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Abstract. We live in a big data era of unstructured data expressed as natural language (NL) texts. As the volume of text-based
information grows, effective methods for encoding and extracting meaningful knowledge from this corpus are of paramount rel-
evance. A challenging task concerns transforming NL texts into structured and semantically rich data. Semantic web technolo-
gies have revolutionized the way we represent and access structured knowledge. Resource Description Framework (RDF) triples
serve as a fundamental building block for this purpose, allowing the integration of diverse data sources. This survey examines
methods for RDF triple generation and Knowledge Graphs (KGs) enhancement from natural language texts. This study area
presents wide-ranging applications encompassing knowledge representation, data integration, natural language understanding,
and information retrieval. Our systematic literature review addresses the understanding, characterization, and identification of
challenges and limitations in existing approaches to RDF triple generation from NL texts and their inclusion into an existing KG.
We retrieved, categorized, and analyzed 150 articles from several scientific databases. We provide a comprehensive overview
of the field, identify research gaps, and provide directions for future research. We found the most commonly available study
categories, especially considering the domain, the targeted language, the public availability of datasets, and real-world applica-
tions. Our results reveal a growing trend in this field in the last few years relate to the use of transformer-based machine learning
methods for triple generation. Our study also drives innovation by highlighting open research questions and providing a roadmap
for future investigations.

Keywords: Knowledge Graph Construction, RDF triples, Text-to-triple, Natural Language Processing

1. Introduction

In modern information systems, an unprecedented volume of text is generated daily, leading to large data sources
from which meaningful knowledge can be derived. In particular, Natural Language (NL) texts (e.g., web pages,
social network posts, unstructured textual documents) have been generated substantially in the past few years [1].

A substantial portion of such textual data remains largely unprocessed and untapped [2], representing a reservoir
of information that could be explored for deriving actionable insights. In this scenario, developing novel method-
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ologies and software tools to convert large volumes of unstructured text into structured, computer-interpretable
knowledge is of paramount relevance.

Unlocking the potential of unprocessed NL text can significantly contribute to informed decision-making
grounded on knowledge representation. With Resource Description Framework (RDF) [3] triples at their core, Se-
mantic Web technologies offer an approach to organizing this information. In this context, Knowledge Graphs
(KGs) [4] play a key role in creating rich and interconnected RDF triples by structuring interlinked data meaning-
fully [5].

KGs serve as invaluable assets across diverse domains, ranging from applications related to improving search
engine outcomes [6] to those targeting the enhancement of results of artificial intelligence models and applica-
tions [7]. Our motivation extends to the critical role KGs play in powering various applications and services [8, 9].
These structured knowledge repositories find applications in diverse fields, including but not limited to information
retrieval systems [10], query and answering questions [11], and data integration platforms [12, 13].

The central problem addressed in this work is the effective generation of RDF triples from NL texts. This often
encompasses tasks regarding entity recognition [14], relation extraction [15], and challenges in transforming textual
information into a structured, semantically rich format. Our study also investigates existing methods from literature
for incorporating generated RDF triples into an existing KG, respecting an underlying ontology [16].

The literature presents distinct approaches for generating RDF triples from NL texts based on Natural Language
Processing (NLP) techniques. Some studies, for instance, consider rule-based methods like Open Information Ex-
traction (OpenIE) [17] and Semantic Role Labeling (SRL) [18]. They aim to identify the triple elements (subject,
predicate, and object) from textual sentences based on their grammatical structures. More recent studies employ
Transformers [19] in identifying and generating RDF triples. These approaches target the generation of a KG from
scratch.

We investigate additional challenges when enhancing an existing KG with new RDF triples. For instance, KGs
require respecting existing intrinsic ontology statements. This often involves the identification of already-existing
triples and whether they follow such ontology definitions. This integration is even harder when constructing a KG
relies on assimilating a fully comprehensive knowledge set at once. KGs are constructed based on the information
available at a given moment, making it arduous to capture the entirety of knowledge in a single instantiation compre-
hensively. The constantly expanding repository of NL text introduces a dynamic facet to this challenge. Textual data
is not stagnant, as new knowledge is continuously generated. Thus, a mechanism is required for KGs to keep pace
with this influx of information. In this sense, KGs need to constantly change and evolve, automatically or manually,
to adhere to the evolution of knowledge in the domain they represent [20]. The “freshness” and “recency” of the
information in KGs of any size or domain is critical to their usefulness [21].

Existing survey articles from the literature in the context of RDF triple generation emphasize the creation of
new KGs [12, 13]. We found studies describing solutions for similar problems, which include: transforming table-
formatted texts in RDF triples [22], transforming relational databases in RDF triples [23], and generating NL texts
from RDF triples [24]. Nevertheless, to the best of our knowledge, there is no available comprehensive study ad-
dressing a systematic literature review that combines research related to RDF triple generation and KG enhancement
from NL text.

This article presents a systematic literature review that provides insights into how unstructured textual data are
transformed into RDF triples and how the produced knowledge is aggregated into existing KGs linked to an under-
lying ontology. Our specific objectives are:

– Investigate studies and techniques that identify relevant parts of the NL-produced text to transform it into
RDF triples. Intent and entity discovery, relation extraction, and named entity recognition are examples of
techniques;

– Investigate techniques that automatically or semi-automatically build RDF triples in a single domain (e.g.,
biology, medicine) or multi-domain;

– Investigate methods that link the created triples to an existing set of classes and relations defined by one or
more ontologies;

– Investigate techniques that check the added knowledge’s consistency, validity, and semantic coherence.
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Our study employs a systematic approach organized into three phases: Preparation, Execution, and Reporting.
Each phase involves distinct steps, from formulating research questions to categorizing and analyzing relevant ar-
ticles. Our methodology includes the definition of research questions, identification of query strings, definition of
inclusion/exclusion criteria, categorization of studies and methods, generation of metadata, description and analysis
of results, and reporting on open challenges in the field.

Our study deeply describes solution categories, challenges, advancements, and triple-generation trends from NL
texts and KG enhancement. We offer researchers and practitioners valuable insights for future investigations. For
those entering the study of text-to-triple transformation, this survey provides a structured overview, highlighting
key considerations in the field. Our study also identifies the varied approaches and methodologies employed in
the surveyed articles. We ended up with 15 articles, comprising RDF triple generation from unstructured NL texts
with the final purpose of KG enhancement. These articles were, in turn, systematically categorized into 10 distinct
categories originally defined in this study. Our systematic categorization offers a comprehensive, structured field
overview of RDF triple generation and KG enhancement from NL texts. The proposed categorization is a foundation
for synthesizing information and discerning common trends, challenges, and advancements within each thematic
group. This structured approach may be relevant to researchers, practitioners, and enthusiasts interested in extracting
targeted knowledge based on their specific areas of interest. Readers, especially those new to the field, can navigate
these categories to understand specific aspects, such as technical methodologies, language specificity, and ontology
construction.

The remaining of this article is organized as follows: Section 2 formalizes the problem and its components; Sec-
tion 3 presents the methodology of how we systematically evaluated the state-of-art; Section 4 provides quantitative
analyses of the retrieved articles. Section 5 categorizes and describes the key relevant articles filtered. Section 6
discusses relevant aspects of our findings and addresses the research questions. Finally, Section 7 draws conclusion
remarks.

2. The Triple Generation Problem

This section defines the triple generation problem and highlights its inherent difficulties (Section 2.1), using a
motivating example (Section 2.2).

2.1. Triple Generation: Formalization and Challenges

This section formalizes the key terms and concepts central to this research. Figure 1 presents the typical pipeline
for triple generation and KG enhancement from NL texts.

The core elements of the pipeline are:
Ontology (O): A shared and formal conceptualization and representation of knowledge [16]. Formally, an ontol-

ogy O is formed by the components (C, P,R), where C represents a set of classes, P is a set of properties, and R is a
set of relationships. O is also named T-Box.

Knowledge Graph (KG): A graph-based representation constructed by linking RDF triples according to the
structure defined in ontologies. Formally, a Knowledge Graph KG is a connected directed graph formed by V
vertices (the entities) and their directed E edges (the connections).

Class (Ci): A category or type within the ontology representing a set of entities with common properties. For-
mally, Ci is an element of the set of classes C in the ontology.

Property (pi): A characteristic or attribute associated with entities in the ontology. Formally, pi is an element of
the ontology’s set of properties P.

Triple (Ti): A statement in the form of a subject-predicate-object, representing a relationship between entities in
the KG. Formally, Ti is the triple (s, p, o) where s is a subject entity, p is a predicate (property), and o is an object
entity.

Based on such formalization, the problem of generating RDF triples from NL text and appending them to an
existing Knowledge Graph can be formally defined as follows:
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Fig. 1. Typical pipeline for triple generation and KG enhancement based on NL texts. The pipeline comprises five elements (set of textual
documents, ontology, generated triples, existing KG, and enhanced KG) and two processing components. Boxes A and B represent the RDF
Triple generation and the KG enhancement components, respectively.

Given a set of NL texts T = {t1, t2, . . . , tn} and an existing Knowledge Graph KG (KG ̸= ∅), the goal is to
generate RDF triples S T = {(s1, p1, o1), (s2, p2, o2), . . . , (sm, pm, om)} from T (component A in Figure 1), such
that generated triples are inserted into KG leading to an enhanced knowledge graph KG′, i.e., KG′ = KG ∪ S T

(component B).
Common challenging problems faced in triple generation refer to:

– Ambiguity in natural language: NL is inherently ambiguous, making it challenging to identify entities, rela-
tionships, and attributes precisely. Resolving this ambiguity is critical for accurate triple generation;

– Diverse sentence structures: NL exhibits a wide range of sentence structures, making it difficult to design an
approach that fits all problems for extracting RDF triples. Handling diverse syntactic patterns adds complexity
to the problem;

– Contextual dependencies: Extracting triples often requires understanding the context in a document or a
broader knowledge context. Capturing contextual dependencies is key to accurately generating triples;

– Named Entity Recognition (NER): Identifying entities within the text is a subproblem that involves NER.
Variability in entity types and expressions poses challenges in accurately recognizing entities in different con-
texts.

Aggregating triples to an existing KG pose additional challenges, such as:

– T-Box alignment: A new RDF triple can be composed of entity and property types not described in the initial
version of the KG. Such a new structure must be aggregated into the T-Box portion of the KG and the triple
itself in the A-Box portion. In some situations, however, that specific triple may not be incorporated into the
KG, depending on the context in which the KG should be used. If the KG’s T-Box is aligned with a 3rd-party
ontology, including such new knowledge representation may even affect such alignment.

– A-Box alignment: The entities (subject, object, or both) of the new triple may already be present in the graph.
In this case, adding a triple will require identifying whether the URIs representing it are already available in
the KG. If so, this could lead to appending a new property (i.e., the new triple’s predicate) to existing entities
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or linking an existing entity to a new one. Also, neither of the elements of the new triple may already exist in
the KG; in this case, those new elements may end up being disconnected.

– URI alignment: In case the URI creation for the new triples is automatic, adding such triples to an existing
KG may require searching for existing URIs that represent the same entities. This would ensure consistency in
the knowledge representation.

2.2. Motivating Example

Let us consider the following sentences:

– t1 = “SpaceX, founded by Elon Musk, is known for pioneering space exploration and innovation;”
– t2 = “The engine is incompatible with Ford Mustang 1990.”

For the first example t1, relevant parts of it are identified. Step A of Figure 1 identifies entities, such as “SpaceX,”
“Elon Musk,” “space exploration,” and “innovation” from the given text, transforming this information into RDF
triples, producing relationships like:

– <SpaceX, founded_by, Elon Musk>
– <SpaceX, known_for, space_exploration>
– <SpaceX, known_for, innovation>

The created triples should be integrated into an existing KG, based on the application of ontology statements from
O. In this context, the rules identify “SpaceX” as a company and “Elon Musk” as a founder, ensuring these classes
are present in O. Given an existing KG, which initially comprises nodes for “SpaceX,” “founder,” and general
relations, integrating new triples enriches this graph. The updated KG – enhanced knowledge graph KG′ – (step B of
Figure 1) now includes nodes specific to “space exploration” and “innovation,” accompanied by their corresponding
relations.

For t2, entities like “engine,” “incompatible,” and “Ford Mustang 1990” are identified in T in step A of Figure 1.
The generated RDF triples build relationships such as <engine, incompatible_with, Ford_Mustang_1990>. Explor-
ing ontology elements helps ensure the meaningful integration of that into the KG. For instance, identify “engine”
as a component, “incompatible” as a property, and “Ford Mustang 1990” as a specific model of O. Examining the
state of KG before the integration of new information reveals existing nodes for “engine” and “incompatible.” The
subsequent integration of S T enhances this KG by adding nodes specific to “Ford Mustang 1990” in step B of Figure
1 reaching knowledge graph KG′.

We list the following challenges for converting t1 and t2 into triples:

– Ambiguity in natural language: The phrase “founded by” may pose ambiguity. It could be interpreted as the
founder of a company or the person behind a project;

– Diverse sentence structures: The sentence structure includes both the subject “SpaceX” and the additional
information “founded by Elon Musk” requiring a mechanism to handle diverse syntactic patterns;

– Contextual dependencies: Understanding the context that associates Elon Musk with SpaceX is essential.
What does “incompatible” mean? The whole engine? Without context awareness, incorrect triples may be
generated;

– Named Entity Recognition (NER): NER is required to identify “SpaceX,” “Elon Musk,” “Ford,” “Mustang,”
“1990,” and “engine” as entities, introducing the challenge of recognizing entity types accurately.

3. Methodology

This section describes the methodology for systematically reviewing the literature on triple generation and KG
enhancement from NL texts. We follow the work by Budgen and Bereton [25], which guides our methodology.
Figure 2 presents our methodology with three distinct phases: Preparation, Execution, and Reporting. A series of
ordered steps further delineate each of these phases. This phase-based structure provides a comprehensive overview
of the entire procedure and highlights our experimental approach’s systematic and controlled nature.
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Fig. 2. Systematic literature review methodology comprising three main phases: Preparation, Execution, and Reporting. Each phase comprises
steps represented by numbers from 1 to 15.

The “Preparation Phase” serves as the initial step, where we lay the groundwork for our investigation. During
this phase, we formulate research questions, identify relevant scientific databases, and establish rigorous inclusion
and exclusion criteria (steps 1 to 6 in Figure 2). The Preparation Phase aims to construct a process that guides this
systematic literature review article.

We proceed to the “Execution Phase”, in which we pragmatically implement the process discussed in the Prepara-
tion Phase. This phase entails executing a sequence of planned tasks, including database queries, article retrieval, and
applying inclusion and exclusion criteria. We synthesize data, categorize results, and perform preliminary analyses
(steps 7 to 11 in Figure 2). The Execution Phase emphasizes data acquisition and initial assessments.

Finally, the conclusion of the research process occurs in the “Reporting Phase.”. We gather all our analyses,
including bibliometric, quantitative, and qualitative assessments, into a cohesive and structured presentation. This
phase is dedicated to synthesizing our findings, the systematic organization of results, and in-depth analytical ex-
aminations (steps 13 to 15 in Figure 2). We discuss our outcomes comprehensively, emphasizing their implications
and significance within the context of our survey’s objectives.

Section 3.1, Section 3.2, and Section 3.3 describe each phase and their steps.

3.1. Preparation Phase

1. Study the Necessity: The initial step of the Preparation Phase was essential to thoroughly study the necessity
of conducting this investigation. We understood the current landscape of RDF triple generation from NL texts and
investigated the relevance of this topic in the context of semantic web technologies and knowledge representation.
On this basis, we justify the significance of our study. The thorough study of such literature gaps not only justified
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Table 1
Study Definition. Initial questions to define the reasons for conducting this study, as well as its targets.

Question Definition

Why? Investigate different methods of building knowledge graphs from natural language texts.

Where? Via the existing literature related to the area of study

What? The survey explores various approaches, algorithms, and techniques used for converting natural language texts into RDF triples.

Table 2
Overview of Research Questions (RQs). These focused inquiries form the basis for the exploration of the surveyed literature.

RQ Question

RQ-01 What are the benefits and drawbacks of a method that generates RDF triples from texts?

RQ-02 Are there any patterns for texts used as input and for the triples generated as output?

RQ-03 What are the most used techniques? What are the most accurate ones?

RQ-04 Are there fully automated approaches to generate knowledge graphs from text?

RQ-05 What are the main applications that benefits from the text-to-triple approaches?

RQ-06 How do the methods explore the T-Box and A-Box in terms of text-to-triple generation?

the initiation of our investigation but also guided the subsequent phases by providing a clear rationale for their
objectives and methodologies.

2. Define the Focus: After establishing the necessity, we defined the specific focus of our study. Here, we de-
termined the boundaries and scope of our investigation. To guide this step, we answered three important questions
(Table 1): What is the study? Where do we gather scientific data to answer the research questions? Why is the study
important? We also made decisions regarding the scope of the study:

– We would accept any RDF triple generation method (e.g., entity recognition, relation extraction). This choice
aimed to embrace the diversity of methodologies prevalent in the field, ensuring a comprehensive exploration
of the topic.

– We should not restrict the survey to scientific articles by the type of natural language texts (e.g., news articles,
academic papers, social media posts). The rationale is that this decision allows to capture the breadth of RDF
triple generation applications across different textual domains.

The motivation to review the literature on triple generation and KG enhancement derived from the lack of this
type of research in the state-of-the-art based on our initial observations of result analyses. Among all the articles
found on the subject of generating triples (in this study), only 10% of them referred to adding these triples to an
already existing KG.

3. Define Research Questions: We defined clear and concise research questions in addition to the focus steps.
These questions were tailored to address the specific aspects of RDF triple generation and KG enhancement from
NL texts and are addressed through quantitative and qualitative analyses in Section 4 and Section 5. Those questions
were defined to ensure that our study provides meaningful insights and answers to existing challenges or gaps
identified.

Table 2 presents the research questions. The RQs address the benefits and drawbacks of the surveyed methods,
patterns in input texts and generated triples, the most utilized and accurate techniques, the presence of fully au-
tomated approaches, applications benefiting from the methodologies; and the exploration of T-Box and A-Box in
text-to-triple generation. These research questions not only serve as a guide for our analyses but also function as a
means to benchmark the success of our survey.

4. Define Query Terms: To systematically retrieve relevant literature, we defined query strings used to search
scientific databases. Effective search terms are essential for retrieving a comprehensive set of articles that align with
our goals. We incorporated relevant keywords, terms, and Boolean operators to refine the search. Table 3 presents
the employed query terms. These can be condensed in a unique query, as defined in Equation 1.
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( generation OR extraction OR construction OR population ) AND

( triples OR knowledge graph OR knowledge base ) AND

( natural language text OR unstructured text OR textual data )

(1)

The query string represents a balance between completeness and specificity. The selection of terms reflects the
multifaceted nature of the field, encompassing aspects such as entity recognition, relation extraction, and knowledge
representation.

The iterative process of refining and validating the query string in Equation 1 involved a continuous dialogue
among the research team (authors in this article), ensuring that the queries encapsulate emerging trends and diverse
perspectives within the domain. The final set of search terms, detailed in Table 3, represents a distilled synthesis of
our collective understanding.

5. Define Scientific Databases: At this step, we define in which scientific databases we could execute the queries
listed in the previous step. We chose databases most likely to contain relevant articles related to Computer Science,
including the domains of Text classification/Mining and Semantic Web. The chosen databases were ACM DL,1

IEEE Xplore,2 Springer Link,3 Elsevier,4 Scopus,5 and ACL Anthology.6

We assume these databases contain highly ranked and cited articles relevant to our study. The chosen databases
collectively offer a broad spectrum of publications, including conference proceedings and journals, ensuring a sound
exploration of the academic landscape.

6. Define Inclusion and Exclusion Criteria: In the last step of the Planning Phase, we defined rigorous inclusion
and exclusion criteria to determine which articles should be included in the survey. Inclusion criteria (Table 4)
specify the characteristics an article must possess to be considered for the survey, while exclusion criteria (Table 5)
identify reasons for excluding articles.

In summary, we included articles that scientifically (IC-01) contribute to the understanding of RDF triple gener-
ation from NL texts (IC-02), and written in English (IC-03). By setting these standards, we aimed to ensure that the
articles chosen were not only recent but also provided comprehensive insights into the current state of the art. We
excluded articles that are too old (EC-01), duplicates (EC-02), short (EC-03), without abstract (EC-04), not written
in English (EC-05), and without further explanation on how generating triples based on text (EC-06).

3.2. Execution Phase

7. Retrieve the Papers: In the first step of the Execution Phase, we retrieved the relevant articles based on
the query strings defined in the Preparation Phase. We collected all articles that matched the search criteria in the
predefined databases. To verify the criteria, we read the title and abstract of each article. We retrieved a total of 150
articles from our search queries. By relying on the query strings built in the Preparation Phase, we ensured that the
retrieved articles aligned closely with our present study’s specific focus and objectives.

8. Read the Papers: We read and reviewed each article systematically. This step involved a deep dive into the
content of the selected articles. This in-depth review process involved a collaborative effort among the researchers,
leveraging diverse perspectives to interpret and extract insights from the selected papers.

While reading, we took detailed notes and highlighted key information. The key information extracted is de-
scribed in the following steps: “Create Categories,” “Generate Metadata,” and “Describe Results.”

We employed a collaborative approach in the review process. To this end, we involved 15 graduate students,
among Master’s and Ph.D., enrolled in the Semantic Web course (Graduate Program in Computer Science, Institute

1https://dl.acm.org/ (As of Dec. 2023).
2https://ieeexplore.ieee.org/Xplore/ (As of Dec. 2023).
3https://link.springer.com/ (As of Dec. 2023).
4https://www.elsevier.com/ (As of Dec. 2023).
5https://www.scopus.com/ (As of Dec. 2023)
6https://aclanthology.org/ (As of Dec. 2023).

https://dl.acm.org/
https://ieeexplore.ieee.org/Xplore/
https://link.springer.com/
https://www.elsevier.com/
https://www.scopus.com/
https://aclanthology.org/
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Table 3
Search queries. They represent a breakdown of the main query (cf. Equation 1), aligned with the study objectives.

Query Terms description

Q-01 “generation” + “triples” + “natural language texts”

Q-02 “generation” + “triples” + “unstructured texts”

Q-03 “generation” + “triples” + “textual data”

Q-04 “generation” + “knowledge graphs” + “natural language texts”

Q-05 “generation” + “knowledge graphs” + “unstructured texts”

Q-06 “generation” + “knowledge graphs” + “textual data”

Q-07 “generation” + “knowledge base” + “natural language texts”

Q-08 “generation” + “knowledge base” + “unstructured texts”

Q-09 “generation” + “knowledge base” + “textual data”

Q-10 “extraction” + “triples” + “natural language texts”

Q-11 “extraction” + “triples” + “unstructured texts”

Q-12 “extraction” + “triples” + “textual data”

Q-13 “extraction” + “knowledge graphs” + “natural language texts”

Q-14 “extraction” + “knowledge graphs” + “unstructured texts”

Q-15 “extraction” + “knowledge graphs” + “textual data”

Q-16 “extraction” + “knowledge base” + “natural language texts”

Q-17 “extraction” + “knowledge base” + “unstructured texts”

Q-18 “extraction” + “knowledge base” + “textual data”

Q-19 “construction” + “triples” + “natural language texts”

Q-20 “construction” + “triples” + “unstructured texts”

Q-21 “construction” + “triples” + “textual data”

Q-22 “construction” + “knowledge graphs” + “natural language texts”

Q-23 “construction” + “knowledge graphs” + “unstructured texts”

Q-24 “construction” + “knowledge graphs” + “textual data”

Q-25 “construction” + “knowledge base” + “natural language texts”

Q-26 “construction” + “knowledge base” + “unstructured texts”

Q-27 “construction” + “knowledge base” + “textual data”

Q-28 “population” + “triples” + “natural language texts”
Q-29 “population” + “triples” + “unstructured texts”

Q-30 “population” + “triples” + “textual data”

Q-31 “population” + “knowledge graphs” + “natural language texts”

Q-32 “population” + “knowledge graphs” + “unstructured texts”

Q-33 “population” + “knowledge graphs” + “textual data”

Q-34 “population” + “knowledge base” + “natural language texts”

Q-35 “population” + “knowledge base” + “unstructured texts”

Q-36 “population” + “knowledge base” + “textual data”

Table 4
Inclusion Criteria. Articles must present the characteristics here defined to be included in the study.

EC Type Definition

IC-01 Application Book chapters, conference papers (full and short articles), journals and thesis

IC-02 Application Papers of type as listed at IC-01 that create, use or theoretically define a way to generate triples
from any kind of textual data.

IC-03 Language Articles written in English
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Table 5
Exclusion Criteria. Articles with such characteristics are not included in the study.

EC Type Definition

EC-01 Date Articles 10 years older than the execution of the queries in August 2023

EC-02 Duplicate Articles’ duplicate found in the scientific databases

EC-02 Short Articles Articles with less than 4 pages

EC-03 Abstract Articles without abstract

EC-04 Language Articles not written in English

EC-05 Application Articles that just mention a tool that generates triples from text, not explaining how and why it was used

of Computing, University of Campinas, Brazil) to actively contribute to this step. Each student, possessing the abil-
ity and expertise in reading and interpreting scientific articles (topic taught in the course), analyzed 10 articles each.
Their task extended beyond reading; they were invited to categorize the articles based on predefined categories out-
lined in the subsequent step. The authors of this study double-checked the final assessment of each article reviewed
by the students to ensure their quality further.

The rationale behind involving master’s and Ph.D. students in this collaborative review lies in many reasons.
First, the students’ academic standing ensures an understanding and critical analysis necessary for interpreting the
nuances present in scientific articles. Their familiarity with the Semantic Web and ontologies domain positions them
as adept evaluators of the selected articles. Moreover, including these graduate students aligns with a commitment to
diversity in perspectives. Drawing on their varied academic backgrounds and research interests within the Semantic
Web, those students brought a breadth of insights that enriched our study’s analytical depth. The collaborative
approach contributed to a shared understanding of the reviewed literature among the research team, reducing risks
associated with the use of a possible biased categorization.

In addition to the categorization, the students identified valuable aspects of each article’s characteristics. These
aspects included the availability of the data handled in the article, the type of evaluation conducted, and an as-
sessment of the solution’s applicability in real-world settings. These insights, derived from the students’ discerning
analysis, provided a holistic view of the articles beyond their immediate contributions to RDF triple generation and
KG enhancement. After the students categorized the articles, the authors of this study reviewed the provided results,
correcting potential erroneous categorizations when necessary.

9. Create the Categories: To organize the collected articles, we created categories that reflect the various aspects
of RDF triple generation from NL texts. These categories are aligned with the research questions and focus areas.
We defined such categories based on our screening of this literature review and the authors’ background. The names
were crafted to align with common terminology in the field, ensuring clarity and coherence in the categorization
process.

Categorizing the articles facilitates the synthesis of information and helps identify common themes and trends in
the literature. Table 6 presents the proposed 10-category set and a small description of each.

The categories for organizing the collected articles reflect a diverse landscape of methodologies in the context of
RDF triple extraction and KG enhancement from NL texts. We grouped categories that describe similar aspects of
the literature for the sake of improving comprehension:

– Language specificity: represented by “Multilingual,” “English Specific,” and “Non-English” categories. The
rationale for choosing this category group (along with its categories) is that understanding how language is
used in the text-triple-KG transformation directly impacts solutions created and whether there is a tendency to
process multilingual texts generating KGs that are also multilingual;

– Technical methodology: like “Transformer” category. The rationale for studying models based on deep learn-
ing reveals the authors’ interest in categorizing articles that follow the trend in using these techniques;

– Ontology and KG enhancement: represented by “T-Box Population” and “A-Box Population” categories.
This group of categories aimed to group articles based on how the KG enhancement stage occurs: only via
instances (A-box), or also through their classes (T-Box).
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Table 6
Categories of the retrieved articles and their correspondent description, according to this study’s focused areas.

Category Definition

Transformer Approaches that use the Transformer architecture to build the triples

Multilingual Approaches that process and generate triples from and to more than one language

English Specific Approaches that process and generate triples from texts written in English

Non-English Approaches that process and generate triples from texts not written in English

T-Box Population Approaches that define new classes and properties

A-Box Population Approaches that insert new instances

Lexical Resources Approaches that use any external lexical resources (e.g., WordNet)

Specific Transformation Approaches that generate triples of a single domain (e.g., biomedical ontologies)

Generic Transformation Approaches that generate triples of any type of domain (e.g., DBpedia)

Link Creation Approaches that create links of the newly added resources to existing well-known Linked Open Data (LOD) datasets (e.g., Wikidata)

Table 7
List of all metadata used in the survey, their types, and descriptions.

Metadata Type Description

Year of Publication quantitative respecting ten-year-old exclusion criteria from Table 5

Country quantitative nationality of the authors

Category quantitative values found in Table 6

Objective quantitative
3 possible values: extract knowledge from text; create KG; connect
to KG with existing ontology rules

Degree of Automatism quantitative 3 possible values: manual, automatic, semi-automatic

Methodology qualitative article’s methodology

Domain quantitative
10 possible values: health, technology, education, language, agriculture,
commerce, arts, government, financial, no domain

Used in real-world quantitative the article generates a product used in real world (e.g software) or not

Dataset Available quantitative the article generates a dataset publicly available or not

Evaluation type quantitative
5 possible values: quantitative, qualitative, user evaluation, gold standard
comparison, case study

Strengths qualitative strong points of the methodology, results and evaluation

Weaknesses qualitative weak points of the methodology, results and evaluation

Validation Risks qualitative
potential threats or problems that could compromise the validity
and reliability of the results

Open Challenges qualitative research challenges that are still open according to the article

– Resource utilization: represented by “Lexical Resources” category. We understand that using external lexical
resources can help create more rule-adherent triples and improve the overall quality of the final version of the
KG;

– Domain specificity: represented by “Specific Transformation” and “Generic Transformation” categories. This
group of categories concerns understanding whether there is a preference for enhancing KGs based on text
from a specific domain, such as biomedical, with a large set of ontologies (e.g., BioPortal7), or whether it is
not related to any specific domain.

10. Generate Metadata: Metadata generation involves extracting essential data from each article to create a
structured dataset for analysis. The collected metadata is further used in Section 4, generating relevant quantitative
analyses. Figure 7 describes the metadata set.

7https://bioportal.bioontology.org/ (As of Dec. 2023).

https://bioportal.bioontology.org/
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11. Filter the Results: Upon completing the extensive literature review and categorizing the initial 150 articles
across 10 categories, a critical refinement in our approach emerged during the subsequent analysis. We confirmed
that not all the surveyed articles conformed to the specific focus of our study, which centered on the generation of
triples from NL texts, and their insertion into an existing KG, adhering to predefined ontology specifications. We
then narrowed our analysis to a subset of articles that align more closely with our study’s primary goal. Specifically,
we focused on investigations that actively process NL text, generate RDF triples, and integrate them into an existing
KG. This refinement ensured a targeted exploration of methods and techniques aligned with our goals.

It is worth noting that while various surveys exist in the literature detailing techniques for generating triples from
textual data [26–28], our present study aimed to fill a unique niche. To the best of our knowledge, there is a gap in
the literature concerning literature review contributions specifically addressing the production of RDF triples that
adhere to ontology specifications and are appended to an existing KG. In this sense, our study contributes to the
broader understanding of RDF triple generation and finds a distinct space in the literature.

12. Describe the Results: We described the results of our literature review based on the generated metadata (cf.
Section 4) and categorized articles (cf. Section 5). We summarized the key findings and insights from each category,
highlighting trends, challenges, and advancements in the context of this survey.

3.3. Reporting Phase

13. Report Analyses: We reported analyses conducted on the collected data, creating quantitative insights into
trends, correlations, and patterns within the literature. We analyzed publication trends, research challenge distribu-
tion, and the prevalence of specific keywords. We presented the findings using graphs, charts, and tables in Section
4.

14. Answer Research Questions: The first crucial step was systematically answering the research questions
formulated in the Preparation Phase. Based on the findings from the Execution Phase, we provided clear and concise
responses to each research question (cf. Section 4 and Section 5). We referenced the relevant articles and their key
findings to support the answers. We ensured that the responses aligned with our study’s scope and provided insights
into the state of the field.

15. Report Open Challenges: We identified and reported open challenges and areas of future research within
our study scope (cf. Section 6). We summarized the limitations and gaps in the existing literature and discussed the
unresolved issues, methodological shortcomings, and opportunities for further investigation.

4. Quantitative-based Literature Analysis Results

This section presents a quantitative analysis of the literature on the generation of RDF triples from NL texts.
We aim to gain insights into the landscape of research in this domain. In this analysis, we used all 150 article to
understand better how the state of the art dealt with the generation of triples with or without adding them to an
existing KG (KG enhancement). We conducted a literature analysis based on the metadata, described in Step 10 of
our methodology (cf. Figure 2 and Section 3). The list of used metadata and analyses and why we used them is as
follows:

– Number of articles per year: provides insights into the temporal evolution of research, indicating trends over
time (cf. Figure 3);

– Number of articles per category: enables an exploration of diverse approaches and methodologies, catego-
rizing articles based on specific themes and focus areas (cf. Figure 4);

– Number of articles by domain: facilitates a domain-specific analysis of the literature, offering a deeper un-
derstanding of how RDF triple generation varies across different knowledge domains (cf. Figure 5);

– Number of articles by scientific database: identifies the distribution of relevant research across reputable
scientific databases, revealing the popularity and impact of different platforms (cf. Table 8);

– Number of articles by evaluation type: identifies the methodologies used to assess proposed solutions, help-
ing to discern the rigor and validity of the research within the surveyed literature (cf. Figure 6);
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Fig. 3. Number of articles by publication year. We observe a growing trend in the later years, especially from 2019 to 2022. The numbers related
to 2023 are from January to August.

– Number of articles by the automation level: classifies articles based on the degree of human intervention
involved in the proposed solutions, providing insights into the level of automation achieved (cf. Figure 7);

– Number of articles used in real-world applications: distinguishes between papers with immediate practical
implications and those whose contribution is more theoretical or conceptual, highlighting the potential impact
of the proposed solutions (cf. Figure 7);

– Number of articles that make data available: promotes transparency and reproducibility in the scientific
community by identifying articles whose study handled data that is publicly available (cf. Figure 7).

Figure 3 presents the number of articles published annually. One may notice a growing trend, especially consid-
ering the 2019–2022 interval. Such a finding helps to ensure the relevance of our work’s subject in recent years. We
further analyze and discuss our findings from this analysis in Section 6 (Discussion).

Figure 4 presents the number of articles per category. We included a category for survey-related studies. With
a total of 10 categories. This plot helps us understand the distribution of research efforts across various subfields
within the domain. This is crucial for identifying trends and emphasizing different aspects of the topic from the
existing literature.

In addition, the distribution of articles across categories and evaluation approaches can indicate more mature
areas (e.g., A-Box Population, Generic Transformation, and English-Specific) or require further investigation (e.g.,
Multilingual, Link Creation, and Non-English). In our analysis, each article may belong to one or more categories.
We observe in Figure 4 that Transformers are one of the most used techniques in the literature (RQ-03 question).

Figure 5 presents the most common domains in which RDF triples are extracted from NL texts for posterior
KG enhancement. Most of the studies found in the literature target no specific domain. As for studies focusing on
specific domains, health is the most frequent, followed by technology, and science & education. We understand a
correlation between the domain of natural language text; the Knowledge Graph produced from these triples, and the
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Fig. 4. Number of articles by category. Lower numbers of studies in the Multilingual or Link Creation categories present an opportunity for
future research. On the other hand, studies focusing on the A-Box population or English-specific are more common.

Fig. 5. Number of articles within the 10 most-populated domains. It helps to answer RQ-05. As observed, most studies are not specific to a
particular domain.

application that benefits from this knowledge. Therefore, we believe that Figure 5 helps answering RQ-05. RQ-05
is related to “the main applications that benefit from the text-to-triple approaches.”

Figure 6 presents the number of articles grouped by the type of evaluation they employ. We identified five distinct
types of evaluation, such as quantitative analysis and case studies. This figure highlights the diversity of methodolo-
gies used in assessing the proposed solutions.

We investigated the extent to which the solutions are capable of automation, which is a fundamental factor in
assessing these methods’ scalability and real-world applicability. The first plot of Figure 7 categorizes articles based
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Table 8
Number of studies found, according to the Scientific Database. Elsevier Scopus and IEEE Xplore have yielded more relevant studies.

Database #

ACM DL 14

IEEE Xplore 43

SpringerLink 37

Elsevier Scopus 48

ACL Anthology 7

Fig. 6. Number of studies by each type of Evaluation. Studies evaluated by quantitative analysis (especially focusing on using gold standards)
are more commonly observed in the literature.

on how they describe their solutions’ level of “automaticity.” We classify articles into three categories: automatic,
semi-automatic, and manual. The level of “automaticity” in the proposed solutions can inform us about how ready
for practical deployment they are.

We analyzed studies concerned with real-world applications and discussed data availability. Both of them have
implications for the practicality and reproducibility of the research. Identifying how many articles have been applied
in real-world scenarios and how many make their data publicly available guide researchers in selecting the most
relevant and accessible resources for their work. In the second plot of Figure 7, we explore the practical relevance
of the articles by counting how many of them describe applications of proposed methods in real-world settings.
In the third plot of Figure 7, we show the number of articles that handled publicly available data. By observing
the numbers concerning the automation aspect in Figure 7, we can positively answer our RQ-04. The number of
studies in which no human intervention is required in the process overcomes those in which some level of manual
interaction is required.

5. Category-based Literature Analysis Results

This section categorizes the discovered studies in the literature related to the generation of RDF triples from NL
texts aiming to enhance Knowledge Graphs. The categorization of articles provides a navigational guide to help
understand the area under study. In addition, this sets the stage for discussions, paving the way for advancements in
this domain.
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Fig. 7. Three plots describing how automatic the solution is, how applicable it is in the real-world settings, and how research data are publicly
available. Most studies present a fully automated method, do not relate to a real-world usage scenarios, and do not disclose their data publicly.

From the total of 150 articles obtained after the first screening (cf. Section 3), we narrowed them down to 15 after
applying filters described in Step 11 of Section 3 for the key aspects considered in this study. Section 4 presents the
considered categories’ descriptions.

The upcoming sections describe in further detail the categories and the studies that best fit such categories (rely-
ing on our procedure conducted for this purpose). Figure 8 presents our proposed organization of categories relying
on our observations from the analyzed articles (in white, described in Table 6) and group of categories (in black,
described in the ninth item of Section 3). Some categories were created by overlapping two larger groups of cate-
gories (e.g., the Transformers category is the intersection of the Technical Methodology and Language Specificity
group of categories). Figure 8 aims to visually represent how the categories relate, highlighting what is common
and different among them.

5.1. Language Specificity

We considered the language specificity addressed in the study. More specifically, we considered whether the
method applies to English texts (cf. Section 5.1.1), other languages than English (cf., Section 5.1.2), or even if
applicable to texts in multiple languages (cf., Section 5.1.3). The Language Specificity is represented by the green
circle in Figure 8.

Multilingual KGs created over multilingual texts provide a versatile solution by handling multiple languages
within a single model, enabling broader language coverage. However, they may face challenges in achieving
language-specific precision. Language-specific KGs, while resource-intensive, can offer superior accuracy and depth
for individual languages. The choice between multilingual and language-specific depends on the application’s lan-
guage requirements and the trade-off between broad coverage and language-specific proficiency.



A. G. Regino et al. / Survey 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 8. Venn Diagram showing the articles’ categories [15 articles] (in white), their set of categories (in black) in addition to their intersection
according to the findings from our result analysis.

5.1.1. English-Specific
The work by Zhang and Nguyen [29] focused on generating triples from a text in the English language. Their

primary objective was to create KGs and connect them with ontology classes and properties. The methodology
involved text preprocessing, including filtering by English, removal of special words, and capitalization. The fol-
lowing step was done by applying distinct relation and entity extraction methods, including rule-based, OpenNRE,
and OpenIE [30]. The extracted relations were inserted into a graph database, and a software tool was created to
explore the results. The specific textual domain is health-related (COVID-19), and although the application has not
been used in real-world settings, the dataset is public. The conducted evaluations are quantitative. The solution’s
strengths lie in its automation, independence from domain experts, and generalizability. On the other hand, the solu-
tion may yield limited results because it sometimes employs models trained in unrelated domains. Open challenges
include using advanced extraction techniques like BERT [31] and connecting to external vocabularies for additional
information, such as DBpedia [22].

Similarly, the work by Yu et al. [32] focused on generating triples from texts in the English language. Their pri-
mary objective was establishing connections with classes and properties in an existing ontology. The methodology
lies in constructing a network encyclopedia classification system and KG. Domain experts defined the classification
system as a KG with concepts and instances. A web crawler algorithm extracted classification information, cap-
turing upper and lower concept relationships. Co-occurrence analysis was employed to mine implicit associations
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between concepts, facilitating the extraction of upper and lower relationships during KG construction. Their algo-
rithm quantifies co-occurrence probabilities based on the occurrence frequency of classifications, identifying rela-
tionships if certain conditions are met. Their solution utilized classification data from encyclopedia entries to ensure
a reliable and rich KG, demonstrating the interplay between web crawling, co-occurrence analysis, and semantic
analysis in constructing a comprehensive classification system. The work by Yu et al. [32] specifically constructed
a KG related to food. Their method was applied in a project using a public dataset. The conducted evaluation was
quantitative. The solution’s strengths lie in its comprehensive approach to relationship extraction in a domain KG,
through various knowledge sources, including structured, semi-structured, and unstructured data. Their method em-
ployed a convolutional residual network for extracting lower relationships from web texts and stored the resulting
KG in Neo4j8, demonstrating practical applicability. Concerning their investigation weaknesses, the solution pre-
sented dependencies on available knowledge sources, and its effectiveness is contingent on the quality of training
data, which is highly sensitive to extraction errors. Risks to the validation included the potential imperfections and
errors in the Wikipedia data used for experiments and the necessity for parameter tuning in NLP and semantic anal-
ysis algorithms. Open challenges involved developing different relationship extraction models for diverse forms of
knowledge existence.

5.1.2. Non-English
The work by Rios-Alvarado et al. [33] investigated the triple generation from documents written in languages

other than English, specifically Spanish. Their main goal was the extraction of knowledge from text, the creation
of KGs, and the connection with classes and properties from an existing ontology. The methodology involved text
segmentation using NLP, word tagging, knowledge extraction through lexical analysis, and the construction of the
KG. The application domain was technology. Evaluations included quantitative analysis and comparison with a
gold standard. The strength of such a solution appears in enabling knowledge extraction from Spanish language
text, which is not common in the literature. However, potential weaknesses included the manual validation of ex-
tracted entities using a small sample, which can impact accuracy and reliability. Open challenges included exploring
alternative methods for feature extraction and implementing the KG for question-answering applications.

The study by Stern and Sagot work [34] belongs to the non-English category as they focused on extracting entities
from French texts. The methodology employed Named Entity Recognition (NER) with the support of well-known
databases, such as Wikipedia,9 Aleda [35], and Geonames,10 specifically tailored for news-related content. The au-
tomated process links these entities to ontologies and assigns URIs, subsequently compiling a database containing
all identified entities and their occurrences in news articles. The solution’s strengths lie in its reliance on widely
acknowledged databases for NER. Their work addressed texts in the French language exclusively. The investiga-
tion publicly evaluated its methodology through quantitative measures and a comparison with a Gold Standard,
emphasizing transparency in its assessment.

5.1.3. Multilingual
Kertkeidkachorn and Ichise [36] constructed a multilingual framework to map predicates from NL text to KG

triples, named T2KG. The methodology combined rule-based and similarity-based approaches and includes five
steps: 1) entity mapping, linking entities in the text to corresponding entities in the KG; 2) coreference resolution,
detecting chains of entities and pronouns referring to the same entity; 3) triple extraction, extracting relation triples
from the text using open information extraction techniques; 4) triple integration, generating a text triple by combin-
ing results from entity mapping, coreference resolution, and triple extraction; and 5) predicate mapping, mapping a
predicate of a text triple to a predefined predicate in other KGs. Their solution extracts information from textual doc-
uments and aims to integrate it into a KG. The goal was to incorporate new information into preexisting knowledge
structures (e.g., ontologies and KGs). The solution applies to various domains. The authors report achieving high
precision, recall, and F1 scores, effectively mapping their generated triples to DBpedia’s, and integrating significant
new knowledge into the existing KG. The major drawback is the difficulty in mapping complex predicates. Risks
to validation include potential errors in graph generation depending on the input data. Open challenges involve im-

8https://neo4j.com/ (As of Feb. 2024).
9https://www.wikipedia.org/ (As of Feb. 2024).
10https://www.geonames.org/ (As of Feb. 2024).

https://neo4j.com/
https://www.wikipedia.org/
https://www.geonames.org/
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proving triple extraction accuracy, handling complex predicates, integrating multiple sources of information, and
developing effective methods for assessing KG quality, completeness, correctness, and consistency, as well as error
identification and correction.

5.2. Ontology and KG Enhancement

In this category, we investigate whether the study comprises the generation of triples from NL texts, aiming to
either enhance the Ontology that describes an existing KG, i.e., populating T-Box (cf. Section 5.2.1), or enhancing
the instances portion of the knowledge representation, i.e., populating A-Box (cf. Section 5.2.2). The Ontology and
KG Enhancement are represented by the blue circle in Figure 8.

5.2.1. T-Box Population
The work by Sordo et al. [37] focused on extracting knowledge from unstructured text sources to generate struc-

tured data for music recommendations. The methodology involved identifying relevant entities in texts, extracting
meaningful relationships between them, and connecting this knowledge to existing ontology classes and properties.
The methodology of the knowledge graph construction comprised several key steps. It begins with text input pre-
processing, segmenting the input text into sentences, and tokenizing. This work employed Named Entity Recog-
nition (NER) using DBpedia Spotlight [38] to identify music-related entities, focusing on types like song, band,
person, album, and music genre. Simultaneously, Dependency Parsing (DP) generates trees for sentences, aiming
to find relationships between multi-word music-related entities. These processes were integrated in a subsequent
step, combining the results of NER and DP by merging nodes in the dependency tree corresponding to recognized
entities. The subsequent stages involved Relation Extraction (RE), in which relations between recognized music-
related entities are extracted based on paths in the dependency trees. Empirical rules were introduced to filter out
irrelevant relations linguistically. Finally, a graph representation was constructed, encapsulating the music-related
entities as nodes and their relationships as edges. This graph, composed of five distinct entity types, provided a
structured representation of the knowledge extracted from the input text, facilitating a comprehensive understanding
of relationships within the music domain.

The domain of the work by Sordo et al. [37] was in the arts, particularly music. The application of their work
relates to a real-world project, and the dataset used was publicly available. The evaluations include quantitative
and qualitative analyses, user evaluations, and comparisons with a gold standard. The solution’s strengths include
using natural language for user recommendations, which enhances the user experience, and comparing the extracted
knowledge with a gold standard to assess the quality of the relationships. Its weaknesses include low recall in ex-
tracting relationships, potentially leading to the loss of relevant information, and the need for a prior syntactic sim-
plification step to handle potentially noisy relationships. Potential risks in validation include limited generalization
due to a single dataset and the possibility of noisy relationships extracted from text variability. Open challenges
relates to improving relationship extraction system recall and evaluating the method on larger, more diverse datasets
for generalization assessment.

5.2.2. A-Box Population
The work by Dutta et al. [17] generated KGs and connected them to classes and properties of an existing ontol-

ogy. The methodology employed in their study involved data clustering before mapping the relationships between
phrases and clusters. The employed methodology concerns constructing a KG by converting Open Information Ex-
traction (OIE) [30] facts into assertions within a target knowledge base (KB). The process involved four key compo-
nents: Instance Matching (IM), Lookup (LU), Clustering (CL), and Property Mapping (PM) modules. The domain
of this work referred to language, and although it was not used in a real-world setting, the dataset is publicly avail-
able. Their investigation described an evaluation protocol that includes quantitative assessments and comparisons
with a gold standard. One of their solution’s strengths is its focus on simplifying the mapping process for knowledge
bases, with clustering being a valuable addition. No weaknesses were identified explicitly, but potential validation
risks include dealing with identical phrases that might have different meanings. An open challenge is creating a
T-box when certain relationships present in OIE do not exist in the target knowledge base.
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5.3. Underlying Domain

In this category, we considered studies that are either applicable to a specific domain, e.g., biomedical (cf. Section
5.3.1), or those which are domain-agnostic (cf. Section 5.3.2). The Domain Specificity is represented by the yellow
circle in Figure 8.

5.3.1. Specific Transformation
Specific Transformation refers to methodologies for generating triples for a specific domain. The intersection

emphasizes the alignment of domain-specific approaches with ontology construction (cf. Figure 8), highlighting
how these methodologies often tailor the generation process to the intricacies of a particular domain.

Rossanez et al. [18] presented a specialized method for generating KGs specifically in the biomedical domain. The
methodology comprised four main steps: preprocessing, triple extraction, ontology linking, and graph generation.
The focus was on extracting knowledge from biomedical texts, connecting it to existing ontologies, and ultimately
generating a KG. The domain was in the field of healthcare. While the application has not been used in a real-
world application, the dataset used is public, and the evaluations included quantitative and qualitative assessments.
The strengths of their solution include proposing a semi-automatic method for KG generation and relating it to
existing ontologies. The method identifies primary and secondary relationships. Validation relies on a ground truth
defined by medical experts, albeit not domain specialists. The results show promise, especially regarding the Jaccard
coefficient. The weaknesses include the method not being entirely automatic, domain limitations due to the vast
internal vocabulary of various medical subfields, and the relatively small number of samples (e.g., articles in the
medical domain) evaluated by medical experts. Identified potential validation risks include the involvement of non-
specialist medical experts, which might have introduced bias, and the use of abstracts rather than full-text articles,
which hinders the assessment of the generalizability of the results. Open challenges included the development of an
automatic approach for generating RDF triples more akin to those created by domain specialists, leveraging logical
inferences to capture implicit relationships in texts, exploring the use of other KGs and ontologies to enrich the main
set of triples, comparing knowledge graphs linked to different ontologies using UMLS CUIs [39], and involving
more domain-specific experts to establish a baseline for comparison.

5.3.2. Generic Transformation
Generic Transformation represents methodologies that generate triples agnostic to a specific domain. This inter-

section shows how even domain-agnostic approaches often involve ontology construction (cf. Figure 8), showcasing
the relevance of aligning the generated triples with a predefined ontology.

Lin et al. [40] introduced a method that generates triples across various domains. They aimed to extract knowledge
from a text by generating KGs and their connection with existing ontology classes and properties. Their method-
ology included two key stages: knowledge extraction and knowledge linking. The first stage extracts information
from documents, including entities and triples. The second stage constructs a graph from this data, and the link-
age between entities and predicates is determined using similarity measures. Notably, their study was applied in
real projects and leverages public datasets, making it suitable for generalized application. Their evaluation involved
quantitative analysis and a comparison with a gold standard. Lin et al. [40] solution’s strengths included the popu-
lation of incomplete and outdated knowledge bases, extraction and organization of information from unstructured
documents, utilization of a semantic graph approach, efficient integration of entities and relations, and effective-
ness demonstration compared to other reference techniques. Their study also handled the coherent creation of new
entities. However, the proposed method may face limitations in scenarios with very large or complex datasets, and
its linking efficacy can depend on the quality of reference KB data. Challenges include dealing with ambiguity
and polysemy in extracted information, potential biases in datasets, erroneous input data, and matching failures
between entities and relations in reference datasets. Open challenges involve improving entity and relation linking
in lengthy and complex documents, adapting the method for different domains and languages, exploring techniques
for handling noisy and ambiguous data, and investigating the scalability of the method for larger datasets.

The article entitled “A Task-Agnostic Machine Learning Framework for Dynamic Knowledge Graphs”, authored
by Sendyk et al. [21], falls under the category of Generalized Transformations. Their study described the devel-
opment of a generic framework capable of generating triples in any domain. Their methodology involved a series
of steps, including web data extraction, training NLP models based on synthetic data, page classification, sentence
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segmentation, and graph generation. Notably, the framework was designed for a specific domain, allowing its appli-
cation across various fields. While their defined process is semi-automatic, incorporating manual classification, the
study addressed potential biases by implementing steps to avoid user biases during classification and introducing
synthetic data to enhance the available dataset. The solution’s strengths lie in its attempt to mitigate user biases
and augment data availability through synthetic data. However, challenges include the need for a robust manual
classification step and potential risks associated with biased classification and imbalanced base texts. Validation
aspects included the assessment of the framework through quantitative measures and a case study, demonstrating its
real-world applicability and emphasizing the need for well-defined manual classification steps in open challenges.

5.4. Transformers

Transformers [41] are neural network models that rely on the attention mechanism to draw global dependencies
between their inputs and outputs. They are often applied to text-to-text applications, such as translation. In the
literature, several studies employ such models to identify entities and relations from text to build triples.

This category represents methodologies that leverage technical approaches, specifically the Transformer archi-
tecture, for triple generation. This category intersects with Language Specific in Figure 8 because it emphasizes
applying these techniques to handle linguistic variations in multilingual, English-specific, or non-English contexts.

The work by Xu et al. [42] described how they used BERT-based and Bootstrapping methods to construct a
constantly evolving KG in the domain of Traditional Chinese Medicine (TCM). BERT is a Transformer-based deep
learning model by Google used in various NLP tasks [31]. The authors state that the KGs in the TCM domain are
static, not fully representing the evolving characteristics of the medicine domain. To overcome this problem, they
proposed a methodology that generates a dynamic growth of the proposed KG. It starts by collecting data based on
user input keywords and then employs the BERT-CRF [43] method to identify entities and Bootstrapping to identify
relations and obtain structured data. Finally, the structured data was integrated into an existing KG. Bootstrapping
is applied to extract the relationship between symptoms of diseases and their causes. The entity recognition and
relation extraction result is merged into an existing KG. While the method allows the continuous and dynamic
growth of the TCM KG through user interactions, its main difficulty lies in merging KGs, especially in handling
equivalent entities and term ambiguity. Also, the authors [42] do not describe how to assess the qualitative aspects
of the added information to the KG. In addition, the methodology was only applicable to English-based knowledge
and the TCM domain [42].

The work by Fei et al. [44] relied on few-shot Relational Triple Extraction (RTE) to construct triples. The authors
state that traditional triple-construction approaches are not aware of the semantics and coherence of the generated
triples. The proposed methodology, Perspective-Transfer Network (PTN), included a multi-perspective approach to
constructing a KG. It operates on episodes comprising support and query sets. The framework designed by Fei et
al. [44] used three perspectives: Relation, Entity, and Triple. In the Relation Perspective, the query detects potential
relations by marking entity pairs sentences. A binary classifier predicts if a relation exists among them. If a relation
is identified, the Entity Perspective extracts entity spans in the query, combining relation and entity information into
triples. The Triple Perspective then validates these triples, utilizing labeled query sentences and a binary classifier.
Although it does not have a specific domain, the solution can be applied generally. It has not been used in a real
project, but the dataset is public, and the evaluations involve quantitative analysis and a comparison with the gold
standard. The main strength of their solution [44] is the ability to handle a few training examples, which is a common
limitation in many NLP tasks. Additionally, the utilization of an efficient and scalable neural network architecture
that can be trained on modern GPUs is explored in their study. Also, the solution is fully automatic and does not
require human intervention. As a downside, the solution may be computationally intensive, requiring substantial
hardware resources. Its performance can be sensitive to the quality of the input data, mainly affected by annotation
errors and data noise [44].

Liu et al. [45] proposed an application named Seq2RDF, which uses the Transformer architecture to construct
triples. The Seq2RDF was one of the first applications of Transformers to build KGs, in 2018. The methodology
involves applying Transformers and generating embeddings for triple generation. It uses DBpedia [22] as input to
train models, with the encoder processing NL sentences and the decoder producing triples in the <subject, predicate,
object> format. Their solution [45] is generic and not limited to a single domain. It was applied to a real-world
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project, but their dataset is public. Evaluations included quantitative analysis and comparison with a gold standard.
The authors state that the differential of Seq2RDF is its simplicity and efficiency for generating triples from NL
texts. The downside of Seq2RDF remains that it can only generate a single triple per sentence.

5.5. Lexical Resources

External lexical resources, such as WordNet [46], PropBank [47], or VerbNet [48], for instance, have been ex-
plored to assist the generation of RDF triples. Examples of their application include identifying verbs and their pa-
rameters in sentences as candidates for subjects or objects. Resources like Yago [49], BabelNet [50], or SpaCy [51],
are often employed for identifying named entities in texts. This category, represented by an intersection between
Resource Utilization and Language Specificity (cf. Figure 8), emphasizes the reliance on linguistic resources in
language-specific contexts, showcasing how the utilization of such resources plays a crucial role in these method-
ologies.

The work by Yan and Gao [52] fits this category. Their work used the Baidu Encyclopedia to aid in the KG
construction. Their main objective was to generate KGs and connect them to existing ontology classes and prop-
erties, focusing on the domain of biology, specifically water. Their methodology involved information extraction,
knowledge fusion, and knowledge processing. Information extraction encompasses extracting entities (concepts),
attributes, and relationships between entities from the data source, forming the foundation for ontological knowledge
representation. After acquiring new knowledge, the following step, called knowledge fusion, integrates such new
knowledge to eliminate contradictions and ambiguities. The method was applied in a project and the used dataset
is public. The conducted evaluation [52] was based on a case study. The solution’s strengths lie in customizing the
wrapper for extracting entity attributes and values from semi-structured water entry data in the encyclopedia. On
the other hand, its weakness lies in the dependence on data sources, as the quality and quantity of data can impact
the comprehensiveness of content extraction. The main validation risk is the lack of comparisons with other meth-
ods. Open challenges involve expanding the scope of extraction to acquire more knowledge and conducting further
research to identify potentially better methods for KG construction in the water domain.

5.6. Link Creation

This category focuses on methodologies that create links to existing well-known Linked Open Data (LOD)
datasets. LODs often adhere to standardized ontologies and vocabularies, such as RDF and OWL. This adherence
ensures consistency and interoperability between different datasets, reducing ambiguity and enhancing the overall
quality of information in the KG. Figure 8 presents the Link Creation as the purple circle.

The article titled “AliMe KG: Domain Knowledge Graph Construction and Application in E-commerce,” by Li et.
al [53] was categorized under Link Creation due to its primary focus on connecting newly created triples with other
existing datasets. Their proposal involved key components, such as phrase mining, named entity recognition, rela-
tion extraction, and knowledge fusion. The authors described a semi-automated process for knowledge acquisition
and validation, incorporating human annotation and feedback cycles to enhance the precision and completeness of
the Knowledge Graph. Their study [53] applied in the e-commerce domain and showcases real-world applications
of the AliMe KG in pre-sales conversation scenarios. The evaluation combines both quantitative and qualitative as-
sessments. The solution’s strengths include providing a systematic methodology with semi-automated processes for
mining structured knowledge from natural language texts applicable to multiple languages and domains. Identified
challenges include the significant need for human annotations and feedback cycles, which can be time-consuming
and expensive. The solution also relies on external knowledge sources, introducing potential issues of reliability and
currency, leading to biases or errors in the Knowledge Graph. Risks to validation involve biases in data sources and
potential inaccuracies in external knowledge, impacting the representation and generalization of results. Open chal-
lenges include expanding the AliMe KG coverage in the Alibaba e-commerce platform and exploring its application
in various domains beyond e-commerce.
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6. Discussion

This section describes key findings (cf. Subsection 6.1) and common themes and revisits our research questions
(cf. Subsection 6.2). We discuss open research challenges and potential venues for future investigations (cf. Subsec-
tion 6.3).

6.1. Findings and Limitations

The analysis of the publication years (Figure 3) reveals a growing trend, especially from 2019 to 2022. This
trajectory suggests an increasing interest in and importance of the surveyed topic recently. It justifies the relevance
of our study. We believe that the values for 2023 did not follow the trend because many accepted articles have not
yet entered the scientific databases (Table 8). In 2024, data related to 2023 will be more consolidated. Given the
increasing adoption of generative models for various NL processing tasks, including those related to KGs, we expect
an acceleration in the growth in the coming years. Adopting the term RAG (Retrieval Augmented Generation) [54],
aligns with our thinking, highlighting that KGs can and should be used with Large Language Models (LLMs) for
information retrieval tasks.

The categorization of studies in this study served as a venue for understanding the diverse methodologies em-
ployed in generating RDF triples from NL texts and enhancing KGs. Each category addresses specific aspects,
such as language specificity, ontology and KG enhancement, domain specificity, the use of Transformers, lexical
resources, and link creation.

The clustering of articles across categories (Figure 4) provides a comprehensive overview of research efforts.
These results align with the subset of 15 articles described in Section 5. Our findings highlight some facts that war-
rant reflection. Despite thousands of spoken and computationally represented languages, there is still the dominance
of only one—English—as a language used for NL texts and the KGs resulting from text processing. A more in-depth
study as future work is needed to identify how non-English languages use KGs generated in English for information
representation.

Regarding transformations and domains categories of Section 5, we identified the proximity between specific
single-domain transformations and generic transformations across multiple domains. We understand that creating
domain-specific KGs can benefit companies, government agencies, or any other entities interested in using specific
KGs, given that their maintenance involves domain experts to ensure information consistency and less maintenance.
On the other hand, KGs spanning multiple domains may face maintenance and accelerated growth challenges due to
the multiplicity of domains and, consequently, the continuous creation of RDF triples. Based on these assumptions,
we believe that, for example, creating a specific and local KG about the health sector — the domain with the most
articles based on our results (cf. Figure 5) — offers more benefits in terms of creation and maintenance than a
domainless Knowledge Graph.

The two categories with less representation but of great relevance to this research are Multilingual and Link
Creation. In our view, more solutions should somehow support the creation of links with other ontologies or existing
KGs. The rationale is that such solutions would facilitate information reuse, connecting nodes from local KGs with
larger and more established KGs. In this sense, they would help to contribute to the LOD movement, transforming
a Web with some disconnected data islands into an interconnected archipelago of data [20].

The distribution of articles based on evaluation types (Figure 6) highlights the methodological diversity in assess-
ing existing proposed solutions. Quantitative methods were the most widely used ones. This type of assessment can
use a large set of texts and triples as input, which facilitates adapting the methodology and refactoring tests. With a
large dataset, understand that quantitative analysis enables researchers to iteratively adjust their methodologies and
improve testing procedures, ensuring a more comprehensive and informed evaluation of proposed solutions.

Figure 7 presents that most of the 150 articles present automatic or semi-automatic solutions, which, to some ex-
tent, streamlines the production of RDF triples and improvements in existing KGs. In this way, quantitative methods
dealing with large amounts of data are necessary for an overall evaluation of the results of these solutions. How-
ever, qualitative methods are valuable allies that can assist in identifying semantically incoherent RDF triples. Even
though the triples are generated in the <subject, predicate, object> pattern and can be connected to an existing KG,
such triples may be redundant, repeated, or inconsistent with those in the KG. Qualitative methods can identify such
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issues. Despite the potential limitations in volume and speed associated with evaluation assessments using quanti-
tative methods, we understand that combining both quantitative and qualitative approaches is crucial for generat-
ing more consistent and comprehensive evaluations. This is particularly important as it allows for a multi-faceted
assessment of results from different perspectives.

Several proposed solutions used a gold standard to evaluate the generated triples. We did not find a single standard
used by the 15 studies in the literature described in Section 5. Constructing a “generic gold standard” to evaluate
the generation of Knowledge Graphs from texts would be a valuable asset, helping future solutions to be compared
using a unified evaluation basis.

The surveyed articles across various categories exhibit several limitations that provide opportunities for future
research and refinement of NL-based KG generation methodologies. First, a common limitation revolves around the
challenge of domain specificity. Many studies, particularly those in the Specific Transformation category, struggle
with the adaptability of their approaches to diverse domains. Biomedical applications, for instance, present specific
requirements that may not be addressed adequately by generic NL-based KG generation methods. In addition,
several articles lack extensive evaluation in real-world scenarios, relying on relatively small datasets or limited case
studies. This limitation hinders a comprehensive understanding of the scalability and robustness of the proposed
solutions, making it crucial for future work to address this gap, i.e., validating solutions in diverse and realistic
settings.

Second, while Transformer-based approaches showcase remarkable capabilities, as demonstrated in the Trans-
former category, they are not without limitations. Many studies employing transformer architectures focus on
English-centric applications, raising concerns about the generalizability of these methods to non-English languages.
The effectiveness of transformer models can be contingent on the availability of large and high-quality training
datasets, limiting their applicability to less-resourced languages. Additionally, the computational intensity associ-
ated with transformers is a common challenge, potentially restricting their deployment in resource-constrained en-
vironments. These limitations demand research efforts to enhance the multilingual applicability, dataset diversity,
and computational efficiency of transformer-based KG generation methods to foster broader advancements. Third,
Figure 7 indicates that fewer articles explicitly mention real-world applications, suggesting a potential gap between
research and practical applications. The availability of publicly accessible data remains limited, impacting the re-
producibility and accessibility of the proposed studies.

6.2. Answer Summary of Research Questions

Our literature review enables us to answer the defined research questions in Table 2. Each research question was
answered throughout this review. In the following, we provide a summary of them:

1. RQ-01 – “What are the benefits and drawbacks of a method that generates RDF triples from texts?” as high-
lighted in Section 5, these approaches contribute to KG enrichment by extracting structured information from
unstructured texts, fostering a more comprehensive understanding of various domains. These methods’ ver-
satility is evident across applications, including healthcare, e-commerce, and the arts. However, drawbacks
include language dependency, which limits the applicability of some methods to specific languages, and po-
tentially excludes valuable information from texts in other languages. Domain sensitivity is another challenge,
as certain methods are tailored to specific domains, making them less adaptable across diverse knowledge
domains. The dependence on external lexical resources introduces challenges related to the consistency, cov-
erage, and real-time updates of those resources.

2. RQ-02 – “Are there any patterns for texts used as input and for the triples generated as output?” we identified
that methods preprocess texts to extract entities, relationships, and contextual information, leading to diverse
patterns in generated triples. The Venn Diagram in Figure 8 showcases the intersection of different categories,
emphasizing the variety in approaches and potential patterns. Generally, texts undergo preprocessing through
filtering, entity extraction, and relation extraction, resulting in patterns like <entity, relation, entity>.

3. RQ-03 – “What are the most used techniques? What are the most accurate ones?”, we observed that most
studies, especially the most recent ones, rely on Transformers techniques in either a step of the process or the
overall method. Previous research relied mostly on NLP techniques combined with rule-based approaches to
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identify and extract RDF triples from text [5][7]. The advent of transformers showed greater accuracy when
considering those used in past research. Due to their ease of use, transformer-based solutions are becoming
more popular in diversified applications [55].

4. RQ-04 – “Are there fully automated approaches to generate knowledge graphs from text?”, we identified that
few studies present a completely manual method. Most studies employ a fully-automated method, i.e., the KG
is generated with no human intervention or a semi-automatic method. As such, human intervention is required
to correct the outcomes of the automated processes or as part of the overall triple-generation procedure.

5. RQ-05 – “What are the main applications that benefit from the text-to-triple approaches?”, we observed that
a portion of the studies in our survey are not currently employed in real-world applications. This suggests
an existing gap between research advancements and practical implementation. Despite this, for the subset of
studies that are applied in real-world scenarios, we verified a direct impact on information retrieval-based ap-
plications across diverse domains. Specifically, these applications span various sectors such as health, tech-
nology, education, and more. In the healthcare domain, for instance, text-to-triple approaches contribute to the
construction of KGs that aid in medical research, diagnosis, and treatment recommendations. In the educa-
tion domain, the application of text-to-triple techniques facilitates the creation of educational KGs, supporting
adaptive learning systems and personalized content delivery.

6. RQ-06 – “How do the methods explore the T-Box and A-Box in terms of text-to-triple generation?”, we iden-
tified some relevant approaches. T-Box population methods enhance/enrich existing ontologies by extracting
knowledge from unstructured texts and connecting it to ontology classes and properties. On the other hand,
A-Box population methods focus on populating the instances portion of knowledge representation with rela-
tionships derived from texts. The challenge lies in balancing both aspects for a comprehensive and accurate
KG construction. As discussed in Subsections 5.2.1 and 5.2.2, methods explore T-Box and A-Box differently,
emphasizing the relevance of understanding and addressing ontology and instance-related aspects for effective
text-to-triple generation.

6.3. Open Research Challenges

This subsection describes the challenges still open in the state of the art, arising from the analyses and findings
described in Section 4 and Section 5. We add challenges identified by us (the authors) and not identified in the
reviewed articles in our study.

Multilingual NL-Based KG Generation: Developing methodologies that can effectively generate RDF triples
from NL texts in multiple languages remains a significant challenge. The inherent linguistic variations, syntactic
structures, and semantic nuances across different languages pose obstacles. Moreover, the availability of large and
diverse training datasets for less-resourced and less-spoken languages is limited, complicating the training of ro-
bust multilingual models. Addressing this challenge requires innovative approaches to handle linguistic diversity,
improve cross-language generalization, and explore techniques for effective knowledge transfer between languages.

Real-World Applicability and Scalability: Many NL-based KG generation methods lack extensive validation
in real-world scenarios, impacting their practical applicability and scalability. Validation methods applied to di-
verse domains and large-scale applications are challenging due to the complexity and variability of real-world data.
Researchers face difficulties using comprehensive gold-standard datasets for various domains and ensuring their
proposals can scale to handle large, dynamic datasets. Overcoming these challenges demands the development of
evaluation frameworks that simulate real-world conditions and the exploration of scalable NL processing techniques
suitable for diverse application contexts.

Evaluation Metrics for Quality and Completeness: The lack of standardized evaluation metrics to calculate
the quality and completeness of generated RDF triples represents a challenge. Existing metrics often focus on
quantitative aspects, such as precision and recall, but are insufficient to capture the generated knowledge’s semantic
accuracy, coherence, and relevance. Designing comprehensive evaluation metrics that consider both quantitative
and qualitative aspects is challenging due to the subjective nature of semantic accuracy and the lack of well-defined
benchmarks.

Handling Ambiguity and Polysemy: Ambiguity and polysemy in NL introduce complexities in accurately iden-
tifying entities and relationships. Resolving the ambiguity arising from multiple interpretations of words or phrases
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and disambiguating between polysemous meanings is challenging. Existing NL-based KG generation methods of-
ten struggle in contexts where entities have diverse meanings or where words can be used in multiple contexts.
Mitigating this challenge requires the development of context-aware models, advanced disambiguation techniques,
and strategies to incorporate contextual information for accurate entity and relationship identification.

Ethical and Bias: NL-based KG generation methods are susceptible to biases present in training data, which may
perpetuate biases. Addressing ethical considerations and mitigating biases in the generated knowledge is a pressing
challenge. The difficulty lies in identifying and addressing implicit biases in training data, ensuring fair represen-
tation of diverse perspectives, and establishing guidelines for responsible NL-based KG generation. Overcoming
this challenge requires interdisciplinary collaboration and ethical frameworks to promote fairness in knowledge
representation.

Dynamic Knowledge Graph Evolution: Ensuring the dynamic growth and temporal evolution of NL-based
KGs, such as the Temporal Knowledge Graphs (TKGs) [56] to capture real-time changes in knowledge domains
is complex. Many existing methods focus on static KGs, limiting their ability to adapt to emerging information.
Addressing this challenge involves designing frameworks that allow continuous knowledge acquisition, integration,
and evolution while considering the computational complexity and potential risks associated with real-time updates.

User Involvement: Incorporating user feedback, domain expert insights, and human-in-the-loop interactions in
NL-based KG generation can be meaningful to the overall quality of the KG. Many solutions lack mechanisms for
effectively involving users and domain experts in the generation process, leading to potential gaps in understanding
contextual nuances. Overcoming this challenge requires the development of interactive NL-based KG generation
interfaces, feedback loops, and collaborative frameworks that help users contribute domain-specific knowledge,
validate generated triples, and enhance the overall quality of the knowledge representation.

7. Conclusion

A considerable portion of textual data remains unprocessed, representing substantial amount of information that
holds the potential to provide actionable insights. The motivation behind this stems from the need to develop novel
methodologies and software tools capable of transforming these large volumes of unstructured text into structured,
computer-interpretable knowledge. Semantic Web technologies, particularly with the core use of RDF triples and
Knowledge Graphs, offer an approach to organize this information. This article presented the outcome of a sys-
tematic literature review on studies dealing with the generation of RDF triples from unstructured NL texts, aim-
ing to enhance existing KGs. We identified from the literature the most prominent approaches to the extraction of
RDF triples from text, especially concerning such triples’ inclusion in existing KGs. We provided a comprehensive
overview of the domain pointing out the main challenges, as well as the limitations on the current state-of-the-art
on such research. Our study systematically surveyed a diverse set of 150 articles from distinct scientific databases.
From such, we identified 10 categories and presented a detailed description of the most key studies from those,
resulting in 15 articles discussed in detail. We contributed by outlining opportunities for future research, i.e., the
identification of the categories, approaches, challenges, open research questions, and research gaps.
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