
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Multiset semantics in SPARQL, Relational
Algebra and Datalog
Renzo Angles a, Claudio Gutierrez b and Daniel Hernández c

a Department of Computer Science, University of Talca, Chile
E-mail: rangles@utalca.cl
b Department of Computer Science, University of Chile, and IMFD , Chile
E-mail: cgutierr@dcc.uchile.cl
c Instute for Artificial Intelligence, University of Stuttgart, Germany
E-mail: daniel.hernandez@ki.uni-stuttgart.de

Abstract. The paper studies and determines the algebraic and logic structure of the multiset semantics of the core patterns of
SPARQL formed by AND, UNION, OPTIONAL, FILTER, MINUS and SELECT. We show that it conforms a robust fragment
with the same expressive power of well-known logical and relational query languages, named Datalog and Relational Algebra.
Indeed, we identify and develop a logical formalism for multisets, namely non-recursive Datalog with safe negation, with the
extension to multiset developed by Mumick et al., and a multiset relational algebra (projection, selection, natural join, arithmetic
union and except), based on the framework defined by Dayal et al., and prove that these three formalisms have the same expressive
power viewed as query languages.

Keywords: Query Languages, Multisets, SPARQL, Datalog, Relational Algebra

1. Introduction

Informally speaking, multisets are sets where each element could occur multiple times, that is, the number of
“copies” of each element matters. In the field of databases, the notion of multisets (also called “duplicates” or
“bags”)1 has been studied in several contexts, including programming languages [2, 3], bag languages [4–9], rela-
tional algebra [10–12], Datalog [13–17], SQL [18, 19], SPARQL [20–23] and data integration [24].

The incorporation of multisets in query languages like SQL or SPARQL is essentially due to practical concerns:
duplicate elimination is expensive and duplicates might be required for some applications, e.g., for aggregation.
Although this design decision may be debatable (e.g., see [25]), today multisets are an established reality in database
systems [26, 27].

The classical theory behind declarative query languages (like SQL and SPARQL) are formalisms (relational al-
gebra or relational calculus) that for sets have a clear and intuitive semantics for users, developers and theoreti-
cians [28]. The same cannot be said of their extensions to multisets, whose theory is complex (particularly contain-
ment of queries) and their practical use not always clear [26]. Worst, there exist several possible ways of extending
set relational operators to multisets, which makes the study and design of multiset semantics for query languages
challenging.

To illustrate the variety of possible semantics, let us summarize the different extensions to multisets of set opera-
tors found in the literature. Consider the following multisets A = ⦃a, a, a, b⦄ and B = ⦃a, a, d⦄.

1There seems to be no agreement on the best terminology [1, p. 27]. In this paper, we will use the word “multiset”.

1570-0844/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:rangles@utalca.cl
mailto:cgutierr@dcc.uchile.cl
mailto:daniel.hernandez@ki.uni-stuttgart.de

2 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Possible ways of extending set operators with multiset semantics in SQL and SPARQL. The table shows several extended relational algebra
operations for multisets currently present (or possible to implement) in SQL and SPARQL. Given multisets A and B, and element x, A(x) and
B(x) represent the respective multiplicities of x.

Operation Operator Multiplicity for x SQL SPARQL

Projection πX(A)
∑

s∈A, s[x]=t A(s) SELECT X FROM A SELECT X WHERE A

Selection σϕ(A)

{
A(x) if x satisfies ϕ,
0 otherwise.

SELECT * FROM A WHERE ϕ A FILTER (ϕ)

Cartesian product A× B A(x)× B(x) A CROSS JOIN B A AND B

Join A onϕ B A(x)× B(x) (A CROSS JOIN B) WHERE ϕ A AND B

Max-union A t B max(A(x), B(x)) (A UNION ALL B) EXCEPT ALL –
(A INTERSECT ALL B)

Arithmetic union A] B A(x) + B(x) A UNION ALL B A UNION B

Min-intersection A ∩ B min(A(x), B(x)) A INTERSECT ALL B –

Max-intersection A u B A(x)× B(x) A NATURAL JOIN B A AND B

Arithmetic difference A− B max(0, A(x)− B(x)) A EXCEPT ALL B –

Existential negation A \ B

{
A(x) if B(x) = 0,

0 otherwise.
SELECT * FROM A

WHERE x NOT IN (B)
A MINUS B

– Types of union: the max-union takes the maximum number of occurrences of an element (e.g., A t B =
⦃a, a, a, b, d⦄), and the arithmetic union adds up multiplicities (e.g., A] B = ⦃a, a, a, a, a, b, d⦄).

– Types of intersection: the min-intersection takes the minimum number of occurrences of each element in the
intersection (e.g., A ∩ B = ⦃a, a⦄), and the max-intersection returns the product of the multiplicities of each
element in the intersection (e.g., A u B = ⦃a, a, a, a, a, a⦄).

– Types of difference: the arithmetic difference subtracts multiplicities of elements up to zero (e.g., A − B =
⦃a, b⦄), and the existential negation returns the elements in the first multiset not occurring in the second one,
but preserving the multiplicities (e.g., A \ B = ⦃b⦄).

Regarding projection, selection and joins, in each case there is essentially a unique coherent possibility:

– The Cartesian product computes the product of the multiplicities (e.g., A × B = ⦃ (a, a), (a, a), (a, d), (a, a),
(a, a), (a, d), (a, a), (a, a), (a, d), (b, a), (b, a), (b, d) ⦄).

– The projection reduces the number of attributes in each tuple, and gives rise to new multiplicities for resulting
tuples (e.g., πA(A× B) = ⦃ a, a, a, a, a, a, a, a, a, b, b, b ⦄).

– The selection operation returns the tuples satisfying a given condition, but keeping multiplicities. (e.g., the
expression σ[1]=′a′(A) returns the multiset ⦃a, a, a⦄).

– The join operation also results in the product of the multiplicities of the solutions of the operands, as it is
expressed as a Cartesian product followed by a selection.

Table 1 shows a summary of the above operators, and their corresponding implementation in SQL and SPARQL.
Note that SQL can express all the operators, whereas SPARQL does not support max-union, min-intersection, and
arithmetic difference.

The reader can imagine that combining these operators does not result in a simple nor intuitive algebra, as with
classical set operations. In fact, a natural question arises: Are there “reasonable”, “well-behaved” (e.g., from an
algebraic point of view) groups of these operations for multisets? There are some positive answers.

Dayal et al. [10] introduced a multiset relational algebra formed by the operators of projection, selection, join,
max-union, arithmetic union, min-intersection and arithmetic difference. Dayal remarks that max-union, min-

Angles et al. / The multiset semantics of SPARQL patterns 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

intersection and arithmetic difference treat all copies of a tuple as being identical (i.e. indistinguishable), and form
a Boolean algebra. In this sense, these operators combine well with selection in the sense that expected identities
such as σP∨Q(r) = σP(r) ∪ σQ(r), σP∧Q(r) = σP(r) ∩ σQ(r), and σP∧Q(r) = σP(r) on σQ(r) are preserved for
multisets. On the other hand, the arithmetic union treats all copies as being distinct, so it is necessary to support the
property πX(R] S) ≡ πX(R)] πX(S), which is not satisfied by max-union.

Albert [4] studied the operators of selection, max-union, arithmetic union, min-intersection and arithmetic dif-
ference, demonstrating that some of the algebraic properties of sets fail for multisets. However, Albert identified
some set-theoretic identities that are relevant for query optimization. Particularly, max-union and min-intersection
satisfy the usual algebraic properties, and they correspond to disjunction and conjunction for Boolean selection,
respectively; the arithmetic difference conforms to set difference when applied to sets, and corresponds to negation
for Boolean selection.

Besides the algebraic coherence, there are two important problems related to multisets: expressive power and
complexity. The expressive power and complexity of query languages for bags are studied in several works [5–7, 9].
Similar studies were conducted in the context of Datalog [14–17]. Console et al. [12] studied the expressive power
of fragments of bag relational algebra, and of the complexity of computing certain and possible answers.

Objectives and Contributions. As can be seen from Table 1, the current design of SPARQL chooses a particular
combination of multiset operators. Several questions arise: Are they extensible to other operators? Do they reflect a
simple algebraic or logic known fragment? What is the abstract algebra behind the relational operations?

In this article, we present a formal study of the semantics of multisets in SPARQL, that attempts to answer some
of these questions. Specifically, we investigate and identify a good formalism that captures the current semantics of
multisets of the core of SPARQL, namely graph patterns. Then, inspired by a well-known version of Datalog, we
provide a simple formalism to define a formal semantics for multisets in SPARQL. With these tools, and develop-
ing a corresponding algebra, we study the expressive power given by multisets in SPARQL patterns, including a
comparison with representative query languages.

Thus, the concrete contributions of our research are the following:

(1) We show that a formalism coming from a logical field, the well-behaved fragment of non-recursive Datalog
with safe negation (nr-Datalog¬), is the one that matches the semantics of multisets in SPARQL. More precisely,
the natural extension of the usual (set) semantics of Datalog to multisets developed by Mumick et al. [29], which
we call non-recursive multiset Datalog with safe negation (NRMD¬).

(2) We develop the relational counterpart of this fragment, using the framework defined by Dayal et al. [10],
and come up with a Multiset Relational Algebra (MRA) that captures precisely the multiset semantics of the core
relational patterns of SPARQL. MRA is based on the operators named projection (π), selection (σ), natural join (on),
union (]) and filter difference (\). As a side effect, this approach gives a new relational view of SPARQL (closer
to classical relational algebra and hence more intuitive for people trained in SQL). The identification of this algebra
and the proof of the correspondence with the relational core of SPARQL are the main contributions of this paper.

(3) We identify precise equivalent fragments in SPARQL, Multiset Datalog, and Multiset Relational Algebra, and
present the translations among these fragments. In Table 2 it is shown a glimpse of these correspondences, whose
details are worked in the paper.

This paper extends a previously published conference paper [23]. Herein, we provide extended discussion
throughout, we extend the study for some operators that were introduced in the version 1.1 of SPARQL after the
publication of our previous work, and we extend the analysis to consider also bag semantics. Some of the additional
contributions of this paper are from Hernandez’s Ph.D. thesis [30]. The outline is as follows:

In this introduction we pose the problem addressed, the idea that guides the approach, and a summary of findings.
Section 2 presents basic background and notations needed to follow the paper. The languages studied in this article
are described in Section 3 (SPARQL), Section 4 (NRMD¬), and Section 5 (MRA). The equivalences in expressive
power of these languages is shown in Section 6 (SPARQL≡NRMD¬), Section 7 (MRA≡NRMD¬), and Section 8
(SPARQL ≡MRA). The related work and the conclusions are presented in Section 9.

4 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
SCHEMA OF CORRESPONDENCES AMONG: Multiset SPARQL pattern operators; Multiset Relational Algebra (MRA) expressions; Non-
Recursive Datalog with safe Negation (NRMD¬) rules; and SQL expressions. The operator EXCEPT is not part of SPARQL, but it replaces
the standard operators MINUS and OPT without changing the expressiveness of the fragment. In MRA,] is the arithmetic union and \ is
the multiset filter difference. SPARQL patterns are assumed normalized, that is, variables in the filter condition are in the schema of the filtered
pattern, and operators EXCEPT AND UNION assume operands with the same schema. Patterns P1 and P2 occurring in the SPARQL pattern
are associated to atoms L1 and L2 in the NRMD¬ translation, and relations r1 and r2 in the MRA translations, respectively.

SPARQL NRMD¬ MRA SQL

SELECTX P1 L← L1, null(X \ X1) πX (r1) on null(X \ X1) SELECT X
FROM r1 NATURAL JOIN null(X \ X1)

P1 FILTER X = a L← L1, X = a σX=a(r1) FROM r1 WHERE X = a

P1 AND P2 L←v1(L1), v2(L2),

comp(v1, v2,X)

πX̄ (ρv1 (r1) on ρv2 (r2) on
comp(v2, v2,X))

SELECT X
FROM r1 NATURAL JOIN r2 NATURAL JOIN

comp(v2, v2,X)

P3 UNION P4 L← L1 ; L← L2 r1] r2 r1 UNION ALL r2

P1 EXCEPT P2 L← L1,¬L2 r1 \ r2 r1 EXCEPT r2

2. Preliminaries

This section provides the concepts and formal notation we will follow regarding multisets and the expressive
power of query languages.

2.1. Multisets

Informally, a multiset is an unordered collection of elements where each element may occur more than once.
Formally, a multiset is a tuple M = (S , card) where S is the underlying set of M (containing the distinct elements),
and card : S → N+ is a function that defines the cardinality or multiplicity in M of each element a ∈ S . We write
set(M) = S to denote that the underlying set of M is S . Given a positive natural number n, we write card(a,M) = n
to denote that a ∈ set(M) and the cardinality of a in M is n, and, abusing notation, we write card(a,M) = 0 if
a /∈ set(M). We say that a ∈ M when card(a,M) > 1.

2.2. Comparing the expressive power of query languages

Next we present the notion of query language and two notions of expressive power used in this paper.

Definition 1 (Query language). A query language L is a quadruple (Q,D,S,Eval), where Q is the set of queries
in L, D is the set of databases in L, S is the set of results in L, and Eval : Q × D → S is the query evaluation
function of L.

Let L = (Q,D,S,Eval) be a query language. Two queries Q1,Q2 ∈ Q are said to be equivalent, denoted
Q1 ≡ Q2, if for every database D ∈ D, it holds that Eval(Q1,D) = Eval(Q2,D), i.e., they return the same result
for all input databases.

Given a query language (Q,D,S ,Eval), a query Q ∈ Q determines a function q : D → S defined as q(D) =
Eval(Q,D), called the query function of Q. Two queries Q1 and Q2 are thus equivalent, denoted Q1 ≡ Q2, if they
determine the same query function.

In this context, the expressive power of a query language L is understood as the set of all query functions that
are expressible by L. Abiteboul et al. [28] summarizes how this notion is used to compare the expressive power of
relational algebra, Datalog, and relational calculus. In the context of SPARQL, Zhang and Van den Bussche [31],
Kontchakov et al. [32], and Angles and Gutierrez [33] use this notion to compare different fragments of SPARQL.

The query languages studied in this paper do not hold the aforementioned property of having a common set of
databases and results. Thus, we need an extended version of the notion of expressive power as in Definition 2 below.

Angles et al. / The multiset semantics of SPARQL patterns 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

D1 D2 D3

S1 S2 S3

Q1 f1,2(Q1) f1,2◦ f2,3(Q1)

g1,2 g2,3

h2,3h1,2

Fig. 1. Transitivity of language containment. The figure represents three languages Li = (Qi,Di,Si,Evali) where i ∈ {1, 2, 3}. The con-
tainment of a language Li in Li+1 is given by the simulation (fi,i+1, gi,i+1, hi,i+1). The transitive containment of L1 in L3 is given by the
simulation (f1,2 ◦ f2,3, g1,2 ◦ g2,3, h2,3 ◦ h1,2) where ◦ denotes the composition of functions (e.g., g1,2 ◦ g2,3 denotes the function from D1 to
D3 that results from composing g1,2 and g2,3).

This extended notion is implicit in the translations by Polleres [34], Angles and Gutierrez [35, 36], and Polleres and
Wallner [37].

Definition 2 (Generalized expressive power). Given two query languages L1 = (Q1,D1,S1,Eval1) and L2 =
(Q2,D2,S2,Eval2), we say that L1 is contained in L2 if and only if there exist functions g : D1 → D2 (called the
database translation), f : Q1 → Q2 (called the query translation), and h : S2 → S1 (called the results translation),
such that for every Q ∈ Q1 and database D ∈ D1 it holds that

Eval1(Q,D) = h(Eval2(f (Q), g(D))).

If that is the case, we say that the triple (f , g, h) is a simulation of L1 in L2. We say that the languages L1 and L2

have the same expressive power, denoted L1
∼= L2, if and only if L1 is contained in L2 and L2 is contained in L1.

Observe that, like the classical notion and as it is desirable for a notion of expressive power, the extended notion
defined above defines a partial order: the containment relation on the equivalence classes over the relation∼=. Indeed,
the reflexivity and antisymmetry follow directly from the definition, whereas the transitivity is shown in Figure 1.

2.3. Comparing SPARQL, NRMD¬ and MRA

In the remainder of this paper, we define three families of query languages: Non-recursive Multiset Datalog with
Safe Negation (NRMD¬), Multiset Relational Algebra (MRA) and a core fragment of SPARQL. After defining
these languages, we present simulations that show the equivalence among these three families of query languages.
These simulations are depicted in Figure 2.

(1) SPARQL

(2) NRMD¬ (3) MRA

T12
T21

T23

T32

T31
T13

Fig. 2. The triangle of simulations among SPARQL, Non-Recursive Multiset Datalog with Safe Negation (NRMD¬), and Multiset Relational
Algebra (MRA) described in this paper. The query languages are identified by numbers, and Ti j denotes the simulation of language i using
language j.

6 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

3. Multiset SPARQL

SPARQL [38, 39] is the standard query language for RDF. In this paper we study a fragment of SPARQL, the
“relational core”, described by Angles and Gutierrez [36], which considers the operators FILTER, SELECT, AND,
UNION, and EXCEPT. This fragment captures essentially the graph pattern queries in SPARQL. In fact, it has
been proved [32, 36] that it is mutually expressible with the standard-core consisting of the operators FILTER,
SELECT, AND, UNION, OPTIONAL, and MINUS. (In what follows when speaking of "SPARQL" we will mean
this fragment).

3.1. RDF Graphs

Assume two disjoint infinite sets I and L, called IRIs and literals, respectively. An RDF term is an element in the
set T = I ∪ L. An RDF triple is a triple (s, p, o) ∈ I× I× T where s is called the subject, p is called the predicate
and o is called the object. An RDF graph (just graph from now on) is a set of RDF triples. The union of graphs,
G1 ∪G2, is the set theoretical union of their sets of triples.

Note: In addition to I and L, RDF and SPARQL admit as terms anonymous resources called blank nodes. In this
paper, we do not include them to help focus on the issues arising from multisets. Avoiding blank nodes does not
affect the results presented in this paper. Indeed, in SPARQL, blank nodes in the data can be consistently replaced
by IRIs and produce equivalent query results, and blank nodes in queries can be replaced by fresh variables without
changing the semantics of the query [40].

3.2. SPARQL Syntax

Assume the existence of an infinite set V of variables disjoint from T (RDF terms). A filter condition is defined
recursively as follows: (i) If ?X, ?Y ∈ V and c ∈ T then (?X = c), (?X = ?Y) and bound(?X) are atomic filter
conditions; (ii) If ϕ1,ϕ2 are filter conditions then (ϕ1 ∧ ϕ2),(ϕ1 ∨ ϕ2) and ¬ϕ1 are complex filter conditions.

A SPARQL pattern is defined recursively as follows:

– A triple from (I ∪ V)× (I ∪ V)× (I ∪ L ∪ V) is a pattern called a triple pattern.
– If P1 and P2 are patterns then (P1 AND P2), (P1 UNION P2), and (P1 EXCEPT P2) are patterns.
– If P is a pattern and ϕ is a filter condition then (P FILTERϕ) is a pattern.
– If W is a set of variables and P1 is a pattern then (SELECT W P1) is a pattern.

3.3. SPARQL Semantics

A solution mapping (or just mapping from now on) is a partial function µ : V → T where the domain of µ,
denoted dom(µ), is the subset of V where µ is defined. We write µ∅ to denote the mapping with empty domain
(i.e., dom(µ∅) = ∅). Given ?X ∈ V and c ∈ T, we write µ(?X) = c to denote that µ maps variable ?X to term
c. Given a finite set of variables W, the restriction of a mapping µ to W, denoted µ|W , is a mapping µ′ which
satisfies that dom(µ′) = W ∩ dom(µ) and µ′(?X) = µ(?X) when ?X ∈ dom(µ′). Given a mapping µ, a variable
?X ∈ dom(µ) and a variable ?Y /∈ dom(µ), the function λ?X/?Y(µ) returns a mapping µ′ which satisfies that
dom(µ′) = (dom(µ) \ {?X}) ∪ {?Y} and µ′(?Z) = µ(?Z) for every variable ?Z ∈ dom(µ) \ {?X}, and µ′(?Y) =
µ(?X). Two solution mappings µ1, µ2 are compatible, denoted µ1 ∼ µ2, when for all ?X ∈ dom(µ1) ∩ dom(µ2)
they satisfy that µ1(?X) = µ2(?X), that is, when µ1 ∪ µ2 is also a mapping. Note that two mappings with disjoint
domains are always compatible.

Let Ω be a multiset of solution mappings. The domain of variables in Ω, denoted dom(Ω), is defined as the set
union of the domains of the variables occurring in the solution mappings of Ω. Given a mapping µ, the cardinality
of µ in Ω will be denoted as card(µ,Ω). If µ /∈ Ω then card(µ,Ω) = 0.

The evaluation of a filter condition ϕ under a mapping µ, denoted µ(ϕ), is defined in a three-valued logic with
values true, false and error. We say that µ satisfies ϕwhen µ(ϕ) = true. The semantics of µ(ϕ) is defined recursively
as follows:

Angles et al. / The multiset semantics of SPARQL patterns 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 3
Evaluation of complex filter conditions [38, §17.2], where µ is a solution mapping, and ϕ1,ϕ2 are filter conditions.

µ(ϕ1) µ(ϕ2) µ(ϕ1) ∧ µ(ϕ2) µ(ϕ1) ∨ µ(ϕ2)

true true true true
true false false true
true error error true
false true false true
false false false false
false error false error
error true error true
error false false error
error error error error

µ(ϕ1) ¬(µ(ϕ1))

true false
false true
error error

– If ϕ is ?X = c and c ∈ T, then: (a) If ?X ∈ dom(µ) then µ(ϕ) = true when µ(?X) = c and µ(ϕ) = false
otherwise; (b) If ?X /∈ dom(µ) then µ(ϕ) = error.

– If ϕ is ?X = ?Y and ?X, ?Y ∈ dom(µ), then µ(ϕ) = true when µ(?X) = µ(?Y), and µ(ϕ) = false otherwise. If
?X /∈ dom(µ) or ?Y /∈ dom(µ) then µ(ϕ) = error.

– If ϕ is bound(?X) and ?X ∈ dom(µ) then µ(ϕ) = true; otherwise µ(ϕ) = false.
– If ϕ is a complex filter condition, then it is evaluated following the three valued logic shown in Table 3.

The evaluation of a pattern P on a graph G is defined as a function JPKG, which returns a multiset of mappings.
Let P1, P2 be SPARQL patterns, ϕ be a filter condition and W be a set of variables. For simplicity of reading, denote
M = JPKG, M1 = JP1KG, and M2 = JP2KG. The evaluation JPKG is defined recursively as follows:

– If P is a triple pattern t then set(M) = {µ | dom(µ) = var(t), µ(t) ∈ G}, where µ(t) is the triple obtained by
replacing the variables in t according to µ, and card(µ,M) = 1.

– If P is (P1 AND P2) then set(M) = {µ1 ∪ µ2 | µ1 ∈ M1, µ2 ∈ M2, and µ1 ∼ µ2} and card(µ,M) =∑
µ=µ1∪µ2

card(µ1,M1)× card(µ2,M2).
– If P is (P1 UNION P2) then set(M) = {µ | µ ∈ M1∨µ ∈ M2} and card(µ,M) = card(µ,M1)+card(µ,M2).
– If P is (P1 EXCEPT P2) then set(M) = {µ | µ ∈ M1, µ /∈ M2} and card(µ,M) = card(µ,M1).
– If P is (P1 FILTERϕ) then set(M) = {µ | µ ∈ M1, µ(ϕ) = true} and card(µ,M) = card(µ,M1).
– If P is (SELECT W P1) then

set(M) = {µ′ | µ′ = µ|W ∧ µ ∈ M1} and
card(µ′,M) =

∑
µ′=µ|W

card(µ,M1).

To facilitate the translation from SPARQL to relational algebra and Datalog, we use the difference operator
EXCEPT in SPARQL, called SetMinus by Kontchakov et al. [32]. Kontchakov et al. [32] proved that, over this
fragment, the operator EXCEPT and the pair of standard operators {MINUS,OPTIONAL} are mutually express-
ible.

3.4. Normalization of patterns

The solution mappings of a SPARQL pattern P may have different domains. To translate SPARQL to languages
built upon relations, we require representing multisets of mappings as relations whose tuples have the same set
of attributes. This set of attributes has to contain all variables that can appear in the solution mappings of P. The
SPARQL specification [39] defines a finite set of variables, called in-scope, that include all variables of a SPARQL
pattern P that can occur in solutions of P. To complete the relation, unbound values need to be denoted with a
distinguished constant of the target languages.

Example 1. Assume a pattern P with in-scope variables ?X, ?Y , and ?Z which returns the multiset of mappings
Ω = ⦃{?X 7→ a}, {?X 7→ b, ?Y 7→ c}, {?Y 7→ d}⦄. Since all variables in the solution mappings are ensured
to be in-scope variables of P, we can represent this multiset of mappings as the following relation (⊥ denotes the
distinguished constant to denote unbound values):

8 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

?X ?Y ?Z

a ⊥ ⊥
b c ⊥
⊥ d ⊥

 .
In-scope variables are defined as follows. Let P1, P2 and P3 be patterns, ϕ be a filter condition, and W be a set of

variables. The set of in-scope variables of a pattern P, denoted inScope(P), is defined recursively as follows:

1. If P is a triple pattern then inScope(P) = var(P);
2. If P is (P1 AND P2) or (P1 UNION P2) then inScope(P) = inScope(P1) ∪ inScope(P2);
3. If P is (P1 FILTERϕ) or (P1 EXCEPT P2) then inScope(P) = inScope(P1);
4. If P is (SELECT W P1) then inScope(P) = W.

So far, we have described how to translate the results of SPARQL queries to relations. However, languages built
upon relations have some restrictions that difficult a straightforward translation of the SPARQL operations. The
relational selection operation requires all attributes in the selection formula being attributes of the relation; the
relational union is done over relations of the same schema; and the relational difference requires all variables in the
subtrahend be instanced in the minuend. Conversely, SPARQL does not have these restrictions. We next present a
normal form to simplify the translation from SPARQL to relational languages by satisfying the constraints of the
target languages.

Definition 3 (SPARQL normal form). A pattern P is said to be in normalized or in normal form if the following
conditions hold:

1. Every sub-pattern (P1 FILTERϕ) in P holds that var(ϕ) ⊆ inScope(P1);
2. Every sub-pattern (P1 UNION P2) in P holds that inScope(P1) = inScope(P2);
3. Every sub-pattern (P1 EXCEPT P2) in P holds that inScope(P1) = inScope(P2).

Lemma 1. Every SPARQL query (in the fragment described in Section 3.2) can be rewritten as an equivalent
normalized SPARQL query.

Proof. The conditions that make a pattern normalized refer to restrictions to the in-scope variables of patterns.
Patterns that are not normalized include at least one sub-pattern that has either the form (P1 FILTER ϕ),
(P2 UNION P3), or (P2 EXCEPT P3), where ϕ contains a variable ?X /∈ inScope(P1), and inScope(P2) 6=
inScope(P3). We next present a method to normalize these patterns.

Given a pattern P, and a finite set of variables X, P ≡ (SELECT (inScope(P)∪ X) P). Indeed, a mapping µ is a
solution of pattern (SELECT (inScope(P)∪ X) P) if and only there exists a solution mapping µ′ of pattern P such
that µ = µ′|inScope(P)∪X . By the definition of the in-scope variables, dom(µ′) ⊆ inScope(P). Then, dom(µ′) ⊆
inScope(P) ∪ X. Then, µ = µ′. Hence, P ≡ (SELECT (inScope(P) ∪ X) P).

Let P′1, P′2, and P′3 be the patterns defined as follows:

P′1 = (SELECT (inScope(P1) ∪ var(ϕ)) P1),

P′2 = (SELECT (inScope(P2) ∪ inScope(P3)) P2),

P′3 = (SELECT (inScope(P2) ∪ inScope(P3)) P3).

Since P′1 ≡ P1, P′2 ≡ P2, and P′3 ≡ P3, the following equivalences are hold:

(P1 FILTER ϕ) ≡ (P′1 FILTER ϕ),

(P2 UNION P3) ≡ (P′2 UNION P′3),

(P2 EXCEPT P3) ≡ (P′2 EXCEPT P′3).

Unlike the patterns on the left side of these equivalences, the patterns on the right side are normalized. Indeed, by
the definition of the inScope function, var(ϕ) ⊆ inScope(P′1) and inScope(P′2) = inScope(P′3). Hence, these
equivalences can be used to normalize SPARQL patterns.

Angles et al. / The multiset semantics of SPARQL patterns 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Example 2. Let Q be the pattern (P1 UNION P2) where P1 is the triple pattern (?X, is, person) and P2 is the triple
pattern (?X, email, ?Y), and G be the RDF graph that includes the triples (a, is, person) and (a, email, a@ex.org).
Pattern Q is not in normal form because variable ?Y is in inScope(P2), but not in inScope(P1). The normal form
of pattern Q is the query Q′ that results from replacing P1 by the pattern P′1 = (SELECT ?X ?Y (?X, is, person)).
Patterns Q and Q′ are equivalent because patterns P1 and P′1 return the same answers, namely the multiset of
mappings Ω1 = ⦃{?X 7→ a}⦄. Note that, variable ?Y is not in the answers of P1 nor P′1. However, variable ?Y is in
inScope(P′1) but not in inScope(P1). Using the in-scope variables of the patterns to translate the results of patterns

P1 and P′1 as relations we get the respective relations

[
?X

a

]
and

[
?X ?Y

a ⊥

]
.

Although both relations represent the same multiset of mappings, just the second relation has the same attributes as
the result of pattern P2, and thus can be operated with the relational union.

4. Non-Recursive Multiset Datalog with Safe Negation (NRMD¬

This section presents an extension of Datalog to support multiset semantics. Based on the work of Mumick et
al. [29], a database is defined to allow duplicate facts, and the evaluation and multiplicity of a solution fact is given
by the number of different proofs for that fact. We extended Mumick’s formalism in [23] to provide a more complete
formalism including negation, which we call MD¬. Additionally, we follow the work of Bertossi et al. [41] for the
semantics of MD¬. We call Non-Recursive Multiset Datalog with Safe Negation (NRMD¬) to the fragment of MD¬

restricted to non-recursive queries.

4.1. NRMD¬ Syntax

Assume three disjoint sets: variables, constants and predicate names. A term is either a variable or a constant. An
atom is an expression p(t1, . . . , tn) where p is a predicate name and each ti is a term. An equality expression will be
represented by an atom of the form eq(t1, t2). A literal is either an atom (i.e. a positive literal A) or the negation of
an atom (i.e. a negative literal ¬A). Given a literal L, we use var(L) to denote the variables in L. A Horn Clause, or
simply clause, is an expression containing at most one positive literal. There are three types of clauses: facts, rules
and goals.

A fact is a positive literal which does not contain any variables. A MD¬ Database is a finite multiset of facts.
The vocabulary of a MD¬ database D is a pair (P, α) where P is the set of predicate names occurring in the facts of
D, and α is a function defining the arity of each predicate name in P, i.e. if p(c1, . . . , cn) ∈ D then α(p) = n. The
predicate names occurring in D are called extensional.

A rule is an expression Ln+1 ← L1, . . . , Ln where Ln+1 is a positive literal with no constants called the head,
and L1, . . . , Ln (n > 1) is a set of literals called the body. A variable X occurs positively in a rule R if and only if
X occurs in a positive literal in the body of R. A rule R is said to be safe if all the variables occurring in R occur
positively in R. Additionally, we will assume that every literal in the body of a rule has a variable at least.

A program Π is a finite set of rules. The predicate names occurring in the head of the rules of Π are called
intensional. A program Π is safe if all the rules of Π are safe. A MD¬ program is a safe program.

The dependency graph of a program Π is a digraph (N, E) where the set of nodes N is the set of predicates names
that occur in the literals of Π, and there is an edge (p1, p2) in E if there is a rule in Π whose body contains the
predicate name p1, and whose head contains the predicate name p2. A program is said to be non-recursive if its
dependency graph is acyclic. A NRMD¬ program is a MD¬ that is non-recursive.

A goal clause is an atom with no constants. A MD¬ query is a pair (L,Π) where L is a goal clause, and Π is
a MD¬ program. A NRMD¬ query is a MD¬ query (L,Π) such that Π is non-recursive. A NRMD¬ database is a
MD¬ database.

10 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

r(a) r(a) p(a) p(a)

〈r(a), 1〉 〈r(a), 2〉 r(a) r(a) r(a) p(a) r(a) p(a) r(a) p(a) r(a) p(a)

〈r(a), 1〉 〈r(a), 2〉 〈r(a), 1〉 r(a) 〈r(a), 1〉 r(a) 〈r(a), 2〉 r(a) 〈r(a), 2〉 r(a)

〈r(a), 1〉 〈r(a), 2〉 〈r(a), 1〉 〈r(a), 2〉

q(a) q(a) q(a) q(a)

F F S S

F F

R R R R R R R R

F F F FS S S S

F F F F

Fig. 3. Example of derivation trees. Let D be the database {F, F} where F is the fact r(a), and Π be the program {R, S} where R is the rule
q(X)← r(X), p(X) and S is the rule p(X)← r(X). This figure shows the derivation trees of Π with respect to D.

4.2. NRMD¬ Semantics

We follow the formalisms by Mumick et al. [29] and Bertossi et al. [41] that use a proof-theoretic semantics for
NRMD¬ programs.

A substitution is a partial function θ from variables to constants. Given a literal L (positive or negative), and a
substitution θ, we write θ(L) to denote the result of replacing all variables x occurring in L with θ(x). Informally, an
answer to a query (L,Π) where Π is a NRMD¬ program, over a database D, will be a multiset of substitutions with
the same domain, each one obtained from one proof showing that this substitution works. Let us state the formal
version.

We will need the following definition, introduced by Mumick et al. [29], to identify the different copies of
each duplicate element. The colored set of a multiset M, denoted coloring(M), is the set C = {〈a, ia〉 | a ∈
set(M) and 1 6 ia 6 card(a,M)}. The elements of 〈a, i〉 ∈ C are called the colored copies of a. Sometimes we
will use the notation coloring−1(C) to define the multiset defined by C when forgetting the “colors”, and write
coloring−1(〈a, i〉) = a.

Let D be a NRMD¬ database and Π a NRMD¬ program. The derivation trees of Π with respect to D, denoted
dt(Π,D), are defined recursively as follows:

1. Let F be a fact, card(F,D) = k with k > 0, and 〈F, i〉 be a colored copy of F. Then there are k derivation trees
ti (for 1 6 i 6 k) where each derivation tree ti consists of:

– two nodes F and 〈F, i〉;
– root F; and
– an edge F → 〈F, i〉 with label 〈F, i〉.

2. Let R ∈ Π be a rule of the form Ln+1 ← A1, . . . , Am,¬Am+1, . . . ,¬An, where A1, . . . , An are atoms and θ be
a substitution. Then, for each tuple (t1, . . . , tm) of derivation trees ti ∈ dt(Π,D) such that: (1) for each i 6 m,
the root of ti unifies with Ai under θ and (2) for each j > m there is no derivation tree in dt(Π,D) whose root
is θ(A j); the rule R and substitution θ generates the derivation tree consisting of:

– Root θ(Ln+1);
– (Ordered) edges θ(Ln+1) → ri with label R, where for i = 1, ...,m, ri is the root of ti and for j > m,

r j = θ(¬(A j)).

Let Π be a nr-Datalog¬ program, D a nr-Datalog¬ database and F a fact. A tree t ∈ dt(Π,D) is said to be a
proof for fact F if the root of t is a colored version of F. The multiset of atoms of Π in D, denoted atoms(Π,D),
is the multiset of facts F such that there is a proof for F in dt(Π,D), and the multiplicity of F in atoms(Π,D) is
the number of proofs of F. Figure 3 shows the derivation trees that are proofs for the facts that are derived from an
example MD program. The facts r(a), p(a) and q(a) belong to atoms(Π,D) with multiplicities 2, 2, and 4.

The NRMD¬ query language over a vocabulary τ is the query language (Q,D,S, J·K·) where:

1. Q is the set of NRMD¬ queries over τ;

Angles et al. / The multiset semantics of SPARQL patterns 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2. D is the set of NRMD¬ databases over τ;
3. S is the set of NRMD¬ answers (i.e., pairs (V,M) where V is a set of variables and M is a multiset of

substitutions θ with dom(θ) = V); and
4. J·K is the function that receives a NRMD¬ query (L,Π) and a NRMD¬ database D, and returns a NRMD¬

answer (V,M) where V = var(L), set(M) = {θ | θ(L) ∈ atoms(Π,D) and dom(θ) = V}, and card(θ,M) =
card(θ(L), atoms(Π,D)).

Observe that the domain of the solutions of a query (L,Π) is var(L). Abusing notation, we will say that it is also
the domain of the query (L,Π), denoted dom((L,Π)) = var(L).

The Multiset Datalog query language presented here, NRMD¬, differs from the version proposed by Bertossi et
al. [41] in that we do not allow recursive programs nor constants in the head of rules. These restrictions permit to
match the expressive power of the SPARQL fragment studied here.

4.3. Normalization of NRMD¬ programs

To simplify the translation from NRMD¬ to SPARQL and MRA, we assume that every NRMD¬ query is nor-
malized into a query that contains only rules of the three following types:

L0 ← L1, where var(L0) ⊆ var(L1); (projection rule)
L0 ← L1, L2, where var(L0) = var(L1) ∪ var(L2); (join rule)
L0 ← L1,¬L2, where var(L2) = var(L1) and var(L0) = var(L1). (negation rule)

We next show the feasibility of this normalization.

Lemma 2. Every NRMD¬ query is equivalent to a normalized NRMD¬ query.

Proof. We provide a normalization algorithm that replaces every rule in the query by a set of rules that do not change
the semantics of the query. Given a NRMD¬ query (L,Π), every rule R ∈ Π has the form

p(X̄)← A1, . . . , Am,¬B1, . . . ,¬Bn,

where A1, . . . , Am are positive literals, and ¬B1, . . . ,¬Bn are negative literals. For 1 6 i 6 m, let Ȳi be the set of
variables that consists of the variables occurring in the atoms A1, . . . , Ai. Then, we replace rule R by the minimal set
of rules ΠR that includes the following rules:

1. Rules RA
i , for 2 6 i 6 m, defined recursively as follows:

(a) RA
2 = qA

2(Ȳ2)← A1, A2.
(b) RA

i = qA
i (Ȳi)← qA

i−1(Ȳi−1), Ai.

2. Rules RB
j for 1 6 j 6 n, defined recursively as follows:

(a) RB
0 = rB

0 (Ȳm)← qA
m(Ȳm),

(b) RB
j = rB

j (Ȳm)← rB
j−1(Ȳm),¬B j,

3. A rule R′ = p(X̄)← rB
n (Ȳm).

Let (L,Π′) be the query resulting from replacing rule R with the rules in ΠR. It is clear that the program is normal
(recall that the original program is safe). Need to show that both programs are equivalent, that is, that the answers of
query (p(X̄),Π) after the replacement are the same and have the same multiplicities. These two conditions follow
from Claim 3 in the Appendix.

5. Multiset Relational Algebra (MRA)

The multiset relational algebra used in this paper is based on the semantics defined by Dayal et al. [10]. This
algebra considers the operations of selection, projection, natural join and arithmetic union. Additionally, we include
operators for renaming and filter difference (or “except”).

12 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

5.1. Multiset relations

Assume that N,A,C are disjoint infinite sets, where N is the domain of relation names, A is the domain of
attributes, and C is the domain of constants or values.

A relation schema is given by a relation name R ∈ N and a set of attributes {A1, . . . , An} where Ai ∈ A for
1 6 i 6 n. To simplify the notation, we will use the relation name R to denote the relation schema, and R̂ to denote
the attributes of R. A relational database schema is a finite set of relation schemas.

A tuple over a relation schema R = {A1, . . . , An} is a total mapping t from R̂ to C. The value of tuple t on an
attribute Ai ∈ R̂ will be denoted as t(Ai). Given a set of attributes U ⊆ R̂ and a tuple t, we write t[U] to denote the
tuple t′ with attributes U such that t′(A) = t(A) for every attribute A ∈ U.

A multiset relation r over a relation schema R is a multiset of tuples over R̂. We write r̂ to denote the relation
schema R where the multiset relation r is defined. Given a tuple t ∈ r, we will use card(t, r) to denote the cardinality
of tuple t in r.

A relational database schema is a set of relational schemas. Given a relational database schema T =
{R1, . . . ,Rn}, a multiset relational database over T is a set of multiset relations {r1, . . . , rn} where each relation ri

satisfies the schema Ri.
Let r1, r2 be two multiset relations, and t1 ∈ r1 and t2 ∈ r2 be tuples. We say that t1 and t2 are compatible,

denoted t1 ∼ t2, if (i) for every attribute A ∈ r̂1 ∩ r̂2 it holds that t1(A) = t2(A), or (ii) r̂1 ∩ r̂2 = ∅. If t1 and t2
are compatible, then the merge of them, denoted t1 ∪ t2, is the tuple t with attributes r̂1 ∪ r̂2 where t(A) = t1(A) for
each attribute A ∈ r̂1, and t(B) = t2(B) for each attribute B ∈ r̂2 \ r̂1.

5.2. Syntax of MRA

The multiset relational algebra defined in this paper includes the operators of selection (σ), projection (π), renam-
ing (ρ), join (on), union (∪), and except (\). Next we describe the syntax of MRA expressions containing the above
operators.

A selection formula ψ is a Boolean combination of equality expressions of the form x = y where x, y ∈ A ∪ C.
We define a MRA expression E over a relational database schema T , and the attributes of E, denoted Ê, by mutual
recursion as follows:

– A relation name R ∈ T is a MRA expression E, and Ê = R̂.
– If E1 is a MRA expression and ψ is a selection formula where the attributes occurring in ψ are included in Ê1,

then σψ(E1) is a MRA expression E, and Ê = Ê1.
– If E1 is a MRA expression and S ⊆ Ê1 is a set of attributes, them πS (E1) is a MRA expression E, and Ê = S .
– If E1 is a MRA expression and A, B ∈ A are attributes, then ρA/B(E1) is a MRA expression E, and Ê =

(Ê1 \ A) ∪ B.
– If E1 and E2 are MRA expressions, then (E1 on E2) is an MRA expression E, and Ê = Ê1 ∪ Ê2.
– If E1 and E2 are MRA expressions and Ê1 = Ê2, then (E1 \ E2) is a MRA expression E, and Ê = Ê1.
– If E1 and E2 are MRA expressions and Ê1 = Ê2, then (E1 ∪ E2) is a MRA expression E, and Ê = Ê1.

Note that a selection operation σψ(E1) requires that attributes in the selection formula ψ be attributes of the MRA
expression E1; the projection operation πS (E1) requires that S be a subset of the attributes of the MRA expression
E1; and that the union E1∪E2 and difference E1 \E2 expressions require that expressions E1 and E2 have the same
set of attributes.

5.3. Semantics of MRA

Given a selection formula ψ and a tuple t over a relation schema R, we will use t |= ψ to denote that t satisfies ψ,
and its evaluation is given as follows:

1. if ψ is A = B where A, B ∈ R̂ are attributes, then t |= ψ iff t(A) = t(B);
2. if ψ is A = c where A ∈ R̂ is an attribute and c ∈ C is a constant, then t |= ψ iff t(A) = c;

Angles et al. / The multiset semantics of SPARQL patterns 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

3. if ψ is c1 = c2 where c1, c2 ∈ C are constants, then t |= ψ iff c1 is equal to c2;
4. if ψ is ψ1 ∧ ψ2, then t |= ψ iff t |= ψ1 and t |= ψ2;
5. if ψ is ψ1 ∨ ψ2, then t |= ψ iff t |= ψ1 or t |= ψ2;
6. if ψ is ¬ψ1, then t |= ψ iff t |= ψ1 does not hold.

Now, the evaluation of a MRA expression E over a multiset relational database D is defined as a function
Eval(E,D) which returns a multiset relation r holding r̂ = Ê.

Let D be a MRA database over a schema T and E, E1, E2 be MRA expressions. The evaluation of Eval(E,D) is
the multiset relation r defined recursively as follows (assume that Eval(E1,D) = r1, and Eval(E2,D) = r2):

– If E is a relation name R1 ∈ T , then r is the relation for the relation name R1 in the database D.
– If E is σψ(E1) then set(r) = {t | t ∈ r1 and t |= ψ} and card(t, r) = card(t, r1).
– If E is πS (E1) then set(r) = {t′ | t′ = t[S] and t ∈ r1} and card(t′, r) =

∑
t with t[S]=t′ card(t, r1).

– If E is ρA/B(E1) then r is the result from renaming in r1 the attribute A as B.
– If E is (E1 on E2) then set(r) = {t1 ∪ t2 | t1 ∈ r1, t2 ∈ r2, and t1 ∼ t2} and card(t1 ∪ t2, r) = card(t1, r1)×

card(t2, r2).
– If E is (E1 ∪ E2) then set(r) = {t | t ∈ r1 or t ∈ r2} and card(t, r) = card(t, r1) + card(t, r2).
– If E is (E1 \ E2) then set(r) = {t | t ∈ r1 and t /∈ r2} and card(t, r) = card(t, r1).

Hence, in MRA, the set of queries is the set of MRA expressions, the set of databases is the set of multiset rela-
tional databases, the set of results is the set of multiset relations, and the evaluation procedure is the aforementioned
function Eval.

6. SPARQL ≡ NRMD¬

This section presents the proof that SPARQL and Non-Recursive Multiset Datalog with Safe Negation (NRMD¬)
have the same expressive power. The proof reduces to prove there is a simulation of SPARQL in NRMD¬ (Sec-
tion 6.1) and of NRMD¬ in SPARQL (Section 6.2).

6.1. SPARQL to NRMD¬

This section describes—according to the notation in Figure 2—the simulation T1,2, which includes the following
translation functions:

– function f1,2 which translates a SPARQL query into a NRMD¬ query;
– function g1,2 which translates a SPARQL database into a NRMD¬ database; and
– function h1,2 which translates a NRMD¬ query solution into a SPARQL query solution.

6.1.1. SPARQL database to NRMD¬ database
The basic idea is to translate each RDF triple into a Datalog atom. Additionally, we create an atom to encode all

RDF terms, and an atom to encode the unbound value.

Definition 4 (Function g1,2). Let τ be the vocabulary with predicate names term, eq, triple, and null with arities
α(term) = 1, α(eq) = 2, α(triple) = 3, and α(null) = 1. Given an RDF graph G, the function g1,2(G) returns a
NRMD¬ database D wich consists of the facts over the vocabulary τ defined according to the following rules:

– term(t) ∈ D and eq(t, t) ∈ D for each term t ∈ G;
– triple(v1, v2, v3) ∈ D for each triple (v1, v2, v3) ∈ G;
– null(⊥) ∈ D, where ⊥ is the constant reserved in RDF to encode unbounded values.

14 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

6.1.2. SPARQL query to NRMD¬ query
In general terms, any SPARQL graph pattern can be translated into a set of NRMD¬ rules. However, there are

some subtleties that need to be discussed before presenting the general translation rules.
An initial issue is the translation of a filter graph pattern P = (P1 FILTERϕ) where ϕ is a complex filter

condition. In order to simplify the translation to Datalog, we need to transform P into a collection of filter graph
patterns where every filter condition is an atomic filter condition.

Consider the following equivalences:

(P1 FILTERϕ1 ∧ ϕ2) ≡ ((P1 FILTERψ1) FILTERϕ2). (1)

(P1 FILTERϕ1 ∨ ϕ2) ≡ (P1 FILTERϕ1) UNION(P1 FILTERϕ2). (2)

(P1 FILTER¬(ϕ1)) ≡ (P1 EXCEPT(P1 FILTERϕ1)). (3)

Intuitively, these equivalences seem to be true, since similar equivalences are valid in set relational algebra, namely
σϕ1∧ϕ2

(R) = σϕ1
(σϕ2

(R)), σϕ1∨ϕ2
(R) = σϕ1

(R)∪σϕ2
(R), and σ¬ϕ1

(R) = R \σϕ1
(R). Under set semantics, these

three equivalences are valid. However, under bag semantics, just equivalence (1) is valid, and equivalences (2) and
(3) present problems. Let us analyze them and provide valid equivalences.

– To see why equivalence (2) is not valid, consider the case where for a solution µ of the pattern P1 the evaluation
of formulas ϕ1 and ϕ2 are true. Then, µ is a solution of the queries in both sides of equivalence (2). However,
the multiplicity differs. Indeed, the multiplicity of µ for the query on the right side is twice the multiplicity for
the query on the left side. Hence, equivalence (2) is valid for set semantics but not for bag semantics.

– To see why equivalence (3) is not valid, consider the case where for a solution µ of the pattern P1 formula ϕ1

produces error. Then, formula ¬ϕ1 also produces error. Thus, µ is not a solution to the query on the right side.
On the other hand, since µ is a solution of P1 but not a solution to query (P1 FILTERϕ1), µ is a solution to the
query on the right side. Hence, this equivalency is not valid because the queries do not have the same answers.

Intuitively, equivalence (2) is no longer valid when we change from set semantics to bag semantics, whereas equiv-
alence (3) is no longer valid when we change from 2-valued logic to 3-valued logic. In the following, we show how
to solve these problems.

Lemma 3 (Rewriting of disjoint filter conditions). We say that two filter conditions ϕ1 and ϕ2 are disjoint, if for
every mapping µ it does not hold that µ(ϕ1) and µ(ϕ2) are simultaneously true. Equivalence (2) is true when ϕ1 and
ϕ2 are disjoint.

Proof. Given that ϕ1 and ϕ2 are disjoint, it applies that µ(ϕ1) is true when µ(ϕ2) is not true (and vice versa). So, it
holds that µ(ϕ1 ∨ ϕ2) = true if and only if µ(ϕ1) = true or µ(ϕ2) = true, and the multiplicity of µ on the left hand
side is the sum of the multiplicities of µ in each of the terms of the right hand side.

Now, consider the following equivalence:

(P1 FILTERϕ1 ∨ ϕ2) ≡(P1 FILTERϕ1 ∧ ¬ϕ2) UNION

(P1 FILTER¬ϕ1 ∧ ϕ2) UNION

(P1 FILTERϕ1 ∧ ϕ2).

(4)

Equivalence (4) solves one of the problems of equivalence (2), but it still has problems to evaluate formulas with
errors. In order to solve them, we introduce the notion of “error filter condition.”

Definition 5 (Error filter condition). Given a filter condition ϕ, the expression Error(ϕ) denotes the filter condition
defined recursively as follows:

Error(bound(?X)) = false,

Error(?X = a) = ¬ bound(?X),

Angles et al. / The multiset semantics of SPARQL patterns 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Error(?X = ?Y) = (¬ bound(?X) ∧ bound(?Y)) ∨
(bound(?X) ∧ ¬ bound(?Y)) ∨
(¬ bound(?X) ∧ ¬ bound(?Y)),

Error(ϕ1 ∧ ϕ2) = (ϕ1 ∧ Error(ϕ2)) ∨
(Error(ϕ1) ∧ ϕ2) ∨
(Error(ϕ1) ∧ Error(ϕ2)),

Error(ϕ1 ∨ ϕ2) = (¬ϕ1 ∧ Error(ϕ2)) ∨
(Error(ϕ1) ∧ ¬ϕ2) ∨
(Error(ϕ1) ∧ Error(ϕ2)),

Error(¬ϕ1) = Error(ϕ1).

Lemma 4. For every filter condition ϕ and mapping µ it holds that µ(ϕ) = error if and only if µ(Error(ϕ)) = true.

Proof. This lemma is proved by induction on the structure of the filter condition (see Claim 1 in the appendix).

Example 3. Let ϕ be the filter condition L∨¬L where L is the equality ?X = a. According to Definition 5, Error(ϕ)
will be the filter condition (¬L∧Error(¬L))∨(Error(L)∧¬¬L)∨(Error(L)∧Error(¬L)). Since ¬¬L is equivalent
to L and Error(¬L) is equivalent to Error(L), then Error(ϕ) is equivalent to (¬L ∧ Error(L)) ∨ (Error(L) ∧ L) ∨
(Error(L)), which is equivalent to (ϕ ∧ Error(L)) ∨ (Error(L)), and then, equivalent to Error(L). According to
Definition 5, we conclude that Error(ϕ) is equivalent to ¬bound(?X).

There are three possible values for variable ?X in a mapping µ, namely µ(?X) = a, µ(?X) = b (for a term
b 6= a), and variable ?X is unbound in µ (denoted µ(?X) = ⊥). The following table shows the values for µ(ϕ) and
µ(Error(ϕ)) for these three cases.

µ(?X) µ(ϕ) µ(Error(ϕ))

a true false
b true false
⊥ error true

As defined by Lemma 4, the filter condition ϕ produces error for mappings µ where µ(Error(ϕ)) = true, and
µ(Error(ϕ)) is either true or false.

Now we present an equivalence for the disjunction that works in all cases.

Lemma 5 (Disjunction rewriting). Given two filter conditions ϕ1 and ϕ2, and a pattern P, the following equivalence
holds for bag semantics:

(P FILTERϕ1 ∨ ϕ2) ≡ (P FILTERϕ1 ∧ ϕ2) UNION

(P FILTERϕ1 ∧ ¬ϕ2) UNION

(P FILTER¬ϕ1 ∧ ϕ2) UNION

(P FILTERϕ1 ∧ Error(ϕ2)) UNION

(P FILTER Error(ϕ1) ∧ ϕ2).

(5)

Proof. Since ϕ ∨ ¬ϕ ∨ Error(ϕ) is a tautology for every filter condition ϕ, the following equivalences hold:

ϕ1 ≡ ϕ1 ∧ (ϕ2 ∨ ¬ϕ2 ∨ Error(ϕ2)) ≡ (ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ¬ϕ2) ∨ (ϕ1 ∧ Error(ϕ2)),

ϕ2 ≡ ϕ2 ∧ (ϕ1 ∨ ¬ϕ1 ∨ Error(ϕ1)) ≡ (ϕ2 ∧ ϕ1) ∨ (ϕ2 ∧ ¬ϕ1) ∨ (ϕ2 ∧ Error(ϕ1)).

16 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Hence, the following equivalence holds:

ϕ1 ∨ ϕ2 ≡ (ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ¬ϕ2) ∨ (¬ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ Error(ϕ2)) ∨ (Error(ϕ1) ∧ ϕ2).

Since all filter conditions in the disjunction of the right side of this equivalence are disjoint, by Lemma 3, we got
equivalence (5).

Finally, we provide a translation for filter graph patterns which have a negation. Under two-valued logic, the
evaluation of a pattern P of the form (P1 FILTER¬ϕ) may be understood as “all solutions µ of P1 except those
where µ(ϕ) is true.” Under 3-valued logic, the evaluation of P means “all solutions µ of P except those where µ(ϕ)
is true or µ(ϕ) is error.” Thus according to the latter meaning we have:

Lemma 6 (Negation rewriting). Given a filter condition ϕ, and a pattern P1, the following equivalence holds:

(P1 FILTER¬ϕ) ≡ ((P1 EXCEPT (P1 FILTERϕ)) EXCEPT (P1 FILTER Error(ϕ))). (6)

Proof. The equivalence follows from the fact that the filter discards from the answers of P those answers µ such that
µ(ϕ) is either false or error.

Now we are ready to present the effectiveness of rewriting that allows for the reduction of complex filter condi-
tions.

Definition 6 (Reduction of complex filter conditions). Given a pattern (P1 FILTERϕ), the filter-reduced pattern
of it is the pattern that results of applying recursively the equivalences (1), (5), and (6) until in the resulting patterns
only occur atomic formulas (i.e. no logical connectives).

Lemma 7. Given a pattern (P1 FILTERϕ), the procedure to reduce complex filter conditions described in Defini-
tion 6 produces a pattern equivalent to the original and with no logical connectives in filter conditions.

Proof. This lemma is proved by induction on the structure of the filter condition in the pattern. The base case
consists in a filter condition ϕ without logical connectives. The case where ϕ is ϕ1 ∧ ϕ2 is straightforward. The
pattern (P FILTERϕ) can be reduced to the pattern ((P FILTERϕ1) FILTERϕ2), and the inductive hypothesis
can be applied on ϕ1 and ϕ2. The cases where ϕ is ϕ1 ∨ ϕ2 or ¬ϕ1 are more involved because the application of the
respective equivalences eliminates a logical connective from ϕ but adds new logical connectives to the resulting filter
conditions. The proof for the cases involving disjunction or negation follows from Claim 2 in the appendix.

We are ready to present the translation from SPARQL patterns to Datalog queries. The translation follows es-
sentially the idea presented by Polleres [34], adapted to multisets by Angles and Gutierrez [36], and improved by
Hernández [30]. Specifically, we cover the following issues:

1. It considers the cases where a filter condition is evaluated as error. Some solutions are lost when these cases
are not considered.

2. It considers that the equality X = Y must be evaluated as true only if X and Y are bound. The translation is
fixed by using the literal eq(X,Y) instead of a built-in equality X = Y . Since, atom eq(X,Y) is true only if X
and Y are terms in the database, the translation of the filter-condition X = Y is not evaluated as true when X
and Y are unbound.

Let the function δ, given by the translation rules presented in Table 5, transforms a SPARQL graph pattern P into
a set of Datalog rules δ(P). Note that function δ assigns a fresh predicate name to each pattern P and subpattern Pi

of P in a non-deterministic way. Polleres [34] proposed a deterministic recursive method to assign predicate names
to patterns. The function δ is the basis to present a general method to transform SPARQL queries into NRMD¬

queries.

Definition 7 (Function f1,2). Given a SPARQL query P, the function f1,2(P) returns a NRMD¬ query (L,Π) where
L is the goal atom p(P̄) and Π is a Datalog program containing the rules produced by δ(P).

Angles et al. / The multiset semantics of SPARQL patterns 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
Definition of function δ which allows to translate a SPARQL graph pattern into a set of NRMD¬ rules. Given a graph pattern P, the function
δ(P) returns a set of Datalog rules. P̄ denotes a set of variables in lexicographical order. pi is a fresh predicate name used to codify the graph
pattern Pi.

Graph Pattern P δ(P) where ...

(x1, x2, x3) p(P̄)← triple(x1, x2, x3) P̄ contains the variables in
{x1, x2, x3}

(P1 AND P2) p(P̄) ← ν1(p1(P̄1)), ν2(p2(P̄2)), {comp(ν1(X), ν2(X), X) | X ∈ P̄1 ∩
P̄2}; comp(X, X, X) ← term(X); comp(X, Y, X) ← term(X), null(Y);
comp(X, Y, Y) ← null(X), term(Y); comp(X, X, X) ← null(X); δ(P1);
δ(P2)

ν1 and ν2 are functions
whose domain is P̄1 ∩ P̄2,
have disjoint range, and
νi(L) denotes a copy of
a literal L where its vari-
ables have been renamed
according to function vi.

(P1 UNION P2) p(P̄)← p1(P̄1); p(P̄)← p2(P̄2); δ(P1); δ(P2) P̄ = P̄1 = P̄2

(P1 EXCEPT P2) p(P̄)← p1(P̄1),¬p2(P̄2); δ(P1); δ(P2) P̄ = P̄1

(P1 FILTER x1 = x2) p(P̄)← p1(P̄1), eq(x1, x2); δ(P1) P̄ = P̄1

(P1 FILTER bound(?X)) p(P̄)← p1(P̄1), term(?X); δ(P1); P̄ = P̄1

(SELECT W P1) p(P̄)← p1(P̄1), null(x1), . . . , null(xn); δ(P1) P̄ = W, and x1, . . . , xn are
the variables that are in W
but not in inScope(P1).

6.1.3. NRMD¬ solution to SPARQL solution
Note that main difference between a multiset of substitutions and a multiset of mappings is the representation

of the SPARQL unobound values with ⊥. Hence, a unbound value occurring in a substitution is translated into a
unbound variable in the corresponding solution mapping.

Definition 8 (Function h1,2). Given a multiset of Datalog substitutions Θ, the function h1,2(Θ) returns a multiset of
SPARQL solution mappings defined as

Ω = {(NotNull(θ), i) | (θ, i) ∈ Θ},

where NotNull(θ) returns a mapping µ satisfying that µ(X) = θ(X) for every variable X ∈ dom(θ) such that
θ(X) 6= ⊥.

Lemma 8. SPARQL can be simulated in NRMD¬.

Proof. Need to show that, using the functions defined above, (f1,2, g1,2, h1,2) is a simulation of SPARQL in NRMD¬.
The proof is in the Claim 4 of the Appendix.

6.2. Multiset Datalog to SPARQL

This section describes—according to the notation in Figure 2—the simulation T2,1, which includes the following
translation functions:

– function f2,1 which translates a NRMD¬ query into a SPARQL query;
– function g2,1 which translates a NRMD¬ database into a SPARQL database; and
– function h2,1 which translates a SPARQL query solution into a NRMD¬ query solution.

18 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

6.2.1. NRMD¬ database to SPARQL database
In general terms, a fact p(c1, . . . , cn) can be translated into a set of triples of the form (u, αi, ci) where u is a fresh

IRI that identifies the fact, and αi is a reserved IRI which allows to describe that constant ci is in the position i of the
fact2. This idea is formalized next.

Assume that A = {α0, α1 . . . } is an enumerable set of special IRIs used to codify positions in Datalog atoms,
NULL is a special IRI, and any Datalog constant c has an equivalent SPARQL term (excluding the aforementioned
especial IRIs).

Recall that the semantics of NRMD¬ relies on the notion of colored set of a multiset (see Section 4.2), which is
the set containing the colored copies of the element of the multiset. If the NRMD¬ database D contains n copies of
a fact F, then coloring(D) contains the colored copies 〈F, 1〉, . . . , 〈F, n〉 of fact F. For each colored copy 〈F, i〉 of
F, we assume the existence of a fresh IRI u〈F,i〉, which we use to identify the colored copy.

Definition 9 (Function g2,1). Given a multiset of NRMD¬ facts D, the function g2,1 returns a set of RDF triples (i.e.
an RDF graph) defined as

g2,1(D) = {NULL,NULL,NULL}
⋃

〈F,i〉∈coloring(D)

{(u〈F,i〉, α0, p), (u〈F,i〉, α1, c1), . . . , (u〈F,i〉, αn, cn)}.

Intuitively, the SPARQL database corresponding to the NRMD¬ database D consists of a set of triples that
describe each of the facts, and the inclusion of triple (NULL,NULL,NULL) allows to ensure that the SPARQL
database is not empty. The need of this additional triple is explained next when describing the translation from
NRMD¬ queries to SPARQL.

6.2.2. NRMD¬ query to SPARQL query
A notable difference between NRMD¬ and SPARQL is the way both languages define the scope of variables. In

NRMD¬ rules, variables are universally quantified, and they are not in the scope of the query. On the other hand,
variables in a SPARQL query are divided into in-scope and non-in-scope (see Subsection 3.4). To see this difference,
consider the NRMD¬ query (q(X,Y),Π) where program Π consists of the single rule R = q(Y,Z) ← p(X,Z,Y).
Notice that the variables in the goal of the query do not correspond to the variables in the head of the rule R. To
simplify the translation, we rename variables in rules according to the goal of the query. In this case, we rewrite
R as the rule R′ = q(X,Y) ← p(X,Y,Z). Formally, given a literal L = q(X1, . . . , Xn) and a rule R whose head is
q(Y1, . . . ,Yn), the renamed rule of R with respect to L, denoted vr(R, L), is the rule R′ that is equivalent to R but
have literal L as head. Intuitively, rule R′ results from consistently renaming each variable Yi as Xi, for 1 6 i 6 n.

Let L be a positive literal p(X1, . . . , Xn) and Π be a normalized NRMD¬ program. We define the function gp(L,Π)
which translates L into a SPARQL graph pattern. The function gp is defined recursively as follows:

1. If predicate name p does not occur in the head of any rule of Π (i.e., p is extensional), then gp(L,Π) returns

SELECT X ((?Y, α0, p) AND (?Y, α1, ?X1) AND · · ·AND (?Y, αn, ?Xn)),

where X = var(L) and ?Y is a fresh variable.
2. Otherwise, if p occurs in the head of the rules {R1, . . . ,Rn} in Π (i.e., p is intensional), then gp(L)D

Π returns:

(T (vr(R1, L)) UNION · · ·UNION T (vr(Rn, L))),

where, T (vr(Ri, L)) is defined as follows:

– If vr(Ri, L) is a projection rule L ← L1 then T (Ri) is (SELECT X P1) where X = var(L) and P1 =
gp(L1,Π);

– If vr(Ri, L) is a join rule L ← L1, L2 then T (Ri) is (P1 AND P2) where P1 = gp(L1,Π) and P2 =
gp(L2,Π);

2An option can be the use of properties rdf:_1, rdf:_2, rdf:_3, . . . , defined in the RDF Schema 1.1 vocabulary.

Angles et al. / The multiset semantics of SPARQL patterns 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– If vr(Ri, L) is a negation rule L ← L1,¬L2 then T (Ri) is (P1 EXCEPT P2) where P1 = gp(L1,Π) and
P2 = gp(L2,Π).

Note that, if n = 1 then gp(L,Π) can be reduced to T (R1).

Example 4. Consider the NRMD¬ query (q(X),Π) where program Π consists of the rule q(X) ← p(X,Y). Then,
gp((q(X),Π)) is the SPARQL query

SELECT ?X ((?U, α0, p) AND (?U, α1, ?X) AND (?U, α2, ?Y)).

The function gp is not enough to translate NRMD¬ queries to SPARQL. Recall that a NRMD¬ answer is a pair
(V,M) where V is a set of NRMD¬ variables and M is a set of NRMD¬ substitutions, and a SPARQL answer is a
multiset Ω of SPARQL mappings. To conclude the translation, we need to define a function that, given an SPARQL
answer Ω, returns a NRMD¬ answer (V,M). The issue is that we cannot compute the set V when multiset Ω is
empty. For instance, an empty NRMD¬ database D is translated as the SPARQL database consisting of the set of
triples {(α0, α0, α0)} (see Subsection 6.2.1). The answer to the query gp((q(X),Π)) in Example 4 returns an empty
multiset of mappings, Ω, where the answer to the NRMD¬ query (q(X),Π) is a pair ({X},M) such that M is an
empty multiset of solutions. Hence, the SPARQL answer Ω does not contain the needed information to generate the
set of variables {X} in the answer of the NRMD¬ query.

To solve the aforementioned issue of having an empty SPARQL answer, we can extend the function gp with a
query that introduces the variables of the query. This is done using the additional triple {NULL,NULL,NULL} we
introduced in the translation. Given a set of NRMD¬ variables V = {X1, . . . , Xn} we write VarQuery(V) to denote
the SPARQL pattern

(NULL,NULL, ?X1) AND · · · AND (NULL,NULL, ?Xn).

The translation of a NRMD¬ query is then the union of the graph pattern computed by functions gp and VarQuery.

Definition 10 (Function f2,1). Given a NRMD¬ query Q = (L,Π) where L is the goal clause, and Π a NRMD¬

program, the function f2,1(Q) returns a SPARQL graph pattern (gp(L,Π) UNION VarQuery(var(L))).

Example 5. Consider the NRMD¬ query (q(X),Π) in Example 4. Then, f2,1((q(X),Π) is the following SPARQL
graph pattern:

(SELECT ?X ((?U, α0, p) AND (?U, α1, ?X) AND (?U, α2, ?X))) UNION (NULL,NULL, ?X).

The result of evaluating the NRMD¬ query on an empty set of facts D is the pair ({X},M) where M is an empty
multiset of NRMD¬ substitutions, whereas the result of evaluating the graph pattern f2,1((q(X),Π)) on the SPARQL
database g2,1(D) = {(NULL,NULL,NULL)} is the SPARQL answer Ω = {{?X 7→ α0}}. Intuitively, the mapping
{?X 7→ NULL} does not codify a NRMD¬ substitution, but the variables in the domain of NRMD¬ substitutions.

6.2.3. SPARQL solution to NRMD¬ solution
Since a SPARQL mapping can be seen also as a NRMD¬ substitution, the translation from SPARQL mappings to

NRMD¬ substitutions requires no modifications, except for the mapping {?X1 7→ NULL, . . . , ?Xn 7→ NULL} which
is used to codify the solution variables.

Definition 11 (SPARQL answers as NRMD¬ answers). Let Ω be a multiset of SPARQL solution mappings that
includes a mapping µV 7→NULL with multiplicity 1 where dom(µV 7→NULL) = V and µ(?X) = NULL for every variable
?X ∈ dom(µV 7→NULL), and for every mapping µ′ ∈ Ω it is hold that dom(µ′) = V . The NRMD¬ answer for Ω,
denoted h2,1(Ω), is the pair (V,M) where M is the multiset of substitutions θ defined as follows:

1. Given an SPARQL mapping µ = {?X1 7→ c1, . . . , ?Xn 7→ cn} the corresponding NRMD¬ substitution for
mapping µ is the substitution θµ = {X1/c1, . . . , Xn/cn} where the NRMD¬ variable Xi corresponds to the
SPARQL variable ?Xi.

20 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2. set(M) = {θµ | µ ∈ Ω \ {µV 7→NULL}}.
3. card(θµ,M) = card(µ,Ω).

Lemma 9. NRMD¬ can be simulated in SPARQL.

Proof. This is a long but straightforward induction on Datalog queries using as hypothesis that (f2,1, g2,1, h2,1) is a
simulation of NRMD¬ in SPARQL. The details of this proof are in the appendix (Claim 5).

6.3. SPARQL and NRMD¬ have the same expressive power

Putting together the simulations between NRMD¬ and SPARQL presented in the previous sections, we can state
the following theorem:

Theorem 1. SPARQL and NRMD¬ have the same expressive power.

Proof. If follows from Lemma 8 and Lemma 9.

7. MRA ≡ NRMD¬

This section presents the simulations that prove that Multiset Relational Algebra (MRA) and Non-recursive Mul-
tiset Datalog with Safe Negation (NRMD¬) have the same expressive power.

7.1. MRA to Multiset NRMD¬

This section describes—according to the notation in Figure 2—the simulation T32 which includes the following
translation functions:

– function f32 which translates a MRA query into a NRMD¬ query;
– function g32 which translates a MRA database into a NRMD¬ database; and
– function h32 which translates a NRMD¬ query solution into a MRA query solution.

7.1.1. MRA database to NRMD¬ database
Recall that a MRA database is a set of relations (where each relation is a multiset of tuples), and a NRMD¬

database is a set of facts. First, we define a method to translate a MRA relation into a multiset of facts. Then, we
define a method to translate a set of MRA relations into a multiset of NRMD¬ facts.

Assume the existence of functions that map: MRA relation names to NRMD¬ predicate names, MRA attributes
to NRMD¬ variables, and MRA constants to NRMD¬ constants. Given a relation schema R, we write ~R to denote a
tuple containing the attributes of R in lexicographical order.

Given a multiset relation r, defined under a relation schema R, with ~R = (A1, . . . , An), the function Σ(r) returns
a multiset of Datalog facts defined as follows: For each tuple t in r, Σ(r) contains a fact f of the form p(c1, . . . , cn)
where p is R, every ci is t(Ai), and the multiplicity of f in Σ(r) is given by the multiplicity of t in r.

Definition 12 (Function g32). Given a MRA database D, the function g32 returns a multiset of NRMD¬ facts D′

defined as follows:

– For each MRA relation r in D, D′ contains the facts returned by Σ(r);
– For each constant c in D, D′ contains a fact eq(c, c).

Note that the multiset of Datalog facts D′ is defined over the vocabulary that includes as predicate names all the
relation names in D, and as arity of the predicate name R the number of attributes of the relation name R.

Angles et al. / The multiset semantics of SPARQL patterns 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

7.1.2. MRA query to NRMD¬ query
First, we need to provide a recursive method to reduce MRA selection formulas into atomic formulas. Such

method is based on the following equivalences where E is an MRA expression, and ψ, ψ1, and ψ2 are selection
formulas:

σψ1∧ψ2
(E) ≡ σψ2

(σψ1
(E)), (7)

σψ1∨ψ2
(E) ≡ σψ1∧¬ψ2

(E) ∪ σ¬ψ1∧ψ2
(E) ∪ σψ1∧ψ2

(E), (8)

σ¬ψ(E) ≡ E \ σψ(E). (9)

The proof of the validity of the above equivalences follows directly from the semantics of the selection operator. In
particular, Equivalence 8 is rather involved because separates the disjunction in a union of three disjoint multiset
relations in order to preserve the multiplicity of each solution. Using the above equivalence, we get the following
lemma.

Lemma 10. For every MRA expression E, there exists an equivalent MRA expression E′ satisfying that all selection
formulas in E′ are atomic.

Proof. The proof follows from induction in the number k of Boolean connectives in selection formulas occurring
in an MRA expression E. The base case is k = 0 and thus all selection formulas are atomic. If k > 0, then the
expression includes a selection expression whose formula has either the form ψ1 ∧ ψ2, ¬ψ, or ψ1 ∨ ψ2. In the first
two cases, equivalences 7 and 9 reduce by one of the Boolean connectives of the expression. In the third case, the
consecutive application of equivalences 8, 7, and 9 (in that order) reduces by one the number of Boolean connectives.
Hence, we produce an equivalent query with k − 1 Boolean connectives.

Definition 13 (Function f32). Let Q be a MRA query (i.e. an MRA expression), where selection formulas are atomic
(i.e., have no Boolean connectives). The function f32(Q) returns a NRMD¬ query (L,Π) where L is a goal clause of
the form q(~Q) where q is a predicate name corresponding to Q, ~Q are the variables corresponding to the attributes
in the schema Q̂ (sorted in lexicographical order), and Π is a set of NRMD¬ rules (i.e. a NRMD¬ program) created
by applying recursively the rules shown in Table 5.

Note that function f32 assigns a fresh predicate name to each operation in query Q by following a non-
deterministic approach. (Although it is not difficult to define deterministic ways; like in the translation from
S PARQL to NRMD¬, in this paper, we omit in how intensional predicate names are assigned).

Table 5
Definition of function Γ which translates an MRA expression into a set of Datalog rules. Given a MRA expression E, the recursive function
Γ(E) returns a set of NRMD¬ rules where: qi(Ā) is a positive literal related to the MRA expression Ei, qi is a fresh predicate name, Āi denotes
a set of variables, ~R denotes the attributes in schema R̂, sorted in lexicographical order.

MRA expression E0 Γ(E0) where ...

R q0(Ā0)← R(~R) Ā0 = ~R

(E1 on E2) q0(Ā0)← q1(Ā1), q2(Ā2); Γ(E1); Γ(E2) Ā0 = Ā1 ∪ Ā2

(E1 ∪ E2) q0(Ā0)← q1(Ā1); q0(Ā0)← q2(Ā2); Γ(E1); Γ(E2) Ā0 = Ā1 = Ā2

(E1 \ E2) q0(Ā0)← q1(Ā1),¬q2(Ā2); Γ(E1); Γ(E2) Ā0 = Ā1

πS (E1) q0(Ā0)← q1(Ā1); Γ(E1) Ā0 = S

ρA/B(E1) q0(Ā0)← q1(Ā1), eq(A, B); Γ(E1) Ā0 = (Ā1 \ {A}) ∪ {B}

σA=B(E1) q0(Ā0)← q1(Ā1), eq(A, B); Γ(E1) Ā0 = Ā1

22 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

7.1.3. NRMD¬ solution to MRA solution
Recall that an NRMD¬ answer is a pair (V,M) where V is a set of variables (i.e. the domain of the solutions), and

M is a multiset of NRMD¬ substitutions. On the other hand, an MRA answer is a multiset relation. Next, we define
a function h32 which transforms an NRMD¬ answer into an MRA answer.

Definition 14 (Function h32). Given a NRMD¬ answer A = (V,M), the function h32(A) returns a multiset relation
R where: the schema of R is given by the set of attributes V (assume a simple transformation of variables to attribute
names); for each substitution θ in M, there is a tuple t in R satisfying that t(X) = θ(X) for every attribute X ∈ R̂,
and card(t,R) = card(θ,M).

Lemma 11. MRA can be simulated in NRMD¬.

Proof. Let f32, g32, h32 denote respectively the functions stated in definitions 12, 14 and 13. The proof of this
theorem follows from the claim that (f32, g32, h32) simulates MRA in NRMD¬ by using induction in the structure
of queries. The proof of this claim is in the appendix (Claim 6).

7.2. NRMD¬ to MRA

This section describes—according to the notation in Figure 2—the simulation T23 which includes the following
translation functions:

– f23, which translates a NRMD¬ query into a MRA query;
– g23, which translates a NRMD¬ database into a MRA database; and
– h23, which translates a MRA query solution into a NRMD¬ query solution.

7.2.1. NRMD¬ database to MRA database
Recall that an NRMD¬ database is a set of facts, and an MRA database is a set of relations (where each relation

is a multiset of tuples). First, we define a method to translate a multiset of facts with the same predicate name into
a relation R. Let M be a multiset of NRMD¬ facts having the same predicate name, i.e. every fact in M has the
form p(t1, . . . , tn). The function ψ(M) returns a MRA relation R where: the relation schema R̂ of R is given by the
relation name p and the set of attributes {A1, . . . , An}, where each attribute name has the form att_i with 1 6 i 6 n;
for each fact p(t1, . . . , tn) in M there is a tuples t in R satisfying that t(Ai) = ti.

Next, we define function g23 which allows translating a multiset of facts into a set of relations.

Definition 15 (Function g23). Let M be a multiset of NRMD¬ facts M (i.e. an NRMD¬ database), and {p1, . . . , pn}
are the predicate names in M. The function g23(M) returns a set of relations (i.e. a MRA database) {R1, . . . ,Rn}
where Ri = ψ(Mi) such that Mi is the subset of NRMD¬ facts of M having the predicate name pi.

7.2.2. NRMD¬ query to MRA query
Let Π be a normalized NRMD¬ program. We define, by mutual recursion, functions δ1(L,Π) and δ2(r,Π) to

translate (respectively) literals and rules into MRA expressions.
Given a literal L in Π of the form p(X1, . . . , Xn), the function δ1(L,Π) is defined as follows:

1. If predicate name p does not occur in the head of any rule of Π, then δ1(L,Π) returns the MRA expression
ρA1/X1(· · · ρAn/Xn(R) · · ·) where R is the relation name associated to p;

2. Otherwise, if p occurs in the head of the rules {r1, . . . , rm} in Π, then δ1(L,Π) returns the MRA expression
(E1 ∪ (E2 ∪ (· · · Em) · · ·) where each Ei is a MRA expression returned by δ2(ri,Π).

Given a rule r in Π, the function δ2(r,Π) is defined as follows:

– If r is a projection rule L0 ← L1 then δ2(r,Π) returns the MRA expression πS (E) where S is the set of variables
var(L0) and E is the MRA expression returned by δ1(L1,Π);

– If r is a join rule L0 ← L1, L2 then δ2(r,Π) returns the MRA expression (E1 on E2) where E1 and E2 are the
MRA expressions returned by δ1(L1,Π) and δ1(L2,Π) respectively;

– If r is a negation rule L0 ← L1,¬L2 then δ2(r,Π) returns the MRA expression (E1 \ E2) where E1 and E2 are
the MRA expressions returned by δ1(L1,Π) and δ1(L2,Π) respectively.

Angles et al. / The multiset semantics of SPARQL patterns 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Definition 16 (Function f23). Given a normalized NRMD¬ query Q = (L,Π) where L is the goal clause, and Π a
NRMD¬ program, the function f23(Q) returns a MRA query defined by δ1(L,Π).

7.2.3. MRA solution to NRMD¬ solutions
Recall that a MRA solution is a multiset relation, and a NRMD¬ solution is a pair (V,M) where V is a set of

variables (i.e. the domain of the solutions), and M is a multiset of substitutions. Next, we define a function h23

which transforms an MRA answer into an NRMD¬ answer.
Since a MRA tuple can be seen (interpreted) also as a Datalog substitution, the translation from MRA tuples to

Datalog substitutions requires essentially no modifications.

Definition 17 (Function h23). Given a MRA relation R with schema R̂ = {A1, . . . , An}, the function h23(R) returns
an NRMD¬ answer A = (V,M) where: V is a set of variables {X1, . . . , Xn} where variable Xi corresponds to
attribute Ai (assume a simple transformation of attribute names to variable names); and, for each tuple t in R, there
is a substitution θ in M satisfying that θ(Xi) = t(Ai) for every attribute Ai ∈ R̂, and card(θ,M) = card(t,R).

Lemma 12. NRMD¬ can be simulated in MRA.

Proof. This is a long but straightforward induction on Datalog queries using as hypothesis that (f23, g23, h23) is a
simulation of NRMD¬ in MRA. The details of this proof are in the appendix (Claim 7).

7.3. NRMD¬ and MRA have the same expressive power

Putting together the simulations between NRMD¬ and MRA stated in this section, we get the following theorem:

Theorem 2. MRA and NRMD¬ have the same expressive power.

Proof. If follows from lemmas 11 and 12.

8. SPARQL ≡MRA

This section presents the simulations that prove that SPARQL and Multiset Relational Algebra (MRA) have the
same expressive power.

8.1. MRA to SPARQL

This section describes—according to the notation in Figure 2—the simulation T31 which includes the following
translation functions:

– function f31 which translates a MRA query into a SPARQL query;
– function g31 which translates a MRA database into a SPARQL database; and
– function h31 which translates a SPARQL query solution into a MRA query solution.

8.1.1. MRA database to SPARQL database
Recall that a MRA database is a set of MRA relations (where each MRA relation is a multiset of tuples), and a

SPARQL database is a set of RDF triples (i.e. an RDF graph). First, we define a method to translate a MRA relation
into a set of RDF triples. Then, we define a method to translate a set of MRA relations.

Assume the existence of functions that map: relation names to IRIs, and relation attributes to IRIs.
Given a MRA relation r, the function β(r) returns a set of triples defined as follows: for each tuple t in r, β(r)

contains a triple (ut, ub, ur) where ut is a IRI which identifies the tuple t, ur is an IRI which identifies the relation
r, and ub is a IRI which describes that ut is a tuple of ur; and, for each attribute A in r̂, β(r) contains a triple of the
form (ut, uA, vA) where uA is a IRI which identifies the attribute A, and vA is the value t(A).

Definition 18 (Function g31). Given a MRA database D, the function g31(D) returns a multiset of RDF triples D′

defined as follows:

24 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– For each multiset relation r in D, D′ contains the RDF triples returned by β(r);
– D′ contains a triple (NULL,NULL,NULL) where NULL is a special IRI. Like in the simulation of NRMD¬

with SPARQL, the simulation of MRA with SPARQL uses this especial triple to retrieve the variables that are
attributes of the MRA answer.

8.1.2. MRA query to SPARQL query
Recall that an MRA answer is a multiset relation r over a set of attributes r̂. Unlike MRA, SPARQL answers

do not specify a set of variables for which solutions are defined. For example, the evaluation of the triple pattern
(?X, ?Y, ?Z) over an empty RDF graph results in an empty multiset Ω. The reference to the variables is not carried
in the SPARQL answer. Like with the simulation of NRMD¬ with SPARQL, we need to define a SPARQL pattern
to retrieve the answer variables.

Given an MRA expression E, with attributes Ê = {X1, . . . , Xn}, we write AttrQuery(E) to denote the SPARQL
pattern (NULL,NULL, ?X1) AND · · · AND (NULL,NULL, ?Xn), where, for 1 6 i 6 n, variable ?Xi is the corre-
sponding SPARQL variable for the MRA attribute Xi.

Example 6. Consider the MRA expression r on s where r̂ = {X,Y} and ŝ = {Y,Z}. Then, AttrQuery(E) =
(NULL,NULL, ?X) AND (NULL,NULL, ?Y) AND (NULL,NULL, ?Z), where ?X, ?Y , and ?Z are the correspond-
ing SPARQL variables for attributes X, Y , and Z.

Recall that a MRA query is an MRA expression, and a SPARQL query is a SPARQL graph pattern. We will show
that every type of MRA expression can be translated to a specific type of SPARQL graph pattern. Table 6 shows the
translation rules which are the basis for the following definition.

Definition 19 (Function f31). Given an MRA expression E, the function f31 returns a SPARQL graph pattern defined
by (Υ(E) UNION AttrQuery(E)).

Table 6
Definition of function Υ which translates an MRA expression into a SPARQL pattern.

MRA expression E SPARQL pattern Υ(E) where ...

R (SELECT ?X1 · · ·?Xn ur is the IRI that identifies R, ?Y is a variable used to

((?Y, ub, ur) AND ((?Y, u1, ?X1) AND (· · · AND (?Y, u2, ?Xn) · · ·) match every tuple of R, and Xi is a variable that cor-
responds to the attribute Ai in schema R̂.

(E1 on E2) (P1 AND P2) P1 = Υ(E1) and P2 = Υ(E2).

(E1 ∪ E2) (P1 UNION P2) P1 = Υ(E1) and P2 = Υ(E2).

(E1 \ E2) (P1 EXCEPT P2) P1 = Υ(E1) and P2 = Υ(E2).

πS (E1) (SELECT WP1) P1 = Υ(E1) and W is the set of variables corre-
sponding to the attributes in S .

ρA/B(E1) subs?X/?Y(P1) P1 = Υ(E1), ?X is the variable that corresponds to
attribute A, ?Y is the variable that corresponds to at-
tribute B, and subs?X/?Y(P1) denotes the renaming
of variable ?X with variable ?Y in the SPARQL query
P1 (see Appendix A).

σψ(E1) (P1 FILTER ϕ) P1 = Υ(E1), and ϕ is a filter condition equivalent to
the selection condition ψ.

8.1.3. SPARQL solution to MRA solution
Recall that a SPARQL solution is a multiset of mappings, and a MRA solution is a multiset relation. Intuitively,

a multiset of mappings Ω can be transformed into a MRA relation r where the attributes in r̂ are the variables in the
domain of Ω. This notion is defined next.

Definition 20 (Function h31). Let Ω be a multiset of mappings with dom(µ) = V for every mapping µ ∈ Ω, and
that includes the mapping µV 7→NULL with dom(µV 7→NULL) = V , µV 7→NULL(?X) = NULL for every variable ?X ∈ V , .
The function h31(Ω) returns a multiset relation r where:

Angles et al. / The multiset semantics of SPARQL patterns 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– For each variable ?X ∈ V , the schema r̂ includes the MRA attribute A corresponding to variable ?X.
– The tuple tµ corresponding to a mapping µ with dom(µ) = V is the tuple with attributes r̂ such that t(A) =
µ(?X), for each MRA attribute A ∈ r̂ corresponding to a variable ?X ∈ V .

– set(r) = {tµ | µ ∈ set(Ω) \ {µV 7→NULL}}.
– card(tµ, r) = card(µ,Ω)

Lemma 13. MRA can be simulated in SPARQL.

Proof. Let f31, g31, h31 denote respectively the functions stated in definitions and 19, 18, and 20. The proof of this
theorem follows from the claim that (f31, g31, h31) simulates MRA in SPARQL by using induction in the structure
of queries. The proof of this claim is in the appendix (Claim 8).

8.2. SPARQL to MRA

This section describes—according to the notation in Figure 2—the simulation T13 which includes the following
translation functions:

– function f13 which translates a SPARQL query into a MRA query;
– function g13 which translates a SPARQL database into a MRA database; and
– function h13 which translates a MRA query solution into a SPARQL query solution.

The translation presented here is inspired by the one presented by Cyganiak [42]. However, unlike Cyganiak,
we do not use null values with the SQL semantics. Instead, we use a special constant, denoted ⊥, used to codify
unbound values.

8.2.1. SPARQL database to MRA database
Recall that a SPARQL database is a set of RDF triples (i.e. an RDF graph), and a MRA database is a set of MRA

relations (where each MRA relation is a set of tuples). The translation of a set of RDF triples G will produce three
multiset relations (without duplicates): Trip, which codifies the RDF triples in G; Null, introduced to manage the
unbound values of SPARQL; and Comp, introduced to simulate the notion of compatibility between mappings.

Let⊥ be a special constant. Given a set of RDF triples G, the multiset relations Trip, Null, and Comp are defined
as follows:

1. T̂rip = {S , P,O}, set(Trip) = {{S 7→ s, P 7→ p,O 7→ o} | (s, p, o) ∈ G}, and card(t,Trip) = 1 for every
tuple t ∈ set(Trip).

2. N̂ull = {N}, set(Null) = {{N 7→ ⊥}}, and card({N 7→ ⊥},Null) = 1.
3. Ĉomp = {A1, A2, A}, set(Comp) includes the tuple {A1 7→ ⊥, A2 7→ ⊥, A 7→ ⊥} and all tuples of the form
{A1 7→ a, A2 7→ a, A 7→ a}, {A1 7→ ⊥, A2 7→ a, A 7→ a}, and {A1 7→ a, A2 7→ ⊥, A 7→ a} where a is an RDF
term in G, and card(t,Comp) = 1 for every tuple t ∈ set(Comp).

Definition 21 (Function g13). Given a set of RDF triples D (i.e., an RDF graph), the function g13(D) returns a
multiset relational database D′ containing the multiset relations Trip, Null, and Comp defined above.

8.2.2. SPARQL query to MRA query
First, we define function ε which allows translating a triple pattern (the simplest SPARQL query) into a MRA

expression. Recall that Trip is a multiset relation that is obtained from a multiset of RDF triples, where T̂rip =
{S , P,O}.

Given a triple pattern T = (s, p, o), the function ε(T) returns a MRA expression defined as follows3:

1. Let ΣC and ΣV be the sets of identities

ΣC = {S = s | s /∈ V} ∪ {P = p | p /∈ V} ∪ {O = o | o /∈ V},

ΣV = {S = P | s, p ∈ V} ∪ {S = O | s, o ∈ V} ∪ {P = O | p, o ∈ V}.

3These rules are based on Cyganiak’s translation [42].

26 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2. Let Selection(s, p, o) be the MRA expression defined as follows:

Selection(T) =

{
σ∧

ϕ∈ΣC∪ΣV
(Trip) if ΣC ∪ ΣV 6= ∅,

Trip otherwise.

3. The attributes of a variable ?X occurring in triple pattern T is the set of attributes

Attr(?X,T) = {S | s = ?X} ∪ {P | p = ?X} ∪ {O | o = ?X}.

The first position of a variable ?X ∈ inScope(T), denoted minAttr(?X,T), is the minimum in Attr(?X,T)
assuming S < P < O. Intuitively, minAttr(?X,T) is the attribute that corresponds to the first position where
variable ?X occurs in triple T .

4. Let Renaming(T) be the MRA expression that results for applying the renaming ρminAttr(?X,T)/X over
Selection(T), for each variable ?X ∈ inScope(T) and MRA attribute X corresponding to variable ?X.

5. Let Projection(T) be the MRA expression πW(Renaming(T)) where W is the set of attributes corresponding
to the in-scope variables in triple pattern T .

6. ε(T) is the MRA expression Projection(T).

Example 7 (Simulation of SPARQL triple patterns with MRA). The following are examples of the translation of a
SPARQL triple pattern T with MRA, using function ε.

– if T is (?X, b, c) then ε(T) returns π?X(ρS/?X(σP=b∧O=c(Trip)));
– if T is (a, ?Y , c) then ε(T) returns π?Y(ρP/?Y(σS =a∧O=c(Trip)));
– if T is (?X, ?Y , c) then ε(T) returns π?X,?Y(ρS/?X(ρP/?Y(σO=c(Trip))));
– if T is (?X, b, ?X) then ε(T) returns π?X(ρS/?X(σP=b∧S =O(Trip))).

Second, we define a function γ which allows translating a SPARQL filter condition into a MRA selection con-
dition. Like in the translation from SPARQL to NRMD¬, it is not necessary to translate complex filter conditions
(SPARQL) to complex selection formulas (MRA) because SPARQL queries can be normalized to avoid logical
connectives.

Given an atomic filter condition ϕ, the function γ(ϕ) is defined recursively as follows:

– If ϕ is ?X = c then γ(ϕ) is (¬(X = ⊥) ∧ X = c) where X is the attribute name corresponding to variable ?X;
– If ϕ is ?X = ?Y then γ(ϕ) is ((¬(X = ⊥) ∧ ¬(Y = ⊥)) ∧ X = Y) where X and Y are the attribute names

corresponding to variables ?X and ?Y , respectively;
– If ϕ is bound(X) then γ(ϕ) is ¬(X = ⊥) where X is the attribute name corresponding to variable ?X.

In Definition 21, we introduced the relation named Comp to simulate the compatibility between mappings. For
example, to simulate the SPARQL query Q = (P1 AND P2) we need to ensure that check if two pairs of mappings
µ1 ∈ JP1KG and µ2 ∈ JP2KG are compatible, and if they are compatible, return the mapping µ = µ1 ∪ µ2 resulting
from joining them. To explain how this operation is simulated with MRA, let inScope(P1) ∩ inScope(P2) = {?X}
and tuples t1 and t2 correspond to mappings µ1 and µ2. To be compatible, either both mappings map variable ?X to
the same value, or at least for one of the mappings, variable ?X is unbound. For tuples, an unbound variable ?X is
represented with an attribute value ⊥ (e.g., t(X) = ⊥). Then, to check if tuples t1 and t2 are compatible, we need
to rename the attribute name X corresponding to variable ?X as two attributes, namely X1 and X2 and check if there
exists a tuple t3 in the result of query ρA1/X1(ρA2/X2(Comp)) that agrees with tuples t1 and t2 (i.e., t3(X1) = t1(X)
and t3(X2) = t2(X)) or agrees with either t1 or t2 whereas for the other tuple the value is ⊥ (e.g., t3(X1) = t1(X)
and t2(X2) = ⊥). We recover the renamed attribute X for the attribute A in the relation named Comp. That is,
for the compatibility we use the MRA expression ρA/X(ρA1/X1(ρA2/X2(Comp))) which is generalized as follows for
multiple common variables in the scope of patterns P1 and P3.

Let X be a finite set of attribute names, and ν1 and ν2 be two bijective functions that map each attribute X ∈ X to
two different sets of attributes (i.e., the ranges of ν1 and ν2 are disjoint). Then, we write Comp(ν1, ν2,X) to denote
the join of MRA expressions of the form ρA/X(ρA1/ν1(X)(ρA2/ν2(X)(Comp))), for every attribute name X ∈ X .

Angles et al. / The multiset semantics of SPARQL patterns 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Let E be a MRA expression, and X = {X1, . . . , Xn} be a subset of the attribute names in Ê, and ν a bijective
function that maps each attribute name in X to a fresh attribute name (i.e., ν(X) /∈ Ê). We call ν(E) to the MRA
expression that renames each attribute name X ∈ X with ν(X). That is, ν(E) = ρX1/ν(X1)(· · · ρXn/ν(Xn)(E) · · ·).

Given two MRA expressions E1 and E2, assume two bijective functions ν1 and ν2 that map each attribute X ∈
Ê1 ∩ Ê2 to two fresh attributes (i.e., ν1(X), ν2(X) /∈ Ê1 ∪ Ê2), and satisfy range(ν1) ∩ range(ν2) = ∅. Then, we
define the MRA operation E1 ∗ E2 in terms of existing MRA operators as follows:

E1 ∗ E2 = πÊ1∪Ê2
(Comp(ν1, ν2, Ê1 ∩ Ê2) on ν1(E1) on ν2(E2)).

Notice that the attribute names in the ranges of functions µ1 and µ2 in the definition of expression E1 ∗ E2 do not
matter because are not in the schema of the multiset that results from expression E1 ∗ E2.

To translate SPARQL queries Q of the form (SELECT X P) where the set of variables X include a variable
that is not in the scope of P, we need to generate values ⊥ to fill the tuples returned by the translated query. For
example, if inScope(P) = {?X} and X = {?X, ?Y}, then the MRA expression E that corresponds to the SPARQL
pattern P can be extended with an attribute name Y by joining E with the MRA relation ρN/Y(Null). Given a set
Y = {Y1, . . . ,Yn} of attribute names, we define the MRA expression ∆(Y) as ρN/Y1(Null) on · · · on ρN/Yn(Null).

We next present the translation from SPARQL patterns as MRA queries.

Definition 22 (SPARQL patterns as MRA queries). The translation rules in Table 7 define the function f1,3 from
graph patterns whose selection formulas have no Boolean connectives to MRA queries.

Table 7
Definition of the function f1,3, which takes a normalized SPARQL pattern P as input (without logical connectives in selection formulas) and
returns an MRA query.

SPARQL pattern P MRA query f1,3(P) where...

P∅ π∅(Null)

(s, p, o) ε(s, p, o)

(P1 AND P2) (f1,3(P1) ∗ f1,3(P2))

(P1 UNION P2) (f1,3(P1) ∪ f1,3(P2))

(P1 EXCEPT P2) (f1,3(P1) \ f1,3(P2))

(SELECT inScope(P) P1) πA(f1,3(P1) on ∆B) A is the set of attribute names corresponding to the variables in set inScope(P)
and B is the set of attribute names that correspond to variables that are in set
inScope(P) \ inScope(P1).

(P1 FILTER ϕ) σγ(ϕ)(f1,3(P1))

8.2.3. MRA solution to SPARQL solution
Intuitively, the translation of a MRA tuple t as a SPARQL solution mapping µ consists of removing from tuple t

every attribute whose value is ⊥, and viewing the result tuple as a SPARQL mapping µ. For example, the result of
translating a tuple t with t̂ = {X,Y}, t(X) = a, and t(Y) = ⊥, is the RDF mapping µ = {?X 7→ a}. Recall that we
write ?X to denote the corresponding SPARQL variable for a MRA attribute X.

Definition 23 (Tuples to mappings). The function h3,1 (from MRA answers to SPARQL answers) is defined as
follows. Given a MRA tuple t, we write f3,1(t) to denote the SPARQL mapping µ such that: (1) µ(?X) = t(X)
if X ∈ t̂ and t(X) 6= ⊥, and (2) variable ?Y is not in dom(µ) if Y /∈ t̂ or t(Y) = ⊥. Abusing of notation,
f1,3 is also the function that receives a MRA relation r and returns the multiset Ω of SPARQL mappings where
set(Ω) = {µ | there exist t ∈ r such that f3,1(t) = µ} and the multiplicity of mapping f3,1(t) in Ω is the multiplicity
of tuple t in r.

28 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Lemma 14. SPARQL can be simulated in MRA.

Proof. This is a long but straightforward induction on the structure of SPARQL queries using as hypothesis that
(f13, g13, h13) is a simulation of SPARQL in MRA. The details of this proof are in the appendix (Claim 9).

8.3. MRA and SPARQL have the same expressive power

Putting together the simulations among MRA and SPARQL stated in this section, we get the following theorem:

Theorem 3. MRA and SPARQL have the same expressive power.

Proof. If follows from lemmas 13 and 14.

9. Related work and Conclusions

To the best of our knowledge, the multiset semantics of SPARQL has not been systematically addressed. There are
works that, when studying the expressive power of SPARQL, touched some aspects of this topic. Cyganiak [42] was
among the first who gave a translation of a core fragment of SPARQL into relational algebra. Polleres [34] proved
the inclusion of the fragment of SPARQL patterns with safe filters into Datalog by giving a precise and correct set
of rules. Schenk [43] proposed a formal semantics for SPARQL based on Datalog, but concentrated on complexity
more than expressiveness issues. Both, Polleres and Schenk did not consider multiset semantics of SPARQL in
their translations. Perez et al. [44] gave the first formal treatment of multiset semantics for SPARQL. Angles and
Gutierrez [45], Polleres [46] and Schmidt et al. [47] extended the set semantics to multiset semantics using this idea.
Kaminski et al. [48] considered multisets in subqueries and aggregates in SPARQL. Recently, Angles et al. [49]
implemented the translation from SPARQL to Datalog (inside the Vadalog system [50]). In none of these works was
addressed the goal of characterizing the multiset algebraic and/or logical structure of the operators in SPARQL.

We studied the multiset semantics of the core SPARQL patterns, in order to shed light on the algebraic and logic
structure of them. In this regard, the discoveries that: (1) the core fragment of SPARQL patterns matches precisely
the multiset semantics of Datalog as defined by Mumick et al. [29]; and (2) this logical structure corresponds to a
simple multiset algebra, namely the Multiset Relational Algebra (MRA); build a nice parallel to the one exhibit by
classical set relational algebra and relational calculus.

Contrary to the rather chaotic variety of multiset operators in SQL, it is interesting to observe that in SPARQL
there is a more coherent body of multiset operators. We suggest that this should be considered by designers in order
to try to keep this clean design in future extensions of SPARQL.

Last, but not least, this study shows the complexities and challenges that the introduction of multisets brings to
query languages, exemplified here in the case of SPARQL.

References

[1] J. Melton and A.R. Simon, SQL:1999. Understanding Relational Language Components, Morgan Kaufmann Publ., 2002.
[2] V. Breazu-Tannen and R. Subrahmanyam, Logical and computational aspects of programming with sets/bags/lists, in: Automata, Languages

and Programming, J.L. Albert, B. Monien and M.R. Artalejo, eds, Springer Berlin Heidelberg, Berlin, Heidelberg, 1991, pp. 60–75.
[3] J.W. Lloyd, Programming with multisets, Technical Report, University of Bristol, 1998.
[4] J. Albert, Algebraic Properties of Bag Data Types, in: Proc. of the Int. Conference on Very Large Data Bases (VLDB), 1991, pp. 211–219.
[5] L. Libkin and L. Wong, Some Properties of Query Languages for Bags, in: Proc. of the Int. Workshop on Database Programming Languages

(DBPL) - Object Models and Languages, 1994, pp. 97–114.
[6] S. Grumbach, L. Libkin, T. Milo and L. Wong, Query languages for bags: expressive power and complexity, SIGACT News 27(2) (1996),

30–44.
[7] S. Grumbach and T. Milo, Towards Tractable Algebras for Bags, Journal of Computer and System Sciences 52(3) (1996), 570–588.

doi:https://doi.org/10.1006/jcss.1996.0042. https://www.sciencedirect.com/science/article/pii/S0022000096900422.

https://www.sciencedirect.com/science/article/pii/S0022000096900422

Angles et al. / The multiset semantics of SPARQL patterns 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[8] L.S. Colby and L. Libkin, Tractable iteration mechanisms for bag languages, in: Database Theory — ICDT ’97, F. Afrati and P. Kolaitis,
eds, Springer Berlin Heidelberg, Berlin, Heidelberg, 1997, pp. 461–475. ISBN 978-3-540-49682-3.

[9] L. Libkin and L. Wong, Query languages for bags and aggregate functions, Journal of Computer and System Sciences 55(2) (1997), 241–
272.

[10] U. Dayal, N. Goodman and R.H. Katz, An Extended Relational Algebra with Control over Duplicate Elimination, in: Proc. of the Symposium
on Principles of Database Systems (PODS), ACM, 1982, pp. 117–123.

[11] A. Klausner and N. Goodman, Multirelations - Semantics and languages, in: Proc. of Very Large Databases, 1985.
[12] M. Console, P. Guagliardo and L. Libkin, Fragments of bag relational algebra: Expressiveness and certain answers, Information Systems

(2020), 101604. doi:https://doi.org/10.1016/j.is.2020.101604. https://www.sciencedirect.com/science/article/pii/S0306437920300855.
[13] I.S. Mumick, H. Pirahesh and R. Ramakrishnan, The Magic of Duplicates and Aggregates, in: Proceedings of the 16th International

Conference on Very Large Data Bases, VLDB ’90, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990, pp. 264–277. ISBN
1-55860-149-X. http://dl.acm.org/citation.cfm?id=645916.671834.

[14] I.S. Mumick, S.J. Finkelstein, H. Pirahesh and R. Ramakrishnan, Magic is Relevant, SIGMOD Rec. 19(2) (1990), 247–258.
doi:10.1145/93605.98734.

[15] S. Cohen, Equivalence of Queries That Are Sensitive to Multiplicities, The VLDB Journal 18(3) (2009), 765–785. doi:10.1007/s00778-
008-0122-1.

[16] F.N. Afrati, M. Damigos and M. Gergatsoulis, Query Containment Under Bag and Bag-set Semantics, Information Processing Letters
110(10) (2010), 360–369.

[17] L. Bertossi, G. Gottlob and R. Pichler, Datalog: Bag Semantics via Set Semantics, in: 22nd International Conference on Database
Theory (ICDT 2019), P. Barcelo and M. Calautti, eds, Leibniz International Proceedings in Informatics (LIPIcs), Vol. 127, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2019, pp. 16:1–16:19. ISSN 1868-8969. ISBN 978-3-95977-101-6.
doi:10.4230/LIPIcs.ICDT.2019.16. http://drops.dagstuhl.de/opus/volltexte/2019/10318.

[18] P. Guagliardo and L. Libkin, A Formal Semantics of SQL Queries, Its Validation, and Applications, Proc. VLDB Endow. 11(1) (2017),
27–39. doi:10.14778/3151113.3151116.

[19] W. Ricciotti and J. Cheney, Mixing Set and Bag Semantics, in: Proceedings of the 17th ACM SIGPLAN International Symposium on
Database Programming Languages, DBPL 2019, Association for Computing Machinery, New York, NY, USA, 2019, pp. 70–73–. ISBN
9781450367189. doi:10.1145/3315507.3330202.

[20] A. Polleres and J.P. Wallner, On the relation between SPARQL1.1 and Answer Set Programming, Journal of Applied Non-Classical Logics
23(1–2) (2013), 159–212.

[21] F. Geerts, T. Unger, G. Karvounarakis, I. Fundulaki and V. Christophides, Algebraic Structures for Capturing the Provenance of SPARQL
Queries, J. ACM 63(1) (2016). doi:10.1145/2810037.

[22] M. Kaminski, E.V. Kostylev and B. Cuenca Grau, Semantics and Expressive Power of Subqueries and Aggregates in SPARQL 1.1, in:
Proc. of the International Conference on World Wide Web, 2016, pp. 227–238.

[23] R. Angles and C. Gutierrez, The Multiset Semantics of SPARQL Patterns, in: 15th International Semantic Web Conference (ISWC), LNCS,
Springer, 2016, pp. 20–36.

[24] A. Hernich and P.G. Kolaitis, Foundations of information integration under bag semantics, in: 2017 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), 2017, pp. 1–12. doi:10.1109/LICS.2017.8005104.

[25] C.J. Date, Date on Database: Writings 2000-2006, APress, 2006, Chapter Ch. 10: Double Trouble, Double Trouble.
[26] T.J. Green, Bag Semantics, in: Encyclopedia of Database Systems, 2009, pp. 201–206.
[27] G. Lamperti, M. Melchiori and M. Zanella, On Multisets in Database Systems, in: Proceedings of the Workshop on Multiset Processing,

2001, pp. 147–216.
[28] S. Abiteboul, R. Hull and V. Vianu, Foundations of Databases, Addison-Wesley, 1995.
[29] I.S. Mumick, H. Pirahesh and R. Ramakrishnan, The Magic of Duplicates and Aggregates, in: Proc. of the Int. Conference on Very Large

Data Bases (VLDB), 1990, pp. 264–277.
[30] D. Hernández, The Problem of Incomplete Data in SPARQL, Ph.D. dissertation, Universidad de Chile - Faculty of Physical and Mathemat-

ical Sciences, Santiago, Chile, 2020. https://repositorio.uchile.cl/handle/2250/178033.
[31] X. Zhang and J.V. den Bussche, On the primitivity of operators in SPARQL, Inf. Process. Lett. 114(9) (2014), 480–485.
[32] R. Kontchakov and E.V. Kostylev, On Expressibility of Non-Monotone Operators in SPARQL, in: Int. Conference on the Principles of

Knowledge Representation and Reasoning, 2016.
[33] R. Angles and C. Gutierrez, Negation in SPARQL, in: Alberto Mendelzon Int. Workshop on Foundations of Data Management (AMW),

2016.
[34] A. Polleres, From SPARQL to rules (and back), in: WWW, ACM, 2007, pp. 787–796.
[35] R. Angles and C. Gutiérrez, The Expressive Power of SPARQL, in: International Semantic Web Conference, Lecture Notes in Computer

Science, Vol. 5318, Springer, 2008, pp. 114–129.
[36] R. Angles and C. Gutiérrez, The Multiset Semantics of SPARQL Patterns, in: International Semantic Web Conference (1), Lecture Notes

in Computer Science, Vol. 9981, 2016, pp. 20–36.
[37] A. Polleres and J.P. Wallner, On the relation between SPARQL1.1 and Answer Set Programming, J. Appl. Non Class. Logics 23(1–2)

(2013), 159–212.
[38] E. Prud’hommeaux and A. Seaborne, SPARQL Query Language for RDF. W3C Recommendation, 2008.
[39] S. Harris and A. Seaborne, SPARQL 1.1 Query Language - W3C Recommendation, 2013.

https://www.sciencedirect.com/science/article/pii/S0306437920300855
http://dl.acm.org/citation.cfm?id=645916.671834
http://drops.dagstuhl.de/opus/volltexte/2019/10318
https://repositorio.uchile.cl/handle/2250/178033

30 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[40] A. Hogan, M. Arenas, A. Mallea and A. Polleres, Everything You Always Wanted to Know About Blank Nodes, Journal of Web Semantics
27(1) (2014).

[41] L.E. Bertossi, G. Gottlob and R. Pichler, Datalog: Bag Semantics via Set Semantics, in: ICDT, LIPIcs, Vol. 127, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019, pp. 16:1–16:19.

[42] R. Cyganiak, A relational algebra for SPARQL, Technical Report, HPL-2005-170, HP Labs, 2005.
[43] S. Schenk, A SPARQL Semantics Based on Datalog, in: Annual German Conference on Advances in Artificial Intelligence, Vol. 4667,

2007, pp. 160–174.
[44] J. Pérez, M. Arenas and C. Gutierrez, Semantics of SPARQL, Technical Report, TR/DCC-2006-17, Department of Computer Science,

University of Chile, 2006.
[45] R. Angles and C. Gutierrez, The Expressive Power of SPARQL, in: Proc. of the Int. Semantic Web Conference (ISWC), 2008, pp. 114–129.
[46] A. Polleres, How (well) Do Datalog, SPARQL and RIF Interplay?, in: Proc. of the Int. conference on Datalog in Academia and Industry,

2012, pp. 27–30.
[47] M. Schmidt, M. Meier and G. Lausen, Foundations of SPARQL query optimization, in: Proc. of the Int. Conference on Database Theory,

ACM, 2010, pp. 4–33.
[48] M. Kaminski, E.V. Kostylev and B.C. Grau, Semantics and Expressive Power of Subqueries and Aggregates in SPARQL 1.1., in: Proceed-

ings of the Int. Conference on World Wide Web (WWW), ACM, 2016, pp. 227–238.
[49] R. Angles, G. Gottlob, A. Pavlović, R. Pichler and E. Sallinger, SparqLog: A System for Efficient Evaluation of SPARQL 1.1 Queries via

Datalog, Proc. VLDB Endow. 16(13) (2023), 4240–4253–. doi:10.14778/3625054.3625061.
[50] L. Bellomarini, E. Sallinger and G. Gottlob, The Vadalog system: datalog-based reasoning for knowledge graphs, Proc. VLDB Endow.

11(9) (2018), 975–987–. doi:10.14778/3213880.3213888.

Appendix A. Variable renaming in SPARQL

This appendix section defines function subs(·, ·), which renames SPARQL variables. This function is used to
simulate the MRA operator renaming ρA/B (see Table 6). Note that function subs(·, ·) is not an additional algebraic
operation but an operation over expressions (i.e., a query rewriting). Intuitively, given a MRA query Q, a SPARQL
pattern P that simulates Q, a renaming of MRA attributes A/B and a renaming of variables ?X/?Y where ?X and ?Y
are the corresponding variables for attributes A and B, the query rewriting subs?X/?Y(P) simulates the MRA query
ρA,B(Q). To this end, SPARQL variables are renamed in the pattern, instead of renaming query result attributes as
MRA does.

Definition 24 (SPARQL Variable Renaming). Given two SPARQL variables ?X and ?Y , we define the function
ν?X/?Y : I ∪ L ∪ V → I ∪ L ∪ V as the function such that ν?X/?Y(?X) = ?Y and ν?X/?Y(s) = s, for every s ∈
(I∪L∪V)\{?X}. Given a SPARQL pattern P and two SPARQL variables ?X ∈ inScope(P) and ?Y /∈ inScope(P),
we write subs?X/?Y(P) to denote the pattern defined recursively as follows:

1. If P is a triple pattern (s, p, o) then subs?X/?Y(P) = (ν?X/?Y(s), ν?X/?Y(p), ν?X/?Y(o)).
2. If P has the form (P1 AND P2) then subs?X/?Y(P) = subs?X/?Y(P1) AND subs?X/?Y(P2).
3. If P has the form (P1 UNION P2) then subs?X/?Y(P) = subs?X/?Y(P1) UNION subs?X/?Y(P2).
4. If P has the form (P1 EXCEPT P2) then subs?X/?Y(P) = subs?X/?Y(P1) EXCEPT subs?X/?Y(P2).
5. If P has the form (P1 FILTERϕ) then subs?X/?Y(P) = (subs?X/?Y(P1) FILTER ν?X/?Y(ϕ)) where, abusing

of notation, ν?X/?Y(ϕ) is the selection formula defined recursively as follows:

(a) If ϕ has the form a = b, where a, b ∈ V ∪ I ∪ I, then ν?X/?Y(ϕ) = ν?X/?Y(a) = ν?X/?Y(b).
(b) If ϕ has the form bound(?x) then ν?X/?Y(ϕ) = bound(ν?X/?Y(?x)).
(c) If ϕ has the form ψ1 ∧ ψ2 then ν?X/?Y(ϕ) = ν?X/?Y(ψ1) ∧ ν?X/?Y(ψ2).
(d) If ϕ has the form ψ1 ∨ ψ2 then ν?X/?Y(ϕ) = ν?X/?Y(ψ1) ∨ ν?X/?Y(ψ2).
(e) If ϕ has the form ¬ψ then ν?X/?Y(ϕ) = ¬ν?X/?Y(ψ).

6. If P has the form (SELECT W WHERE P1) then:

(a) If ?Y /∈ inScope(P1), then subs?X/?Y(P) = (SELECT (W \ {?X} ∪ {?Y}) WHERE P1).
(b) Otherwise, subs?X/?Y(P) = (SELECT (W \ {?X}∪{?Y}) WHERE subs?Y/Z(P1)), where ?Z is a fresh

variable. We rename variable ?Y as ?Z when is not in-scope of P to avoid a variable name clash.

Angles et al. / The multiset semantics of SPARQL patterns 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 8
Truth values for the error formula of a conjunction. According to Definition 5, given a formula ϕ of the form ϕ1 ∧ ϕ2, the formula Error(ϕ) is
the formula ψ1 ∨ψ2 ∨ψ3 where ψ1 is the formula (ϕ1 ∧Error(ϕ2)), ψ2 is the formula (Error(ϕ1)∧ϕ2), and ψ3 is the formula (Error(ϕ1)∧
Error(ϕ2)). Given an arbitrary mapping µ, this table shows the possible truth values for formulas ϕ, Error(ϕ), and its components.

µ(ϕ1) µ(ϕ2) µ(ϕ) µ(Error(ϕ1)) µ(Error(ϕ2)) µ(ψ1) µ(ψ2) µ(ψ3) µ(Error(ϕ))

true true true false or error false or error false or error false or error false or error false or error

true false false false or error false or error false or error false false or error false or error

true error error false or error true true false or error false or error true

false true false false or error false or error false false or error false or error false or error

false false false false or error false or error false false false or error false or error

false error false false or error true false false or error false or error false or error

error true error true false or error false or error true false or error true

error false false true false or error false or error false false or error false or error

error error error true true error error true true

Table 9
Truth values for the error formula of a disjunction. According to Definition 5, given a formula ϕ of the form ϕ1 ∨ ϕ2, the formula Error(ϕ)

is the formula ψ1 ∨ ψ2 ∨ ψ3 where ψ1 is the formula (¬ϕ1 ∧ Error(ϕ2)), ψ2 is the formula (Error(ϕ1) ∧ ¬ϕ2), and ψ3 is the formula
(Error(ϕ1)∧Error(ϕ2)). Given an arbitrary mapping µ, this table shows the possible truth values for formulas ϕ, Error(ϕ), and its components.

µ(ϕ1) µ(ϕ2) µ(ϕ) µ(Error(ϕ1)) µ(Error(ϕ2)) µ(ψ1) µ(ψ2) µ(ψ3) µ(Error(ϕ))

true true true false or error false or error false false false or error false or error

true false true false or error false or error false false or error false or error false or error

true error true false or error true false false or error false or error false or error

false true true false or error false or error false or error false false or error false or error

false false false false or error false or error false or error false or error false or error false or error

false error error false or error true true false or error false or error true

error true true true false or error false or error false false or error false or error

error false error true false or error false or error true false or error true

error error error true true error error true true

Appendix B. Proof of claims

B.1. Error filter condition

Claim 1. For every SPARQL formula ϕ, the formula Error(ϕ) can be expressed as a formula of the form
∨
ψ∈C ψ

where C is a non-empty set of conjunctions of formulas belonging to one of the following types:

1. positive or negative literals (i.e., formulas of the form false, ?X = a, ¬(?X = a), ¬(?X = ?Y), bound(?X),
or ¬ bound(?X)),

2. formulas ϕ′, ¬ϕ′, or Error(ϕ′) such that ϕ′ occurs in ϕ and ϕ′ is strictly smaller than ϕ;

and for every mapping µ, µ(ϕ) = error if and only if there exists a unique formula ψ ∈ C for which µ(ψ) = true.

Proof. We next show this result by induction on the structure of the query.

1. If ϕ has the form bound(?X) then Error(ϕ) is the formula false. Formula ϕ satisfies the claim. Indeed, C =
{false} and µ(Error(ϕ)) = false for every mapping µ because formula ϕ does not produce error.

2. If ϕ has the form ?X = a then Error(ϕ) is the formula ¬ bound(?X). Formula ϕ satisfies the claim. Indeed,
C = {¬ bound(?X)} and µ(Error(ϕ)) = true if and only if variable ?X is unbound in µ, that is the unique
case when formula ϕ produces error.

32 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

3. If ϕ has the form ?X = ?Y then Error(ϕ) is the formula ψ1 ∨ ψ2 ∨ ψ3 where ψ1 is the formula
(¬ bound(?X) ∧ bound(?Y)), ψ2 is the formula (bound(?X) ∧ ¬ bound(?Y)), and ψ3 is the formula
(¬ bound(?X)∧¬bound(?Y)). Formula ϕ satisfies the claim. Indeed, C = {ψ1, ψ2, ψ3}, and by construction,
only one formula in C can be true, and µ(Error(ϕ)) = true if and only if µ(ϕ) = error.

4. If ϕ has the form ¬ϕ1 then Error(ϕ) is the formula Error(ϕ1). In this case C = {Error(ϕ1)}. By the induction
hypothesis, µ(Error(ϕ1)) = true if and only if µ(ϕ1) = error. Because ¬ error is error, we conclude that
µ(Error(ϕ)) = true if and only if µ(ϕ) = error. Hence, formula ϕ satisfies the claim.

5. If ϕ has the form ϕ1∧ϕ2 then Error(ϕ) is the formula ψ1∨ψ2∨ψ3 where ψ1 is the formula (ϕ1∧Error(ϕ2)),
ψ2 is the formula (Error(ϕ1)∧ ϕ2), and ψ3 is the formula (Error(ϕ1)∧Error(ϕ2)). The validity of the claim
for formula ϕ is shown in Table 8. There are three cases where µ(ϕ) = error:

Case ET: µ(ϕ1) = error and µ(ϕ2) = true,
Case TE: µ(ϕ1) = true and µ(ϕ2) = error,
Case EE: µ(ϕ1) = error and µ(ϕ2) = error.

Note that if µ(ϕ1) = error and µ(ϕ2) = false then µ(ϕ) = false (because error∧ false is false).
The values in the remaining columns can be computed using the inductive hypothesis. We next present case
ET as an example. The other cases follow the same reasoning. In case ET, µ(ϕ1) = error and µ(ϕ2) = true.
By the induction hypothesis, µ(Error(ϕ1)) = true and µ(Error(ϕ2)) is either false or error.

(a) If µ(Error(ϕ2)) = false then:

µ(ψ1) = µ(ϕ1) ∧ µ(Error(ϕ2))

= error∧ false
= false .

µ(ψ2) = µ(Error(ϕ1)) ∧ µ(ϕ2)

= true∧ true
= true .

µ(ψ3) = µ(Error(ϕ1)) ∧ µ(Error(ϕ2))

= true∧ false
= false .

Hence, µ(Error(ϕ)) = µ(ψ1 ∨ ψ2 ∨ ψ3) = false∨ true∨ false = true.
(b) If µ(Error(ϕ2)) = error then:

µ(ψ1) = µ(ϕ1) ∧ µ(Error(ϕ2))

= error∧ error
= error .

µ(ψ2) = µ(Error(ϕ1)) ∧ µ(ϕ2)

= true∧ true
= true .

µ(ψ3) = µ(Error(ϕ1)) ∧ µ(Error(ϕ2))

= true∧ error
= error .

Hence, µ(Error(ϕ)) = µ(ψ1 ∨ ψ2 ∨ ψ3) = error∨ true∨ error = true.

6. If ϕ has the form ϕ1 ∨ ϕ2 then the validity of the claim for formula ϕ is shown in Table 9, following the same
reasoning as for the previous case where ϕ is a conjunction ϕ1 ∧ ϕ2.

Angles et al. / The multiset semantics of SPARQL patterns 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

B.2. Reduction of complex filter conditions

To prove the following claims, we introduce the notion of reduction and reducible filter condition. Section 6.1.2
presents three equivalences to transform a pattern with complex filter conditions into a pattern where all filter con-
ditions are atomic. In this appendix, we show that these equivalences can be used to this end. For each equivalence
(P FILTERϕ) ≡ P′, we define a function that maps the filter condition ϕ to the set Σϕ of filter conditions in
pattern P′.

Consider the following equivalences:

(P FILTERψ1 ∧ ψ2) ≡ ((P FILTERψ1) FILTERψ2),

(P FILTERψ1 ∨ ψ2) ≡ (P FILTERψ1 ∧ ψ2) UNION

(P FILTERψ1 ∧ ¬ψ2) UNION

(P FILTER¬ψ1 ∧ ψ2) UNION

(P FILTERψ1 ∧ Error(ψ2)) UNION

(P FILTER Error(ψ1) ∧ ψ2),

(P FILTER¬ψ) ≡ ((P EXCEPT (P FILTERψ)) EXCEPT (P FILTER Error(ψ))).

These three equivalences define the following functions, called reduction rules:

f∧(ϕ) =

{
{ψ1, ψ2} if ϕ has the form ψ1 ∧ ψ2,
{ϕ} otherwise;

f∨(ϕ) =

{
{ψ1 ∧ ψ2, ψ1 ∧ ¬ψ2, ψ1 ∧ Error(ψ2), ¬ψ1 ∧ ψ2, Error(ψ1) ∧ ψ2} if ϕ has the form ψ1 ∨ ψ2,
{ϕ} otherwise;

f¬(ϕ) =

{
{ψ, Error(ψ)} if ϕ has the form ¬ψ,
{ϕ} otherwise;

Note that if the filter condition ϕ does not have the form of filter condition on the left side of the identity, we return
the set {ϕ}. This captures the fact that the equivalence cannot be applied to reduce filter condition ϕ.

For convenience, we also define the reduction function that eliminates atomic formulas f◦ and a reduction that
composes f∨ with f∧, called f∨∧.

f◦(ϕ) =

{
{ϕ} if ϕ is a complex filter condition,
∅ if ϕ is an atomic filter condition;

f∨∧(ϕ) =

{
{ψ1, ψ2, ¬ψ1, ¬ψ2, Error(ψ1), Error(ψ2)} if ϕ has the form ψ1 ∨ ψ2,
{ϕ} otherwise.

For r ∈ {∧,∨,¬, ◦,∨∧}, let Fr be the function that receives a set of filter conditions Σ and returns the set of filter
conditions Fr(Σ) =

⋃
ϕ∈Σ fr(ϕ). Given two sets of filter conditions Σ1 and Σ2 we write Σ1

r−→ Σ2 if Fr(Σ1) =

Σ2. In this case, we say that Σ1
r−→ Σ2 is a reduction. We said that a filter condition ϕ is reducible if there is a

finite sequence of reductions {ϕ} r1−→ Σ1
r2−→ · · · rn−→ ∅. Intuitively, reductions are applied until all complex filter

conditions are eliminated. It is not difficult to see that we can apply the aforementioned equivalences to transform
every pattern P1 to a pattern P2 with no complex formulas if and only if every filter condition ϕ is reducible.

We next prove that every filter condition is reducible by induction on the structure of the filter condition. For
this induction, we define the components of a filter condition ϕ, denoted comp(ϕ), to be the set of filter conditions
defined as follows: If ϕ is atomic, then comp(ϕ) = ∅; if ϕ = ψ1 ∨ ψ2 or ϕ = ψ1 ∧ ψ2, then comp(ϕ) = {ψ1, ψ2} ∪
comp(ψ1) ∪ comp(ψ2); and if ϕ = ¬ψ then comp(ϕ) = {ψ} ∪ comp(ψ).

Claim 2. Every filter condition ϕ is reducible.

34 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Proof. We prove this by induction using the following hypothesis: if ϕ is a filter condition where for each filter
condition ψ ∈ comp(ϕ), ψ and Error(ψ) are reducible, then the filter conditions ϕ and Error(ϕ) are reducible.

1. If ϕ is bound(?X) then

{ϕ} ◦−→ ∅,

{Error(ϕ)} = {false} ◦−→ ∅.

2. If ϕ is ?X = a then

{ϕ} ◦−→ ∅,

{Error(ϕ)} = {¬ bound(?X)} ¬−→ {bound(?X), Error(¬bound(?X))} = {bound(?X), false} ◦−→ ∅.

3. If ϕ is ?X = ?Y then

{ϕ} ◦−→ ∅,

{Error(ϕ)} = {¬ bound(?X) ∨ ¬ bound(?Y)}
∨∧−−→ { bound(?X), bound(?Y), ¬bound(?X), ¬ bound(?Y),

Error(¬bound(?X)), Error(¬bound(?Y))}

= {bound(?X), bound(?Y), ¬bound(?X), ¬bound(?Y), f alse}
◦−→ {¬ bound(?X), ¬ bound(?Y)}
¬−→ {bound(?X), Error(bound(?X)), bound(?Y), Error(bound(?Y))}

= {bound(?X), false, bound(?Y), false}
◦−→ ∅.

4. If ϕ is ¬ψ1 then

{ϕ} ¬−→ {ψ, Error(ψ)},

{Error(ϕ)} = {Error(ψ)}.

Since ψ ∈ comp(ϕ) and by inductive hypothesis, the filter conditions ψ and Error(ψ) are reducible. Hence,
the filter conditions ϕ and Error(ϕ) are reducible.

5. If ϕ is ψ1 ∧ ψ2 then

{ϕ} ∧−→ {ψ1, ψ2},

{Error(ϕ)} = {Error(ψ) ∨ Error(ψ2)}
∨∧−−→ {Error(ψ1), Error(ψ2),

¬Error(ψ1), ¬Error(ψ2),

Error(Error(ψ1)), Error(Error(ψ2))}

= {Error(ψ1), Error(ψ2), ¬Error(ψ1), ¬Error(ψ2), false}.

Angles et al. / The multiset semantics of SPARQL patterns 35

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Since ψ1, ψ2 ∈ comp(ϕ) and by the induction hypothesis, the filter conditions Error(psi1) and Error(ψ2) are
reducible. To show that ϕ is reducible, we have to show that ¬Error(ψ1) and ¬Error(ψ2) are reducible.

{¬Error(ψ1)} ¬−→ {Error(ψ), Error(Error(ψ2))} = {Error(ψ), f alse}.

By the induction hypothesis, Error(ψ) is reducible. Hence, ¬Error(ψ1) is reducible. Similarly, ¬Error(ψ1)
is reducible. Then, Error(ϕ) is reducible.

6. Let ϕ be ψ1 ∨ ψ2. First, we show that ϕ is reducible.

{ϕ} ∨∧−−→ {ψ1, ψ2,¬ψ1,¬ψ2,Error(ψ1),Error(ψ2)}

By the induction hypothesis on ψ1 and ψ2, ψ1, ψ2, Error(ψ1), and Error(ψ2) are reducible. To prove that ϕ is
reducible, suffices to prove that ¬ψ1 and ¬ψ2 are reducible.

{¬ψ1}
¬−→ {ψ1,Error(ψ1)}.

By the induction hypothesis in ψ1, ψ1 and Error(ψ1) are reducible. Hence, ¬ψ1 is reducible. Similarly, ¬ψ2

is reducible. Hence, ϕ is reducible.
Second, we show that Error(ϕ) is reducible.

{Error(ϕ)} = {Error(ψ1) ∧ Error(ψ2)} ∧−→ {Error(ψ1), Error(ψ2)}.

By the induction hypothesis in ψ1 and ψ2, Error(ψ1) and Error(ψ2) are reducible. Hence, Error(ϕ) is re-
ducible.

Hence, for every filter condition ϕ, the filter conditions ϕ and Error(ϕ) are reducible.

B.3. Normalization of NRMD¬ queries

Claim 3 (Normalized NRMD¬). Let (p(X̄),Π) be a NRMD¬ query, and R be a rule in Π with form

p(X̄)← A1, . . . , Am,¬B1, . . . ,¬Bn,

where A1, . . . , Am are positive literals, and ¬B1, . . . ,¬Bn are negative literals. For 1 6 i 6 m, let Ȳi be the set of
variables that consists of the variables atoms A1, . . . , Ai. Consider the minimal set of rules ΠR that includes the
following rules:

1. Rules RA
i , for 2 6 i 6 m, defined recursively as follows:

(a) RA
2 = qA

2(Ȳ2)← A1, A2.
(b) RA

i = qA
i (Ȳi)← qA

i−1(Ȳi−1), Ai.

2. Rules RB
j for 1 6 j 6 n, defined recursively as follows:

(a) RB
0 = rB

0 (Ȳm)← qA
m(Ȳm),

(b) RB
j = rB

j (Ȳm)← rB
j−1(Ȳm),¬B j,

3. A rule R′ = p(X̄)← rB
n (Ȳm).

The NRMD¬ query (p(X̄),Π′) that results from replacing rule R in query (p(X̄),Π) with the rules in ΠR is equivalent
to query (p(X̄),Π).

Proof. We next prove this claim by induction on the numbers m, of positive literals, and n, of negative literals, in
a rule R. The hypothesis of induction states that the query (q(X̄), {R}) and its normalized query (q(X̄),ΠR) are
equivalent. Since we assumed that every literal in the body of a rule must have at least one variable (see Section 4),
to guarantee safeness, the body of the rule cannot include a negative literal without having at least a positive literal.

36 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

θ(p(X̄))

θ(A1)

R

θ(A2)

R

θ(A3)

R

. . . θ(Am)

R

θ(p(X̄))

θ(qA
2(Ȳ2))

θ(A1)

RA
2

θ(A2)

RA
2

R′′

θ(A3)

R′′

. . . θ(Am)

R′′

Fig. 4. Derivation trees for the ground literal θ(p(X̄)) regarding query (p(X̄), {R}) (on the left), and query (p(X̄), {RA
2 ,R

′′}) (on the right). The
children of the nodes labeled with the positive ground literals θ(Ai) are omitted.

1. If m = 1 and n = 0, rule R is already normalized because it is the projection rule p(X̄)← A1.
2. If m > 1 and n = 0 then the normalization of rule R consists of a set ΠR of rules RA

i , for 2 6 i 6 m, defined
recursively as follows:

RA
2 = qA

2(Ȳ2)← A1, A2,

RA
i = qA

i (Ȳi)← qA
i−1(Ȳi−1), Ai for 2 6 i 6 m,

RB
0 = r0(Ȳm)← qA

n (Ȳm),

R′ = p(X̄)← rB
0 (Ȳm).

By the induction hypothesis, the query (p(X̄), {RA
3 , . . . ,R

A
m,R

B
0 ,R
′}) is equivalent to the query (p(X̄), {R′′})

where R′′ is the rule p(X̄) ← qA
2(Ȳ2), A3, . . . , Am. Hence, the query (p(X̄),ΠR) is equivalent to the query

(p(X̄), {RA
2 ,R
′′}). To show that these queries are equivalent to query (p(X̄), {R}), we need to show that they

have the same answers, and each answer has the same multiplicities.
Assume that a substitution θ is an answer to query (p(X̄), {R}). Then, program {R} has a derivation tree
whose root is labeled with the ground literal θ(p(X̄)), has m children labeled with the ground literals θ(Ai),
for 1 6 i 6 m, and the edges from the root to the children are labeled with rule R, as is shown in Figure 4
(on the left). Then, for 1 6 i 6 m, there is a derivation three whose root is labeled with the ground literal
θ(Ai). The existence of the ground literals θ(Ai) as labels of derivation tree roots proves that the ground literal
θ(p(X̄)) is inferred using the rules RA

2 and R′′, as is shown in the Figure 4 (on the right). Then, if θ is an
answer to query (p(X̄), {R}) then θ is an answer to query (p(X̄), {RA

2 ,R
′′}). The same argument can be used

in the contrary direction to prove that if θ is an answer to query (p(X̄), {RA
2 ,R
′′}) then θ is an answer to query

(p(X̄), {R}). Finally, the multiplicity of θ(p(X̄)) is, for both queries, the product of the multiplicities of θ(Ai),
for 1 6 i 6 m. Hence, both queries are equivalent.

3. If m > 1 and n > 0 then the normalization of rule R consists of a set ΠR of rules RA
i , for 2 6 i 6 m, defined

recursively as follows:

RA
2 = qA

2(Ȳ2)← A1, A2,

RA
i = qA

i (Ȳi)← qA
i−1(Ȳi−1), Ai for 2 6 i 6 m,

RB
0 = rB

0 (Ȳm)← qA
m(Ȳm),

RB
j = rB

j (Ȳm)← rB
j−1(Ȳm),¬B j for 1 6 j 6 n,

R′ = p(X̄)← rB
n (Ȳm).

The rules above are equivalent to the following rules:

RA
2 = qA

2(Ȳ2)← A1, A2,

Angles et al. / The multiset semantics of SPARQL patterns 37

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

θ(p(X̄))

θ(A1)

R

. . . θ(Am)

R

¬θ(B1)

R

. . . ¬θ(Bn)

R

θ(p(X̄))

θ(rB
n (Ȳm))

θ(t(Ȳm))

θ(A1)

Rγ

. . . θ(Am)

Rγ

¬θ(B1)

Rγ

. . . ¬θ(Bn−1)

Rγ

Rβ

¬θ(Bn)

Rβ

R′′

Fig. 5. Derivation trees for the ground atom θ(p(X̄)) regarding query (p(X̄), {R}) (on the left), and query (p(X̄), {RA
2 ,R

′′}) (on the right). The
children of the nodes labeled with the positive ground literals θ(Ai) are omitted. Nodes label with the negative ground literals ¬θ(B j) have no
children and do no derivation tree include the positive literal θ(B j) as the root label.

RA
i = qA

i (Ȳi)← qA
i−1(Ȳi−1), Ai for 2 6 i 6 m,

RB
0 = rB

0 (Ȳm)← qA
m(Ȳm),

RB
j = rB

j (Ȳm)← rB
j−1(Ȳm),¬B j for 1 6 j 6 n− 1,

Rα = t(Ȳm)← rB
n−1(Ȳm),

Rβ = rB
n (Ȳm)← t(Ȳm),¬Bn,

R′′ = p(X̄)← rB
n (Ȳm).

By the induction hypothesis, the query (t(Ȳm), (ΠR∪{Rα})\{RB
n ,R
′}) is equivalent to the query (t(Ȳm), {Rγ})

where Rγ is the rule t(Ȳm)← A1, . . . , Am, B1, . . . , Bn−1. Hence, the query (p(X̄),ΠR) is equivalent to the query
(p(X̄), {Rγ,Rβ,R′′}) To show that these queries are equivalent to query (p(X̄), {R}), we need to show that
they have the same answers, and each answer has the same multiplicities.
Assume that a substitution θ is an answer to query (p(X̄), {R}). Then, program {R} has a derivation tree whose
root is labeled with the ground literal θ(p(X̄)), has m children labeled with the ground literals θ(Ai), and n
children labeled with literals ¬θ(B j), for 1 6 i 6 m and 1 6 j 6 n, and the edges from the root to the children
are labeled with rule R, as is shown in Figure 5 (on the left). Then, for 1 6 i 6 m, there is a derivation three
whose root is labeled with the ground literal θ(Ai), and for 1 6 j 6 n, there is no derivation three whose root
is labeled with the ground literal θ(B j). The existence of the ground literals θ(Ai) and the non-existence of the
ground literals θ(B j) as labels of derivation tree roots prove that the ground literal θ(p(X̄)) is inferred using
the rules Rγ, Rβ, and R′′, as is shown in the Figure 5 (on the right). Then, if θ is an answer to query (p(X̄), {R})
then θ is an answer to query (p(X̄), {Rγ,Rβ,R′′}). The same argument can be used in the contrary direction to
prove that if θ is an answer to query (p(X̄), {Rγ,Rβ,R′′}) then θ is an answer to query (p(X̄), {R}). Finally, the
multiplicity of θ(p(X̄)) is, for both queries, the product of the multiplicities of θ(Ai), for 1 6 i 6 m. Hence,
both queries are equivalent.

Hence, we have proved that the normalization method produces an equivalent NRMD¬ query.

B.4. Simulations between query languages

Claim 4 (SPARQL to NRMD¬). The triple (f1,2, g1,2, h2,1) is a simulation of SPARQL in NRMD¬.

Proof. To prove this claim, we show that, for every SPARQL query Q and RDF graph G, it holds that JQKG =
h2,1(J f1,2(Q)Kg1,2

) by induction on the structure of a normalized SPARQL query Q. In this proof, we assume that

38 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

θ is a NRMD¬ substitution for the variables of the NRMD¬ query f1,2(Q), and µ is the SPARQL mapping h2,1(θ).
To show then that JQKG = h2,1(J f1,2(Q)Kg1,2

), we have to prove that µ ∈ JQKG if and only if θ ∈ h2,1(J f1,2(Q)Kg1,2
),

and card(µ, JQKG) = card(θ, h2,1(J f1,2(Q)Kg1,2)).

1. Let Q be a triple pattern (?X, p, ?Y). In this case, there is a corresponding version of the triple pattern as a
NRMD¬ literal triple(X, p,Y), where X and Y are the corresponding variables for ?X and ?Y . The NRMD¬

query f1,2(Q) is then (q(X,Y),Π) where Π is the program with a rule q(X,Y)← triple(X, p,Y). Let θ be the
NRMD¬ substitution θ = (X/s, Y/o) and µ be the SPARQL mapping h2,1(θ) = {?X 7→ s, ?Y 7→ o}.

(a) According to the NRMD¬ semantics, θ ∈ J f1,2(Q)Kg1,2(G) if and only if triple(s, p, o) ∈ g1,2(G). By the
definition function g1,2, triple(s, p, o) ∈ g1,2(G) if and only if (s, p, o) ∈ G. By the SPARQL semantics,
the SPARQL mapping µ is in JQKG if and only if (s, p, o) ∈ G. Hence, θ ∈ J f1,2(Q)Kg1,2(G) if and only if
µ ∈ JQKG.

(b) By construction, card(θ, J f1,2(Q)Kg1,2(G)) = 1 and card(µ, JQKG) = 1. Hence, card(θ, J f1,2(Q)Kg1,2(G)) =
card(µ, JQKG).

We have shown that we can simulate triple patterns of the form (X, p,Y) with NRMD¬ queries. However, it
is not difficult to apply the same argument for the other forms of triple patterns (e.g., (X, p, o) or (s, X,Y)).
Hence, SPARQL triple patterns are simulable with NRMD¬.

2. Let Q be a query (P1 AND P2). Assume that inScope(P1) = {?X, ?Y} and inScope(P2) = {?X, ?Z}. The
NRMD¬ query f1,2(Q) is then (q(X,Y,Z),Π) where Π is the program that consists of the rules in the programs
of queries (p1(X,Y),Π1) = f1,2(P1) and (p2(X,Z),Π2) = f1,2(P2), the rule

q(X,Y,Z)← p1(X1,Y), p2(X2,Z), comp(X1, X2, X)

and the rules that define the compatibility between values (which may also included in Π1 and Π2)

comp(X, X, X)← term(X)

comp(X,Y, X)← term(X),null(Y)

comp(Y, X, X)← term(X),null(Y)

comp(Y,Y,Y)← null(Y).

(a) If θ ∈ J f1,2(Q)Kg1,2(G) then, by the semantics of NRMD¬, there exists the NRMD¬ solutions θ1 =
{X1/a1,Y/b}, θ2 = {X2/a2,Z/c}, and θ3 = {X1/a1, X2/a2, X/a} such that

{X1/a1,Y/b} ∈ J(p1(X1,Y),Π1)Kg1,2(G),

{X2/a2,Z/c} ∈ J(p2(X2,Z),Π2)Kg1,2(G),

{X1/a1, X2/a2, X/a} ∈ J(comp(X1, X2, X),Π)Kg1,2(G).

By the induction hypothesis in P1 and P2, θ1 ∈ {X1/a1,Y/b} ∈ J(p1(X1,Y),Π1)Kg1,2(G) and θ2 ∈
{X1/a1,Y/b} ∈ J(p2(X1,Y),Π2)Kg1,2(G) if and only if mappings µ1 = h2,1(θ1) and µ2 = h2,1(θ2) hold
µ1 ∈ JP1KG and µ2 ∈ JP2KG. By the rules defining comp, it holds that µ1 ∼ µ2 and µ1 ∪ µ2 = µ. By the
semantics of the SPARQL operator AND, this it holds that µ ∈ JQKG. Hence, θ ∈ J f1,2(Q)Kg1,2(G) if and
only if µ ∈ JQKG.

(b) By definition,

card(µ, JQKG) =
∑

µ1∈JP1KG
µ2∈JP2KG
µ1∼µ2

µ=µ1∪µ2

card(µ1, JP1KG)× card(µ2, JP2KG).

Angles et al. / The multiset semantics of SPARQL patterns 39

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

By the induction hypothesis,

card(µ, JQKG) =
∑

{X1/a1,Y/b}∈J(p1(X1,Y),Π1)Kg1,2(G)

{X2/a2,Z/c}∈J(p2(X2,Y),Π2)Kg1,2(G)

{X1/a1,X2/a2,X/a}∈J(comp(X1,X2,X),Π)Kg1,2(G)

card({X1/a1,Y/b}, J f1,2(P1)Kg1,2(G))×card({X2/a2,Z/c}, J f1,2(P1)Kg1,2(G)).

By the semantics of NRMD¬, we conclude that card(µ, JQKG) = card(θ, J f1,2(Q)Kg1,2(G)).

We have shown that we can simulate queries of the form (P1 AND P2), where inScope(P1) = {?X, ?Y}
and inScope(P2) = {?X, ?Z}, with NRMD¬ queries. However, it is not difficult to apply the same argument
for queries where P1 and P2 have different sets of in-scope variables. Hence, SPARQL queries of the form
(P1 AND P2) are simulable with NRMD¬.

3. Let Q be a query (P1 EXCEPT P2), and ?X̄ be the list of SPARQL variables in set inScope(Q). The NRMD¬

query f1,2(Q) is then (q(X̄),Π) where Π is the program that consists of the rules in programs of queries
(p1(X̄),Π1) = f1,2(P1) and (p2(X̄),Π2) = f1,2(P2), and the rule q(X̄)← p1(X̄),¬p2(X̄).

(a) By the semantics of NRMD¬, θ ∈ J f1,2(Q)Kg1,2(G) if and only if θ ∈ J f1,2(P1)Kg1,2(G) and θ /∈
J f1,2(P2)Kg1,2(G). By the induction hypothesis, the last condition is equivalent to µ ∈ JP1KG and µ /∈ JP2KG.
By the SPARQL semantics, this is equivalent to µ ∈ JQKG.

(b) By definition, card(µ, JQKG) = card(µ, JP1KG) and card(θ, J f1,2(Q)Kg1,2(G)) = card(θ, J f1,2(P1)Kg1,2(G)).
By the induction hypothesis, card(µ, JP1KG) = card(θ, J f1,2(P1)Kg1,2(G)). Hence, card(µ, JQKG) =
card(θ, J f1,2(Q)Kg1,2(G)).

Hence, SPARQL queries of the form (P1 EXCEPT P2) are simulable with NRMD¬.
4. Let Q be a SPARQL query (P1 UNION P2). The NRMD¬ query f1,2(Q) is then (q(X̄),Π) where X̄ is the list

with the variables in set inScope(Q), and Π is the program that consists of the rules in program of queries
(p1(X̄),Π1) = f1,2(P1) and (p2(X̄),Π2) = f1,2(P2), and the rules that correspond the operation UNION,
namely q(X̄)← p1(X̄) and q(X̄)← p2(X̄).

(a) By the NRMD¬ semantics, θ is a solution of (q(X̄),Π) if and only if θ ∈ J(p1(X̄),Π1)Kg1,2(G) or θ ∈
J(p2(X̄),Π2)Kg1,2(G). By the induction hypothesis, this is equivalent to that µ ∈ JP1KG or µ ∈ JP1KG. By
the SPARQL semantics, this is equivalent to µ ∈ JQKG.

(b) By the NRMD¬ semantics, card(θ, J f1,2(Q)Kg1,2(G)) = card(θ, J f1,2(P1)Kg1,2(G))+card(θ, J f1,2(P2)Kg1,2(G))
and card(θ, J f1,2(Q)Kg1,2(G)) = card(µ, JP1KG) + card(µ, JP2KG).
By the induction hypothesis, card(θ, J f1,2(P1)Kg1,2(G)) = card(µ, JP1KG) and card(θ, J f1,2(P2)Kg1,2(G)) =
card(µ, JP2KG). Hence card(θ, J f1,2(Q)Kg1,2(G)) = card(µ, JQKG).

Hence, SPARQL queries of the form (P1 UNION P2) are simulable with NRMD¬.
5. Let Q be the SPARQL query (P FILTERϕ) where is an atomic filter condition (i.e., a filter condition of the

form ?X = c, ?X = ?Y , or bound(?X)), and Lϕ be a set of NRMD¬ literals defined as follows:

Lϕ =

X = c, bound(X) if ϕ is ?X = c,
X = Y,bound(X),bound(Y) if ϕ is ?X = ?Y ,
bound(X) if ϕ is bound(?X).

The NRMD¬ query f1,2(Q) is then (q(X̄),Π) where X̄ is the list with the variables in set inScope(Q), and Π is
the program that consists of the rules in program of query (p(X̄),Π′) = f1,2(P), and the rule that corresponds
the operation FILTER, namely rule q(X̄)← p(X̄), Lϕ.

(a) By the NRMD¬ semantics, θ is a solution of (q(X̄),Π) if and only if θ ∈ J(p(X̄),Π′)Kg1,2(G), and θ(Lϕ) ⊆
g1,2(G). By the induction hypothesis, θ ∈ J(p(X̄),Π′)Kg1,2(G) is equivalent to µ ∈ JPKG. By construction,
θ(Lϕ) ⊆ atoms(Π′, g1,2(G)) if and only if µ(ϕ) = true. By the SPARQL semantics, this is equivalent to
µ ∈ JQKG.

40 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(b) By construction, every fact in θ(Lϕ) occurs once in g1,2(G). For each fact in F ∈ θ(Lϕ) there is then only
one proof that F ∈ atoms(Π, g1,2(G)). Hence, card(θ, J f1,2(Q)Kg1,2(G)) = card(θ, J f1,2(P)Kg1,2(G)). By
the induction hypothesis, card(θ, J f1,2(P)Kg1,2(G)) = card(µ, JPKG). According to the SPARQL semantics,
card(µ, JPKG) = card(µ, JQKG). Hence, card(θ, J f1,2(Q)Kg1,2(G)) = card(µ, JQKG).

Hence, SPARQL queries of the form (P FILTERϕ) are simulable with NRMD¬.
6. Let Q be the SPARQL query (SELECT X̄ P). The NRMD¬ query f1,2(Q) is then (q(X̄),Π), where Π is the

program that consists of the rules in the program of query (p(Ȳ ,Π′) = f1,2(P), and the rule that corresponds
to the operation projects, namely rule q(X̄)← p(Ȳ),null(x1), . . . ,null(xn), where x1, . . . , xn are the variables
that are in W but not in inScope(P1).

(a) By the NRMD¬ semantics, θ is a solution of (q(X̄),Π) if and only if there exists a solution θ′ ∈
J(p(Ȳ ,Π′)Kg1,2(G) such that θ(x) = θ′(x) if x ∈ inScope(Q) ∩ inScope(P). Let µ = h2,1(θ) and
µ′ = h2,1(θ′). By construction µ = µ′|inScope(Q). By the induction hypothesis, µ′ ∈ JPKG. Hence, µ ∈ JQKG.

(b) By construction,

card(θ, J f1,2(Q)Kg1,2(G)) =
∑

θ′|inScope(Q)=θ

θ′∈J f1,2(P)Kg1,2(G)

card(θ′, J f1,2(P)Kg1,2(G)).

By the induction hypothesis,

card(θ, J fe1,2(Q)Kg1,2(G)) =
∑

θ′|inScope(Q)=θ

µ′=h2,1(θ′)
µ′∈JPKG

card(µ′, JPKG).

By construction,

card(θ, J fe1,2(Q)Kg1,2(G)) =
∑

µ′|inScope(Q)=h2,1(θ)

µ′∈JPKG

card(µ′, JPKG).

Hence, card(θ, J f1,2(Q)Kg1,2(G)) = card(h2,1(θ), JQKG).

Hence, SPARQL queries of the form (SELECT X̄ P) are simulable with NRMD¬.

Hence, the triple (f1,2, g1,2, h2,1) is a simulation of SPARQL in NRMD¬.

Claim 5 (NRMD¬ to SPARQL). The triple (f2,1, g2,1, h1,2) is a simulation of NRMD¬ in SPARQL.

Proof. To prove this claim, we consider only normalized NRMD¬ queries Q, that is, queries where rules consist
of projection rules, join rules and negation rules (see Section 6.2). This proof follows from induction on the struc-
ture of query Q = (q(X̄),Π) with inductive hypothesis θ ∈ JQKD if and only if h1,2(θ) ∈ J f2,1(Q)Kg2,1(D) and
card(θ, JQKD) = card(h1,2(θ), J f2,1(Q)Kg2,1(D)).

1. If q is an extensional predicate, then f2,1(Q) is the SPARQL query

(SELECT ?X1 . . . ?Xn ((?Y , α0, p) AND (?Y , α1, ?X1) AND · · ·AND (?Y , αn, ?Xn)),

where the SPARQL variables ?X1 . . . ?Xn correspond to the n NRMD¬ variables in X̄.

(a) By construction, θ ∈ JQKD if and only if h1,2(θ) ∈ J f2,1(Q)Kg2,1(D). Indeed, each colored fact
〈q(a1, . . . , an), i〉 in coloring(D) corresponds to a subgraph {(ui, α0, p), (ui, α1, a1), · · · , (ui, αn, an)}where
ui is a fresh IRI to identify the colored fact, and ai = θ(xi), for the i-th variable xi ∈ X̄.

Angles et al. / The multiset semantics of SPARQL patterns 41

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(b) card(θ, JQKD) is the multiplicity of q(a1, . . . , an) in multiset D. By construction, this is the number
of subsgraphs of the form {(ui, α0, p), (ui, α1, a1), · · · , (ui, αn, an)} of g2,1(D). Hence, card(θ, JQKD) =
card(h1,2(θ), J f2,1(Q)Kg2,1(D)).

2. If q is an intensional predicate, then there are several rules in Π with head q(X̄), each one matching one of the
following forms:

– q(X̄)← p(Ȳ),
– q(X̄)← p1(Ȳ1), p2(Ȳ2),
– q(X̄)← p3(Ȳ3),¬p4(Ȳ4).

The function f2,1(Q) maps each of these rules to one of the following SPARQL queries:

– (SELECT X̄ f2,1((p(Ȳ),Π))),
– (f2,1((p1(X̄),Π)) AND f2,1((p2(X̄),Π))),
– (f2,1((p3(X̄),Π)) EXCEPT f2,1((p4(X̄),Π)).

If {R1, . . . ,Rn} is the set rules in Π with predicate q in the head, then the SPARQL query f2,1(Q) has the form
(P1 UNION · · ·UNION Pn), where Pi is the corresponding SPARQL query for the rule Ri, for 1 6 i 6 n.

(a) First we will prove that the SPARQL query and the NRMD¬ query have the same answers. A substitution
θ is an answer of query Q if and only if at least one of the following conditions holds:

– For a rule Ri of the form q(X̄) ← p(Ȳ), there exists a solution θ′ of query (p(Ȳ),Π) such that
θ(x) = θ′(x) for every variable x ∈ X̄. Then, by the inductive hypothesis, there exists a solution
µ′ ∈ J f2,1((p(Ȳ),Π))Kg2,1(D) such that h1,2(µ′) = θ′. Let µ be the solution mapping µ′|X̄ . By construction,
µ ∈ J f2,1(Q)Kg2,1(D) and h1,2(µ) = θ.

– For a rule Ri of the form q(X̄) ← p1(Ȳ1), p2(Ȳ2), substitutions θ1 = θ|Ȳ1
and θ2 = θ|Ȳ2

are solutions
of queries (p1(Ȳ1),Π) and (p2(Ȳ2),Π). By the inductive hypothesis, there exist two solutions µ1 ∈
J f2,1((p1(Ȳ1),Π))Kg2,1(D) and µ2 ∈ J f2,1((p2(Ȳ2),Π))Kg2,1(D) such that h1,2(µ1) = θ1 and h1,2(µ2) = θ2.
Let µ be the solution mapping µ1 ∪ µ2. By construction, µ ∈ J f2,1(Q)Kg2,1(D) and h1,2(µ) = θ.

– For a rule Ri of the form q(X̄) ← p3(Ȳ3),¬p4(Ȳ4), substitution θ is a solution of query (p3(Ȳ3),Π)
and θ is not a solution of query (p4(Ȳ3),Π). By the inductive hypothesis, there exists a solution µ ∈
J f2,1((p3(Ȳ3),Π))Kg2,1(D) such that µ /∈ J f2,1((p4(Ȳ4),Π))Kg2,1(D), and h1,2(µ) = θ. By construction,
µ ∈ J f2,1(Q)Kg2,1(D).

Hence, θ ∈ JQKD if and only if there exists µ such that f1,2(µ) = θ and µ ∈ J f2,1(Q)Kg2,1(D).
(b) We next prove that the answers have the same cardinality in SPARQL and NRMD¬. By definition,

card(θ, JQKD) =
∑
θ′|X̄=θ

card(θ′, J(p(Ȳ),Π)KD) +

card(θ1, J(p1(Ȳ1),Π)KD)× card(θ2, J(p2(Ȳ2),Π)KD) +

card(θ, J(p3(Ȳ3),Π)KD).

By the inductive hypothesis,

card(θ, JQKD) =
∑
θ′|X̄=θ

h1,2(µ′)=θ′

card(µ′, J f2,1((p(Ȳ),Π))Kg2,1(D)) +

card(µ1, J f2,1((p1(Ȳ1),Π))Kg2,1(D))× card(µ2, J f2,1((p2(Ȳ2),Π))Kg2,1(D)) +

card(µ, J f2,1((p3(Ȳ3),Π))Kg2,1(D))

= card(µ, J f2,1(Q)Kg2,1(D)).

42 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Hence, the triple (f2,1, g2,1, h1,2) is a simulation of NRMD¬ in SPARQL.

Claim 6 (MRA to NRMD¬). The triple (f3,2, g3,2, h2,3) is a simulation of MRA in NRMD¬.

Proof. We prove this claim for normalized MRA expressions where the condition of a selection formula is always an
equality atom (e.g., σA=B(R)). This proof follows by induction on the structure of a MRA expression E, assuming
that given a MRA database D, for every subquery E′ of E it holds that t′ ∈ JE′KD if and only if there exists a
NRMD¬ solution θ′ ∈ J f3,2(E)Kg3,2(D) such that h2,3(θ′) = t′.

1. If E is a relation name R then f3,2(E) is the NRMD¬ query (r(Ê), ∅) where r is an extensional predicate.

(a) By definition, t ∈ JEKD if and only if t belongs to the multiset relation corresponding to the relation name
R in the database D. By construction, t ∈ JEKD is thus equivalent to θ ∈ J f3,2(E)Kg3,2(D), where h2,3(θ) = t.
Indeed, t ∈ RI if and only if r(a1, . . . , an) ∈ g3,2(D) and t = (a1, . . . , an).

(b) The fact that card(t, JEKD) = card(θ, J f3,2(E)Kg3,2(D)) follows by construction; the multiplicity of t in the
multiset relation corresponding to the relation name R is the same as the multiplicity of fact r(a1, . . . , an)
in multiset g3,2(D).

2. If E is a query E1 ∪ E2, then Ê1 = Ê and Ê2 = Ê, and f3,2(E) is a NRMD¬ query (q(Ê),Π) such that
f3,2(E1) = (q1(Ê),Π) and f3,2(E2) = (q2(Ê),Π), and program Π includes the rules q(Ê) ← q1(Ê) and
q(Ê)← q2(Ê).

(a) By definition, t ∈ JEKD if and only if t ∈ JE1KD or t ∈ JE2KD. By the induction hypothesis, t ∈ JE2KD is
equivalent to say that there exists θ such that h2,3(θ) = t and θ ∈ J f3,2(E1)Kg3,2(D) or θ ∈ J f3,2(E2)Kg3,2(D).
That is, θ ∈ J f3,2(E)Kg3,2(D).

(b) Assume the respective answers t and θ described in (a). By definition,

card(t, JEKD) = card(t, JE1KD) + card(t, JE2KD),

card(θ, J f3,2(E)Kg3,2(D)) = card(θ, J f3,2(E1)Kg3,2(D)) + card(θ, J f3,2(E2)Kg3,2(D)).

By the inductive hypothesis, these two multiplicities are equal.

3. If E is a query E1 on E2 then Ê1 ∪ Ê2 = Ê, f3,2(E) = (q(Ê),Π), f3,2(E1) = (q1(Ê1),Π), f3,2(E2) =
(q2(Ê2),Π), and program Π includes the rule q(Ê)← q1(Ê1), q2(Ê2).

(a) By definition, t ∈ JEKD if and only if there exists two tuples t1 and t2 such that t1 ∼ t2, t = t1 ∪ t2,
t1 ∈ JE1KD and t2 ∈ JE2KD. By the induction hypothesis, t ∈ JEKD if and only if there exists two NRMD¬

solutions θ1 ∈ J f3,2(E1)Kg3,2(D) and θ2 ∈ J f3,2(E2)Kg3,2(D) where h2,3(θ1) = t1 and h2,3(θ2) = t2. Let θ be
θ1 ∪ θ2. By construction, θ ∈ J f3,2(E)Kg3,2(D) and h2,3(θ) = t.

(b) Assume the respective answers t, t1, t2, θ, θ1, and θ2 described in (a). By definition,

card(t, JEKD) = card(t1, JE1KD)× card(t2, JE1KD),

card(θ, J f3,2(E)Kg3,2(D)) = card(θ1, J f3,2(E1)Kg3,2(D))× card(θ2, J f3,2(E1)Kg3,2(D)).

By the inductive hypothesis, these two multiplicities are equal.

4. If E is a query E1 \ E2 then Ê1 = Ê, Ê1 = Ê, f3,2(E) = (q(Ê),Π), f3,2(E1) = (q1(Ê),Π), f3,2(E2) =
(q2(Ê),Π), and program Π includes the rule q(Ê)← q1(Ê),¬q2(Ê).

(a) By definition, t ∈ JEKD if and only if t ∈ JE1KD and t /∈ JE2KD. By the induction hypothesis, t ∈ JEKD

if and only if there exists a NRMD¬ solution θ such that θ ∈ J f3,2(E1)Kg3,2(D), θ /∈ J f3,2(E2)Kg3,2(D), and
h2,3(θ) = t. By construction, θ ∈ J f3,2(E)Kg3,2(D).

(b) Assume the respective answers t and θ described in (a). By definition, card(t, JEKD) = card(t, JE1KD) and
card(θ, J f3,2(E)Kg3,2(D)) = card(θ, J f3,2(E1)Kg3,2(D)). By the induction hypothesis, these two multiplicities
are equal.

Angles et al. / The multiset semantics of SPARQL patterns 43

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

5. If E is a query πS (E1) then Ê = S and S ⊆ Ê1, and f3,2(E) is a NRMD¬ query (q(X̄),Π) such that f3,2(E1) =
(q1(Ê),Π), and program Π includes the rule q(Ê)← q1(Ê1).

(a) By definition, t ∈ JEKD if and only if there exists a tuple t1 ∈ JE1KD such that t1|Ê = t. By the induction
hypothesis, t1 ∈ JEKD if and only if there exists θ1 ∈ J f3,2(E1)Kg3,2(D) such that h2,3(θ1) = t1. Let θ be
θ1|Ê . By construction, t ∈ JEKD if and only if θ ∈ J f3,2(E)Kg3,2(D) and h2,3(θ) = t.

(b) Assume the respective answers t and θ described in (a). By definition,

card(t, JEKD) =
∑

t1∈JE1KD
t1|Ê=t

card(t1, JE1KD),

card(θ, J f3,2(E)Kg3,2(D)) =
∑

θ1∈J f3,2(E1)Kg3,2(D)

θ1|Ê=θ

card(θ1, J f3,2(E1)Kg3,2(D)).

By the induction hypothesis, these two multiplicities are equal.

6. If E is a query ρA/B(E1) then Ê = (Ê1 \ {A}) ∪ {B}, f3,2(E) = (q(Ê),Π), and f3,2(E1) = (q(Ê1),Π).

(a) By definition, t ∈ JEKD if and only if there exists a tuple t1 ∈ JE1KD where t(C) = t1(C) for every
attribute C ∈ Ê \ {A}, and t(A) = t1(B). By the induction hypothesis, t1 ∈ JE1KD if and only if there
exists a solution θ1 ∈ J f3,2(E1)Kg3,2(D) such that h2,3(θ1) = t1. Let θ be the tuple with domain Ê such that
θ(C) = θ1(C) for every attribute C ∈ Ê \ {A}, and θ(A) = θ1(B). By construction, θ ∈ J f3,2(E)Kg3,2(D) if
and only if θ1 ∈ J f3,2(E1)Kg3,2(D) and h2,3(θ) = t.

(b) Assume the respective query answers t, t1, θ, and θ1 described in (a). By definition,

card(t, JEKD) = card(t1, JE1KD),

card(θ, J f3,2(E)Kg3,2(D)) = card(θ1, J f3,2(E1)Kg3,2(D)).

By the induction hypothesis, these two multiplicities are equal.

7. If E is a query σA=B(E1) then Ê = Ê1, f3,2(E) = (q(Ê),Π), and f3,2(E1) = (q1(Ê1),Π) and program Π
includes the rule q(Ê)← q1(Ê1), A = B.

(a) By definition, t ∈ JEKD if and only if t ∈ JE1KD and t(A) = t(B). By the induction hypothesis,
there is an answer θ ∈ J f3,2(E1)Kg3,2(D) such that h2,3(θ) = t. By construction, θ(A) = θ(B). Then,
θ ∈ J f3,2(E)Kg3,2(D).

(b) Assume the respective query answers t and θ described in (a). By definition,

card(t, JEKD) = card(t1, JE1KD),

card(θ, J f3,2(E)Kg3,2(D)) = card(θ1, J f3,2(E1)Kg3,2(D)).

By the induction hypothesis, these two multiplicities are equal.

Hence, the triple (f3,2, g3,2, h2,3) is a simulation of MRA in NRMD¬.

Claim 7 (NRMD¬ to MRA). The triple (f2,3, g2,3, h3,2) is a simulation of NRMD¬ in SPARQL.

Proof. To prove this claim we consider only normalized NRMD¬ queries Q, that is, queries where rules consist
of projection rules, join rules and negation rules (see Section 6.2). This prove follows from induction on the struc-
ture of query Q = (q(X̄),Π) with inductive hypothesis θ ∈ JQKD if and only if h3,2(θ) ∈ J f2,3(Q)Kg2,3(D) and
card(θ, JQKD) = card(h3,2(θ), J f2,3(Q)Kg2,3(D)).

44 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1. If q is a extensional predicate, then f2,1(Q) is the MRA query ρA1/X1
(· · · ρAn/Xn(R)), where the MRA attributes

X1, . . . , Xn correspond to the n NRMD¬ variables in X̄, and R is the relation name corresponding to predicate
q.

(a) Let r be the MRA relation associated to relation name R in the MRA database g2,3(D). Let θ be a NRMD¬

answer with domain {X1, . . . , X1}, and t be the MRA tuple where t(Ai) = θ(Xi) for 1 6 i 6 n. By
definition, θ ∈ JQKD if and only if p(θ(X1), . . . , θ(Xn)) ∈ D. Because, by definition, each fact q(a1, . . . , an)

in D corresponds to a tuple t ∈ r where t(Ai) = ai for 1 6 i 6 n, then θ ∈ JQKD if and only if t ∈ r.
Let s be a MRA tuple with ŝ = {X1, . . . , Xn} where s(Xi) = t(Ai), for 1 6 i 6 n. By definition, t ∈ r if
and only if s ∈ JρA1/X1

(· · · ρAn/Xn(R))Kg2,3(D). By construction, s = h3,2(θ). Hence, θ ∈ JQKD if and only if
h3,2(θ) ∈ J f2,3(Q)Kg2,3(D).

(b) The identity card(θ, JQKD) = card(h3,2(θ), J f2,3QK f2,3(D)) follows from the next identities:

card(θ, JQKD) = card(q(θ(X1), . . . , θ(Xn)),D)

= card(t, r)

= card(s, J f2,3(Q)Kg2,3(D))

= card(h3,2(θ), J f2,3QKg2,3(D)).

2. If q is an intensional predicate then there are several rules in Π with head q(X̄), each one has matches of the
following forms:

– q(X̄)← p(Ȳ),
– q(X̄)← p1(Ȳ1), p2(Ȳ2),
– q(X̄)← p3(Ȳ3),¬p4(Ȳ4).

where X̄ ⊆ Ȳ , Ȳ1 ∪ Ȳ2 = X̄, Ȳ3 = X̄, and Ȳ4 = X̄. The function f2,3(Q) maps each of these rules to one of the
following MRA queries:

– πX̄(f2,3((p(Ȳ),Π))),
– (f2,3((p1(X̄),Π)) on f2,3((p2(X̄),Π))),
– (f2,3((p3(X̄),Π)) \ f2,3((p4(X̄),Π))).

If {R1, . . . ,Rn} is the set rules in Π with predicate q in the head, then the MRA query f2,3(Q) has the form
(E1 ∪ · · · ∪ En), where Ei is the corresponding MRA expression for the rule Ri, for 1 6 i 6 n.

(a) First, we will prove that the MRA expression and the NRMD¬ query have the same answers. A substitution
θ is an answer of query Q if and only if one of the following conditions holds:

– There exists a solution θ′ of query (p(Ȳ),Π) such that θ(x) = θ′(x) for every variable x ∈ X̄. By the
induction hypothesis, there exists a solution t′ ∈ J f2,3((p(Ȳ),Π))Kg2,3(D) such that h3,2(t′) = θ′. Let t be
the solution mapping t′|X̄ . By construction, t ∈ J f2,3(Q)Kg2,3(D) and h3,2(t) = θ.

– Substitutions θ1 = θ|Ȳ1
and θ2 = θ|Ȳ2

are solutions of queries (p1(Ȳ1),Π) and (p2(Ȳ2),Π).
By the induction hypothesis, there exists two solutions t1 ∈ J f2,3((p1(Ȳ1),Π))Kg2,3(D) and t2 ∈
J f2,3((p2(Ȳ2),Π))Kg2,3(D) such that h3,2(t1) = θ1 and h3,2(t2) = θ2. Let t be the MRA solution t1 ∪ t2.
By construction, t ∈ J f2,3(Q)Kg2,3(D) and h3,2(t) = θ.

– θ is a solution of query (p3(Ȳ3),Π) and θ is not a solution of query (p4(Ȳ3),Π). By the induction
hypothesis, there exists a solution t ∈ J f2,3((p3(Ȳ3),Π))Kg2,3(D) such that t /∈ J f2,3((p4(Ȳ4),Π))Kg2,3(D),
and h3,2(t) = θ. By construction, t ∈ J f2,3(Q)Kg2,3(D).

Hence, θ ∈ JQKD if and only if there exists µ such that f1,2(µ) = θ and µ ∈ J f2,1(Q)Kg2,1(D).

Angles et al. / The multiset semantics of SPARQL patterns 45

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(b) We next prove that the answers have the same cardinality in MRA and NRMD¬. By definition,

card(θ, JQKD) =
∑
θ′|X̄=θ

card(θ′, J(p(Ȳ),Π)KD) +

card(θ1, J(p1(Ȳ1),Π)KD)× card(θ2, J(p2(Ȳ2),Π)KD) +

card(θ, J(p3(Ȳ3),Π)KD).

By the induction hypothesis,

card(θ, JQKD) =
∑
θ′|X̄=θ

h1,2(t′)=θ′

card(t′, J f2,3((p(Ȳ),Π))Kg2,3(D)) +

card(t1, J f2,3((p1(Ȳ1),Π))Kg2,3(D))× card(t2, J f2,3((p2(Ȳ2),Π))Kg2,3(D)) +

card(t, J f2,3((p3(Ȳ3),Π))Kg2,3(D))

= card(t, J f2,3(Q)Kg2,3(D)).

Hence, the triple (f2,3, g2,3, h3,2) is a simulation of NRMD¬ in MRA.

Claim 8 (MRA to SPARQL). The triple (f3,1, g3,1, h1,3) is a simulation of NRMD¬ in SPARQL.

Proof. We proof this claim for normalized MRA expressions where the condition of a selection formula is always an
equality atom (e.g., σA=B(R)). We proof this claim by induction on the structure of a MRA expression E, assuming
that given an MRA database D, for every subquery E′ of E it holds that t′ ∈ JE′KD if and only if there exists a
SPARQL solution µ′ ∈ J f3,1(E)Kg3,1(D) such that h1,3(µ′) = t′.

1. If E is a relation name R then f3,1(E) is the SPARQL query (SELECT ?A1 · · · ?An P) where P is the
basic graph pattern ((?X, ub, ur) AND(?X, u1, ?A1) AND · · ·AND(?X, un, ?An))), and ?A1, . . . , ?An are the
variables corresponding to the attributes associated to relation name R.

(a) Let t be an MRA tuple with t̂ = R̂, and µ be an SPARQL mapping with h1,3(µ) = t. By definition,
t ∈ JEKD if and only if tuple t belongs to multiset relation RD. By construction, t ∈ JEKD is thus equivalent
to the existence of an an IRI u such that the triples (u, ub, ur), (u, u1, t(A1)), . . . , (u, un, t(An)) belong to the
RDF graph g3,1(D). By definition, there exists such an IRI u if and only if there exists a SPARQL mapping
µ′ ∈ JPKg3,1(D) where µ′(?X) = u and µ(?Ai) = t(ai), for 1 6 i 6 n. By construction, µ′|?A1,...,?An = µ.
Then, µ′ ∈ JPKg3,1(D) if and only if µ ∈ J f3,1(Q)Kg3,1(D).

(b) The fact that card(t, JEKD) = card(µ, J f3,1(E)Kg3,1(D)) follows by construction; the multiplicity of t in
the multiset relation RD is the same as the number of IRIs u such that such that the triples (u, ub, ur),
(u, u1, t(A1)), . . . , (u, un, t(An)) belong to the RDF graph g3,1(D).

2. If E is a query E1∪E2, then Ê1 = Ê, Ê2 = Ê, and f3,1(E) is the SPARQL query (f3,1(E1) UNION f3,1(E2)).

(a) Let t be an MRA tuple with t̂ = Ê, and µ be an SPARQL mapping such that h1,3(µ) = t. By definition,
t ∈ JEKD if and only if t ∈ JE1KD or t ∈ JE2KD. By the induction hypothesis, t ∈ JEKD if and only if
µ ∈ J f3,1(E1)Kg3,1(D) or µ ∈ J f3,1(E2)Kg3,1(D). By definition, t ∈ JEKD if and only if µ ∈ J f3,1(E)Kg3,1(D).

(b) Assume the respective answers t and µ described in (a). By definition,

card(t, JEKD) = card(t, JE1KD) + card(t, JE2KD),

card(µ, J f3,1(E)Kg3,1(D)) = card(µ, J f3,1(E1)Kg3,1(D)) + card(µ, J f3,1(E2)Kg3,1(D)).

By the induction hypothesis, these two multiplicities are equal.

46 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

3. If E is a query E1 on E2 then Ê1 ∪ Ê2 = Ê, and f3,1(E) is the SPARQL query (f3,1(E1) AND f3,1(E2)).

(a) Let t be an MRA tuple with t̂ = Ê, and µ be an SPARQL mapping such that h1,3(µ) = t. By definition,
t ∈ JEKD if and only if there exists two tuples t1 and t2 such that t1 ∼ t2, t = t1 ∪ t2, t1 ∈ JE1KD

and t2 ∈ JE2KD. By the induction hypothesis, t1 ∈ JE1KD and t2 ∈ JE2KD if and only there exist two
SPARQL mappings µ1 and µ2 such that h1,3(µ1) = t1, h1,3(µ2) = t2, µ1 ∈ J f3,1(E1)Kg3,1(D), and µ1 ∈
J f3,1(E1)Kg3,1(D). By construction, µ1 ∼ µ2, µ1 ∪ µ2 = µ, and µ ∈ J f3,1(E)Kg3,1(D). Hence, t ∈ JEKD if and
only if µ ∈ J f3,1(E)Kg3,1(D).

(b) Assume the respective answers t, t1, t2, µ, µ1, and µ2 described in (a). By definition,

card(t, JEKD) = card(t1, JE1KD)× card(t2, JE1KD),

card(µ, J f3,1(E)Kg3,1(D)) = card(µ1, J f3,1(E1)Kg3,1(D))× card(µ2, J f3,1(E1)Kg3,1(D)).

By the induction hypothesis, these two multiplicities are equal.

4. If E is a query E1\E2 then Ê1 = Ê, Ê1 = Ê, and f3,1(E) is the SPARQL query (f3,1(E1) EXCEPT f3,1(E2)).

(a) Let t be an MRA tuple with t̂ = Ê, and µ be an SPARQL mapping such that h1,3(µ) = t. By definition,
t ∈ JEKD if and only if t ∈ JE1KD and t /∈ JE2KD. By the induction hypothesis, t ∈ JEKD if and only if
µ ∈ J f3,1(E1)Kg3,1(D) and µ /∈ J f3,1(E2)Kg3,1(D). Hence, t ∈ JEKD if and only if µ ∈ J f3,1(E)Kg3,1(D).

(b) Assume the respective answers t and µ described in (a). By definition, card(t, JEKD) = card(t, JE1KD) and
card(µ, J f3,1(E)Kg3,1(D)) = card(µ, J f3,1(E1)Kg3,1(D)). By the induction hypothesis, these two multiplicities
are equal.

5. If E is a query πS (E1) then Ê = S and S ⊆ Ê1, and f3,1(E) is a SPARQL query (SELECT W f3,1(E1)) such
that W is the corresponding set of SPARQL variables for the set of attributes S .

(a) Let t be an MRA tuple with t̂ = Ê. By definition, t ∈ JEKD if and only if there exists a tuple t1 ∈ JE1KD

such that t1|Ê = t. By the induction hypothesis, t1 ∈ JEKD if and only if there exists µ1 ∈ J f3,1(E1)Kg3,1(D)

such that h1,3(µ1) = t1. Let µ be µ1|W . By construction, t ∈ JEKD if and only if µ ∈ J f3,1(E)Kg3,1(D) and
h1,3(µ) = t.

(b) Assume the respective answers t and µ described in (a). By definition,

card(t, JEKD) =
∑

t1∈JE1KD
t1|Ê=t

card(t1, JE1KD),

card(µ, J f3,1(E)Kg3,1(D)) =
∑

µ1∈J f3,1(E1)Kg3,1(D)

µ1|W=µ

card(µ1, J f3,1(E1)Kg3,1(D)).

By the induction hypothesis, these two multiplicities are equal.

6. If E is a query ρA/B(E1) then Ê = (Ê1\{A})∪{B}, f3,1(E) is the SPARQL query that results from consistently
renaming variable ?A as variable ?B in f3,1(E1) (i.e., subs?A/?B(A)), and ?A and ?B are the corresponding
SPARQL variables for atributes A and B.

(a) By definition, t ∈ JEKD if and only if there exists a tuple t1 ∈ JE1KD where t(C) = t1(C) for every
attribute C ∈ Ê \ {A}, and t(A) = t1(B). By the induction hypothesis, t1 ∈ JE1KD if and only if there
exists a solution µ1 ∈ J f3,1(E1)Kg3,1(D) such that h1,3(µ1) = t1. Let µ be the SPARQL mapping with
domain (dom(µ′) \ {?A})∪{?B} such that µ(?C) = µ1(?C) for every variable ?C ∈ dom(µ′) \ {?A}, and
µ(?A) = µ1(?B). By construction, h1,3(µ) = t. Hence, t ∈ JEKD if and only if µ ∈ J f3,1(E)Kg3,1(D).

(b) Assume the respective query answers t, t1, µ, and µ1 described in (a). By definition,

card(t, JEKD) = card(t1, JE1KD),

Angles et al. / The multiset semantics of SPARQL patterns 47

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

card(µ, J f3,1(E)Kg3,1(D)) = card(µ1, J f3,1(E1)Kg3,1(D)).

By the induction hypothesis, these two multiplicities are equal.

7. If E is a query σA=B(E1) then Ê = Ê1, f3,1(E) = (q(Ê),Π), and f3,1(E1) is the SPARQ query
(P1 FILTER ?A = ?B) where ?A and ?B are the corresponding SPARQL variables for the MRA attributes
A and B.

(a) By definition, t ∈ JEKD if and only if t ∈ JE1KD and t(A) = t(B). By the induction hypothesis, there is an
answer µ ∈ J f3,1(E1)Kg3,1(D) such that h1,3(µ) = t. By construction, µ(A) = µ(B). Then, t ∈ JEKD if and
only if µ ∈ J f3,1(E)Kg3,1(D).

(b) Assume the respective query answers t and θ described in (a). By definition,

card(t, JEKD) = card(t1, JE1KD),

card(µ, J f3,1(E)Kg3,1(D)) = card(µ1, J f3,1(E1)Kg3,1(D)).

By the induction hypothesis, these two multiplicities are equal.

Hence, the triple (f3,1, g3,1, h1,3) is a simulation of MRA in NRMD¬.

Claim 9 (SPARQL to MRA). The triple (f1,3, g1,3, h3,1) is a simulation of NRMD¬ in SPARQL.

Proof. To prove this claim we show that, for every SPARQL query Q and RDF graph G, it holds that JQKG =
h3,1(J f1,3(Q)Kg1,3

). For simplicity, we write D instead of D. We next show this identity by induction on the structure
of a normalized SPARQL query Q. In this proof we assume that t is a MRA tuple with the attributes of the MRA
expression f1,3(Q), and µ is the SPARQL mapping h3,1(t). To show that JQKG = h3,1(J f1,3(Q)Kg1,3

), we prove that
µ ∈ JQKG if and only if t ∈ J f1,3(Q)KD and card(µ, JQKG) = card(t, J f1,3(Q)KD).

1. Case Q is a triple pattern.

(a) By definition, every triple pattern is translated to a MRA expression consisting of operations σ, ρ, and π
over the relation name Trip. For example, if Q is the triple pattern (?X, p, ?X), then f1,2(Q) is the expression
ΠX(ρS/X(σP=p∧S =O(Trip))). It can be shown that the triple pattern Q = (?X, p, ?X) is equivalent to the
SPARQL query Q′ = (SELECT ?X ((?X, ?P, ?O) FILTER(?P = p ∧ ?X =?O)). Then, µ ∈ JQKG if and
only if there exists a solution µ′ ∈ J(?X, ?P, ?O)KG such that µ = µ′|{X}, µ′(?P) = p and µ′(?X) = µ′(?O).
Without loss of generality, let µ′(?X) = a. Such mapping µ′ is a solution of the triple pattern (?X, ?P, ?O)
if and only if (a, p, a) ∈ G. By construction, (a, p, a) ∈ G if and only if (a, p, a) ∈ TripD, where D is the
MRA database D. If (a, p, a) ∈ TripD then t ∈ J f1,3(Q)KD. Hence, µ ∈ JQKG if and only if t ∈ J f1,3(Q)KD.
So far, we showed that the claim follows for a particular triple pattern. This result can be extended for all
the triple patterns following the same procedure.

(b) By construction, card(µ, J f1,1(Q)Kg1,1(G)) = 1 and card(µ, JQKG) = 1. Hence, card(t, J f1,1(Q)Kg1,1(G)) =
card(µ, JQKG).

2. Case Q is a query (P1 AND P2). Without loss of generality assume that inScope(P1) = {?X, ?Y} and
inScope(P2) = {?X, ?Z}. By definition, the MRA expression for query Q is:

f1,3(Q) = f1,3(P1) ∗ f1,3(P2)

= πX,Y,Z(ρA1/X1
(ρA2/X2

(ρA/X(Comp))) on ρX/X1
(f1,3(P1)) on ρX/X2

(f1,3(P2))).

(a) If t ∈ J f1,3(Q)KD then, there are MRA tuples t1 ∈ J f1,3(P1)KD, t2 ∈ J f1,3(P2)KD, and t3 ∈ JCompKD such
that t(X) = t3(A), t(Y) = t2(Y), t(Z) = t3(Z), and t1(X) = t3(A1), t2(X) = t3(A2). Let µ1 = h3,1(t1),
µ2 = h3,1(t2), and µ3 = h3,1(t3). By the induction hypothesis in P1 and P2, t1 ∈ J f1,3(P1)KD and t2 ∈
J f1,3(P2)KD if and only if µ1 ∈ JP1KG and µ2 ∈ JP2KG. By the definition of CompD, it holds that µ1 ∼ µ2

and µ1 ∪ µ2 = µ. By the semantics of the SPARQL operator AND, it holds then that µ ∈ JQKG. Hence,
t ∈ J f1,3(Q)KD if and only if µ ∈ JQKG.

48 Angles et al. / The multiset semantics of SPARQL patterns

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(b) By definition,

card(µ, JQKG) =
∑

µ1∈JP1KG
µ2∈JP2KG
µ1∼µ2

µ=µ1∪µ2

card(µ1, JP1KG)× card(µ2, JP2KG),

card(t, J f1,3(Q)KD) =
∑

t1∈J f1,3(P1)KD
t2∈J f1,3(P2)KD
t3∈JCompKD
ϕ(t1,t2,t3)

card(t3, JCompKD)× card(t1, JP1KD)× card(t2, JP2KD),

where ϕ(t1, t2, t3) is a condition coresponding to the compatibility, that is true if and only if the following
statements hold:

i. t1(Y) = t(Y),
ii. t2(Z) = t(Z), and
iii. either

A. (t1(X) = t(X) and t2(X) = t(X),
B. (t1(X) = t(X) and t2(X) = t(X), or
C. (t1(X) = t(X) and t2(X) = t(X).

By the induction hypothesis, card(µ1, JP1KG) = card(t1, J f1,3(P1)KD) and card(µ2, JP2KG) = card(t2, J f1,3(P2)KD).
By construction, card(t3, JCompKD) = 1. Hence, card(µ, JQKG) = card(t, J f1,3(Q)KD).

3. Case Q is a query (P1 EXCEPT P2). Let ?X̄ be the list of SPARQL variables in set inScope(Q). The MRA
query f1,3(Q) is then f1,3(P1) \ f1,3(P2).

(a) By definition, t ∈ J f1,3(Q)KD if and only if t ∈ J f1,3(P1)KD and t /∈ J f1,3(P2)KD. By the induction
hypothesis, the last condition is equivalent to µ ∈ JP1KG and µ /∈ JP2KG. By the SPARQL semantics,
t ∈ J f1,3(Q)KG if and only if µ ∈ JQKG.

(b) By definition, card(µ, JQKG) = card(µ, JP1KG) and card(t, J f1,3(Q)KD) = card(t, J f1,3(P1)KD). By the in-
duction hypothesis, card(µ, JP1KG) = card(t, J f1,3(P1)KD). Hence, card(µ, JQKG) = card(t, J f1,3(Q)KD).

4. Case Q is a SPARQL query (P1 UNION P2). The MRA expression f1,3(Q) is then f1,3(P1) ∪ f1,3(P2).

(a) By definition, t ∈ J f1,3(Q)KG if and only if t ∈ J f1,3(P1)KD or t ∈ J f1,3(P2)KD. By the induction hypoth-
esis, t ∈ J f1,3(Q)KG if and only if µ ∈ JP1KG or µ ∈ JP1KG. By the SPARQL semantics, t ∈ J f1,3(Q)KG if
and only if µ ∈ JQKG.

(b) By definition,

card(t, J f1,3(Q)KD) = card(t, J f1,3(P1)KD) + card(t, J f1,3(P2)KD),

card(µ, JQKG) = card(µ, JP1KG) + card(µ, JP2KG).

By the induction hypothesis, card(t, J f1,3(P1)KD) = card(µ, JP1KG) and card(t, J f1,3(P2)KD) = card(µ, JP2KG).
Hence card(t, J f1,3(Q)KD) = card(µ, JQKG).

5. Case Q is a SPARQL query (P FILTERϕ) where ϕ is an atomic filter condition (i.e., a filter condition of the
form ?X = c, ?X = ?Y , or bound(?X)). The MRA expression f1,3(Q) is then σψ(f1,3(P)) where ψ is the
MRA selection condition defined as follows:

ψ =

X = c ∧ ¬(X = ⊥) if ϕ is ?X = c,
X = Y ∧ ¬(X = ⊥) ∧ ¬(Y = ⊥) if ϕ is ?X = ?Y ,
¬(X = ⊥) if ϕ is bound(?X).

Angles et al. / The multiset semantics of SPARQL patterns 49

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(a) By definition, t ∈ J f1,3(Q)KD if and only if t ∈ J f1,3(P)KD and t satisfies condition ψ. It is not difficult to see
that t satisfies condition ψ if and only if µ satisfies condition ϕ. By the induction hypothesis, t ∈ J f1,3(P)KD

if and only if µ ∈ JPKG. Hence, µ ∈ J f1,3(Q)KD if and only if µ ∈ JQKG.
(b) By definition, if t and µ satisfy the respective conditions, then:

card(t, J f1,3(Q)KD) = card(t, J f1,3(P)KD),

card(µ, JQKG) = card(µ, JPKG).

By the induction hypothesis, card(t, J f1,3(P)KD) = card(µ, JPKG). Hence, card(t, J f1,3(Q)KD) =
card(µ, JQKG).

6. Case Q is a SPARQL query (SELECT ?X̄ P). The MRA expression f1,3(Q) is then πX̄(f1,3(P) on ∆Ȳ), where
X̄ is the corresponding set of attributes for the variables ?X̄ and Ȳ is the correponding set of attributes for the
variables in set inScope(P) \ inScope(Q).

(a) By definition, t ∈ J f1,3(Q)KD if and only if t(Y) = ⊥ for every attribute name Y ∈ Ȳ and there exists
a solution t′ ∈ J f1,3(P)KD such that t′(A) = t(A) for every attribute A ∈ X̄ \ Ȳ . Let µ′ = h3,1(t′). By
the induction hypothesis, t′ ∈ J f1,3(P)KD if and only if µ′ ∈ JPKG. By construction µ = µ′|?X̄ . Hence,
t ∈ J f1,3(Q)KD if and only if t ∈ JPKG.

(b) By construction,

card(t, J f1,3(Q)KD) =
∑

t′|inScope(Q)=t
t′∈J f1,3(P)KD

card(t′, J f1,3(P)KD),

card(µ, JQKG) =
∑

µ′|inScope(Q)=µ

µ′∈JPKG

card(µ′, JPKG),

By the induction hypothesis, card(t′, J f1,3(P)KD) = card(µ′, JPKG). Hence, card(t, J f1,3(Q)KD) =
card(µ′, JQKG).

Hence, the triple (f1,3, g1,3, h3,1) is a simulation of SPARQL in MRA.

	Introduction
	Preliminaries
	Multisets
	Comparing the expressive power of query languages
	Comparing SPARQL, NRMD and MRA

	Multiset SPARQL
	RDF Graphs
	SPARQL Syntax
	SPARQL Semantics
	Normalization of patterns

	Non-Recursive Multiset Datalog with Safe Negation (NRMD
	NRMD Syntax
	NRMD Semantics
	Normalization of NRMD programs

	Multiset Relational Algebra (MRA)
	Multiset relations
	Syntax of MRA
	Semantics of MRA

	SPARQL NRMD
	SPARQL to NRMD
	SPARQL database to NRMD database
	SPARQL query to NRMD query
	NRMD solution to SPARQL solution

	Multiset Datalog to SPARQL
	NRMD database to SPARQL database
	NRMD query to SPARQL query
	SPARQL solution to NRMD solution

	SPARQL and NRMD have the same expressive power

	MRA NRMD
	MRA to Multiset NRMD
	MRA database to NRMD database
	MRA query to NRMD query
	NRMD solution to MRA solution

	NRMD to MRA
	NRMD database to MRA database
	NRMD query to MRA query
	MRA solution to NRMD solutions

	NRMD and MRA have the same expressive power

	SPARQL MRA
	MRA to SPARQL
	MRA database to SPARQL database
	MRA query to SPARQL query
	SPARQL solution to MRA solution

	SPARQL to MRA
	SPARQL database to MRA database
	SPARQL query to MRA query
	MRA solution to SPARQL solution

	MRA and SPARQL have the same expressive power

	Related work and Conclusions
	References
	Appendix A. Variable renaming in SPARQL
	Appendix B. Proof of claims
	Error filter condition
	Reduction of complex filter conditions
	Normalization of NRMD queries
	Simulations between query languages

