we design the MD schema of CovKG to integrate the sources defined in Section 4.1, as depicted
in Figure 4. Since we integrate data from various dimensions and disparate sources, not all data points will align,
after integration. For instance, count of deaths of a specific ethnicity at a certain place on a certain time may be
available from one data source. Same may be available in case of deaths of patients of a certain comorbidity from
another data source. However, to place them in a single cube, we need to know the overlap between the counts i.e.,
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the exact count of deaths in that ethnicity who had that specific comorbidity. This is what we mean, when we say
data points will not align. Furthermore, data concerning the same dimensions collected from different sources may
be available at different hierarchical levels. To address this issue, we employ data cuboids [6]. These cuboids are
subsets of data cubes and are represented with respect to one or more dimension levels, in contrast to data cubes,
which are represented with respect to all dimensions. This approach allows data cuboids to facilitate separation of
concerns when analyzing the data.

In Figure 4, the green cube shapes represent the data cuboids, while the blue rectangles represent the dimen-
sions. An exclusive relationship (⊗) between two levels indicates that the cuboid can contain data from either
of the levels. Measures of the cuboids are Total Confirmed Cases and Total Deaths. Among the 13 dimensions,
cdw:GeographyDim and cdw:TimeDim constitute the spatiotemporal perspective; cdw:TemperatureDim,
cdw:HumidityDim, cdw:WindDim, cdw:PrecipitationDim, and, cdw:AirPollutionDim con-
stitute the environmental aspect; cdw:VaccineHesitencyDim and cdw:ComorbidityDim constitute
the health perspective; cdw:EthnicityDim, cdw:PlaceofDeathDim, cdw:OccupationDim, and
cdw:UrbanicityDim constitute the socioeconomic perspective.

The cdw:TimeDim dimension has the cdw:Calendar hierarchy, which consists of cdw:Day, cdw:Month
and cdw:Year levels, from the finest to coarsest level. This hierarchy allows the user to see the temporal evolu-
tion of the confirmed cases as well as deaths. The cdw:GeographyDim dimension has the cdw:Geography
hierarchy containing cdw:Admin2 as the finest level, which represents the second administrative level as per
Geonames [56]. The other higher levels are cdw:Admin1, cdw:Country, and cdw:Continent.

The cdw:TemperatureDim contains the hierarchy cdw:Temperature. It houses two levels
(cdw:ThermanlSubtype, cdw:Thermanltype) based on the classification model of [57]. Each of
the cdw:HumidityDim, cdw:WindDim and cdw:PrecipitationDim dimensions contains only one
level. The cdw:AirPollutionDim dimension represents the daily air pollution through various pollutants.
This dimension has the cdw:AirPollution hierarchy, which contains the cdw:PollutionLevels and
cdw:Pollutants levels. The cdw:PollutionLevels level represents the various levels of pollution de-
termined according to the levels depicted in [54]. Since Covid-19 is a respiratory disease, it is intuitive that air
pollution may have relationships with its epidemiological behavior [58–61].

The dimension cdw:VaccineHesitencyDim represents the hesitancy to accept vaccines. Its cdw:Hesita-
ncies hierarchy has two levels: cdw:HesitancyScore and cdw:VaccineAvailabilityYear. It is
based on the questionnaire used in the research done in [49]. The vaccination intent was determined based on the
survey respondents’ responses to the question of whether they will get vaccinated if a Covid-19 vaccine becomes
available to them in 2021. The respondent can respond with scores 1 (Strongly Agree), 2 (Agree), 3 (Neutral), 4
(Disagree), and 5 (Strong Disagree). The level cdw:VaccineAvailabilityYear groups the responses based
on year. We have selected vaccine hesitancy as a dimension as it represents people’s tendency not to take vaccine,
hence assist in the further propagation of the pandemic. In 2019, WHO listed vaccine hesitancy as one of the top ten
threats to global health [62].

The dimension cdw:ComorbidityDim represents affliction with other diseases alongside Covid-19. Under
its cdw:Diseases hierarchy, there are two levels:cdw:Disease and cdw:DiseaseType. Diseases are cat-
egorized into three disease types: respiratory diseases, circulatory diseases, and other diseases. Various research
has shown that the presence of comorbidities such as diabetes, respiratory diseases, cardiovascular diseases etc.,
can influence Covid-19’s impact on the patient’s body [63–65]. The cdw:EthnicityDim dimension repre-
sents the races of the cases in the hierarchy cdw:Ethnicities. This hierarchy holds two levels - cdw:Race
and cdw:RaceType. The level cdw:RaceType consists of two instances - Hispanic and Non-Hispanic. Al-
though further classification for Hispanic is not available, Non-Hispanic is divided into five groups, namely, white,
black, American Indian / Alaskan native, Asian, and native Hawaiian / Pacific Islander. Multiple researches have
shown the existence of ethnic disparity in Covid-19 cases [66–70]. Place of death is an important indicator of the
availability of healthcare facilities in a geographical area of interest. The dimension cdw:PlaceOfDeathDim
indicates the place where the Covid-19 patients died. Under the cdw:PlaceofDeath hierarchy, it has two
levels: cdw:DeathPlaceSubtype and cdw:DeathPlaceType. cdw:DeathPlaceType has four types:
Healthcare, Homelike, Other, and Unknown. The finer level cdw:Deat-hPlaceSubtype has three instances
both for Healthcare and Homelike, while Other and Unknown are not further divided. The three instances in
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Fig. 4. Multidimensional schema of Covid data warehouse.
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cdw:DeathPlaceSubtype for Healthcare are: Inpatient, Outpatient, and Dead on arrival. The three instances
of Homelike are: Decedent’s home, Nursing home, and Hospice facility.

Occupations are represented by the cdw:OccupationDim dimension, whose cdw:Occupation hierarchy
has four levels as per ISCO-08 [71]. Among the four levels, cdw:Individual represents individual occupations
and cdw:Minor represents the minor categories which group the individual professions. Similarly, sub-major
occupations categorize minor ones, which in turn are aggregated into major occupations. Occupation is an important
socioeconomic factor to take into consideration when analyzing Covid-19’s epidemiology because occupational
distribution can describe people’s interaction behavior and hence provide a precursor to the transmission path of the
disease.

The dimension cdw:UrbanicityDim represents the urban-rural classification of a geographical area as per
the urban-rural classification scheme for counties [72]. The cdw:UrbanicitySubtype level is composed of six
instances: Large central metro, large fringe metro, medium metro, small metro, micropolitan, and noncore. Among
them, the first four belong to the metropolitan (urban) category and the last two belong to the noncore (rural)
category. Noncores and metropolitans constitute the level cdw:UrbanicityType.

5. Generation of CovKG

In this section, we will elaborate on how the task of generating CovKG is accomplished using an ETL pipeline.

In the Extraction phase, we extract data from different sources as described in Section 4.1 and cleanse and format
those data to conform with the target TBox. This cleansing and formatting tasks include extraction of micro data,
elimination of aggregated data, conversion from other formats to CSV, adding unique ids, filtering out irrelevant and
noisy data, and so on. Then, the Transformation phase semantically transforms the extracted data according to the
semantics encoded in the target TBox and generates CovKG, which is in turn loaded into the triple store Openlink
Virtuoso [73] in the Load phase.

The Transformation process unfolds in four steps: 1) The Target TBox generation step implements the target
TBox defined in Section 4.2. 2) The Source TBox generation step generates TBoxes from the data sources. 3) The
SourceToTarget mappings generation step establishes mappings between the source and target TBoxes. 4) Then, the
Target ABox generation process generates assertions consistent with the target TBox. Below, we provide a detailed
description of each of these steps.

5.1. Target TBox generation

The purpose of this step is to represent the target TBox as outlined in Section 4.2 using the constructs provided by
RDFS, OWL, and QB4OLAP (as defined in Section 2) alongside the RDF model. Users have the flexibility to create
a TBox with MD semantics either manually or by utilizing tools such as Protege [74], WebVOWL [75], or Pool-
Party [76]. Listing 1 demonstrates a part of the target TBox annotated with QB4OLAP constructs. In this listing,
cdw: represents the namespace of the data cube, which is https://bike-csecu.com/datasets/covid/cdw#. The cu-
bic structure of the dataset cdw:SpatioTemporalDataset is defined by cdw:SpatioTemporalCuboid
(lines 5-12), which contains the cdw:Admin2 and cdw:Admin1 levels of the cdw:GeographyDim dimen-
sion, and cdw:Day of the cdw:TimeDim dimension. Both cdw:Admin2 and cdw:Admin1 are included in this
cuboid, as some countries have data available only at the first administrative level, while others have data at the
second administrative level.

The cdw:TimeDim dimension contains the cdw:calendarHierarchy hierarchy which is composed of
cdw:Day, cdw:Month, and cdw:Year levels (lines 14-21). A hierarchy step of cdw:calendarHierarchy
(lines 23-26) represents that cdw:Day is related to its parent level cdw:Month through the rollup property defined
by cdw:inMonth (lines 23-26). The level cdw:Day is defined as an instance of the qb4o:LevelProperty
class, and it contains a set of attributes (lines 30-32). cdw:dayID is a level attribute (lines 35-37) and
cdw:inMonth is defined as a roll-up relation (lines 39-41). The measures cdw:Confirmed and cdw:Deaths
are defined using the qb:MeasureProperty class. They are defined as decimals to facilitate aggregation func-
tions like average, which may return floating point values.

https://bike-csecu.com/datasets/covid/cdw#
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1 #DATASETS
2 cdw:SpatioTemporalDataset a qb:DataSet;
3 qb:structure cdw:SpatioTemporalCuboid.
4 #CUBOIDS
5 cdw:SpatioTemporalCuboid a qb:DataStructureDefinition;
6 dct:conformsTo <http://purl.org/qb4olap/cubes>;
7 qb4o:isCuboidOf cdw:COVID_DW;
8 qb:component [ qb:measure cdw:Confirmed; qb4o:aggregateFunction qb4o:sum];
9 qb:component [ qb:measure cdw:Deaths; qb4o:aggregateFunction qb4o:sum];

10 qb:component [ qb4o:level cdw:Admin1; qb4o:cardinality qb4o:OneToMany];
11 qb:component [ qb4o:level cdw:Admin2; qb4o:cardinality qb4o:OneToMany];
12 qb:component [ qb4o:level cdw:Day; qb4o:cardinality qb4o:OneToMany].
13 #DIMENSIONS
14 cdw:TimeDim a qb:DimensionProperty;
15 rdfs:label "Time Dimension"@en;
16 qb4o:hasHierarchy cdw:CalendarHierarchy.
17 #HIERARCHIES
18 cdw:CalendarHierarchy a qb4o:Hierarchy;
19 rdfs:label "Calendar Hierarchy"@en;
20 qb4o:inDimension cdw:TimeDim;
21 qb4o:hasLevel cdw:Day, cdw:Month, cdw:Year.
22 #HIERARCHY STEPS
23 _:hs16 a qb4o:HierarchyStep;
24 qb4o:inHierarchy cdw:CalendarHierarchy;
25 qb4o:childLevel cdw:Day;
26 qb4o:parentLevel cdw:Month;
27 qb4o:pcCardinality qb4o:OneToMany;
28 qb4o:rollup cdw:inMonth.
29 #LEVELS
30 cdw:Day a qb4o:LevelProperty;
31 rdfs:label "Day"@en;
32 qb4o:hasAttribute cdw:dayID, cdw:dayName, cdw:inMonth;
33 rdfs:range cdw:Day.
34 #ATTRIBUTES
35 cdw:dayID a qb4o:LevelAttribute;
36 rdfs:label "Day ID"@en;
37 rdfs:range xsd:string.
38 #ROLLUP RELATIONSHIPS
39 cdw:inMonth a qb4o:LevelAttribute, qb4o:RollupProperty;
40 rdfs:label "Rollup property to roll up from day to month"@en;
41 rdfs:range onto:Month.
42 #MEASURES
43 cdw:Confirmed a qb:MeasureProperty;
44 rdfs:label "Total Confirmed Cases"@en;
45 rdfs:range xsd:decimal.
46 cdw:Deaths a qb:MeasureProperty;
47 rdfs:label "Total Deaths"@en;
48 rdfs:range xsd:decimal.

Listing 1: Target TBox defining spatiotemporal cuboid and the time dimension. Prefixes are omitted due to space
constraints.

5.2. Source TBox generation

After creating the target TBox of CovKG, the next task is to populate CovKG from the available data sources.
In order to accomplish this, we must establish mappings between the target and source constructs at the TBox
level. Therefore, it is essential to derive TBoxes from the existing sources and augment them with OWL and RDFS
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constructs. Various vocabularies/tools, such as R2RML mapping [77], Direct mapping [78], and NonSemanticToT-
BoxDeriver [3], can be used for this purpose. In this study, we utilize NonSemanticToTBoxDeriver. This tool is
employed to extract conceptual information embedded in non-semantic structured data and transform it into a se-
mantic form. Listing 2 displays the generated source TBox from the spatiotemporal dataset. Here, the table name is
used as an OWL class and the attributes are considered as OWL datatype properties. The onto: namespace is used
to create semantic counterparts of the various elements of the source data.

1 onto:SpatiotemporalFact a owl:Class.
2 onto:adm2ID a owl:DatatypeProperty;
3 rdfs:domain onto:SpatiotemporalFact;
4 rdfs:range xsd:string.
5 onto:Death a owl:DatatypeProperty;
6 rdfs:domain onto:SpatiotemporalFact;
7 rdfs:range xsd:decimal.
8 onto:adm1ID a owl:DatatypeProperty;
9 rdfs:domain onto:SpatiotemporalFact;

10 rdfs:range xsd:string .
11 onto:Confirmed a owl:DatatypeProperty;
12 rdfs:domain onto:SpatiotemporalFact;
13 rdfs:range xsd:decimal.
14 onto:dayID a owl:DatatypeProperty;
15 rdfs:domain onto:SpatiotemporalFact;
16 rdfs:range xsd:string.

Listing 2: Source TBox for the fact table SpatiotemporalFact.

5.3. Source-to-Target Mappings generation

Source data can be heterogeneous in nature. To handle this situation, sources should be mapped to the target
at the TBox level. The communication between the source and target is materialized in the form of intermedi-
ate mapping definitions that assist complex data flows between the sources and target. As source TBoxes are
generated for both dimension tables and fact tables, the mappings are to be generated for both as well. Source-
to-target mappings of dimension tables are used later to produce the semantic assertions of the level instances.
Similarly, source-to-target mappings of fact tables are used later to create semantic assertions of the fact ta-
bles. Listing 3 shows mapping definitions between different constructs of onto:SpationtemporalFact and
cdw:spatioTemporalDataset. The mapping file are annotates with Source-to-Target Mapping (S2TMAP)
vocabulary [79]: an OWL-based mapping vocabulary.

1 #Dataset mapping
2 cdw:spatiotemporalfacts_COVID_Schema a map:Dataset ;
3 map:source ’/SpatiotemporalFacts’;# source location
4 map:target ’/COVID_Schema’.# target location
5 #Concept mapping
6 cdw:SptempFact_SpTempDataset a map:ConceptMapper;
7 map:sourceConcept onto:SpatiotemporalFact;
8 map:targetConcept cdw:SpatioTemporalDataset.
9 map:dataset cdw:spatiotemporalfacts_COVID_Schema;

10 map:iriValue "CONCAT(onto:adm1ID,CONCAT(_,CONCAT(onto:adm2ID,CONCAT(_,onto:dayID))))";
11 map:iriValueType map:Expression;
12 map:matchedInstances "All";
13 map:relation skos:exact;
14 #Property mapping
15 map:PropMap_Confirmed_Confirmed a map:PropertyMapper ;
16 map:ConceptMapper cdw:SptempFact_SpTempDataset;
17 map:sourceProperty onto:Confirmed;
18 map:sourcePropertyType map:SourceProperty;
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19 map:targetProperty cdw:Confirmed.
20 map:PropertyMapper_01_dayID_day a map:PropertyMapper;
21 map:ConceptMapper cdw:SptempFact_SpTempDataset;
22 map:sourceProperty onto:dayID;
23 map:sourcePropertyType map:SourceProperty;
24 map:targetProperty cdw:Day.

Listing 3: Source-to-Target mapping file of onto:SpationtemporalFact and cdw:spatioTemporal-
Dataset.

In S2TMAP, a property-level mapping is nested within a concept-level mapping, which is further encapsulated
within a mapping dataset. A mapping dataset is defined as an instance of map:Dataset, which captures the refer-
ences of the source and target TBoxes (lines 2-4). A concept-mapping outlines the correspondence between a source
and a target concept (lines 6-13). The source and target concepts are defined using the map:sourceConcept and
map:targetConcept properties. The linkage between a concept-mapping and its mapping dataset is established
through the map:dataset property. The properties map:iriValue and map:iriValueType signify that
values of onto:admID, onto:adm2ID, and onto:dayID are concatenated to generate unique IRIs for the
observations of cdw:SpationTemporalDataset. The "All" value of map:matchedInstances indicates
that all source instances are mapped.

A source and target property are mapped using the map:PropertyMapper (lines 15-19). The connection
between a property-mapping and its corresponding concept-mapping is established via map:conceptMapper.
The specification of the target property within the property-mapping is done using map:targetProperty, and
this target property can be associated with either a source property or an expression. In this specific instance, the
target property cdw:Confirmed is mapped to the source property onto:Confirmed.

5.4. Target ABox generation

Using the target TBox, along with the source datasets (extracted and cleansed ones) and source-to-target mapping
definitions as inputs, this Target ABox generation process generates the target ABoxes from the source datasets
based on the semantics specified in the target TBox. In QB4OLAP, dimensional data is physically stored in levels,
where each level member is identified by a unique IRI and is semantically linked with its relevant level attributes
and roll-up properties.

1 day:1 a qb4o:LevelMember;
2 cdw:dayID "1";
3 cdw:dayName "2020-01-01";
4 cdw:inMonth month:1;
5 qb4o:memberOf cdw:Day;
6 owl:sameAs wd:Q57396575.

Listing 4: An level member of the cdw:Day level in the target ABox.

1 stempd:_1224_52 a qb:Observation;
2 cdw:Confirmed "8096";
3 cdw:Deaths "270";
4 cdw:Admin1 _:b;
5 cdw:Admin2 adm2:1224;
6 cdw:Day day:52;
7 qb:dataset cdw:SpatioTemporalDataset.

Listing 5: An observation of the cdw:SpatioTemporalDataset dataset in the target ABox.
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Table 3
A quantitative overview of the dimensions present in CovKG.

Aspect Dimension # of instances # of attributes

Spatiotemporal
cdw:GeographyDim 4,287 11
cdw:TimeDim 1,135 8

Sub Total 5,422 19

Environment

cdw:TemperatureDim 15 11
cdw:HumidityDim 4 4
cdw:WindDim 4 4
cdw:PrecipitationDim 3 4
cdw:AirPollutionDim 42 9

Sub Total 68 32

Health
cdw:VaccineHesitencyDim 18 5
cdw:ComorbidityDim 24 5

Sub Total 42 10

Socioeconomic

cdw:EthnicityDim 7 5
cdw:PlaceofDeathDim 10 5
cdw:OccupationDim 610 11
cdw:UrbanicityDim 8 5

Sub Total 635 26
Grand Total 6,167 87

In Listing 4, a level member of the cdw:Day level, with an IRI value of day:1, is implemented us-
ing the qb4o:LevelMember class. This level member has the attributes cdw:dayID with a value of
“1", cdw:dayName with a value of “2020-01-01", and cdw:inMonth with a value of month:1. The
cdw:inMonth represents the relationship of the cdw:Day level with its parent level cdw:Month. Using the
property qb4o:memberOf, the relationship of the level member to its containing level is defined. Moreover, the
owl:sameAs property is used to link to an external data resource. In this case, the resource is the Wikidata en-
tity wd:Q57396575, which is the Wikidata entry for January 1, 2020. QB4OLAP employs an observation (an
instance of qb:Observation) to depict a fact (line 1 in Listing 5). An observation is identified by a distinct IRI
and is semantically enriched by combining multiple members from different levels, integrating values for various
measure properties. Listing 5 depicts that the dataset of the observation is cdw:SpationTemporalDataset
and its cuboid structure consists of cdw:Admin1, cdw:Admin2 and cdw:Day levels and two measures
cdw:Confirmed and cdw:Deaths.

6. Description of CovKG

In this section, we describe CovKG from the perspective of both dimensions and facts. Additionally, we provide
an overview of the embedded links in CovKG leading to external datasets.

6.1. Dimension and fact overview

Table 3 provides an overview of the dimensions of CovKG. It shows the aspect the dimension represents, the total
number of level instances, the number of level attributes. In total, CovKG has 28 levels, 87 level attributes, and 6,167
level members. Nine separate Turtle ABox files are created for nine cuboids. These files are then concatenated with
the respective level ABoxes of the dimensions used in the fact tables. Table 4 sheds light on the size measurements
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Table 4
Overview of size metrics of the data cuboids.

Semantic
cuboid

Source ABox
raw size
(in MB)

Source ABox
processed size

(in MB)

# of
observations
(in million)

# of
RDF

triples
(in million)

Target
ABox size
(in MB)

Spatiotemporal 838.9 377.4 2.32 16.25 1,719.5

Weather 102.3 26.9 1.34 14.75 1,646.1

Air Pollution 12.8 3.1 0.16 1.14 121.7

Vaccine hesitancy 179.7 0.029 0.002 0.051 499.7

Comorbidity 65.6 2.6 0.032 0.26 27.9

Ethnicity 1.4 0.106 0.0073 0.095 9.6

Place of death 2.7 0.121 0.0084 0.1 10.9

Occupations 4.6 0.035 0.0019 0.06 6.1

Urbanicity 705.4 29.5 1.57 11.04 1,185.0

Total 1,913.4 439.79 5.44 43.75 5,226.5

of CovKG. The raw source ABoxes are available in CSV format, containing a lot of noise data such as irrelevant
information not useful for the purpose of this study, negative values, and blank values. The raw source ABoxes are
processed and cleaned, after which their sizes reduce significantly, as can be seen in the table.

Another reason for this reduction in size was the utilization of dimension tables. Dimension information in the
fact tables, such as names and labels, or floating-point sensor data, are replaced by integer indices pointing to the
relevant dimension tables. This information is instead placed in the dimension table, which the fact table can refer
to when needed. Additionally, the arrangement of dimension tables in hierarchical levels allows for the performance
of OLAP operations on these fact tables. Furthermore, floating-point data of air pollution and weather dimensions
are replaced by categorical data, which also contributes to the reduction in size after processing.

The number of RDF triples in Table 4 is significantly larger than the number of observations. This is due to the
fact that for each observation, multiple RDF triples are generated. For instance, if an observation has five attributes,
containing three dimension attributes and two measure attributes, then there will be seven RDF triples representing
that observation in the fact table.

Concatenating the respective dimension level ABox files to the fact ABox files also increase the number of triples.
The target ABox sizes are relatively large. As can be seen in Table 4, the spatiotemporal, weather, and urbanicity
datasets have gigabyte-scale sizes. This is primarily because the spatiotemporal data contains finer spatial data
in the form of second-level administrative unit and first-level administrative unit data for twenty-one countries.
Spatiotemporal data was one of the most readily available types of data collected in this study. On the temporal side,
day-level data is available, contributing to the increase in size. Additionally, the inclusion of daily confirmed and
death data for 3143 U.S. counties significantly contributed to the overall data size.

Urbanicity data was also based on the USA’s spatiotemporal data. The weather data was available for all coun-
tries at the same fine level as the spatiotemporal data and had more dimension fields than the spatiotemporal data.
However, USA’s temperature, precipitation, and humidity data were not available, which is why the weather dataset
is still smaller in size than the spatiotemporal dataset.

However, the core reason behind the exponential size of the RDF data is that Turtle requires more text characters
to represent data than tabular data such as CSV. However, this size tradeoff is reasonable, as the dataset achieves the
ability to infer new knowledge based on the available information. Moreover, it gains the capability to be linked to
larger knowledge networks to mine further insights, utilizing techniques such as federated query.

6.2. Linking CovKG to external datasets

Linked open datasets contain references to similar elements across other external datasets, allowing for the
sharing and reusability of previous knowledge. This also helps in avoiding the inclusion of redundant data,
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Table 5
Number of links to external datasets among level instances and the programmatic time taken to link.

Level Number of links Processing time (sec)
cdw:Day 1,096 1.712

cdw:Month 36 0.751

cdw:Year 3 0.726

cdw:Individual 872 0.972

cdw:Minor 260 0.496

cdw:Submajor 86 0.482

cdw:Major 20 0.42

cdw:Continent 14 2.292

cdw:Country 44 2.333

cdw:Admin1 856 2.504

cdw:Admin2 7,664 6.414

Total 10,951 19.102

contributing to maintaining scalability. The linking can be done to the concepts in the target TBox as well as
level instances in the target ABox. The ABox links can then be referenced by the cuboids. CovKG is linked
to a total of four reputable external KGs. This is achieved using the OWL property owl:sameAs, as demon-
strated in Listing 4 and Listing 6. In the target TBox, all the levels of cdw:GeographyDim, cdw:TimeDim,
cdw:AirPollutionDim, cdw:PrecipitationDim, cdw:WindDim, cdw:HumidityDim, as well as the
level cdw:Race of cdw:EthnicityDim, are linked to Wikidata [80] and DBpedia [81] KG. Moreover, levels
under cdw:GeographyDim are linked to the Geonames KG [56]. Geonames is renowned for collecting and pre-
senting geographical information at highly fine levels in semantic form. Demonstrations of some TBox links are
shown in Listing 6 under the comment ‘Level Concepts in target TBox’ (lines 2-7).

In the ABoxes, level instances of the cdw:GeographyDim dimension are linked to Wikidata and Geon-
ames. Level instances of the cdw:TimeDim dimension’s levels are linked to Wikidata. The level instances of the
cdw:OccupationDim dimension are linked to Wikidata and the European Skills, Competences, qualifications
and Occupations (ESCO) ontology [82]. The ESCO ontology makes the ISCO-08 occupation taxonomy available
in semantic form. Demonstrations of some ABox links are shown in Listing 6 under the comment ‘Level instances
in target ABox’ (lines 9-17).

This linking process is implemented using the RDFlib Python library [83]. Initially, the IRIs of the level mem-
bers to external knowledge graphs, such as Wikidata [80], Geonames [56], and ESCO [82], are collected through
SPARQL queries on the Wikidata SPARQL endpoint. The query results are imported as CSV files and undergo
pre-processing to eliminate duplicates and irrelevant data. Finally, RDFlib is employed to link these IRIs and the
ABox triples of the corresponding dimension levels or members. The number of links to the level instances as well
as their respective programmatic linking times are reported in Table 5. In summary, CovKG is linked to 10,951
external resources and the total linking time is 19 seconds.

1 #Levels Concepts in target TBox
2 cdw:Admin1 a qb4o:LevelProperty;
3 owl:sameAs wiki:Q10864048, geonames:A.ADM1, dbpedia:First-

level_administrative_division.
4 cdw:Day a qb4o:LevelProperty;
5 owl:sameAs wiki:Q573, dbpedia:Day.
6 cdw:Humidity a qb4o:LevelProperty;
7 owl:sameAs wiki:Q180600, dbpedia:Air_humidity.
8 #Levels instances in target ABox
9 adm1:1 a qb:LevelMember;

10 cdw:adm1Name "Badakhshan";
11 owl:sameAs wiki:Q165376, geoname:1147745.
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12 indiOcc:0110 a qb:LevelMember;
13 cdw:individualOccupationName "Commissioned Armed Forces Officers";
14 owl:sameAs wiki:Q108305412, esco:C0110.
15 day:1 a qb:LevelMember;
16 cdw:dayName "2020-01-01";
17 owl:sameAs wiki:Q57396575.

Listing 6: Examples of links to external datasets at conceptual level.

6.3. Availability

The dump files of CovKG can be found at http://bike-csecu.com/datasets/covid, and CovKG was stored in
the OpenLink Virtuoso Triplestore. Users can remotely access CovKG through the SPARQL endpoint at http:
//bike-csecu.com:8890/sparql and write their own SPARQL queries based on their requirements to obtain answers.
To verify the correctness and conduct comparative analysis of CovKG, we developed a set of competency questions
(refer to Table 7 and Table 9). All these competency questions are translated into equivalent SPARQL queries to
retrieve the answers from CovKG. The set of competency and correctness queries can be accessed, posed to the
repository, and answered through a user interface available at https://bike-csecu.com/datasets/covid/query. We also
provide an interactive OLAP interface, available at https://github.com/bi-setl/SETL, allowing users to create their
OLAP queries using GUI components and retrieve the answer by posing the query to the related graphs. The OLAP
interface is described in Section 7.2.1.

7. Experimental Evaluation

In this section, we discuss experiments conducted on CovKG to evaluate its performance. First the ETL per-
formance is measured by the ETL runtime. After that, we make the qualitative assessment of CovKG. Finally, we
present some interesting analytical findings.

7.1. ETL performance overview

Here, the ETL time performance is discussed. The machine on which the ETL is run is a computer of processor
Intel(R) Core(TM) i5-8400 CPU. Processor speed was 2.81 GHz with 8 GB RAM. The operating system is Windows
10 Pro 64-bit system.

Table 6 shows the ETL time performance (measured in seconds) in outputting CovKG. We do not record the time
for the extraction phase as it depends on users’ expertise, internet speed, API performance. Rather, the steps which
can be calculated fairly are recorded. It can be seen that larger fact ABoxes such as the spatiotemporal, urbanicity,
and weather take longer to pass through the ETL process. The greatest proportion is taken up at RDF loading time,
where the facts are loaded to the triple store. We use Openlink Virtuoso [73] as triple store because of generating
fast query results, simple interface, and code correction ability.

The source TBox generation time is shown here. The target TBox generation’s time was not provided here because
it was a manual process where the authors had to carefully design the structure. The entire ETL process takes
2547.271 seconds, around 42 minutes. The majority of the time is spent on RDF loading, primarily due to loading
RDF graphs into the triple store. Among the cuboids, the weather cuboid takes the longest time, as it contains the
most attributes.

7.2. Qualitative analysis

The previous subsection focused on the quantitative performance evaluation of CovKG. In this section, we assess
the quality of CovKG in terms of its business analytical capabilities, compare its performance with other repositories,
and evaluate its correctness.

http://bike-csecu.com/datasets/covid
http://bike-csecu.com:8890/sparql
http://bike-csecu.com:8890/sparql
https://bike-csecu.com/datasets/covid/query
https://github.com/bi-setl/SETL
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Table 6
ETL program time taken (seconds) by the ETL process for each cuboid.

Semantic
cuboid

TBox
generation

Source
to target
mapping

ABox
generation

RDF
loading

Total
(per cuboid)

Spatiotemporal 6.63 1.29 123 227.67 358.59

Weather 10.65 1.23 150 960 1,121.88

Air Pollution 7.68 1.63 8 39.97 57.28

Vaccine Hesitancy 7.48 1.71 1.3 5.62 16.11

Comorbidity 7.71 1.19 5 10.58 24.48

Ethnicity 7.56 1.28 1 5.55 15.39

Place of death 7.53 1.34 2 5.22 16.09

Occupations 8.54 1.30 1.73 1.801 13.371

Urbanicity 7.5 1.22 77 838.36 924.08

Total (per phase) 71.28 12.19 369.03 2,094.771
Grand Total
=2,547.271

7.2.1. Enabling business analytics
After generating CovKG, we evaluate its business analytical capabilities. This assessment focuses on whether

CovKG has become OLAP-compatible, and to do so, we provide S ET LBI as discussed in Section 6.3. S ET LBI’s
OLAP Layer enables OLAP analysis over CovKG annotated with MD semantics. Therefore, if CovKG can be
loaded into the OLAP Layer, OLAP operations can be conducted, and results can be generated, then it confirms that
CovKG is ready for business analytics.

In Figure 5, we demonstrate how CovKG is enabled for business analytics using the OLAP Layer of S ET LBI .
For brevity, we illustrate the business analytics enabling of only one of the nine fact ABoxes, which is the Vaccine
Hesitancy ABox. Figure 5a shows that the Vaccine Hesitancy cuboid is successfully loaded into the tool. To load
the CovKG, a user needs to click the Load File button (marked by a red rectangle), which prompts to select the
target TBox and ABox files. After selecting the files, the tool loads them if the ABox file is OLAP compatible. The
upper left part of Figure 5a shows that the target TBox and ABox files have loaded successfully (marked by the
yellow rectangle). After loading them, the user selects the Vaccine Hesitancy cuboid from the drop-down list using
the arrow icon (marked by the orange square). Next, (s)he clicks the Extract Cube button (marked by the orange
rectangle) to extract the cuboid’s structure. The Visualization panel on the left displays dimensions, hierarchies,
levels, and measures in a tree view. Users can expand the tree view by clicking on small dots, as shown by the red
arrow. Levels, measures, and aggregation functions are selected from this panel.

The Filtering panel in the middle shows the available attributes when a level is selected. Relevant dimension ABox
triples are also shown if they are part of the cuboid’s ABox file. For instance, when cdw:Country level (marked
by the blue arrow) is selected, attributes like cdw:countryName are displayed (as shown by the purple arrow) for
the user to choose. Additionally, one can use checkboxes to select instances for slice and dice operations (the three
pink arrows). The rightmost Summary panel shows the selected level, their associated attributes, and level instances.
For the example in the figure, qb4o:avg function is selected for the measure cdw:Confirmed (marked by the
light pink arrow). Figure 5b demonstrates the result of a slice OLAP operation with averaging as the aggregate
function, displaying data only for Denmark, Germany, and the Netherlands along the geography dimension.

7.2.2. Comparative analysis of functionality in relation to leading data repositories
We compare the functionality of CovKG with that of other data repositories by first formulating a set of com-

petency queries. These competency queries are designed to assess the ability of the datasets to answer questions
with multiple aspects [84]. The questions are listed in Table 7. This evaluation is conducted in comparison to
the responses of well-known repositories: Worldometer [24], WHO Dashboard [25], World Bank Dashboard [26],
Dynamic Dashboard for Bangladesh [27], and CDC COVID Data Tracker Dashboard [29]. The responses are sum-
marized in Table 8.
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(a) Loading the Vaccine Hesitancy cuboid in.

(b) Results of a slice query.

Fig. 5. Enabling business intelligence on CovKG.

The comparison reveals that CovKG can answer all the competency questions. In contrast, the Bangladesh Dash-
board, World Bank Dashboard, and CDC Dashboard can only answer 3.84%, 11.54%, and 39.23% respectively . The
WHO and Worldometer Dashboards cannot answer any of these questions. When we indicate “partially", it means
that the dashboard can address some aspects of the question but not the entire inquiry. For instance, the Bangladesh
and CDC Dashboards can only provide district and county-level daily data but lack population information.

Interestingly, CovKG does not contain population information in any of its fact or dimension tables. Yet, it can
fully answer Q1 with the assistance of a federated query. This is made possible because CovKG is linked to external
KGs through the owl:sameAs property, as demonstrated in Listing 4.

Q5 can be answered by the CDC and World Bank Dashboards, as they provide extensive vaccine hesitancy-related
information. However, they do not address the question regarding the availability timeframe of ‘after one year’. This
query is valuable in assessing people’s psychological attitudes toward vaccination. It indicates whether people intend
to to take vaccine given it has been tested properly, or whether they do not prefer it under any circumstances.



22 S.M. Raihan et al. / CovKG: A Covid-19 knowledge graph annotated with multidimensional semantics

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 7
The competency queries designed for qualitative analysis of CovKG.

Query no. Competency query statement
Q1 What is the name and population of the level x (example:district) with max confirmed cases on date

y(example Januray 1, 2021) in location z (example:Bangladesh)?

Q2 What is the number of deaths among occupation x (example: Engineers) in location y (example: Romania)
in the year z (example : 2020) at hot temperature?

Q3 What disease comorbidity has the highest number of deaths during month x (example:February) of year
y(example:2020)?

Q4 Which has more infections of Covid-19? Urban(metropolitan) or Rural((non-metropolitan)?

Q5 Which countries have the strongest vaccine hesitancy to vaccines available after one year?

Q6 How many deaths occurred in homelike environments in month x (example:January) of year y (exam-
ple:2021)?

Q7 What kind of thermal weather has most number of confirmed and/or death on date x (example:January 1,
2021) in location y (example: Feni,Chittagong, Bangladesh)?

Q8 What kind of humidity has most number of confirmed and/or death on date x (example:January 1, 2021) in
location y (example: Feni,Chittagong, Bangladesh)?

Q9 What kind of precipitation has most number of confirmed and/or death on date x (example:January 1, 2021)
in location y (example: Feni,Chittagong, Bangladesh)?

Q10 What kind of windspeed has most number of confirmed and/or death on date x (example:January 1, 2021)
in location y (example: Feni,Chittagong, Bangladesh)?

Q11 How many patients died of Covid-19 in Asia in region of hazardous air pollution in 2020?

Q12 What race has the highest number of deaths in 2021?

Q13 What is the total number of confirmed cases in medical professions?

Table 8
Assessing the comparative functionality of CovKG against prominent data sources by asking each the thirteen competency questions, to which
they answer in yes, partially or no.

Competency
query no.

CovKG Bangladesh
dashboard[27]

CDC
dashboard [29]

WHO
dashboard [25]

World Bank
dashboard [26]

Worldo
meter[24]

Q1 Yes Partially Partially No No No

Q2 Yes No No No No No

Q3 Yes No Yes No No No

Q4 Yes No Yes No Yes No

Q5 Yes No Partially No Partially No

Q6 Yes No Yes No No No

Q7 Yes No No No No No

Q8 Yes No No No No No

Q9 Yes No No No No No

Q10 Yes No No No No No

Q11 Yes No No No No No

Q12 Yes No Yes No No No

Q13 Yes No No No No No

7.2.3. Correctness
In our study, data from various sources undergo a semantic ETL process, resulting in CovKG. It is pivotal to

ensure the correctness of the ETL process. While the concept of correctness is extensive and beyond the scope
of this work, we conducted a partial assessment for CovKG by devising queries for which we already knew the
answers. These queries fall into two categories: 1) Common knowledge: Globally recognized information. 2) Special
knowledge: Information available from specific sources. Table 9 presents the assessment of CovKG’s correctness,
and the query details can be found at https://bike-csecu.com/datasets/covid/query.

We collected the correct answers from reliable sources. For instance, the correct answers regarding occupa-

https://bike-csecu.com/datasets/covid/query
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Table 9
Assessment of correctness of the ETL process in generating CovKG.

Correctness query Type
Correct
answer

CovKG’s
answer

How many continents are there? Common knowledge 7 7

Which year among 2020-2022 is
a leap year?

Common knowledge 2020 2020

How many occupations are there
under ISCO-08 submajor group?

Common knowledge 43 43

How many nonhispanic white peo-
ple died of Covid-19 in New Mex-
ico, USA in the month of January,
2021?

Special knowledge 180 180

How many confirmed cases were
reported in Ireland’s Mayo county
in July 12, 2020?

Special knowledge 1,505 1,505

How many confirmed and death
cases were reported in Nether-
land’s Buren county on Septe-
mber 21, 2021?

Special knowledge
Confirmed: 2,807

Death : 20
Confirmed: 2,807

Death : 20

tion group numbers were obtained from the International Labour Organization’s ISCO-08 classification page
(https://ilostat.ilo.org/resources/concepts-and-definitions/classification-occupation/). Information on the number of
confirmed COVID-19 cases among non-Hispanic whites in the USA and confirmation data for Ireland’s Mayo
County were sourced from the CDC’s COVID Data Tracker [29] and Geohive OpenData repository [41], respec-
tively. Details on the confirmation and death statistics for the municipality of Buren in the Netherlands were gathered
from the NL COVID-19 Geo Hub repository [42]. Upon reviewing Table 9, we noted that CovKG provided correct
answers for all queries.

7.3. Analytical findings

We analyze CovKG using statistical methods to extract insights from the multidimensional data it represents.
Below, we briefly discuss some examples of new insights gained from socioeconomic, health, and environmental
aspects. Figure 6 provides insights into the socioeconomic aspect of COVID-19, focusing on the occupation factor.
The figure illustrates the number of confirmed and death cases among the ten major ISCO-08 occupation classes.
Professionals have the highest number of confirmed cases, while services and sales workers have the highest number
of deaths. This finding is intriguing because the professionals category includes medical professions such as doctors
and nurses. In contrast, services and sales workers encompass professions like travel attendants, transport conduc-
tors, travel guides, waiters, cleaning and housekeeping supervisors in offices, hotels, and other establishments, as
well as undertakers and embalmers. These occupations involve regular public contact. The relatively high number
of confirmed cases but lower death rate among professionals suggests a level of health awareness, even in roles that
require frequent public interaction.

Health-related insights can be gained by examining comorbidity, as illustrated in Figure 7. Among various co-
morbidities, influenza, pneumonia, and respiratory failure stand out with higher numbers of COVID-19 deaths. This
correlation is noteworthy because COVID-19, influenza, and pneumonia are all respiratory diseases, suggesting that
damage to the respiratory system by one of these conditions may facilitate the spread of the others. This finding

https://ilostat.ilo.org/resources/concepts-and-definitions/classification-occupation/
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Fig. 7. Number of Covid-19 deaths per month per Admin1 unit among people with various comorbidities.

aligns with previous research on the correlation between influenza and COVID-19, as shown in [85]. Following res-
piratory diseases, the next highest number of deaths is observed among patients with hypertensive diseases, which
are associated with high blood pressure.

Several research studies have concluded that nitrogen dioxide pollution is positively correlated with the trans-
mission and mortality of COVID-19 [86], [61], [87]. These studies were conducted in China and the USA. In our
CovKG, we integrate daily subnational air pollution data for South Africa and India. The environmental aspect can
be observed through the total and average statistics of confirmed and death cases in relation to levels of nitrogen
dioxide in South Africa and India, as depicted in Figure 8..

It can be seen in Figure 8 that both the average and total of both deaths and confirmed cases are high for unhealthy
levels of nitrogen dioxide. Hazardous and very unhealthy levels exist that are above unhealthy. Yet, unhealthy falls
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Fig. 8. Covid-19 situation with respect to nitrogen dioxide pollution in India and South Africa shown in millions and percentage for total and
thousands and percentage for average per day per Admin1 unit.

in the excessive side of the nitrogen dioxide spectrum. This observation underscores the evident positive correlation
with COVID-19’s epidemiology.

8. Conclusion and Future Work

In this study, we generated a multidimensional and semantically annotated Covid-19 knowledge graph titled
CovKG that integrates data on Covid-19 epidemiology from disparate sources and facilitates analysis from spa-
tiotemporal, socioeconomic, health, and environmental perspectives. To our knowledge, no previous research gen-
erated a multidimensional knowledge graph dedicated to Covid-19 to such an extent as this study. CovKG allows
OLAP operations and SPARQL queries to draw new insights from available data. The ETL workflow typically takes
around 42 minutes to load CovKG, which is connected to 10,951 external resources, has a size of about 5.3 GB,
and consists of about 44 million RDF triples. Moreover, due to being structured as per linked data standards, it is
published as per FAIR principles, which is highly essential in cases of global phenomena like Covid-19. The qual-
itative assessment shows that CovKG is OLAP-compatible, can answer different aspect queries, and yields correct
results when compared to other repositories. CovKG was also explored using statistical analysis to get insights into
the Covid-19 situation.

CovKG faces limitations due to data sparsity stemming from the unavailability of more comprehensive data
sources. The data that was used to create the model were procured from free sources. If paid sources could be
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accessed, the data model could be richer. Also, cross-cuboid relationships among some cuboids were not explored.
Hence, in future, we will enrich the data model even more by accessing paid sources. We will also apply data mining
algorithms and knowledge graph exploration techniques to enable robust cross-cuboid analysis.
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