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Abstract. Knowledge Graphs (KGs) are increasingly used for solving or supporting tasks such as question answering or recom-
mendation. To achieve a useful performance on such tasks, it is important that the knowledge modelled by KGs is as correct and
complete as possible. While this is an elusive goal for many domains, techniques for automated KG construction (AKGC) serve
as a means to approach it. Yet, AKGC has many open challenges, like learning expressive ontologies or incorporating long-tail
entities. With CaLiGraph, we present a KG automatically constructed from categories and lists in Wikipedia, offering a rich
taxonomy with semantic class descriptions and a broad coverage of entities. We describe its extraction framework and provide
details about its purpose, resources, usage and quality. Further, we evaluate the performance of CaLiGraph on downstream tasks
and compare it to other popular KGs.
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1. Introduction

1.1. Motivation and Problem Statement

An essential property of a truly intelligent application is its ability to access all the information necessary to
solve the task it is designed for. With the advent of Knowledge Graphs (KGs), this long-standing objective in AI of
supplying machines with relevant information is gradually becoming a reality [1, 2]. KGs are the key technology to
tie together data and knowledge [3]. Thereby, they diminish the effort of combining data with other sources [4] or
using it in applications of various domains (e.g., agriculture [5], manufacturing [6], or tourism [7]) and task types
(e.g., advertising [8], question answering [9] or recommendation [10]).

The core idea of KGs is to represent data as a labeled directed graph, with nodes representing concepts or concrete
instances and edges representing relations between them.1 Using graphs to represent data has several advantages
over relational or NoSQL alternatives, like the flexible definition and reuse of schemas and the large variety of
graph-based techniques for querying, search or analytics [11]. As shown in Figure 1, nodes in a KG may represent
concepts (e.g., the class Album or the relation artist) or entities (e.g., the album California Girl or the artist Nancy
Sinatra). Relations may exist between concepts (Guns N’ Roses album is a sub-class of Album), between a concept
and an entity (California Girl is an Album) or between entities (California Girl has the artist Nancy Sinatra). All
this information is typically stored in the form of (subject,predicate,object) triples.

*Corresponding author. E-mail: nico@informatik.uni-mannheim.de.
1Weikum [2] points out that Knowledge Base would be the proper term as a graph struggles to natively express higher-arity relations or

constraints. In this work, we use the term Knowledge Graph inclusively as it is the more common terminology.
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Fig. 1. An overview of the typical steps addressed during Knowledge Graph construction.

The trend of entities added to publicly available KGs in recent years indicates that they are far from being com-
plete. The number of entities in Wikidata [12], for example, grew by 26% in the time from October 2020 (85M) to
October 2023 (107M).2 According to Heist et al. [13], Wikidata describes the largest number of entities and com-

2https://tools.wmflabs.org/wikidata-todo/stats.php

https://tools.wmflabs.org/wikidata-todo/stats.php
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prises – in terms of entities – other public KGs to a large extent. Consequently, this challenge of incompleteness
applies to all public KGs, particularly when it comes to long-tail and emerging entities [14].

Automatic information extraction approaches can help mitigate this problem if the approaches ensure that the
extracted information is of high quality. While the performance of open information extraction systems (i.e., systems
that extract information from general web text) has improved in recent years [15–17], the quality of extracted
information has not yet reached a level where integration into public KGs like DBpedia [18] should be done without
further filtering.

The extraction of information from semi-structured data is, in general, less error-prone and already proved to
yield high-quality results as, for example, DBpedia itself is extracted primarily from Wikipedia infoboxes; further
approaches use the category system of Wikipedia [19, 20] or focus on tables (in Wikipedia or the web) as semi-
structured data source to extract entities and relations [21]. As highlighted by Weikum [2], first "picking low-hanging
fruit" by focusing on premium sources like Wikipedia to build a high-quality KG is crucial as it can serve as a solid
foundation for approaches that target more challenging data sources.

1.2. Contributions

We present CaLiGraph, a KG automatically constructed from semi-structured content in Wikipedia. CaLiGraph
uses DBpedia as a foundation to extract an extensive taxonomy from the category graph in Wikipedia and enriches
it with OWL-based axioms describing the semantics of the classes. Further, it uses various information extraction
techniques to extract new entities and facts from enumerations and tables in Wikipedia, particularly focusing on
constructs where similar entities co-occur. In its most recent version, CaLiGraph describes 1.3 million classes and
13.7 million entities.

In this work, we give a comprehensive overview of CaLiGraph. In particular, our contributions are as follows:

– We give an overview of the field of automated KG construction and formulate open challenges in Section 2.
– We summarize the extraction process of CaLiGraph, including all relevant inputs, in Section 3.
– We describe the purpose, contents, resources and use cases of CaLiGraph in Section 4.
– We provide statistics, quality metrics and evaluations of the major CaLiGraph versions as well as comparisons

to popular public KGs in Section 5.

2. Automated Knowledge Graph Construction

The most straightforward way to create a KG is through manual definition. Cyc [22] and WordNet [23] are
notable examples, employing a team of experts to insert the data by hand. While this is feasible for domains with a
manageable amount of data, the potential to scale up is very limited. Freebase [24] and, more recently, Wikidata [12]
are examples of achieving scalability in manual curation via crowd-sourcing, but again, the capability to scale up
is limited. Hence, we only consider automatically extracted KGs in this work. Apart from manually curated KGs,
this excludes KGs relying on human-in-the-loop mechanisms [25] or dataset-dependent RML mappings [26, 27] to
extract instance data.

In the following, we present a pipeline for automated KG construction (AKGC) implemented in the CaLiGraph
extraction framework. We use the pipeline to compare popular KGs on the web and formulate challenges and
limitations in AKGC.

2.1. A Pipeline for Automated Knowledge Graph Construction

KG construction is typically not an end-to-end ML task but consists of multiple steps, each with unique re-
quirements and challenges [2]. Figure 1 lists the steps in the order they are addressed in the CaLiGraph extraction
framework, together with actual examples. The pipeline consists of the two high-level blocks of Ontology Con-
struction (OC) and Knowledge Graph Population (KGP), with the former being responsible for the definition of the
ontology necessary to describe the domain (the so-called T-box) and the latter being responsible for populating the
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Fig. 2. A timeline with major milestones of popular public KGs.

graph with data using concepts of the ontology (the A-box). Whether the steps are executed once or iteratively, in
this sequence or another, depends on the KG to be extracted.

Ontology Construction steps:

1. Class & Property Definition Define relevant classes and properties of the domain
2. Taxonomy Induction Discover hierarchical relationships among classes and properties
3. Axiom Learning Formulate constraints for classes (e.g., disjointnesses) and properties (e.g., domains/ranges)

Knowledge Graph Population steps:

4. Named Entity Recognition Identify mentions of named entities in a given data corpus
5. Named Entity Disambiguation Add the mentions to the KG by creating new or updating existing entities
6. Entity Typing Discover type assertions for the entities in the KG using the data corpus
7. Relation Extraction Discover relation assertions for the entities in the KG using the data corpus

While the steps in the Ontology Construction block may be conducted manually for a sufficiently small domain,
the steps in the Knowledge Graph Population block are always automated processes using a given data corpus.

2.2. Knowledge Graphs on the Web

Given the pipeline above, we discuss the construction processes of automatically extracted general-purpose KGs.
We only consider publicly accessible KGs and disregard closed-source industry-created KGs like those from Mi-
crosoft, Facebook, Amazon or ebay [28]. Figure 2 shows a timeline with the major milestones of the public KGs
discussed in the following.

2.2.1. DBpedia
DBpedia [18] aims to represent the knowledge of Wikipedia in a structured form and focuses on infoboxes to

extract knowledge.

Ontology Construction DBpedia provides a Mappings Wiki3 where the community defines classes, properties,
datatypes and restrictions. Further, they map infoboxes to types in the schema and infobox keys to properties.

3https://mappings.dbpedia.org

https://mappings.dbpedia.org
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Knowledge Graph Population DBpedia defines one entity per article in Wikipedia. A disambiguation of entities
is unnecessary as they are marked with hyperlinks in the text. Type assertions are derived from infobox types, and
relation assertions are derived from infobox keys.

2.2.2. YAGO
YAGO [29] is built on the idea of combining a small but well-crafted top-level schema with a large but messy

taxonomy, thereby creating a unified and cleaned schema. Further, they tap other data sources to ingest additional
data from various domains.

Ontology Construction Up to version 3 [19], YAGO automatically combines WordNet [23] with the Wikipedia
category graph to create a large ontology. They add axioms for some classes derived from the category graph
using hand-crafted rules. In version 4 [30], they fundamentally change the KG by combining the ontology from
Schema.org [31] with the one from Wikidata to create a cleaned, “reason-able” version of Wikidata. They define
manual mappings between Schema.org classes and Wikidata classes to create the combined ontology and add rudi-
mentary SHACL constraints to ensure data validity.

Knowledge Graph Population Up to version 3, YAGO performs KGP similarly to DBpedia, using articles as
entities and extracting assertions from infoboxes. Additionally, they define an enhancement process where additional
entities may be added from any external sources or tools. In version 2 [32], temporal and geospatial data is integrated,
and in version 3 [19], multilingual data from multiple Wikipedia language chapters is added. In version 4, entities
and assertions are taken from Wikidata.

2.2.3. NELL
NELL [33] is an example of extracting a KG from free text. It was originally trained with a few seed examples and

continuously ran an iterative coupled learning process. In each iteration, facts were used to learn textual patterns to
detect those facts, and patterns learned in previous iterations were used to extract new facts, which serve as training
examples in later iterations. To improve the quality, NELL introduced a feedback loop incorporating occasional
human feedback.

Ontology Construction NELL started with an initial ontology defining hundreds of concepts and binary relations.
During runtime, the ontology is extended with additional concepts and relations.

Knowledge Graph Population NELL is bootstrapped with a dozen examples for each concept and relation. New
entities and assertions are added with each iteration.

2.2.4. BabelNet
BabelNet [34] is a KG that integrates encyclopedic and lexicographic knowledge from Wikipedia and WordNet

in multiple languages.

Ontology Construction The ontology consists of concepts derived from senses in WordNet and from articles and
categories in Wikipedia [35]. They connect the two resources by mapping senses to articles automatically. In early
versions, only lexical properties are used. In the recent version, they integrate related KGs like Wikidata and YAGO,
taking over their semantic properties as well.

Knowledge Graph Population Initially, the graph was populated with entities from Wikipedia articles. From Word-
Net, lexical and semantic pointers between synsets are extracted as relations. Relations between Wikipedia articles
were initially extracted as unlabeled relations. In the recent version, there are efforts to extract the semantics of the
relations. Further, assertions from related KGs like Wikidata and YAGO are included [36].

2.2.5. DBkWik
DBkWik [37] aims to extract and fuse data from thousands of Wikis of arbitrary content from a Wikifarm, for

example, Jedipedia4 or Music Hub.5

4https://jedipedia.fandom.com/
5https://music.fandom.com/

https://jedipedia.fandom.com/
https://music.fandom.com/
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Table 1
Advantages and Limitations of public general-purpose KGs.

Name Advantages Limitations

DBpedia

The ontology is hand-curated and hence of high quality.
Entities and assertions are extracted from highly structured
data and are of high quality as well. Due to its pioneering
role of representing Wikipedia and its good accessibility,
DBpedia serves as a central hub of the linked data web.6

The manually-defined schema has limited expressiveness and
flexibility. DBpedia is biased towards popular entities as
Wikipedia allows articles only if the subject is of a certain
notability.7 Further, the information in the KG is limited to
the content of the infoboxes in Wikipedia.

YAGO

Both YAGO3 and YAGO4 have very expressive and
fine-grained ontologies. Due to many external sources and
the connection to Wikidata, YAGO has a high density of
assertions per entity.

YAGO3 suffers from the same problem of representing tail
entities as DBpedia. In YAGO4, many more entities are
ingested through the switch to Wikidata, which again
introduces the limitation of manual curation. It is unclear
what happens to the manually defined mappings if
Schema.org and/or the Wikidata taxonomy change.

NELL
The coverage of schema, entities and assertions in NELL is
limited only by the available information in the data source
consisting of a Web crawl.

The quality is comparably low as NELL starts with very little
knowledge initially and uses only web resources in
combination with occasional human feedback during
knowledge acquisition. In a link prediction evaluation, NELL
scored a MAP of 0.35 in 2010 and 0.55 in 2017 [33].
Refinement iterations are run on a fixed Web crawl, i.e.,
recent knowledge is not considered.

BabelNet
BabelNet puts emphasis on the lexicographic perspective, not
only describing entities but also the senses of the words that
entities are referenced with.

While a large variety of resources is included through the
exploitation of mappings to other KGs, long-tail entities and
new properties are not explicitly addressed.

DBkWik
DBkWik manages to tap additional data sources by targeting
thousands of Wikis from a Wikifarm and can hence integrate
specialized knowledge from many different domains.

Creating a comprehensive schema from thousands of Wikis
is a difficult task, especially when little information about the
individual concepts and entities is available. DBkWik is
restricted to entities defined in the ingested Wikis.

Ontology Construction DBkWik uses a variation of the DBpedia extraction framework to extract data from Wikis.
Contrary to DBpedia, DBkWik has no community-defined mappings. Instead, they generate a shallow schema from
the infoboxes of each Wiki and fuse these schemas afterwards. Then, they enrich the unified schema with subclass
relations and restrictions for domains and ranges.

Knowledge Graph Population Entities are derived from articles in the Wikis, and assertions are derived from
infoboxes. Similar to the schema, entities have to be matched as well to avoid duplicates from overlapping Wikis.

2.3. Limitations and Challenges

In Table 1, we list the advantages and limitations of the previously discussed KGs. Following, we distil these into
a (incomplete) list of challenges (mostly complementary to challenges mentioned by Weikum [2]):

1. Coverage of unknown properties. Many KGs use a fixed schema with pre-defined properties to model knowl-
edge. Extending this schema is a challenging task; potential errors have a high impact on the KG quality.

2. Coverage of long-tail entities. Identifying and disambiguating long-tail entities is difficult as the data source
contains, by definition, only limited information about them; most KGs choose to use a fixed set of entities
like the set of Wikipedia articles.

3. Ontology with expressive, fine-grained types. An expressive and detailed ontology is a prerequisite for
comprehensive data modelling. While some KGs have very detailed taxonomies already, there is a lack of
axioms that explicitly describe the intent of their types.

6https://lod-cloud.net/
7https://en.wikipedia.org/wiki/Wikipedia:Notability

https://lod-cloud.net/
https://en.wikipedia.org/wiki/Wikipedia:Notability
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4. Maintaining high data quality. The quality of automatically constructed KGs will never be perfect, but KGs
should have a certain quality to be useful in downstream tasks (typically, a correctness of 95% is desired [2]).
Apart from the methods used, the quality strongly depends on the data sources targeted during extraction.

We created CaLiGraph to tackle several of these challenges in the context of Wikipedia. We exploit semi-
structured data structures like listings and tables to extract information about novel entities (C2). We create a schema
from the Wikipedia category graph and enrich it with semantic restrictions describing the meaning of the concepts
(C3). All the automated extraction procedures target structured or semi-structured data to minimize errors and ensure
high extraction quality (C4).

3. The CaLiGraph Extraction Framework

This section describes the extraction framework of CaLiGraph with respect to the tasks given in Figure 1. Sec-
tion 3.1 provides details about the parts of Wikipedia used in the extraction process, Section 3.2 describes how
the ontology is created and Section 3.3 describes the KG population process. This section intends to give a crisp
overview of the complete construction process of CaLiGraph without going into detail too much. We provide refer-
ences to additional material within the section for the interested reader.

3.1. Wikipedia as Semi-Structured Data Source

Due to its structured and encyclopedic nature, Wikipedia provides interesting conditions to extract information
automatically. Concretely, we select Wikipedia as a data corpus for CaLiGraph as it has several advantages:

Structure Wikipedia is written in an entity-centric way with a focus on facts. Due to the encyclopedic style and
the peer-reviewing process, it has a consistent structure. Wikipedia has its markup language (Wiki markup), which
allows more concise access to (semi-)structured page elements like sections, listings, and tables than plain HTML.
Listings are often used to provide an overview of a set of entities that are related to the entity an article is about.
Section titles are typically used consistently for specific topics (e.g., for the Discography of a band).

Entity Links If a Wikipedia article is mentioned in another article, it is typically linked in the Wiki markup (a
so-called blue link). Furthermore, it is possible to link to an article that does not (yet) exist (a so-called red link).
As Wikipedia articles can be trivially mapped to entities in Wikipedia-based KGs like DBpedia, since they create
one entity per article, we can identify many named entities in listings and their context without the help of an entity
linker.

Access Wikipedia snapshots are published periodically as XML dumps that can be processed conveniently in any
programming language. Many high-quality open-source libraries exist for the interpretation of Wiki markup. In our
framework, we use WikiTextParser8 to process the markup in Python.

DBpedia With DBpedia [18], a well-established Wikipedia-based KG is already available. As it is extracted pri-
marily from infoboxes, the information in DBpedia is very accurate and thus a perfect source for distant supervision
[38].

In the remainder of this section, we briefly explain the main Wikipedia elements exploited to extract CaLiGraph.
Provided statistics are computed on the Wikipedia dump the most recent CaLiGraph version 3.1.1 is based on
(August 2022, English).

8https://github.com/5j9/wikitextparser

https://github.com/5j9/wikitextparser
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(a) A lake in Ontario, CA.
Lakes of Temagami

(b) A lake in Montana, US.
List of lakes of Powell County, Montana

(c) A musician in the band Vinyl Williams.
Vinyl Williams

(d) A character in a soap opera.
List of The Young and Restless characters

Fig. 3. Listings in Wikipedia containing the mention James Lake [41]. All of the mentions refer to distinct entities; a dedicated Wikipedia
article exists only for the entity of the mention in (a).

3.1.1. Articles
An article in Wikipedia describes a concept of the real world. In the following, we will refer to this concept as

the main entity of the article. Articles typically start with an abstract that summarizes the main entity’s key facts,
followed by sections about notable details. For example, the article about Gilby Clarke contains two sections
about his career and discography.

Wikipedia contains 6.1 million articles in English (excluding non-encyclopedic pages like disambiguation pages
and redirects).

3.1.2. Listings
With listings, we refer to (semi-)structured elements in Wikipedia that contain several items. In many cases, a

listing represents a concept, with each item describing a concrete instance of this concept.9 We are particularly
interested in listings with items explicitly mentioning the entities they describe. We refer to these entities as subject
entities (SEs), and we define them as all entities in a listing appearing as instances to a common concept [40].

In Figure 3, we show four different listings in the form of tables (Figures 3a and 3d) and enumerations (Figures 3b
and 3c). For example, in Figure 3d, the soap opera characters are considered SEs, while the actors are not, as
the listing focuses on the characters. While listings are usually formatted as enumerations or tables, they have no
convention of how their information is structured. For example, SEs can be listed somewhere in the middle of a table
(instead of in the first column), and enumerations can have multiple levels. Further, SEs may already be marked as
entities through Wiki markup (blue or red links), but this is not always true.

Of the 6.1 million articles in Wikipedia, 2.1 million contain at least one listing in the form of an enumeration or
a table. We find 3.5 million enumerations and 1.4 million tables in these articles.10 On average, listings have 11.7
items with a median of 7.

3.1.3. List Pages
List pages are a special kind of Wikipedia pages that serve the sole purpose of listing entities with a common

property. The list page List of lakes of Powell County, Montana contains an enumeration of all

9For counter-examples, we point to our previous work [39].
10These numbers exclude very small listings with less than three items, which we do not consider.
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lakes in Powell County, Montana, together with their coordinates and elevation (see Figure 3b for a snippet of
the page). In contrast to arbitrary listings in Wikipedia, listings in list pages are relatively easy to exploit as they
explicitly serve the purpose of listing SEs.

Wikipedia contains 89K list pages with 159K tables and 381K enumerations. On average, listings have 21.8 items
with a median of 9 items.

3.1.4. Categories
Contrary to list pages, categories are a formal construct in Wikipedia and serve the purpose of categorizing pages

in a hierarchical structure. This structure, the Wikipedia Category Graph (WCG), is a directed but not acyclic graph.
It does not only contain categories used for categorising articles but also ones used for administrative purposes (e.g.,
the category Wikipedia articles in need of updating). The WCG has been used extensively for
taxonomy induction (e.g. in [19, 35]) and has yielded highly accurate results. A subgraph of the WCG contains list
categories,11 which organizes many of the list pages in Wikipedia. The list page List of lakes of Powell
County, Montana, for example, is a member of the list category Lists of lakes of Montana by
county, which in turn has the parent list category Lists of lakes of the United States, but also
the parent category Lakes of Montana by county. List pages, list categories, and categories in general are
hence tightly interconnected.

Wikipedia contains 2.2 million categories, with 11K list categories and 311K categories used for non-
encyclopedic purposes like maintenance. We regard categories as of the latter kind if they are no transitive sub-
categories of the category Main topic classifications or have one of the following keywords in their
name: wikipedia, lists, template, stub [42].

3.2. Ontology Construction

In the following, we explain how the CaLiGraph extraction framework builds an ontology from categories and
lists in Wikipedia [43] and how the classes are enriched with expressive axioms [42] (cf. upper part of Figure 1).

3.2.1. Class & Property Definition
All encyclopedic categories and list pages in Wikipedia are considered candidate classes for the CaLiGraph

taxonomy. Additionally, we reuse and link to classes of the DBpedia ontology. By doing so, we can effortlessly
enrich CaLiGraph with additional parts of the DBpedia ontology, like relations and disjointness axioms.

The category candidates contain many categories that are suitable classes for a taxonomy like Albums or
People from London. However, many non-taxonomic categories are contained as well. For example, the cat-
egory London comprises all London-related topics like the pages London and Outline of London. To re-
move non-taxonomic categories, we rely on the observation made by Ponzetto and Navigli [44] that a Wikipedia
category is a valid type in a taxonomy if its head noun is in the plural. Consequently, we identify the head nouns of
the categories and remove all categories with singular head nouns.12

3.2.2. Taxonomy Induction
After removing non-taxonomic categories, we first build a taxonomy from the remaining categories, list cate-

gories, and list pages. To combine those, we use the existing connections in Wikipedia. Figure 4 shows an example
of how these groups are connected. While all edges in the figure could be used to form the taxonomy, some edges
should be discarded. For example, the category Albums has the subcategory Album covers, and the category
Lists of albums contains the list page List of controversial album art. We remove such edges
by considering the head nouns of the parent and the child: if the head noun of the parent is a synonym or a hypernym
of the child’s head noun, we keep the edge; otherwise, we discard the edge (as is the case for cover vs. album and
art vs. album). We retrieve synonyms and hypernyms from multiple sources, for example, by crawling Wikipedia
article texts for Hearst patterns [45] and from WebIsALOD [46].

11A list category is a Wikipedia category that starts with the prefix Lists of.
12We use spaCy (http://spacy.io) for head noun tagging.

http://spacy.io
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Albums

Albums
by artist

Metallica
albums

Guns N' Roses
albums

Nine Inch Nails
albums

Lists of
albums

Lists of albums
 by artist

List of
Metallica demos

List of greatest
hits albums

Lists of albums
by genre

CategoryLEGEND List Category List Page subcategory-of contained-in

Fig. 4. Hierarchical relationships between categories, list categories and list pages in Wikipedia.

As a final step, we connect the taxonomy of categories and lists to the DBpedia ontology. We map the categories to
DBpedia classes using type axioms derived from DBpedia resources and linguistic signals (see next section for how
the type axioms are created). After mapping, the CaLiGraph ontology consists of all the information in DBpedia
like classes, properties, axioms (e.g., class disjointnesses), resources, and additional classes from categories and list
pages. In the following, elements of the T-box (i.e., classes and properties) of CaLiGraph will be prefixed with clgo
while elements of the A-box (i.e., resources) will be prefixed with clgr. Categories and list pages are converted to
CaLiGraph classes using their singular form. For example, the category Albums becomes clgo:Album and the
list page List of greatest hits albums becomes clgo:Greatest_hits_album.

3.2.3. Axiom Learning
While category names are plain strings, we aim to uncover the semantics of the categories. To that end, we want

to extract both types and relation information from categories. In Figure 4, we may learn type (1) as well as relation
(2) axioms, such as:

∃category. {Albums} ⊑ Album (1)

∃category. {Nine_Inch_Nails_albums} ⊑ ∃artist. {Nine_Inch_Nails} (2)

The derived type axioms serve as the basis for a mapping from categories to DBpedia. The relation axioms are
added to the CaLiGraph ontology as restrictions similar to restriction1 in Figure 1.

The Cat2Ax approach [42] derives such axioms by combining signals from the category graph structure, linguistic
patterns in category names, and instance information from the KG. To generate axioms, the approach defines the
three phases Candidate Selection, Pattern Mining, and Pattern Application:

Candidate Selection We identify sets of categories that most likely share a common type or relation. In Figure 1,
an example of a category set is the set of subclasses of the category Albums by artist. Category sets must
have a common supercategory and a shared pre- or postfix, which may serve as a linguistic pattern.

Pattern Mining We use the category sets to identify linguistic patterns as pre- or postfixes for all possible types and
relations. For example, we may learn the pattern that categories ending in albums have a high likelihood of having
entities with the type Album and an artist that is mentioned before albums. We learn such patterns from the category
sets by combining two signals we retrieve via distant supervision over DBpedia: The first signal comes from type
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and relation frequencies for entities of the categories. The second signal is the information about lexicalisation fre-
quencies (e.g., given the text Nine Inch Nails, how likely is it that this text refers to the entity Nine_Inch_Nails
in DBpedia?).

Pattern Application We apply the patterns to all categories in Wikipedia to extract axioms like (1) and (2). Here,
we combine the likelihood of a pattern with the signals from a category to judge whether applying the pattern to the
category is possible.

3.3. Knowledge Graph Population

This section describes the steps taken to populate CaLiGraph with additional entities as well as type and relation
assertions (cf. lower part of Figure 1). We first recognize mentions of SEs in listings [39], then we link the mentions
to entities in CaLiGraph or create new entities [41], and finally we derive new facts for the entities discovered in
listings [40].

3.3.1. Named Entity Recognition
While a few listings already contain disambiguated entities, this is not the case everywhere. In fact, many listings

contain only text, mostly because the entities in them do not have a corresponding Wikipedia page describing them.
Thus, we need an additional entity recognition step.

To detect SEs in listings, we phrase the problem as a token classification problem [39]. We produce a label for
every token of the input sequence and aggregate the token labels to predictions of SE mentions. With a transformer-
based model, we predict 13 token labels, such as Person or Organisation. By that, we not only identify SEs, but also
get a prediction of their type used in the subsequent disambiguation step.

We pass the context of a listing (e.g., page name and section name) and multiple listing items as textual input
to the transformer model. To preserve the information about context and listing layout, we use special tokens. By
passing multiple listing items at once, the model can reason about the structure of the listing. For example, it may
recognize that the SE is always mentioned in the first cell of a table (cf. Fig. 3a and 3d), or is always followed by a
particular sequence of characters (cf. Fig. 3b and 3c).

We generate the training data for the mention detection model from entities in list pages, using a heuristic labeling
(i.e., weak supervision): as we already know the type of entities in a list page (e.g., entities in List of greatest
hits albums must be of type Album, as it is a subclass in the CaLiGraph taxonomy), we use all entities with the
matching type in a list page as positive examples. Entities with a disjoint type are regarded as negative examples.

3.3.2. Named Entity Disambiguation
One main challenge of Named Entity Disambiguation (NED) is the inherent ambiguity of mentioned entities

in the text. Figure 3 shows four homonymous mentions of distinct entities with the name James Lake (a lake in
Canada, a lake in the US, a musician, and a fictional character). Correctly linking the mentions in 3a and 3b is
especially challenging as both point to geographically close lakes. In a practical setting, we additionally encounter
the problem of mentions without a corresponding entity in the KG (which we refer to as NIL mentions and NIL
entities, respectively). The mention in Figure 3a is the only one with a counterpart in DBpedia.

With NASTyLinker [41], we employ an approach for NED in CaLiGraph that can deal with both of these chal-
lenges. It produces clusters of mentions and entities based on inter-mention and mention-entity affinities from a
bi-encoder. NASTyLinker relies on a top-down clustering approach that assigns mentions to the entity with the
highest transitive affinity in case of a conflict. A threshold on the transitive affinity ensures that new entities are
created for mentions without an existing counterpart in CaLiGraph.

3.3.3. Information Extraction
The information extraction efforts in CaLiGraph are currently focused on SEs in Wikipedia listings. Our approach

identifies the characteristics of a listing, which are the types and relations shared by all its SEs. Given the example
page about Gilby Clarke in the lower part of Figure 1, we want to learn that all mentioned SEs are musical
works with Gilby Clarke as an artist. For the SEs The Spaghetti Incident? and Greatest Hits,
we additionally want to learn that they have the band Guns N’ Roses as an artist.
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We frame finding descriptive rules for listings based on their context as an association rule mining problem [40].
We define rule metrics that take the inherent uncertainty into account and make sure that rules are frequent (rule
support), correct (rule confidence), and consistent for all listings (rule consistency). To find a reasonable balance
between the correctness and coverage of the rules, we set the thresholds based on a heuristic considering the distri-
bution of NE tags over entities and existing knowledge in CaLiGraph. For the example given above, we identify the
following generic rules:

∃topS ection.{"Discography"} ⊑ Musical_work (3)

∃pageEntityType.{Person} ⊓ ∃topS ection.{"Discography"} ⊑ ∃artist.{<PageEntity>} (4)

∃topS ection.{"Albums with <S ectionEntity>"} ⊑ ∃artist.{<S ectionEntity>} (5)

4. An Overview of CaLiGraph

This section gives an overview of CaLiGraph as a data source. First, we introduce its versions, purpose, and vo-
cabulary structure. Then, we detail the extraction procedure of CaLiGraph, including sources, provenance, stability,
and sustainability. Finally, we explain how CaLiGraph can be accessed and how it is used already.

4.1. Description

CaLiGraph and all the associated information is accessible via http://caligraph.org. The dataset is licensed under
CC BY 4.0,13 giving everyone the right to use, share and adapt all material with the only liability of giving proper
attribution.

The project to create CaLiGraph was initiated in 2018 [47] and, to date, three major versions have been published.
Here is an overview of the versions that we use in the remainder of this work:

– CLGv1 (version 1.1.0 from 20.09.2020): contains the full class hierarchy and axioms as described in Sec-
tion 3.2.

– CLGv2 (version 2.1.1 from 21.09.2021): adds additional entities extracted from all listings in Wikipedia as
described in Section 3.3.1 and additional facts from associated rules as described in Section 3.3.3. However,
this version may contain duplicate entities not properly disambiguated during extraction.

– CLGv3 (version 3.1.1 from 22.06.2023): adds an entity disambiguation step as described in Section 3.3.2.

4.1.1. Purpose and Coverage
The purpose of CaLiGraph is to serve as a large-scale general-purpose KG covering all topics addressed in

Wikipedia. In particular, CaLiGraph aims to incorporate all information given in a semi-structured format in
Wikipedia. By exploiting the data structure, the extraction mechanisms of CaLiGraph can extract information, es-
pecially about long-tail entities, more precisely than from full text. Currently, the focus is on extracting information
about entities mentioned in tables and enumerations.

Another feature distinguishing CaLiGraph from most other public general-purpose KGs is its large taxonomy
containing expressive class descriptions. An example is shown in the upper part of Figure 1 where restriction1
enforces that all entities in the class Guns N’ Roses album have the band Guns N’ Roses as an artist.
With such restrictions, we model the meaning of the classes that is usually hidden behind their names.

4.1.2. Vocabulary
The CaLiGraph dataset builds on well-established vocabularies like RDF(S), OWL, SKOS, FOAF and PROV to

describe important concepts like classes, hierarchies, restrictions, labels, and provenance. Overall, the complexity of
the CaLiGraph ontology can be categorised as SHOD. From an ontological perspective, the feature distinguishing
CaLiGraph most from other public general-purpose KGs is its extensive modelling of class restrictions via OWL as
described in the previous section [48].

13https://creativecommons.org/licenses/by/4.0

http://caligraph.org
https://creativecommons.org/licenses/by/4.0


N. Heist and H. Paulheim / CaLiGraph: A Knowledge Graph from Wikipedia Categories and Lists 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

4.2. Extraction Procedure

CaLiGraph is extracted using the CaLiGraph Extraction Framework14 as described in Section 3. In the following,
we describe the extraction’s inputs, outputs, and organisation.

4.2.1. Data Sources
The main inputs to the CaLiGraph extraction framework are an XML dump of the English Wikipedia and the

English chapter of DBpedia [18] in the form of triples. Further, we use WebIsALOD [46] to gather additional
hypernyms during taxonomy construction (see Section 3.2.2).

4.2.2. Provenance
In CaLiGraph, we provide provenance information for new classes and entities using PROV vocabulary. For exist-

ing classes, properties and entities taken from DBpedia, we add links via rdfs:subClassOf, owl:equivalentProperty
and owl:sameAs, respectively. Similar to DBpedia, we use the namespaces http://caligraph.org/ontology/ or short
clgo for the ontology and http://caligraph.org/resource/ or short clgr for resources.

For additional classes, we point to the Wikipedia categories or list pages used for extraction. For the additional
entities, we include information about the listings they have been extracted from. For example, suppose we create
the new class Lake of Powell County, Montana from the list page List of lakes of Powell
County, Montana. In that case, we add the following triple for provenance:15

clgo:Lake_of_Powell_County,_Montana prov:wasDerivedFrom wiki:List_of_lakes_of_Powell_County,_Montana .

As shown above, when minting new classes or entities, we again follow DBpedia and create a URI similar to its
main label. We use the source’s name as a prefix in case of name clashes.

4.2.3. Stability
CaLiGraph is built on information from Wikipedia and DBpedia. New releases are dependent on the information

from these two resources. As we have no control over the data sources, CaLiGraph gives no guarantees for the
stability of ontology and resources between major versions. The changes may affect any information contained in
CaLiGraph. For example, it is possible that a page name in Wikipedia and, consequently, a resource in DBpedia
changes. This change would then be taken over in CaLiGraph as well. Further, if the structure of the category graph
in Wikipedia changes, this can influence the extraction of the CaLiGraph taxonomy. Finally, any changes in listings
in Wikipedia may change how facts are extracted.

4.2.4. Sustainability
CaLiGraph is hosted and maintained by the Data and Web Science Group of the University of Mannheim. The

release cycle for CaLiGraph was mostly irregular in the past, as new developments were integrated as quickly
as possible. There are ongoing efforts to align the release cycle to the one of DBpedia and even to integrate the
extraction of CaLiGraph into the DBpedia extraction workflow. Still, it is planned to improve and extend CaLiGraph
further in various ways (see future work in Section 6.3).

4.3. Usage

The following describes how to access and interact with CaLiGraph best. Further, we give an overview of potential
and existing use cases.

4.3.1. Access
The main web resources to view, use, and extend CaLiGraph are:

– http://caligraph.org: Main website with relevant resources, a data explorer and a SPARQL endpoint.
– https://zenodo.org/record/3484511: Source files of all published versions of CaLiGraph.
– https://databus.dbpedia.org/nheist/CaLiGraph: CaLiGraph on the DBpedia Databus.
– https://github.com/nheist/CaLiGraph: Code of the extraction framework, including an issue tracker.

14https://github.com/nheist/CaLiGraph
15We use the prov namespace for PROV vocabulary and the wiki namespace to refer to Wikipedia pages.

http://caligraph.org
https://zenodo.org/record/3484511
https://databus.dbpedia.org/nheist/CaLiGraph
https://github.com/nheist/CaLiGraph
https://github.com/nheist/CaLiGraph
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4.3.2. Use Cases
In general, CaLiGraph is intended to be used as a knowledge base for various domains similar to DBpedia.

Hence, it can be used in similar use cases, for example, for information retrieval or question answering. CaLiGraph
is already used in several concrete scenarios:

– Qin and Iwaihara [49] use CaLiGraph as training data for a transformer model to annotate table columns with
entity types.

– Biswas et al. [50] use CaLiGraph to evaluate models for entity typing using only the surface forms of the
entities.

– In 2021, we submitted CaLiGraph as a dataset for the Semantic Reasoning Evaluation Challenge [48]. It has
been used in every challenge edition to evaluate reasoning systems (for example, by Chowdhury et al. [51]).

5. Statistics, Quality, and Evaluation

In this section, we show statistics about CaLiGraph, summarize all efforts to measure its quality and compare
its performance on downstream tasks with DBpedia and YAGO. We use the English chapters of DBpedia in the
versions from 2016 (DBP16) and 2022 (DBP22) as well as YAGO version 3.1 (YAGO3). We select these KGs for
comparison as they are, like CaLiGraph, mainly based on the English Wikipedia.

5.1. Statistics

We compare the KGs w.r.t. classes and entities in Table 2. We have performed a similar comparison with more
public KGs in a previous work [13], but only with an early version 1.0.6 of CaLiGraph. However, the results are not
directly comparable as, in the previous study, we only considered predicates in the namespace of the respective KG.

Compared to DBpedia, YAGO and CaLiGraph contain many more classes, largely retrieved from the WCG.
The increase in classes and relations in the major CaLiGraph versions is caused by the Wikipedia version used for
extraction (CLGv1 uses a version from 2016, CLGv2 from 2020 and CLGv3 from 2022). YAGO3 uses a Wikipedia
version from 2017; an extraction on a recent version would likely increase the number of classes. Regarding the
class tree’s depth and branching factor, DBpedia and CaLiGraph are comparable, while YAGO has a denser and
deeper taxonomy.

In terms of entities, CLGv2 and CLGv3 contain by far the highest number, with almost twice as many as the
other KGs. While the entities in CLGv2 may not be properly disambiguated, CLGv3 employs a disambiguation
mechanism to ensure that no duplicate entities exist (see Section 3.3.2). CLGv3 contains the highest number of
assertions about entities, but the average number of assertions per entity is higher in YAGO3. This can be attributed
mostly to literal assertions of YAGO, as the median of outgoing edges is high, but the average linking degree is
comparably low. Compared to YAGO and CaLiGraph, DBpedia is interlinked very strongly, indicated by the high
average linking degree.

Similar to DBpedia and YAGO, CaLiGraph covers many domains. Figure 5 shows how the entities in CLGv3
are distributed over the type hierarchy. Most entities describe Species, with a majority being Persons. Next in line
are Works, most importantly musical works and movies. Entities describing Places are mostly addressing Populated
places. The large number of Places in Myanmar can be traced back to an incorrect mapping in the taxonomy, which
will be fixed in the next release (see Section 6.2 for more details).

We compare the type and relation frequencies of the three CaLiGraph versions in Table 3. We use the prominent
types mentioned in Heist et al. [13] to compare types. Unfortunately, the ranks are not perfectly comparable as
DBpedia changed its taxonomy, taking effect in CLGv3. As a consequence, Person is a descendant of Species
instead of Agent. This explains why Species is the most frequent type in CLGv3 and why Person descended to rank
five while almost doubling its numbers compared to CLGv1. While the coverage of organizations and places has
not increased much between versions 1 and 3, the counts of Work (+200%), Building_or_structure (+160%), Gene
(+1,160%) and Event (+700%) multiplied.

We take the most frequently used ones in CLGv3 to compare properties. Again, some changes can be explained
with the changes in DBpedia, like the increased coverage of birthYear (about 1K in DBP16 and 260K in DBP22)
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Table 2
Basic metrics of all CaLiGraph versions and other KGs based on the English Wikipedia. †Entities are not disambiguated properly.

DBP16 DBP22 YAGO3 CLGv1 CLGv2 CLGv3

# Classes 760 1,245 819,292 755,440 1,061,597 1,285,484
# Relations 1,355 1,298 77 271 343 1,253
# HasValue Restrictions – – – 110,180 128,016 145,631
Avg. depth of class tree 3.5 3.9 6.6 4.5 3.9 3.6
Avg. branching factor of class tree 4.5 4.2 8.5 4.5 4.4 4.9
Ontology complexity SHOFD SHOFD SHOIF SHOD SHOD SHOD

# Entities 5,044,223 7,495,054 6,349,359 6,516,892 15,230,974† 13,736,724
# Assertions 71,628,627 97,213,941 263,433,367 166,228,505 298,300,766 332,884,815
Avg. linking degree 2.8 2.7 1.9 1.6 0.7 1.7
Median ingoing edges 0 1 0 0 0 0
Median outgoing edges 15 11 35 17 12 12

Table 3
Comparison of counts and ranks of prominent types and properties among CaLiGraph versions. Prominent types are taken from Heist et al. [13],
and prominent properties are selected based on their frequency in CLGv3.

CLGv1 CLGv2 CLGv3

Types Count Rank Count Rank Count Rank

Person 1,827,240 2 4,599,249 2 3,262,511 5
Organization 593,462 13 1,106,098 19 691,732 25
Populated_place 648,673 9 1,014,971 24 867,281 20
Natural_place 132,618 102 180,930 125 164,987 102
Species 353,680 26 790,287 30 3,691,343 1
Work 607,858 12 2,468,257 7 1,832,985 8
Building_or_structure 202,888 67 619,983 35 524,310 37
Gene 1,112 9,149 25,852 817 14,019 1,269
Protein 6,049 1,882 3,882 4,455 5,264 3,138
Event 141,582 90 309,674 67 1,178,248 14

Properties Count Rank Count Rank Count Rank

birthPlace 2,827,536 1 2,844,951 1 3,887,146 1
birthYear 1,128 133 1,175,897 4 1,576,909 2
location 877,066 3 1,485,013 2 1,567,334 3
team 521,660 5 748,147 6 1,338,344 4
country 963,588 2 1,265,201 3 1,315,784 5
subdivision - - 844,344 5 1,233,513 6
birthDate - - - - 976,431 7
type 284,581 8 390,191 8 716,693 8
genre 326,955 7 405,484 7 711,336 9
deathYear 111,273 15 11,916 78 706,773 10

and the added support for subdivision and birthDate. The decline in rank for country aligns with the observations
on types, indicating that locations are already well covered in DBpedia.

5.2. Data Quality

We provide information about the data quality in CaLiGraph concerning its metadata (Section 5.2.1), the vocab-
ulary use (Section 5.2.2), as well as class and instance data (Section 5.2.3).
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Fig. 5. A sunburst diagram of frequent entity types in CaLiGraph.

5.2.1. Metadata
As described in Section 4, the CaLiGraph ontology builds on well-established vocabularies like SKOS, FOAF

and PROV. Further, the KG is described in various aspects (e.g., purpose, creators, version) with the vocabulary of
the Dublin Core. In 2023, Andersen et al. [52] conducted an experiment evaluating the accountability of 670 KGs
in the LOD cloud. More concretely, they evaluated how much information KGs provide about their data collection,
maintenance and usage (e.g., who created the KG and how was it created?). They retrieve this information via
SPARQL queries. Of the 670 KGs, only 29 responded to queries; of those, CaLiGraph was ranked fifth. Based on
the results of the experiments, we added more metadata so that, all else equal, CaLiGraph would now be ranked
first.
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Table 4
Collection of evaluation results of CaLiGraph data.

Target Method Metric #Samples Result Source

Edges in the taxonomy
(cf. Section 3.2.2)

Manual evaluation via Amazon MTurk17

(majority of three votes)
Accuracy 2,000

96.25%
(±0.86%)

[43]

Type restrictions
(cf. Section 3.2.3)

Manual evaluation via Amazon MTurk
(majority of three votes)

Accuracy 250 96.8% [42]

Relation restrictions
(cf. Section 3.2.3)

Manual evaluation via Amazon MTurk
(majority of three votes)

Accuracy 250 95.6% [42]

Subject entities in arbitrary listings
(cf. Section 3.3.1)

Evaluation on manually labelled dataset
F1-score
(Exact match)

9,400 74% [39]

Single mention assigned to an entity
(cf. Section 3.3.2)

Manual evaluation by authors Accuracy 100
89.4%

(±9.6%)
[41]

All mentions assigned to an entity
(cf. Section 3.3.2)

Manual evaluation by authors Accuracy 100
82.3%

(±7.0%)
[41]

Entity types derived from listings
(cf. Section 3.3.3)

Manual evaluation by authors Accuracy 2,000
91.95%

(±1.19%)
[40]

Relations derived from listings
(cf. Section 3.3.3)

Manual evaluation by authors Accuracy 1,000
95.90%

(±1.23%)
[40]

5.2.2. Five Star Rating
According to the five-star rating for linked data vocabulary use defined by Janowicz et al. [53], the CaLiGraph

dataset can be categorized as a four-star dataset and will be a five-star dataset soon:

1. Star: There is dereferenceable human-readable information about the used vocabulary on http://caligraph.org.
2. Star: The information is available as machine-readable explicit axiomatization of the vocabulary as the CaLi-

Graph ontology is published using RDFS and OWL.
3. Star: The vocabulary is linked to other vocabularies, e.g., DBpedia (see Section 4.2.2).
4. Star: Metadata about the vocabulary is available (see Section 5.2.1).
5. Star: The vocabulary is linked to by other vocabularies soon, as DBpedia is preparing to provide backlinks to

CaLiGraph similar to the ones from CaLiGraph to DBpedia.16

5.2.3. Class and Instance Data
In Table 4, we collect all evaluation results of parts of CaLiGraph data conducted using direct or indirect human

supervision. CaLiGraph intends to ingest as much of the semi-structured information in Wikipedia as possible. The
results show that most of the information is extracted with an accuracy of over 90%, with entity linking approaches
being the only exception.

The CaLiGraph extraction pipeline is a sequence of steps, with later ones depending on the results of previous
steps. It is, hence, unavoidable that errors are propagated through the pipeline. The evaluations listed in Table 4
identify such errors explicitly. In the results of NASTyLinker [41], the errors are not contained in the final accuracy
of 89.4% for single mentions and 82.3% for all mentions. Considering the SE labelling errors [39], the results for
single mentions would decrease by 5.4%, and the results for all mentions would decrease by 3.3%. The results
for extracting facts from listings [40] include errors caused by incorrectly parsed entities already. The errors are
responsible for an accuracy decrease of 2.6% for entity types and 0.2% for relations.

5.3. Evaluation via Downstream Tasks

KGrEaT (Knowledge Graph Evaluation via Downstream Tasks) [54] aims to provide a comprehensive assess-
ment of KGs through evaluation on multiple kinds of tasks like classification, regression, or recommendation. The
evaluation results (e.g., the accuracy of a classification model trained with the KG as background knowledge) serve

16https://www.dbpedia.org/resources/latest-core/

http://caligraph.org
https://www.dbpedia.org/resources/latest-core/


18 N. Heist and H. Paulheim / CaLiGraph: A Knowledge Graph from Wikipedia Categories and Lists

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

as extrinsic task-based quality metrics for the KG. By defining a fixed evaluation set up in the framework and ap-
plying it to multiple KGs, it is possible to isolate the effect of every KG and compare their usefulness in solving
different tasks. In the following, we use KGrEaT to assess the utility of CaLiGraph and compare it to related KGs.

5.3.1. Experimental Setup
We consider CaLiGraph (CLGv1, CLGv2, CLGv3), DBpedia (DBP16, DBP22) and YAGO3 in our comparison.

We run the evaluation for all seven tasks in KGrEaT: Classification, Regression, Clustering, Document Similarity,
Entity Relatedness, Semantic Analogies and Recommendation. The tasks are evaluated on 20 datasets covering areas
like geography, music, movies or literature. MillionSongDataset, ComicCharacters, MovieLens, LibraryThing and
LastFm are datasets derived from independent sources; the remaining datasets are created from DBpedia version
2015.

We report the results for two entity mapping scenarios: precision-oriented mapping and recall-oriented mapping.
Both scenarios link the task dataset’s entities to KG entities using owl:sameAs links and labels. The former
scenario uses a precision-focused label mapper, while the latter uses a label mapper focused on recall [54]. In
the precision-oriented scenario, we consider only mapped entities in the evaluation, while in the recall-oriented
scenario, we consider all entities.

We compute the results using four embedding methods: TransE [55], DistMult [56], ComplEx [57], and
RDF2vec [58]. We run evaluations with embeddings trained for one and two epochs, respectively. In total, we
compute results for eight configurations for every KG and scenario; we take the best approach w.r.t. embedding and
algorithm, and then we aggregate the results by task, dataset and metric.

5.3.2. Results and Discussion
Table 5 shows the average rank of the KGs w.r.t. the datasets of a task. In both scenarios, DBpedia shows superior

performance in the Clustering, Entity Relatedness, and Semantic Analogies tasks, YAGO works best for Document
Similarity, and CaLiGraph for Regression and Recommendation. While DBpedia has a tendency to work better in
the precision-oriented scenario, CaLiGraph works better in the recall-oriented scenario.

On a dataset level (see Tables 7 and 8 in Appendix B for details), it becomes clear that the choice of a KG for
a given task is always dependant on the domain. As expected, DBpedia performs well on DBpedia-based datasets.
The superior performance of DBP16 compared to DBP22 may be explained by the temporal proximity of DBP16
to DBpedia version 2015, serving as the source for many datasets. For almost all independent datasets, we find
that CaLiGraph and YAGO have much higher coverage than DBpedia (see Table 6 in Appendix B for details).
Especially CLGv3 shows the highest coverage for all these datasets in the recall-oriented scenario. Consequently,
using CaLiGraph for ComicCharacters and MillionSongDataset (used in Classification and Clustering) as well as
for MovieLens and LibraryThing (used in Recommendation) produces superior results. Against our expectations,
however, DBpedia shows a competitive performance for the independent datasets of the Recommendation task.

6. Conclusion and Outlook

6.1. Summary

With CaLiGraph, we presented a KG created from Wikipedia categories and lists, offering a rich taxonomy with
semantic class descriptions and entities going far beyond Wikipedia articles. We gave an overview of its extraction
framework and summarized relevant information for potential users of the KG. The comparison of CaLiGraph to
other popular public KGs shows that, despite its wealth in classes and entities, it can be favourable to use CaLiGraph
in some scenarios, but there is no one-size-fits-all solution.

6.2. Limitations

In Section 2.3, we identified several challenges in the field of AKGC. We managed to make a step forward for
some of them, while others are yet to be addressed. For CaLiGraph, we can formulate some of these limitations in
more detail:
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Table 5
Evaluation results of the KGs given as average rank per task type. The results are computed for a precision-oriented mapping scenario and a
recall-oriented mapping scenario. The best results are bold, second-best are underlined.

Task Type DBP16 DBP22 YAGO3 CLGv1 CLGv2 CLGv3

Precision-oriented mapping

Classification 1.8 2.2 3.5 5.0 5.3 3.2
Regression 3.0 3.2 3.6 4.0 5.6 1.6
Clustering 2.3 2.8 2.8 4.4 4.4 4.3
Document Similarity 4.0 6.0 1.3 3.0 1.7 5.0
Entity Relatedness 2.0 1.0 4.0 5.0 6.0 3.0
Semantic Analogies 1.8 3.5 4.0 3.8 6.0 2.0
Recommendation 2.7 3.3 4.3 3.0 5.3 2.3
Recall-oriented mapping

Classification 3.3 5.1 3.4 2.3 4.4 2.4
Regression 5.6 5.4 3.0 2.2 3.6 1.2
Clustering 2.5 4.5 3.0 3.5 3.9 3.7
Document Similarity 4.0 6.0 1.0 2.3 2.7 5.0
Entity Relatedness 1.0 3.0 4.0 5.0 6.0 2.0
Semantic Analogies 1.8 3.8 4.0 3.0 6.0 2.5
Recommendation 2.0 3.3 5.0 4.0 5.0 1.7

Error Accumulation. AKGC in CaLiGraph is executed as a pipeline of automatic processing steps. Errors in early
steps are propagated to subsequent steps and may create distortions with a high impact on the outcome. For example,
in the recent version of CaLiGraph, an extraction error made Place in Myanmar a superclass of Village (explaining
its large proportion in Figure 5). As this error occurred during OC, it affects all steps of KGP.

Entity Ambiguity. Ambiguity is one of the biggest challenges when identifying and disambiguating mentions of
entities in text. As information about long-tail entities during extraction is sparse, the quality of such entities in
CaLiGraph is not satisfactory yet.

Wikipedia Dependency. Currently, the CaLiGraph extraction targets a single version of Wikipedia only. Any in-
formation not contained in that version can consequently not be part of the KG. Further, we have no direct influence
on the content of Wikipedia and hence have to deal with potential problems only during extraction.

DBpedia Dependency. CaLiGraph builds on the ontology of DBpedia, taking over all types and properties. While
types are extended, the set of properties remains fixed, and knowledge can only be modelled within the bounds
defined by the DBpedia ontology.

6.3. Future Work

For future work in CaLiGraph, the focus is divided between improving the quality of the existing KG and extend-
ing its coverage to incorporate more knowledge.

Improving Extraction Quality. While error propagation is currently problematic in CaLiGraph, it is also a chance
to improve the overall quality of the graph by gradually improving the individual parts. Fixing errors in the early
stages of the extraction may positively influence the complete extraction pipeline. To that end, we plan to implement
a more rigorous error-monitoring system to capture errors early and monitor all parts of the pipeline to identify
opportunities for improvement.

As a concrete improvement, we plan to replace or augment the taxonomy induction step of Section 3.2.2 with a
Transformer model that is tuned on identifying subclass relationships (e.g., from Hertling and Paulheim [59]). This
may improve the class hierarchy substantially as we currently rely on hypernym information manually combined
from multiple sources.
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We plan to put more emphasis on the dependency of SEs expressed through co-occurrence. This might be par-
ticularly helpful when trying to disambiguate entities in text. We are only implicitly using the context of an entity
mention during disambiguation. Explicitly providing information about related entities might improve the disam-
biguation capabilities of NASTyLinker.

Extending KG Coverage. We plan to extend CaLiGraph in the three dimensions of ontology, assertions and data
sources. To extend the ontology, we can discover additional axioms by extending the Cat2Ax approach from cat-
egories to list pages. Additionally, we may derive more axioms by relying on common sense knowledge from
another KG (e.g., CSKG [60]). We further plan to discover new properties by using the existing data in CaLiGraph
as a foundation to automatically exploit dependencies between co-occuring entities where the relation underlying
the co-occurrence pattern is not in the ontology yet.

Like YAGO, we can extend the coverage of CaLiGraph to more dimensions like temporal or geospatial infor-
mation. As the KG currently reflects only the point in time when the Wikipedia dump was created, we consider
incorporating edits in Wikipedia pages to reflect the temporal dimension. Alternatively, we explore the possibility
of extracting CaLiGraph from multiple dumps and merging the results to include a temporal perspective.

CaLiGraph currently targets only the English Wikipedia chapter. An extension to other languages would have the
obvious benefit of providing multilingual labels. Still, all the automatic extraction mechanisms may be able to derive
much more complementary information from the diverse language chapters. The main challenge here is to merge
the information derived from all the language chapters into a unified KG. Finally, we may extend the extraction to
other data sources. As most extraction methods in the pipeline are built for encyclopedic content, a first step is to
follow the example of DBkWik and target other Wikis than Wikipedia.

Appendix A. Data Sources for Knowledge Graph Comparison and Evaluation

For the comparison and evaluation of the KGs, we used the following data:

A.1. CaLiGraph

Version 1.1.0 (based on Wikipedia from 2016)

– https://zenodo.org/record/4050308/files/caligraph-ontology.nt.bz2
– https://zenodo.org/record/4050308/files/caligraph-ontology_dbpedia-mapping.nt.bz2
– https://zenodo.org/record/4050308/files/caligraph-ontology_provenance.nt.bz2
– https://zenodo.org/record/4050308/files/caligraph-instances_types.nt.bz2
– https://zenodo.org/record/4050308/files/caligraph-instances_transitive-types.nt.bz2
– https://zenodo.org/record/4050308/files/caligraph-instances_labels.nt.bz2
– https://zenodo.org/record/4050308/files/caligraph-instances_relations.nt.bz2
– https://zenodo.org/record/4050308/files/caligraph-instances_dbpedia-mapping.nt.bz2
– https://zenodo.org/record/4050308/files/caligraph-instances_provenance.nt.bz2

Version 2.1.1 (based on Wikipedia from 2020)

– https://zenodo.org/record/5524052/files/caligraph-ontology.nt.bz2
– https://zenodo.org/record/5524052/files/caligraph-ontology_dbpedia-mapping.nt.bz2
– https://zenodo.org/record/5524052/files/caligraph-ontology_provenance.nt.bz2
– https://zenodo.org/record/5524052/files/caligraph-instances_types.nt.bz2
– https://zenodo.org/record/5524052/files/caligraph-instances_transitive-types.nt.bz2
– https://zenodo.org/record/5524052/files/caligraph-instances_labels.nt.bz2
– https://zenodo.org/record/5524052/files/caligraph-instances_relations.nt.bz2
– https://zenodo.org/record/5524052/files/caligraph-instances_dbpedia-mapping.nt.bz2
– https://zenodo.org/record/5524052/files/caligraph-instances_provenance.nt.bz2

https://zenodo.org/record/4050308/files/caligraph-ontology.nt.bz2
https://zenodo.org/record/4050308/files/caligraph-ontology_dbpedia-mapping.nt.bz2
https://zenodo.org/record/4050308/files/caligraph-ontology_provenance.nt.bz2
https://zenodo.org/record/4050308/files/caligraph-instances_types.nt.bz2
https://zenodo.org/record/4050308/files/caligraph-instances_transitive-types.nt.bz2
https://zenodo.org/record/4050308/files/caligraph-instances_labels.nt.bz2
https://zenodo.org/record/4050308/files/caligraph-instances_relations.nt.bz2
https://zenodo.org/record/4050308/files/caligraph-instances_dbpedia-mapping.nt.bz2
https://zenodo.org/record/4050308/files/caligraph-instances_provenance.nt.bz2
https://zenodo.org/record/5524052/files/caligraph-ontology.nt.bz2
https://zenodo.org/record/5524052/files/caligraph-ontology_dbpedia-mapping.nt.bz2
https://zenodo.org/record/5524052/files/caligraph-ontology_provenance.nt.bz2
https://zenodo.org/record/5524052/files/caligraph-instances_types.nt.bz2
https://zenodo.org/record/5524052/files/caligraph-instances_transitive-types.nt.bz2
https://zenodo.org/record/5524052/files/caligraph-instances_labels.nt.bz2
https://zenodo.org/record/5524052/files/caligraph-instances_relations.nt.bz2
https://zenodo.org/record/5524052/files/caligraph-instances_dbpedia-mapping.nt.bz2
https://zenodo.org/record/5524052/files/caligraph-instances_provenance.nt.bz2


N. Heist and H. Paulheim / CaLiGraph: A Knowledge Graph from Wikipedia Categories and Lists 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Version 3.1.1 (based on Wikipedia from 2022)

– https://zenodo.org/record/8068322/files/caligraph-ontology.nt.bz2
– https://zenodo.org/record/8068322/files/caligraph-ontology_dbpedia-mapping.nt.bz2
– https://zenodo.org/record/8068322/files/caligraph-ontology_provenance.nt.bz2
– https://zenodo.org/record/8068322/files/caligraph-instances_types.nt.bz2
– https://zenodo.org/record/8068322/files/caligraph-instances_transitive-types.nt.bz2
– https://zenodo.org/record/8068322/files/caligraph-instances_labels.nt.bz2
– https://zenodo.org/record/8068322/files/caligraph-instances_relations.nt.bz2
– https://zenodo.org/record/8068322/files/caligraph-instances_dbpedia-mapping.nt.bz2
– https://zenodo.org/record/8068322/files/caligraph-instances_provenance.nt.bz2

A.2. DBpedia

Version 2016-10 (English Chapter)

– http://downloads.dbpedia.org/2016-10/dbpedia_2016-10.nt
– http://downloads.dbpedia.org/2016-10/core-i18n/en/instance_types_en.ttl.bz2
– http://downloads.dbpedia.org/2016-10/core-i18n/en/instance_types_transitive_en.ttl.bz2
– http://downloads.dbpedia.org/2016-10/core-i18n/en/labels_en.ttl.bz2
– http://downloads.dbpedia.org/2016-10/core-i18n/en/mappingbased_literals_en.ttl.bz2
– http://downloads.dbpedia.org/2016-10/core-i18n/en/mappingbased_objects_en.ttl.bz2

Version 2022-09 (English Chapter)

– https://databus.dbpedia.org/ontologies/dbpedia.org/ontology/2022.09.02-100003/ontology_type=parsed.nt
– https://downloads.dbpedia.org/repo/dbpedia/mappings/instance-types/2022.09.01/instance-types_lang=en_specific.ttl.bz2
– https://downloads.dbpedia.org/repo/dbpedia/mappings/instance-types/2022.09.01/instance-types_lang=en_transitive.ttl.bz2
– https://downloads.dbpedia.org/repo/dbpedia/generic/labels/2022.09.01/labels_lang=en.ttl.bz2
– https://downloads.dbpedia.org/repo/dbpedia/mappings/mappingbased-literals/2022.09.01/mappingbased-literals_lang=en.ttl.

bz2
– https://downloads.dbpedia.org/repo/dbpedia/mappings/mappingbased-objects/2022.09.01/mappingbased-objects_lang=en.

ttl.bz2

A.3. YAGO

Version 3.1

– http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoTransitiveType.ttl.7z
– http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoSchema.ttl.7z
– http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoTypes.ttl.7z
– http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoTaxonomy.ttl.7z
– http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoLiteralFacts.ttl.7z
– http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoLabels.ttl.7z
– http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoDateFacts.ttl.7z
– http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoFacts.ttl.7z
– http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoDBpediaInstances.ttl.7z

Appendix B. KGrEaT Evaluation Results

In this section, we provide additional details for the evaluation with KGrEaT. Table 6 describes the coverage of
the KGs in the experiment w.r.t. the individual datasets. Tables 7 and 8 give the detailed performance numbers per
dataset for the precision- and recall-oriented scenario, respectively.
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https://downloads.dbpedia.org/repo/dbpedia/generic/labels/2022.09.01/labels_lang=en.ttl.bz2
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Table 6
Dataset coverage (per cent) of the KGs evaluated with KGrEaT for the precision- and recall-oriented mapping scenarios. Datasets marked with
a dagger are independent of DBpedia.

Dataset DBP16 DBP22 YAGO3 CLGv1 CLGv2 CLGv3
P R P R P R P R P R P R

Cities 97 96 87 88 96 100 95 100 97 100 93 100
Forbes 87 87 81 81 99 100 92 100 97 100 91 100
AAUP 99 98 88 88 99 100 95 100 99 100 94 99
MetacriticMovies 98 98 95 94 90 100 100 100 100 100 98 100
MetacriticAlbums 99 99 97 97 95 100 97 100 99 100 96 100
MillionSongDataset† 6 22 6 21 11 51 10 51 20 60 20 64
Teams 100 100 94 94 77 83 99 100 95 97 94 95
ComicCharacters† 0 22 0 17 0 59 0 53 0 57 0 62
CitiesAndCountries 100 100 95 95 96 100 100 100 97 100 96 100
Cities2000AndCountries 100 100 93 93 94 99 100 100 96 100 94 100
CitiesMoviesAlbumsCompaniesUni 90 88 85 85 94 100 96 99 96 93 88 99
LP50 90 90 88 88 83 99 92 100 89 100 92 100
KORE 100 100 100 100 100 100 100 100 100 100 100 100
CurrencyEntities 100 100 93 93 100 100 100 100 97 100 97 100
CityStateEntities 96 97 97 97 99 100 98 100 97 100 82 100
CapitalCountryEntities 100 100 100 100 100 100 100 100 100 100 100 100
AllCapitalCountryEntities 99 99 96 97 99 100 98 100 97 99 96 99
MovieLens† 16 62 15 60 14 92 16 95 16 95 15 96
LibraryThing† 18 42 18 41 21 84 22 86 27 91 28 92
LastFm† 94 94 91 92 94 99 94 99 94 99 93 99
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Table 7
KGrEaT evaluation results of the KGs aggregated by task type, dataset and metric for the precision-oriented mapping scenario.

Task Type Dataset Metric DBP16 DBP22 YAGO3 CLGv1 CLGv2 CLGv3
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Regression Cities RMSE ↓ 0.495 0.500 0.545 0.535 0.606 0.511
Forbes RMSE ↓ 0.582 0.587 0.582 0.596 0.605 0.576
AAUP RMSE ↓ 0.576 0.528 0.571 0.580 0.591 0.524
MetacriticMovies RMSE ↓ 0.469 0.467 0.465 0.460 0.466 0.459
MetacriticAlbums RMSE ↓ 0.462 0.533 0.538 0.534 0.549 0.514

Clustering Teams Accuracy ↑ 0.996 0.999 0.994 0.995 0.997 0.998
ARI ↑ 0.259 0.333 0.063 0.052 0.039 0.249
NMI ↑ 0.215 0.285 0.056 0.042 0.030 0.211
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Table 8
KGrEaT evaluation results of the KGs aggregated by task type, dataset and metric for the recall-oriented mapping scenario.

Task Type Dataset Metric DBP16 DBP22 YAGO3 CLGv1 CLGv2 CLGv3
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ComicCharacters Accuracy ↑ 0.119 0.081 0.478 0.484 0.476 0.475
MillionSongDataset Accuracy ↑ 0.156 0.139 0.584 0.584 0.588 0.589

Regression Cities RMSE ↓ 1.318 1.203 0.558 0.539 0.623 0.516
Forbes RMSE ↓ 1.137 1.156 0.595 0.596 0.607 0.595
AAUP RMSE ↓ 1.347 1.227 0.572 0.578 0.596 0.540
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MetacriticAlbums RMSE ↓ 0.962 1.035 0.547 0.534 0.546 0.518
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