
Path-based and triplification approaches to

mapping data into RDF:

user behaviours and recommendations

Paul Warrena,1 , Paul Mulhollanda, Enrico Dagaa, Luigi Asprinob
aKnowledge Media Institute, The Open University, Milton Keynes, MK7 6AA, U.K.
bUniversity of Bologna, Via Zamboni 32, Bologna, Italy

Abstract. Mapping complex structured data to RDF, e.g. for the creation of linked data, requires a clear understanding of the

data, but also a clear understanding of the paradigm used by the mapping tool. We illustrate this with an empirical study com-
paring two different mapping paradigms from the perspective of usability, in particular from the perspective of user errors.

One paradigm uses path descriptions, e.g. JSONPath or XPath, to access data elements; the other uses a default triplification

which can be queried, e.g. with SPARQL. As an example of the former, the study used YARRRML, to map from CSV, JSON

and XML to RDF. As an example of the latter, the study used an extension of SPARQL, SPARQL Anything, to query the same
data and CONSTRUCT a set of triples. Our study was a qualitative one, based on observing the kinds of errors made by par-

ticipants using the two paradigms with identical mapping tasks, and using a grounded approach to categorize these errors.

Whilst there are difficulties common to the two paradigms, there are also difficulties specific to each paradigm. For each para-

digm, we present recommendations which help ensure that the mapping code is consistent with the data and the desired RDF.
We propose future developments to reduce the difficulty users experience with YARRRML and SPARQL Anything. We also

make some general recommendations about the future development of mapping tools and techniques. Finally, we propose

some research questions for future investigation.

Keywords: Mapping to RDF, YARRRML, SPARQL Anything, Usability

1 Corresponding author. Email: paul.warren@open.ac.uk

1. Introduction

Structured data exists in a wide variety of formats,

e.g. CSV, JSON, XML, and HTML. The need to

convert this to RDF, for the creation of linked data,

has stimulated the development of a variety of map-

ping techniques. There are two broad paradigms.

One uses path descriptions, e.g. with JSONPath or

XPath, to identify data elements. The other uses a

default triplification which can be queried, e.g. with

SPARQL.

An example of the use of path descriptions is

R2RML [1], which was developed to map from rela-

tional database format to RDF. This was extended to

RML [2], which also maps from CSV, TSV, JSON

and XML. For the latter two formats, RML makes

use of JSONPath and XPath. Subsequently,

YARRRML, [4], has been developed as a more hu-

man-friendly representation of R2RML and RML

rules. Rules written in YARRRML are translated to

RML, which is then used to map the source data to

RDF.

An example of the use of triplification is SPARQL

Anything [5], which enables SPARQL to be used

with structured data, e.g. CSV, JSON, XML, HTML,

TXT and Markdown. The SERVICE operator is

used to identify the relevant document and a default

triplification of the whole document is created auto-

matically, the structure of which depends on the for-

mat of the document. The WHERE clause is used to

query the triplification. The CONSTRUCT clause is

then used to create the required target RDF. Alterna-

tively, a SELECT clause can be used to output query

results rather than a graph, or an ASK clause can be

used to determine the presence of matches to a query

pattern.

The object of this study was to investigate the dif-

ficulties users experience with these two paradigms.

Nielsen [6] defines usability as having five compo-

nents: learnability, efficiency, memorability, errors

and satisfaction. Our chief focus is on errors. How-

ever, many of our participants had little experience of

YARRRML or SPARQL Anything, and to a consid-

erable extent we were studying the learning experi-

ence. We also believe that observation of common

errors gives insight into the conceptual difficulties

which users have with these mapping paradigms. It

also gives an insight into the intuitiveness of the tools,

since the difference between what the user intuitively

does, and what is required of the user, is a source of

error.

We chose YARRRML as an example of the use of

path descriptions because we believe it to represent

the state-of-the-art from the viewpoint of usability of

RML mappings generation; see Iglesias et al. [7] for

a recent comparison of user-friendly serializations for

creating RDF. Similarly, we believe that SPARQL

Anything represents the state-of-the-art for the tripli-

fication approach. Our goal was to recommend:

i. rules and guidelines for users to create

YARRRML and SPARQL Anything code;

ii. future developments to YARRRML and

SPARQL Anything to improve usability;

iii. further areas of investigation and development

for mapping techniques generally.

With regard to (i), we wished to investigate

whether there are some use cases which are more

appropriate for one or other of the two approaches.

Section 2 describes some related work on mapping

tools. Section 3 gives an overview of the study and

discusses the methodology used. Section 4 describes

the questions and the data used. Sections 5 and 6

describe solutions to these questions for YARRRML

and SPARQL Anything, and explain the two ap-

proaches. Sections 7 and 8 describe the participants’

behaviours when using YARRRML and SPARQL

Anything, in particular the mistakes they made. Sec-

tion 9 compares the problems experienced with the

two paradigms. Section 10 discusses the limitations

of the study. Section 11 makes some recommenda-

tions, addressing (i) and (ii) above. Finally, Section

12 draws some general conclusions and addresses

(iii), including presenting some research questions

for future investigation.

2. Related work

Many of the first attempts to map from structured

formats to RDF worked with the relational model; [8]

provides a comparison of some of these early ap-

proaches. [9] and [10] provide references to some

more recent approaches for mapping to RDF. An

example of an early approach is the use of the map-

ping language R2RML. In Section 1 we discussed

how R2RML was developed into RML2 , with the

inclusion of a number of other source data formats,

e.g. JSON and XML, and then into the more user-

friendly YARRRML. In the following subsections,

we describe a number of approaches, chosen to illus-

trate three themes: the extension of SPARQL, auto-

matic triplification, and usability. In the final subsec-

tion of this section, we discuss the qualitative, obser-

vational approach we have used, and compare this to

approaches used by other usability researchers in the

Semantic Web community and elsewhere.

2.1. Extending SPARQL

Triplify was an early development which can be

seen as a forerunner of SPARQL-based approaches

[10]. Triplify used SQL queries to create RDF triples

from a relational database. An advantage of this ap-

proach is the widespread familiarity with SQL, just

as the subsequent SPARQL-based approaches benefit

from a widespread familiarity with SPARQL.

Tarql3 (SPARQL for tables) uses SPARQL syntax

to query CSV directly [12]. Where a table has a first

row containing headers, the elements of this row are

used as variable names, otherwise ?a, ?b etc are used.

ASK, SELECT and CONSTRUCT can then be used

to query the CSV. With CONSTRUCT, users can

create a triplification consistent with a required on-

tology.

SML (Sparqlification Mapping Language) used

the syntax of the SPARQL CONSTRUCT clause to

define mappings from a relational database to RDF

[13]. The variables used in the CONSTRUCT clause

are themselves equated to expressions derived from

the relational database tables. The claim is that the

SML syntax is a more compact syntax than R2RML.

An evaluation showed that participants less experi-

enced in R2RML preferred SML, found it more read-

able, and took less time to undertake a number of

mapping tasks [13].

Whereas SML was concerned with translation

from relational databases, SPARQL-Generate ex-

tends SPARQL to map to RDF from a variety of

formats, e.g. CSV, JSON, XML, and HTML. [14]

2 RML has now been drafted as a potential specification [11].
3 https://github.com/tarql/tarql/; see also http://tarql.github.io/

for documentation.

provides an introduction to SPARQL-Generate, in-

cluding a comparison with other approaches, whilst

[15] provides a more detailed, formal description. In

summary, SPARQL-Generate replaces the CON-

STRUCT clause with a GENERATE clause and con-

tains an ITERATE clause to equate variables to data

elements, using path statements.

2.2. Automatic triplification

All the approaches discussed in this paper are used

to create RDF triples. In that sense, they are exam-

ples of triplification. However, in this subsection we

are concerned with approaches which create triplifi-

cations automatically or semi-automatically.

[16] describes a semi-automatic system for tripli-

fying Wikipedia tables. The system “mines” DBpe-

dia for predicates. They report a precision of 52.2%

and believe this could be greatly improved through

machine-learning. [17] describes a semi-automatic

system, StdTrip, for transforming database schemas

and instances to RDF triples, with particular empha-

sis on reuse of existing vocabularies. The paper

makes a comparison with Triplify (discussed in the

last subsection) and claims that StdTrip offers more

support to users during the conceptual modelling

phase. [18] describes a more recent system,

CSV2RDF, for converting CSV files to RDF. The

system takes account of embedded metadata and in-

cludes a GUI interface which can be used for modify-

ing that metadata. The results of an experimental

study indicate that the method is approximately linear

in time. [18] also includes a relatively comprehen-

sive survey of related work. [19] discusses the chal-

lenges of using a mapping language, such as RML, to

match tabular data to knowledge graphs such as

DBpedia and Wikidata. These challenges are ana-

lyzed in the context of the SemTab challenge4. Gen-

erally, automatic knowledge graph construction re-

quires an iterative approach, and this might need to

be taken account of in the further development of

mapping languages. As an alternative, [19] suggests

the declarative descriptions of workflows; presuma-

bly these would be used to create the iteration.

4 https://www.cs.ox.ac.uk/isg/challenges/sem-tab/

An approach closer to SPARQL Anything is de-

scribed in [20]. The system converts geographic in-

formation described in JSON using a library

(JSON2RDF) to RDF. The goal here is not to pro-

duce an end triplification, “but rather to automatical-

ly produce some kind of RDF that can then be trans-

formed into a useful form simply using SPARQL

CONSTRUCT queries”.

SPARQL Anything has a similar philosophy to

[20], but works with a range of formats, e.g. CSV,

JSON, XML and HTML. It creates a triplification

which can then be queried with ASK, SELECT and

CONSTRUCT queries. As with Tarql and [20], the

CONSTRUCT query enables a triplification to be

created consistent with a desired ontology. [21]

demonstrates theoretically that the SPARQL Any-

thing approach is applicable to any file format ex-

pressible in BNF syntax as well as any relational da-

tabase. The paper also compares the usability and

performance of SPARQL Anything to other ap-

proaches, finding that it is comparable to other state-

of-the-art tools.

SPARQL Anything is similar to SPARQL-

Generate in that they are both extensions of SPARQL.

However, SPARQL-Generate does not create a de-

fault triplification, but is a path-based approach mak-

ing use of mappings defined similarly to mappings in

YARRRML, i.e. with path statements written in

JSONPath, XPath etc.

Figure 1 summarizes the three approaches to tripi-

fication: wholly manual approaches; semi-automatic

approaches targeted at a pre-defined knowledge

graph; and two-phase approaches with an initial

wholly automatic phase followed by a manual phase

using a SPARQL CONSTRUCT query.

2.3. Usability

The observation that R2RML is not user-friendly

was the motivation for YARRRML [3]. The same

observation has also motivated a number of graphical

approaches. One example of such an approach is

Juma, a block paradigm language designed initially

for representing R2RML mappings [9], and then ex-

tended to SML [10]. Juma reduces syntax errors

because it only permits the connection of blocks that

create a valid mapping.

Fig. 1. three approaches to triplification: manual; (semi-)automatic; and automatic phase followed by a manual phase

There have been a few usability studies looking at

mapping techniques. A study of Juma indicated that

this approach could be used to create accurate map-

pings and that it achieved “good results in standard

usability evaluations” [22]. [23] compared the men-

tal workload associated with using R2RML and Juma,

using two self-assessment techniques, Workload Pro-

file [24] and NASA-TLX [25]. The conclusion was

that there was little difference in mental workload but

that Juma offered appreciably better performance.

[26] compared YARRRML, SPARQL-Generate,

and ShExML; the last of these being a language

based on Shapes Expressions (ShEx). The compari-

son required participants to map from a JSON file

and an XML file onto an RDF graph, and used a

combination of quantitative and qualitative methods.

For the former, measurements included the time to

perform a task, number of keystrokes and distance

travelled by the mouse. For the latter, participants’

feedback relating to usability was sought on a 5-point

Likert scale. The study found that “ShExML users

tend to perform better than those of YARRRML and

SPARQL-Generate”. More specifically, SPARQL-

Generate was particularly difficult for first-time users.

When comparing YARRRML and ShExML, it ap-

peared that the superior performance of the latter was

caused by details of syntax, e.g. “the use of keywords

that made the language more self-explanatory and the

modularity used on iterators which reminds of object-

oriented programming languages”. It is worth point-

ing out that the use-cases employed in [23] and [26]

were considerably simpler than those used in our

study, e.g. they did not have the kind of hierarchical

data structures which we describe in Section 4.

We have focussed here on usability in the sense of

Nielsen’s [6] five components. There has also been

work to understand the computational requirements

of various approaches. [15] employed the simple

use-case of mapping from CSV documents to RDF to

compare the compute time requirements of RML and

SPARQL-Generate. They found that SPARQL-

Generate became faster for more than approximately

1,500 CSV rows, although observing that this will

depend upon the implementation. They argued that,

given the competitive performances, “ease of imple-

mentation and use is the key benefit of our approach

[i.e. SPARQL-Generate]”. In any case, compute-

time equivalence for different approaches further

strengthens the case for usability studies.

2.4. Studying user behaviour

The work cited in subsection 2.3 has largely used

quantitative approaches, including Likert-style ques-

tionnaires, to study usability. [22] looked at accuracy,

times to complete tasks, and also the results of post-

task questionnaires assessing, e.g. system usefulness;

although they also held informal post-task interviews.

Whilst not an observational study in our sense, they

do appear to have kept a note of the help participants

required; the most commonly required help was “on

how to interlink triples maps with the use of the par-

ent triples map construct”. [23] was a quantitative

study using post-task questionnaires to assess mental

workload. [26] used a post-task questionnaire, along

with other measures, to assess acceptance of data

integration languages.

Within the Semantic Web community, there ap-

pears to have been little use of qualitative, observa-

tional studies. One notable exception is provided by

Pienta et al. [27], who used a think-aloud study to

explore how participants reacted to novel features in

their system for visually exploring graph query re-

sults. In software engineering research, observation-

al studies have been used, e.g. to investigate how

developers respond to problems [28]; whilst in HCI

observational studies are also used [29]. As Bland-

ford [29] observes “people’s ability to self-report

facts accurately is limited”. We believe observation-

al studies complement both quantitative studies and

self-report qualitative studies by providing insight

into how users actually behave, rather than how they

think they behave; and also insight into what they are

thinking as they carry out tasks, rather than what they

subsequently believe they thought.

3. Overview of the study and methodology

The study was a between-participants study with

two conditions, i.e. one set of participants answered

questions using YARRRML, the other set answered

questions using SPARQL Anything. There were

eight questions and these were the same in both con-

ditions, in the sense that participants were presented

with the same data files and with the same objectives.

There were nine participants in the YARRRML con-

dition, and nine in the SPARQL Anything condition.

Participants were recruited from the Open University

and from two W3C groups: the Knowledge Graph

Construction Community 5 and the SPARQL 1.2

Community6. Participants were free to choose wheth-

er to work with SPARQL Anything or YARRRML.

Some days before the study, participants were pro-

vided with a tutorial which explained all they needed

to know about the technique they were to use. They

were also provided with a document which explained

how to download the necessary software and con-

tained the eight questions which they would be re-

quested to answer during the study. They were also

sent the data files, as discussed in Section 4, and the

question files, as discussed in Sections 5 and 6 7 .

They were requested not to look at these questions

until the session. In recruiting participants, it was

explained that the sessions would last one hour. At

the beginning of each session, it was also explained

that they might not answer all the questions in one

hour, and that that was perfectly acceptable. Partici-

pants were also made aware that the study has been

approved by the Open University’s Human Research

Ethics Committee (HREC/4195). Participants signed

a consent form in which, apart from agreeing to take

5 https://www.w3.org/community/kg-construct/
6 https://www.w3.org/community/sparql-12/
7 The tutorial, the question documents, and all the files sent out

to participants are available at:

https://ordo.open.ac.uk/articles/online_resource/Materials_for_

mapping_study_structured_data_to_RDF/21476883

part in the study, they were also free to agree that

their comments be quoted anonymously, or to with-

hold comments from publication. All agreed to their

comments being quoted.

Before the study, participants were also sent a

brief survey asking them about their previous experi-

ence with relevant technologies, and asking for some

basic demographic information. Most participants

were from Europe, with a few from the Americas and

one from India. Ages varied from under thirty to

over seventy, peaking at 40 to 49 years. There were

10 male and 8 female participants. At least six of the

SPARQL Anything participants had a little, or more

than a little, knowledge of SPARQL; only three had

any knowledge of SPARQL Anything. Five of the

YARRRML participants had a little, or more than a

little, knowledge of RML or R2RML; only three had

any knowledge of YARRRML. Table 5, in Section

10, lists the median knowledge of the two sets of

participants in each of the relevant technologies.

Eight of the participants classified themselves as

software engineers; five as knowledge engineers;

three as ‘other’; and one did not specify role.

Each study was conducted over Microsoft Teams,

with participants sharing their screen with the exper-

imenter. There was a great deal of interaction be-

tween the participants and the experimenter; many

participants found the exercises difficult and required

assistance. This assistance ranged from ‘hints’, e.g.

pointing out the presence of a square bracket denot-

ing an array in JSON, to provision of the solution,

which was then explained. Participants were also

provided with files containing the required output

RDF, although only a few participants referred to

these. Only three of SPARQL Anything and four of

the YARRRML participants completed all eight

questions, although most completed the first five.

Many participants spent more than the proposed hour

on the study. Each session was recorded, using the

Microsoft Teams recording facility and then analyzed

using the NVivo qualitative analysis tool8.

For reasons of time, and because we were chiefly

interested in the conceptual, rather than the syntactic,

difficulties experienced by the participants, we did

not expect participants to create solutions from

scratch. Instead, as is explained in more detail in

Sections 5 and 6, we provided partial solutions and

asked participants to complete the gaps.

8 Supplied by QSR International:

https://www.qsrinternational.com

Fig. 2. Flowchart illustrating stages of analysis

We then analyzed the recordings to create a

grounded classification of the observed errors, in-

formed by the participants’ comments10. This was

inevitably a subjective process. We only make ap-

proximate attempts to quantify the importance of

each error. In particular, an appreciable number of

the participants found many of the questions very

difficult and required considerable guidance, making

rigorous quantification of errors impossible.

We initially coded the recordings to identify recur-

ring categories of problems. As Norman observes

[31], it is difficult to understand the participants men-

tal models which are leading to these errors. Howev-

er, we attempted to find categories which went be-

yond observed behaviours and reflected fundamental

participant difficulties. After we had coded all the

recordings, we reviewed the categories and merged

some categories which reflected broadly similar un-

derlying causes. This left us with six categories for

YARRRML and five for SPARQL Anything. More

detail is provided in Sections 7 and 8. Finally, we

used these errors to generate research questions for

further study, as described in Section 12. Figure 2

illustrates the overall process.

4. The questions and the data

Questions 1 and 2 used a slightly modified version

of a JSON file which described an artwork in the

10 For a description of grounded theory, see [30].

Tate Gallery in London11. We chose a real, and rela-

tively complex, example to ensure ecological validity.

The file uses nested objects and arrays to provide

information about the artwork, including characteriz-

ing the file with 13 topics. Each topic has a numeric

id and a name. The topics are arranged hierarchically,

in four levels. At the top-level there is one overarch-

ing topic, with id “1” and name “subject”. We modi-

fied this file slightly: by re-ordering the information,

to present the topic hierarchy top-down, and thereby

improve readability; by renaming the overarching

topic “topicRoot”, to avoid any possibility of confu-

sion with the word “subject” in the context of RDF

triples or YARRRML mappings; by changing the

JSON object “contributors” to “creator” and reducing

the information provided about the creator. Figure 3

shows the resultant file. Note that “id” is reused

three times: for the id of the creator (line 9), for the id

of the artwork (line 13), and for the topic ids (lines

20, 24, etc.).

We omit the details of question 1, which was a

straightforward question to test the basic understand-

ing of the YARRRML or SPARQL Anything ap-

proaches, and to introduce participants to the study

process. Question 2 used the JSON file in conjunc-

tion with the CSV file in Figure 4, which contains

information about five artists. The goal of question 2

was to create one triple with subject the url of the

11 The original JSON file is available at:

https://github.com/tategallery/collection/blob/a51d8afc988ed0835

57e2950f4d0b644e7719f4a/artworks/a/000/a00002-1036.json

artwork, which is contained in the JSON file; and

with object the url describing the artist, which is con-

tained in the CSV file. The predicate of the triple

was specified to be dct:creator. As with all the ques-

tions in the study, the predicate was provided in the

question; only the subject and object were required to

be identified from the data files. This requires cor-

rectly identifying the artist in the CSV file by match-

ing the creator id from line 9 of the JSON file with

the id in the first column of the CSV file.

Questions 3, 4 and 5 all had the same objectives.

Question 3 used the JSON file shown in Figure 3.

The objective was to create two sets of twelve triples.

One set had as subject the url of the artwork, and as

object an IRI of the form tsub:id, where each id was

an id describing the artwork. The predicate was to be

schema:about. We asked participants to exclude id =

1, since this topic is common to all artworks and car-

ries no information. This did have the effect of mak-

ing the questions more difficult. The other twelve

triples required each tsub:id as subject, and the corre-

sponding topic name as object, again excluding id =

1. The predicate was to be schema:name. Question

4 used an XML file created by the authors, and con-

taining the same information as, and a similar struc-

ture to, the JSON file. The file, shown in Figure 5,

was created without using attributes. Question 5 also

used an XML file created by the authors, containing

the same information as, and a similar structure to,

the JSON file. This time, the file, shown in Figure 6,

made maximum use of XML attributes. Note that,

whereas topics (in the plural) is used once in the

JSON and the previous XML files, as shown in Fig-

ures 3 and 5, in this XML file topic (in the singular)

is used on multiple occasions. The order of questions

3, 4 and 5 was varied amongst the participants. Fig-

ure 7 shows the required output for the three ques-

tions.

Questions 6, 7 and 8 also had the same objective,

and used the JSON file and the two XML variants.

The objective of this question was to create 12 triples

describing the links in the topic hierarchy, i.e. the

subject of each triple was a topic, and the object was

a child topic. The predicate was to be skos:broader.

This time, id = 1 was included, so that tsub:1 was the

subject of two triples, with objects tsub:29 and

tsub:91. The order of presentation of these questions

was also varied amongst the participants. Figure 8

shows the required output for these three questions.

Table 1 illustrates the purpose of each of the ques-

tions, or sets of questions, and the implications for

YARRRML and SPARQL Anything.

Table 1 Purpose of questions and required knowledge of YARRRML and SPARQL Anything

Q Purpose of question YARRRML requirements SPARQL Anything
requirements

1 Use the basic features of the
two paradigms. Participants
were required to generate an
output file with triples created
from a CSV and a JSON file.

Understand the structure of a
mapping statement. However,
there was no requirement to
use a condition.

Create predicates of the form
xyz:<CSV column header> and
xyz:<JSON name>

2 Create a conditional join. Use equal function, identifying
which parameters come from
the source and object map-
pings. See Figure 9.

Understand role of FILTER
statement to create a join, and
of IRI() function to create an
IRI from a string. See Fig. 12.

3, 4, 5 Negotiate a hierarchical data
structure, creating two sets of
triples: one with items (ids
and names) at the same level;
the other associating a stated
item (artwork) with all the
topic ids in the hierarchy.

Use of JSONPath, XPath and
recursive descent. See Figure
10.

Understand the difference be-
tween the triplification of JSON
and XML. In particular, under-
stand the different treatment
of XML tags and attributes.
Understand where one can
use, e.g. rdf:_1, and where it is
necessary to use a variable to
bind to rdf:_1, rdf:_2 etc. See
Figure 13.

6, 7, 8 Negotiate a hierarchical data
structure, linking each id with
its immediate ‘children’ ids.

Similar to questions 3, 4, 5. However, care needs to be taken to
link parent ids only to immediate children ids, i.e. not all chil-
dren ids. See Figures 11 and 14.

1 { 44 "id": 177,

2 "acno": "A00002", 45 "name": "actions: expressive",

3 "acquisitionYear": 1922, 46 "children": [

4 "creator": 47 {

5 { 48 "id": 273,

6 "name": "Robert Blake", 49 "name": "comforting"

7 "birthYear": 1762, 50 },

8 "gender": "Male", 51 {

9 "id": 38 52 "id": 544,

10 }, 53 "name": "embracing"

11 "creditLine": "Presented by Mrs John Richmond 1922", 54 },

12 "height": "213", 55 {

13 "id": 1036, 56 "id": 2653,

14 "medium": "Graphite on paper", 57 "name": "recoiling"

15 "title": "Two Drawings of Frightened Figures, Probably for

\u2018The Approach of Doom\u2019",

58 }

16 "units": "mm", 59]

17 "url": "http://www.tate.org.uk/art/artworks/blake-two-

drawings-of-frightened-figures-probably-for-the-approach-of-

doom-a00002",

60 },

18 "width": "311", 61 {

19 "topics": { 62 "id": 95,

20 "id": 1, 63 "name": "adults",

21 "name": "topicRoot", 64 "children": [

22 "children": [65 {

23 { 66 "id": 451,

24 "id": 29, 67 "name": "figure"

25 "name": "emotions, concepts and ideas", 68 }

26 "children": [69]

27 { 70 },

28 "id": 31, 71 {

29 "name": "emotions and human qualities", 72 "id": 97,

30 "children": [73 "name": "groups",

31 { 74 "children": [

32 "id": 2815, 75 {

33 "name": "fear" 76 "id": 799,

34 } 77 "name": "group"

35] 78 }

36 } 79]

37] 80 }

38 }, 81]

39 { 82 }

40 "id": 91, 83]

41 "name": "people", 84 }

42 "children": [85 }

43 {

Fig. 3. JSON file used in questions 1, 2, 3 and 6 (artwork.json)

1 id,name,gender,dates,yearOfBirth,yearOfDeath,placeOfBirth,placeOfDeath,url

2 37,"Blake, Benjamin",Male,c.1790–c.1830,1790,1830,,,http://www.tate.org.uk/art/artists/benjamin-blake-37

3 762,"Blake, John",Male,born 1945,1945,,"Rhode Island, United States",,http://www.tate.org.uk/art/artists/john-blake-762

4 763,"Blake, Peter",Male,born 1932,1932,,"Dartford, United Kingdom",,http://www.tate.org.uk/art/artists/peter-blake-763

5 38,"Blake, Robert",Male,1762–1787,1762,1787,"London, United Kingdom","London, United Kingdom",

http://www.tate.org.uk/art/artists/robert-blake-38

6 39,"Blake, William",Male,1757–1827,1757,1827,"London, United Kingdom","London, United Kingdom",

http://www.tate.org.uk/art/artists/william-blake-39

Fig. 4. CSV file used in question 2 (artist_data.csv)

1 <artwork> 44 <id>177</id>

2 <acno>A00002</acno> 45 <name>actions: expressive</name>

3 <acquisitionYear>1922</acquisitionYear> 46 <children>

4 <creator> 47 <item>

5 <name>Robert Blake</name> 48 <id>273</id>

6 <birthYear>1762</birthYear> 49 <name>comforting</name>

7 <gender>Male</gender> 50 </item>

8 <id>38</id> 51 <item>

9 </creator> 52 <id>544</id>

10 <creditLine>Presented by Mrs John Richmond

1992</creditLine>

53 <name>embracing</name>

11 <height>213</height> 54 </item>

12 <id>1036</id> 55 <item>

13 <medium>Graphite on paper</medium> 56 <id>2653</id>

14 <title>Two Drawings of Frightened Figures, Probably for

'The Approach of Doom'</title>

57 <name>recoiling</name>

15 <units>mm</units> 58 </item>

16 <url>http://www.tate.org.uk/art/artworks/blake-two-

drawings-of-frightened-figures-probably-for-the-approach-of-

doom-a00002</url>

59 </children>

17 <width>311</width> 60 </item>

18 <topics> 61 <item>

19 <item> 62 <id>95</id>

20 <id>1</id> 63 <name>adults</name>

21 <name>topicRoot</name> 64 <children>

22 <children> 65 <item>

23 <item> 66 <id>451</id>

24 <id>29</id> 67 <name>figure</name>

25 <name>emotions, concepts and ideas</name> 68 </item>

26 <children> 69 </children>

27 <item> 70 </item>

28 <id>31</id> 71 <item>

29 <name>emotions and human qualities</name> 72 <id>97</id>

30 <children> 73 <name>groups</name>

31 <item> 74 <children>

32 <id>2815</id> 75 <item>

33 <name>fear</name> 76 <id>799</id>

34 </item> 77 <name>group</name>

35 </children> 78 </item>

36 </item> 79 </children>

37 </children> 80 </item>

38 </item> 81 </children>

39 <item> 82 </item>

40 <id>91</id> 83 </children>

41 <name>people</name> 84 </item>

42 <children> 85 </topics>

43 <item> 86 </artwork>

Fig. 5. XML file used in questions 4 and 7 (artwork.xml)

1 <artwork acno = "A00002" acquisitionYear = "1922" height = "213" id = "1036" medium = "Graphite on paper" units ="mm" width ="311"

2 creditLine = "Presented by Mrs John Richmond 1922" title = "Two Drawings of Frightened Figures, Probably for 'The Approach of Doom'"

3 url ="http://www.tate.org.uk/art/artworks/blake-two-drawings-of-frightened-figures-probably-for-the-approach-of-doom-a00002">

4 <creator name = "Robert Blake" birthYear = "1762" gender = "male" id = "38"/>

5 <topic id = "1" name = "topicRoot">

6 <topic id = "29" name = "emotions, concepts and ideas">

7 <topic id = "31" name = "emotions and human qualities">

8 <topic id = "2815" name = "fear"/>

9 </topic>

10 </topic>

11 <topic id = "91" name = "people">

12 <topic id = "177" name = "actions: expressive">

13 <topic id = "273" name = "comforting"/>

14 <topic id = "544" name = "embracing"/>

15 <topic id = "2653" name = "recoiling"/>

16 </topic>

17 <topic id = "95" name = "adults">

18 <topic id = "451" name = "figure"/>

19 </topic>

20 <topic id = "97" name = "groups">

21 <topic id = "799" name = "group"/>

22 </topic>

23 </topic>

24 </topic>

25 </artwork>

Fig. 6. XML file used in questions 5 and 8 (artworkAttributes.xml)

@prefix schema: <http://schema.org/> .
@prefix tsub: <http://sparql.xyz/example/tate/topic/> .
@prefix xyz: <http://sparql.xyz/facade-x/data/> .

tsub:273 schema:name "comforting" .

tsub:177 schema:name "actions: expressive" .

tsub:29 schema:name "emotions, concepts and ideas" .

tsub:451 schema:name "figure" .

tsub:2815 schema:name "fear" .

tsub:97 schema:name "groups" .

tsub:799 schema:name "group" .

tsub:544 schema:name "embracing" .

tsub:31 schema:name "emotions and human qualities" .

tsub:95 schema:name "adults" .

tsub:2653 schema:name "recoiling" .

<http://www.tate.org.uk/art/artworks/blake-two-drawings-of-frightened-figures-probably-for-the-approach-of-doom-a00002>
schema:about tsub:273 , tsub:95 , tsub:177 , tsub:29 , tsub:544 , tsub:2815 , tsub:31 , tsub:97 , tsub:2653 , tsub:91 , tsub:451 , tsub:799 .

tsub:91 schema:name "people" .

Fig. 7. Required output for questions 3, 4 and 5

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix tsub: <http://sparql.xyz/example/tate/topic/> .

@prefix xyz: <http://sparql.xyz/facade-x/data/> .

tsub:177 skos:broader tsub:2653 , tsub:544 , tsub:273 .

tsub:29 skos:broader tsub:31 .

tsub:97 skos:broader tsub:799 .

tsub:31 skos:broader tsub:2815 .

tsub:95 skos:broader tsub:451 .

tsub:91 skos:broader tsub:97 , tsub:95 , tsub:177 .

tsub:1 skos:broader tsub:91 , tsub:29 .
Fig. 8. Required output for questions 6, 7 and 8

5. YARRRML – the solutions

This section presents solutions to the questions,

using the questions to illustrate the features of

YARRRML. As already noted, we omit the relative-

ly straightforward question 1. A solution to question

2 is illustrated in Figure 912. After the prefix state-

ments, there is a mappings section, which contains

artworkMapping beginning on line 5 and artistMap-

ping beginning on line 19.

Both mappings start by specifying the source file,

in lines 7 and 21. In each case, after the tilde, it is

stated how the file should be interpreted, as JSON in

the first case and as a CSV file in the second. At the

end of line 7 is a dollar sign, in quotes. This is re-

ferred to as an iterator. It is a JSONPath expression,

indicating over which parts of the JSON file the

YARRRML should iterate to create the RDF. Spe-

cifically, the iterator should prepend the contents of

any value statement in the mapping. Thus, in line 9

we have url in a value statement, to which is pre-

pended $, from the iterator, to create the JSONPath

$.url. Because the previous line contained s: we

know that this JSONPath statement indicates the sub-

ject of the mapping. po: in line 10 indicates that the

predicate and object will follow, and in this case, the

12 In this figure, and in subsequent solutions to YARRRML and

SPARQL Anything solutions, we show only those prefixes strictly

necessary. In the study, for legacy reasons, files provided to par-

ticipants contained some additional prefixes.

predicate is dct:creator. Line 13 indicates that we

wish to extract the object from another mapping, i.e.

artistMapping, specifically from the file which is

specified on line 21 as part of the definition of

artistMapping. Because this is a CSV file, the path

statement is simply a header from the first line of the

file. We see from line 22 that the subject of artist-

Mapping, and hence the object of the triple being

formed, is indicated by the field name url. Note that

line 22 begins with s: because it contains the subject

(url) of artistMapping, although url is the object of

the triple being formed. Because there are a number

of records in the CSV file, we indicate the record to

be used by the condition in lines 14 to 18. Specifi-

cally, a field creator.id in the JSON needs to be iden-

tical to a field id in the CSV file. In lines 17 and 18

the s and o before the closing square brackets indi-

cate that, in the first case we are concerned with the

mapping providing the source, i.e. artworkMapping,

and hence the JSON file; and in the second case with

the mapping providing the object, i.e. artistMapping,

and hence the CSV file. str1 and str2 are dummy

variables with no significance, e.g. they could be

interchanged without changing the effect.

1 prefixes:

2 dct: http://purl.org/dc/terms/

3

4 mappings:

5 artworkMapping:

6 sources:

7 - ['artwork.json~jsonpath',"$"]

8 s:

9 value: $(url)

10 po:

11 - p: dct:creator

12 o:

13 - mapping: artistMapping

14 condition:

15 function: equal

16 parameters:

17 - [str1, "$(creator.id)",s]

18 - [str2, "$(id)",o]

19 artistMapping:

20 sources:

21 - ['artist_data.csv~csv']

22 s: $(url)

Fig. 9. YARRRML solution to question 2

Participants were not expected to create this

YARRRML from scratch. We wanted participants to

think conceptually about creating the mappings and

be concerned as little as possible with the details of

syntax. Consequently, participants were presented

with a file as shown in Figure 9, except that the text

in red italics was replaced with three dots. Partici-

pants were simply required to substitute a valid solu-

tion for these three dots. The missing elements, i.e.

the elements represented by three dots, were chosen

to test the participants’ conceptual understanding of

the mapping process; at the same time minimizing, as

far as possible, the need to understand the details of

the YARRRML syntax.

Figure 10 illustrates solutions to questions 313, 4

and 5. Again, the text in red italics was replaced by

three dots. For each solution, there are two mappings,

but this time they are independent, i.e. there is no

condition connecting them. artworkMapping creates

the twelve triples with subject the artwork url and

with objects of the form tsub:id. subjectMapping

creates the twelve triples with subjects of the form

tsub:id and with objects the names of the topics.

Figure 11 shows solutions to question 6, 7 and 8.

Question 6 requires two mappings. topHierar-

chyMapping creates the triples linking topicRoot to

the two topics below it. lowerHierarchyMapping

creates all the other required triples. Because of the

structure of the XML data, questions 7 and 8 only

require one mapping.

13 The leading “topics” in line 14 should not be required. This

was believed to be a problem with the RML mapper, see

https://github.com/RMLio/rmlmapper-java/issues/150

1 prefixes: prefixes: prefixes:

2 tsub:

"http://sparql.xyz/example/tate/topic/"

 tsub:

"http://sparql.xyz/example/tate/topic/"

 tsub:

"http://sparql.xyz/example/tate/topic/"

3 schema: "http://schema.org/" schema: "http://schema.org/" schema: "http://schema.org/"

4

5 mappings: mappings: mappings:

6 artworkMapping: artworkMapping: artworkMapping:

7 sources: sources: sources:

8 - ['artwork.json~jsonpath',"$"] - ['artwork.xml~xpath',"/artwork"] - ['artwork.xml~xpath',"/artwork"]

9 s: s: s:

10 value: $(url) value: $(url) value: $(@url)

11 po: po: po:

12 - p: schema:about - p: schema:about - p: schema:about

13 o: o: o:

14 value: tsub:$(topics..children[*].id) value: tsub:$(//children/item/id) value: tsub:$(topic//topic /@id)

15 type:iri type:iri type:iri

16 subjectMapping: subjectMapping: subjectMapping:

17 sources: sources: sources:

18 - ['artwork.json~jsonpath',

"$..children[*]"]

 - ['artwork.xml~xpath', "//children/item"] - ['artwork.xml~xpath', "//topic/topic"]

19 s: s: s:

20 value: tsub:$(id) value: tsub:$(id) value: tsub:$(@id)

21 po: po: po:

22 - p: schema:name - p: schema:name - p: schema:name

23 o: o: o:

24 value: $(name) value: $(name) value: $(@name)

Fig. 10. YARRRML solutions to (from left to right) questions 3, 4 and 5

1 prefixes: prefixes: prefixes:

2 tsub:

"http://sparql.xyz/example/tate/topic/"

 tsub:

"http://sparql.xyz/example/tate/topic/"

 tsub:

"http://sparql.xyz/example/tate/topic/"

3 skos:

"http://www.w3.org/2004/02/skos/core#"

 skos:

"http://www.w3.org/2004/02/skos/core#"

 skos:

"http://www.w3.org/2004/02/skos/core#"

4

5 mappings: mappings: mappings:

6 lowerHierarchyMapping: hierarchyMapping; hierarchyMapping;

7 sources: sources: sources:

8 - ['artwork.json~jsonpath',

"$..children[*]"]

 - ['artwork.xml~xpath',"//item"] - ['artworkAttributes.xml~xpath',

"//topic"]

9 s: s: s:

10 value:tsub:$(id) value: tsub:$(id) value: tsub:$(@id)

11 po: po: po:

12 - p: skos:broader - p: skos:broader - p: skos:broader

13 o: o o

14 value:tsub:$(children[*].id) value: tsub:$(children/item/id) value: tsub:$(topic/@id)

15 type:iri type: iri type: iri

16 topHierarchyMapping

17 sources:

18 - ['artwork.json~jsonpath',"$"]

19 s:

20 value: tsub:$(topics.id)

21 po:

22 - p: skos:broader

23 o:

24 value: tsub:$(topics.children[*].id)

25 type: iri

Fig. 11. YARRRML solutions to (from left to right) questions 6, 7 and 8

6. SPARQL Anything – the solutions

As before, we omit question 1. Figure 12 illus-

trates a solution to question 2. Lines 9, 10, 13 and 14

were replaced by three dots in the question. As for

YARRRML, the missing elements were chosen to

test participants’ conceptual understanding of the

mapping process and minimize the need to under-

stand details of syntax. To help participants, the ter-

minator for the line was provided, either a semicolon

(lines 9 and 13) or a full stop (lines 10 and 14). This

practice was followed for all other questions. Partic-

ipants were free to use the square bracket notation, as

shown, or to create dummy variables or blank nodes.

To understand this solution, it is necessary to un-

derstand the triplification of CSV and JSON. For

CSV, the document is regarded as a container, repre-

sented by a root node. This node is the subject of

triples, with predicates rdf:_1, rdf:_2 etc. The ob-

jects of these triples are nodes representing each of

the rows, with the exception of the first row, which in

our example is assumed to be a header row. Each of

the column headers, e.g. id in Figure 4, is used to

form a predicate with prefix xyz:, e.g. xyz:id. Each of

the nodes representing rows is then the subject of

triples with predicates of the form xyz:id, xyz:name

etc. and with objects the literals in the cell elements14.

For JSON, each object is regarded as a container

and represented by a triple with a blank node as sub-

ject, and with predicate xyz:name1, where name1 is

the name of the JSON object. If the value is a literal,

then this will be the object of the triple. If the value

is another JSON object, with name name2, then the

object of the triple will be another blank node, which

in turn will be the subject of another triple, with pred-

icate xyz:name2. If an object is an array, of size n,

then the object of the triple will be a blank node,

which in turn will be the subject of triples with predi-

cates rdf:_1, rdf:_2 … rdf:_n.

Figure 13 shows solutions to question 3, 4 and 5.

These questions require the creation of a variable,

here ?topicId, to be included in the SERVICE clause

and then used in line 14. In the solution to each

question, lines 10 and 11 query the triplification. The

solution to question 3 can be understood by referring

to the JSON triplification explained above. To un-

14 For CSV files which do not have an initial header row,

SPARQL Anything uses rdf:_1, rdf:_2 etc to link the nodes repre-

senting each row with the cell elements.

derstand the solution to question 4, we need to under-

stand how XML elements are triplified. Each distinct

XML tag creates a node with IRI xyz:tag. Every el-

ement with that tag is regarded as a container and

represented as a blank node, of type xyz:tag, i.e. the

subject of a triple with predicate rdf:type and object

xyz:tag. If the element only contains a literal, then

the blank node will also be the subject of a triple with

predicate rdf:_1 and object the literal15. If the ele-

ment contains n other elements, then the blank node

will be the subject of triples with predicates rdf:_1,

rdf:_2 … rdf:_n, and objects blank nodes represent-

ing the n elements. As a result, the solution to ques-

tion 4 follows the same pattern as question 3, except

that lines 10 and 11 need to be changed. Here, a is a

shorthand for rdf:type and ?li1, ?li2, ?li3 bind to

rdf:_1, rdf:_2 etc. Strictly speaking, in line 10, a

xyz:item is not necessary, as all the elements directly

below the children tag have tags item. Its use can be

regarded as safeguarding against future development

of the data. The solution to question 5 also follows

the same form but needs to take account of the use of

attributes in the XML. As before, when triplifying

the XML, an element is represented by a blank node,

of type xyz:tag. If the element contains an attribute

then the blank node is also the subject of a triple,

with predicate xyz:name, where name is the name of

the attribute, and with object the value of the attribute.

As before, lines 10 and 11 need to be changed. In

line 10, the second a xyz:topic is not strictly neces-

sary, since the only tags directly below topic are also

topic tags. As in question 4, this can be regarded as

safeguarding against future development of the data.

Figure 14 shows solutions to questions 6, 7 and 8.

The differences between these three solutions are

entirely limited to lines 9 and 10. For question 7, the

a xyz:item in line 10 is not strictly necessary, as all

the elements directly below the children tag have tag

item.

Finally, for completeness although not relevant to

the study, we note that SPARQL Anything treats

XML CDATA sections as literals, and XML com-

ments and processing instructions are ignored.

15 In the case where the element contains sub-elements and tex-

tual content (literal), then the predicate may be rdf:_n, where n is

greater than 1, depending upon the position of the literal in the

element. However, we did not consider this situation in our ques-

tions. In our questions, where a literal occurs in XML, it does not

occur alongside sub-elements.

1

PREFIX xyz: <http://sparql.xyz/facade-x/data/>

2 PREFIX dct: <http://purl.org/dc/terms/>

3 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

4

5 CONSTRUCT {

6 ?artwork dct:creator ?artist .

7 } WHERE {

8 SERVICE <x-sparql-anything:location=artwork.json> {

9 [] xyz:url ?artworkUrl;

10 xyz:creator [xyz:id ?creatorId] .

11 }

12 SERVICE <x-sparql-anything:csv.headers=true,location=artist_data.csv> {

13 [] xyz:id ?artistId;

14 xyz:url ?artistUrl .

15 }

16 BIND (IRI(?artworkUrl) AS ?artwork) .

17 BIND (IRI(?artistUrl) AS ?artist) .

18 FILTER (xsd:integer(?artistId) = xsd:integer(?creatorId)) .

19 }

Fig. 12. SPARQL Anything solution to question 2

1 PREFIX xyz: <http://sparql.xyz/facade-x/data/> PREFIX xyz: <http://sparql.xyz/facade-x/data/>

2 PREFIX tsub: <http://sparql.xyz/example/tate/topic/> PREFIX tsub: <http://sparql.xyz/example/tate/topic/>

3 PREFIX schema: <http://schema.org/> PREFIX schema: <http://schema.org/>

4

5 CONSTRUCT { CONSTRUCT {

6 ?artwork schema:about ?topic . ?artwork schema:about ?topic .

7 ?topic schema:name ?name . ?topic schema:name ?name .

8 } WHERE { } WHERE {

9 SERVICE <x-sparql-anything:location=artwork.json> { SERVICE <x-sparql-anything:location=artwork.xml> {

10 [] xyz:children [?li [xyz:id ?topicId; xyz:name ?name]] . [] a xyz:children; ?li1 [a xyz:item; ?li2 [a xyz:id;

rdf:_1 ?topicId]; ?li3 [a xyz:name; rdf:_1 ?name]] .

11 [] xyz:url ?artworkUrl . [] a xyz:url; rdf:_1 ?artworkUrl .

12 } }

13 BIND(IRI(?artworkUrl) as ?artwork) . BIND(IRI(?artworkUrl) as ?artwork) .

14 BIND(IRI(CONCAT(STR(tsub:),STR(?topicId))) AS ?topic) . BIND(IRI(CONCAT(STR(tsub:),STR(?topicId))) AS ?topic) .

15 } }

1 PREFIX xyz: <http://sparql.xyz/facade-x/data/>

2 PREFIX tsub: <http://sparql.xyz/example/tate/topic/>

3 PREFIX schema: <http://schema.org/>

4

5 CONSTRUCT {

6 ?artwork schema:about ?topic .

7 ?topic schema:name ?name .

8 } WHERE {

9 SERVICE <x-sparql-anything:location=artworkAttributes.xml> {

10 [] a xyz:topic; ?li [a xyz:topic; xyz:id ?topicId; xyz:name ?name] .

11 [] xyz:url ?artworkUrl .

12 }

13 BIND(IRI(?artworkUrl) as ?artwork) .

14 BIND(IRI(CONCAT(STR(tsub:),STR(?topicId))) AS ?topic) .

15 }

Fig. 13. SPARQL Anything solutions to questions 3 (top left), question 4 (top right), and question 5 (bottom)

1 PREFIX xyz: <http://sparql.xyz/facade-x/data/> PREFIX xyz: <http://sparql.xyz/facade-x/data/>

2 PREFIX tsub: <http://sparql.xyz/example/tate/topic/> PREFIX tsub: <http://sparql.xyz/example/tate/topic/>

3 PREFIX skos: <http://www.w3.org/2004/02/skos/core#> PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

4

5 CONSTRUCT { CONSTRUCT {

6 ?parent skos:broader ?topic . ?parent skos:broader ?topic .

7 } WHERE { } WHERE {

8 SERVICE <x-sparql-anything:location=artwork.json> { SERVICE <x-sparql-anything:location=artwork.xml> {

9 [] xyz:id ?parentId ; [] a xyz:item; ?li1 [a xyz:id; rdf:_1 ?parentId] ;

10 xyz:children [?li [xyz:id ?topicId]] . ?li2 [a xyz:children ; ?li3 [a xyz:item ; ?li4 [a xyz:id ;

rdf:_1 ?topicId]]] .

11 } }

12 BIND(IRI(CONCAT(STR(tsub:),STR(?parentId)))

AS ?parent) .

 BIND(IRI(CONCAT(STR(tsub:),STR(?parentId)))

AS ?parent) .

13 BIND(IRI(CONCAT(STR(tsub:),STR(?topicId))) AS ?topic) . BIND(IRI(CONCAT(STR(tsub:),STR(?topicId))) AS ?topic) .

14 } }

1 PREFIX xyz: <http://sparql.xyz/facade-x/data/>

2 PREFIX tsub: <http://sparql.xyz/example/tate/topic/>

3 PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

4

5 CONSTRUCT {

6 ?parent skos:broader ?topic .

7 } WHERE {

8 SERVICE <x-sparql-anything:location=artworkAttributes.xml> {

9 [] a xyz:topic; xyz:id ?parentId;

10 ?li1 [xyz:id ?topicId] .

11 }

12 BIND(IRI(CONCAT(STR(tsub:),STR(?parentId))) AS ?parent) .

13 BIND(IRI(CONCAT(STR(tsub:),STR(?topicId))) AS ?topic) .

14 }

Fig. 14. SPARQL Anything solutions to questions 6 (top left), 7 (top right), and 8 (bottom)

7. YARRRML – user behaviours

Table 2 shows the error categories, whilst the fol-

lowing subsections discuss these in more detail. Care

needs to be taken in interpreting the numbers in the

table. Because of the great deal of assistance given

to some participants, these numbers should be inter-

preted as a lower bound.

With one exception, all or almost all of our partic-

ipants made an error in each category. The exception

was YARRRML syntax and semantics. As previous-

ly explained, the questions were constructed to re-

duce difficulties with using and interpreting

YARRRML syntax; even so over half of our partici-

pants had difficulties.

7.1. Iterator errors

Fundamental to using YARRRML is understand-

ing the role of the iterator, and the relationship be-

tween the iterator and value statements in a mapping.

All our YARRRML participants had difficulties here,

and made a number of mistakes.

Some users made the iterator path too long. For

example, in question 3 (Figure 10, left-hand column),

one participant correctly wrote url in the value state-

ment in line 10, but wrote the iterator in line 8 as

$.children[*], rather than simply $. Concatenating

the iterator and value statement then leads to

$.children[*].url, which is clearly wrong. The con-

verse problem is to make the iterator too short. In the

first mapping (artworkMapping) of question 5 (Fig-

ure 10, right-hand column) a participant wrote / for

the iterator and @url in the value statement on line

10. This omits artwork, i.e. the path to obtain the url,

in full, is /artwork/@url. Alternatively, there may be

no gap in the path statement obtained by concatenat-

ing iterator and value statement, but the iterator may

still be too short. An example of this occurred in the

second mapping (subjectMapping) of question 4

(Figure 10, middle column), where a participant

wrote //children in the iterator and item/id and

item/name in the value statements for the subject and

object. The problem here is that, whilst the iterator

and value statements concatenate to identify the topic

id and name, there is no guarantee that id and name

are correctly associated. In fact, the mapping creates

12 triples, but a number of the id’s are repeated as

subjects, and hence incorrectly associated with names.

The iterator needs to extend sufficiently far down the

hierarchy that the id and name are within the same

item, i.e. the iterator should be //children/item and the

value statements should be simply id and name.

Difficulties with the YARRRML iterator were, in

fact, implied by [26], when comparing YARRRML

and ShExML; see the comment in subsection 2.3

regarding the modular use of iterators in ShExML.

7.2. Recursive descent errors

Recursive descent was a cause of difficulty for

nearly all of our participants. In subjectMapping of

question 3, a participant wrongly assigned the recur-

sive descent to the value statements, rather than the

iterator. Thus, the iterator was written as

$.topics.children[*] and the value statements con-

tained ..id and ..name. This has a similar effect to the

last example of the previous subsection, i.e. there is

no guarantee that the correct id and name are associ-

ated. Another example of placing recursive descent

in the value statements, instead of the iterator, oc-

curred in question 6. In the mapping lowerHierar-

chyMapping (Figure 11, left-hand column), the par-

ticipant wrote $.topics in the iterator, and id and chil-

dren[*]..id in the subject and object value statements.

This results in lowerHierarchyMapping creating

twelve triples, linking topicRoot to each of the other

topics. In fact, the iterator should be $..children[*]

and the paths in the subject and object value state-

ments should be id and children[*].id. In question 7,

one participant put recursive descent into both the

iterator and a value statement, writing //item for the

iterator and //children/item/id in the second (object)

value statement. This has the effect of creating 156

triples: topicRoot is linked to every other topic (12

triples) and all the topics below topicRoot are inter-

linked, in both directions, including to themselves

(144 triples). It should be stressed that it is not nec-

essarily wrong to put recursive descent into a value

statement, as can be seen in the first mapping in the

solution to questions 3, 4 and 5 (Figure 10).

Recursive descent was sometimes omitted com-

pletely, when it should have been used. In the value

statement for the object of the first mapping of ques-

tion 5, which should be written topic//topic/@id, a

participant wrote topic/topic/@id, which has the ef-

fect of identifying only the two topics immediately

below topicRoot. Note that the two occurrences of

topic are necessary to avoid topicRoot. Another mis-

take was to write topic/@id for the object of the first

mapping in question 5. This has the opposite effect

to that required, i.e. it identifies only topicRoot.

//topic/@id would also be wrong, since it would

identify all the topics. At other times, participants

may not have fully grasped the significance of recur-

sive descent. In question 4, for the object of the first

mapping, a participant wrote top-

ics/item//children/item/id. This is not wrong, but

//children/item/id would have been simpler.

7.3. Path syntax errors

There were also errors in the path syntax. With

JSONPath, JSON arrays caused a problem for a

number of participants. It may be that some partici-

pants simply failed to see the square brackets in the

JSON. At least one participant omitted the asterisk

from the square brackets in the JSONPath, i.e. wrote

[] rather than [*] in question 3 (left-hand column of

Figure 10). Another participant put the asterisk be-

fore the square brackets, i.e. writing $..children*[].

Other JSONPath errors were to write .creator.id, i.e.

to use a leading dot, and to write $topics, i.e. to omit

a dot. For XPath, there was a failure to use @ to

identify an attribute, and also a failure to place a /

before the @, i.e. writing topic@id rather than top-

ic/@id. There was also confusion between JSON-

Path and XPath, e.g. between . and / as separators,

and between $ and / to indicate the root of the docu-

ment.

7.4. Path errors

More generally, nearly all our participants made

errors in JSONPath and XPath. As an example of

this, in question 2 a participant wrote id rather than

creator.id, i.e. failing to differentiate between the

three uses of id. One participant, in question 4, wrote

topics/children/item, i.e. ignoring that item comes

after topics; although in this case recursive descent

Table 2. YARRRML errors made by participants

Error Examples

Iterator Errors

(N = 9)

Iterator path too long, so that it cannot concatenate with path in a value statement to

form correct JSONPath.

Iterator path too short, so that there is a ‘gap’ when the iterator path is concatenated

with a path in a value statement.

Iterator path too short, and path in subject and object value statements too long, so that

whilst they concatenate to form a valid JSONPath, the subject and object do not neces-

sarily correspond.

Not starting iterator from root of document, or with a recursive descent.

Recursive de-

scent errors

(N = 9)

Placing recursive descent in a value statement when it should be in the iterator. This

can have a variety of effects, e.g. leading to no triples or too many. A variant on this is

placing recursive descent in both the iterator and a value statement, when it should

only be in the iterator.

Omitting recursive descent when it is required, which can have the effect of creating

only a subset of the required triples.

Failing to realize that recursive descent can be used at the beginning of a path state-

ment, to subsume the beginning of the path, rather than later in the statement. This

causes unnecessarily long path statements.

Path syntax errors

(N = 9)

Not taking account of JSON arrays.

Misuse of dot in JSONPath: either including a leading dot (.creator.id) or omitting a

dot ($topics).

Failure to use @ to identify an attribute in XPath; alternatively, when @ was used,

failure to place a / before the @, i.e. writing topic@id rather than topic/@id.

Confusion between JSONPath and XPath, e.g. between . and / as separators and $ and

/ to indicate the document root.

Path errors, i.e.

other than syntax

errors

(N = 8)

Path too short to uniquely specify data.

Missing element in path.

Misunderstanding

question or data

(N = 8)

Failure to understand form of required triple.

Copying JSON value rather than JSON name.

Failure to understand nature of the data.

YARRRML syn-

tax and semantics

errors

(N = 5)

Failure to understand purpose of mapping statement, i.e. that it needs to contain the

name of a mapping.

Failure to understand the significance of s and o in the join condition, and confusion

about the role of the parameters str1 and str2.

Confusion between the use of quotes in the iterator but not in the value statement.

Confusion potentially caused by use of $ in JSONPath and in YARRRML syntax.

should have been used. This problem may arise from

not being fully aware of the structure of the data.

7.5. Misunderstanding question or data

Some participants failed to understand the form of

the required triple, e.g. one participant thought that

the subject of the artistMapping triple in question 2

(Figure 9) should be id, not url. Another problem

was using a JSON value, rather than JSON name in

the YARRRML. At least one participant failed to

understand, or overlooked, the structure of the data,

omitting the item tag between the children and id tags

in a path statement in question 4 (Figure 10).

7.6. YARRRML syntax and semantics errors

Some participants had difficulty with the

YARRRML syntax and semantics, i.e. the details of

how YARRRML is used, as distinct from the more

fundamental aspects of the mapping process such as

the use of path statements and the relationship be-

tween iterator and value statement. This is consistent

with the finding of [26], that superior performance

with ShExML over YARRRML was caused by the

details of syntax.

Question 1, which for brevity we have not de-

scribed, required completing a mapping statement

analogous to line 13 in question 2 (Figure 9). One

participant did not understand that the name of a

mapping was required, and instead looked in the rel-

evant CSV file to find a seemingly appropriate field

name. Interestingly, in the study of Juma, the block

paradigm language for creating R2RML, the most

common area where help was required was in inter-

linking mappings [22]. In question 2, the join condi-

tion caused problems. Some participants did not un-

derstand the significance of the s and o, to indicate

subject and object, although this was explained in the

tutorial. The use of str1 and str2 causes confusion.

The YARRRML documentation explains that they

are parameters for the equal function, and notes “that

str1 and str2 can be switched as this does not influ-

ence the result of the equal function” [24, subsection

8.5]. One participant was confused by the fact that

quotes are used around the JSONPath or XPath

fragments in the iterator, but not in the value state-

ment. The use of $ was also a source of confusion

when manipulating JSON data. $ is used in JSON-

Path and also as part of the YARRRML syntax. In

the latter case it is followed by a bracket and this led

one participant to want to write a bracket after $ in

JSONPath, e.g. $(topics.children..). These last two

points are related. In the iterator, the path fragment

is in quotes. In the value statement, the path frag-

ment is surrounded by brackets, with a leading dollar.

Nevertheless, participants were, as far as possible,

preserved from the difficulties of YARRRML syntax

by the design of the questions. One participant

commented “… there's so many little subtleties about,

like, whether there needs to be a space here or not,

but because you'd already filled in the YAML stuff, it

was pretty straightforward”.

8. SPARQL Anything – user behaviours

Table 3 shows the major error categories, whilst

the following subsections discuss these in more detail.

As with Table 2, care needs to be taken in interpret-

ing the numbers in the table, because of the great deal

of assistance given to some participants. Moreover,

it is not always possible to be precise about the na-

ture of the problem; in particular between problems

in understanding the nature of the triplification and

the structure of the data.

8.1. SPARQL errors

There were a number of errors which were syntac-

tic, or at least related to SPARQL usage generally.

Some participants had difficulty with the square

bracket notation for blank nodes. For example, in

question 6, one participant wrote [] [xyz:id ?paren-

tId; …]. In fact, the tutorial examples illustrating

SPARQL Anything used both this notation and ex-

plicit variables, e.g. ?b1, ?b2 etc., and many partici-

pants chose the latter approach. There were difficul-

ties, also, with variable names. In questions 3, 4 and

5, participants were required to create a variable to

use in the SERVICE statement and in the BIND op-

erator of line 14. One participant used ?topic, which

was pre-specified as the output of the BIND operator.

8.2. Graph pattern errors

There was difficulty in understanding how graph

patterns mapped onto the triplification. In all but the

first question, lines to be completed appeared as pairs

of consecutive lines. It was generally understood that

these lines should start with a blank node, but it was

not always clear whether that should be a shared

blank node. Figures 13 and 14, which show ques-

tions 3, 4, and 5; and questions 6, 7 and 8, illustrate

that both cases can occur. For questions 3, 4, and 5,

the second line to be completed (line 11) requires a

starting blank node. For questions 6, 7 and 8, the

second line (line 10) uses the initial blank node from

the previous line. When confronted with the, rather

complex, solution to question 7:
9 [] a xyz:item; ?li1 [a xyz:id; rdf:_1 ?parentId] ;
10 ?li2 [a xyz:children ; ?li3 [a xyz:item ; ?li4 [a

xyz:id ; rdf:_1 ?topicId]]]

one participant commented “but it seems like you

connected magically …”.

8.3. Misunderstanding the question or data

One problem in this category was in understanding

the form of the required triple. However, many of

the errors appeared to be caused by not fully appreci-

ating the structure of the data. For example, in art-

work.xml (Figure 5), overlooking that there is an

item tag between each children and id tag; failing to

discriminate between the creator id and the topic id in

the description of the artwork; and in question 5

(Figure 13) not realizing the need for a new blank

node at the beginning of line 11. The last of these

examples might also be interpreted as a problem with

understanding the triplification.

8.4. Triplification errors

Fundamental to using SPARQL Anything is un-

derstanding the triplification; this was a source of

difficulty for almost all of our participants. A great

deal of assistance was given by the experimenter in

explaining this. In particular, with nested data, the

triplification can become confusing, and lead to er-

rors. For example, in line 9 of question 7 (Figure 14,

top right), one participant wrote:
?b1 a xyz:item; ?b ?parentId;

Instead of the line shown in the figure or, avoiding

the square bracket notation:
?b1 a xyz:item; ?li ?b2 . ?b2 a xyz:id; rdf:_1 ?parentId; (1)

The problem here is that id is an XML element

within item and it is the id object which con-

tains ?parentId. As written by the participant, the

implication is that the item object directly con-

tains ?parentId.

Participants also needed to understand the two dif-

ferent ways which triplification is performed, i.e. that

JSON names and XML attribute names are used to

create predicates whilst XML element names are

used to create a class. Moving between the two ap-

proaches is a source of confusion. For example, in

question 4 (Figure 13, top right) a participant wrote:

[] xyz:url ?artworkUrl where the correct solution

should be, e.g. [a xyz:url ; rdf:_1 ?artworkUrl],

because question 4 used an XML file without attrib-

utes. The converse error occurred in question 5, i.e.

writing the latter in place of the former, because

question 5 used an XML file with attributes. Similar-

ly in question 3, a participant started to write [a

xyz:children , i.e. treating the JSON object name like

an XML element name.

Another example of confusing the two triplifica-

tion approaches occurred in question 7, where a par-

ticipant wrote [a xyz:topics ?parentId] . In fact,

starting with topics is starting too high up the hierar-

chy; however that is not the point we wish to make

here. The participant did correctly recognize that

topics is an element tag, and therefore should be con-

verted into a class name. However, there was a fail-

ure to realize that [a xyz:topics is a complete triple

pattern, and the participant may have slipped into

thinking that xyz:topics was a predicate requiring to

be followed by an object

Querying the triplification of XML poses a partic-

ular difficulty, when compared with the triplification

of JSON. In statement (1) above, ?b1 and ?b2 are

each the subject of two triples. In creating and read-

ing this statement, having reached the first semi-

colon, in order to recognize ?b1 as the subject of the

next triple, the user needs to backtrack before contin-

uing, or retain the ?b1 in working memory. A simi-

lar process occurs at the second semi-colon. This

comment also applies when using the square bracket

notation, as in the solution to question 7 shown in

Figure 14, top right. However, the problem does not

occur with the triplification of JSON, nor with the

use of JSONPath and XPath in YARRRML.

8.5. Misuse of rdf:_1

More than half the participants wanted to use

rdf:_1 in graph patterns where they should have used

a variable. SPARQL Anything uses the predicates

rdf:_1, rdf:_2 etc. in its triplification to reference the

elements of JSON arrays. It also uses these predi-

cates to reference XML elements nested within XML

elements and to reference the literal contents of an

XML element16. This means that use of these predi-

cates is necessary in graph patterns to access a specif-

ic element of a JSON array, or an XML element or

literal where its position is needed to uniquely speci-

fy it. Where we wish to access an XML element or

literal which occurs alone within an outer XML ele-

ment, we are free to use rdf:_1 or a variable. How-

ever, rdf:_1, rdf:_2 etc cannot be used in a pattern

where we wish to range over the elements of a JSON

array or over sibling XML elements. In these cases

participants needed to use a variable which will bind

to rdf:_1, rdf:_2, rdf:_3 …, as appropriate. For ex-

ample, in question 4 one participant wrote [] a

xyz:children ; rdf:_1 ?item1 in place of [] a

xyz:children ; ?li ?item1 . An alternative to using ?li

is to use the SPARQL Anything magic property

fx:anySlot. However, for brevity, this possibility was

not explained in the study.

16 As explained in the footnote to Section 6, in our questions

XML literals were always preceded by the predicate rdf:_1. This

was because none of our questions used a composite model in

which textual content and sub-elements were combined within the

same XML element.

Table 3. SPARQL Anything errors made by participants

Error Examples
SPARQL errors
(N = 8)

Difficulties with square bracket notation, e.g. writing [] […
Difficulties with variable names, e.g. failure to understand need to create a new
variable to be argument of STR() in questions 3, 4 and 5.

Graph pattern
errors
(N = 7)

Failing to understand when a blank node should be shared between graph pat-
terns.
Omitting an XML element or JSON object or array element in the path to the re-
quired datum.
Ignoring JSON arrays.
Failing to understand that a graph pattern can start from anywhere, not neces-
sarily the root of the document.

Misunderstanding
question or data
(N = 7)

Failure to understand form of required triple.
Failure to understand the data, e.g.: missing an element in an XML hierarchy, fail-
ure to discriminate between different uses of id in the data (creator id and topic
id); or (in question 5) failure to understand the need for a new blank node on the
second line to be completed.

Triplification er-
rors
(N = 6)

Failing to translate correctly from data to triplification, e.g. with nested data omit-
ting a level.
Confusing the two forms of triplification: JSON objects and XML attributes, versus
XML elements.

Misuse of rdf:_1
(N = 5)

Failing to note the need for a variable, rather than rdf:_1, where variable needs to
bind to rdf:_1 … rdf:_n, as with JSON arrays or XML elements.

As with YARRRML, the requirement in questions

3, 4 and 5 to avoid topicRoot caused difficulty. In

question 5, one participant wrote [] a xyz:topic;

xyz:id ?topicId rather than [] a xyz:topic; ?li [a

xyz:topic; xyz:id ?topicId] . In the latter, correct case,

the initial triple pattern ([] a xyz:topic) is necessary

to skip over the node which represents topicRoot.

Also as with YARRRML, JSON arrays were often

ignored. This was a problem for more than half the

participants, e.g. writing [] xyz:children

[xyz:id ?topicId] instead of [] xyz:children [?li

[xyz:id ?topicId]], since SPARQL Anything creates

a node to represent the array, and then nodes to rep-

resent each array element. Again as with

YARRRML, data elements were sometimes over-

looked, e.g. in question 7 missing out item which was

intermediate between children and id. Moreover, the

id of the artwork creator was not always identified

uniquely, e.g. in question 2 one participant wrote []

xyz:id ?artistId in place of [] xyz:creator

[xyz:id ?artistId]. The former will identify all the

other uses of id, i.e. its use on line 13 to represent the

id of the document, and all the uses of id representing

the topic ids.

Finally, several participants started a graph pattern

from the top of the document, where this was incor-

rect or unnecessary. In question 3, one participant

wrote ?b1 xyz:topics ?b2 . ?b2

xyz:children ?b3 . ?b3 ?v ?b4 . ?b4 xyz:id ?id . This

only identifies the two topics immediately below

topicRoot, because the use of xyz:topics binds ?b1 to

the root of the document. A correct solution, as

shown in Figure 13, starts from a blank node with

name xyz:children. In this way, the graph pattern is

able to match the RDF graph at all the appropriate

levels of the hierarchy. One participant commented

“I had no idea that we can start from anywhere … in

the tree”. Another participant commented “I'm stuck

a bit in this mindset that I want to access something

recursively … ideally like in an … XSLT way. I just

wanted to like loop recursively through the whole

tree …” .

9. Comparing the paradigms

The two paradigms are quite different, and require

different expertise and understanding. The essential

requirements to use YARRRML are familiarity with

path statements, e.g. JSONPath and XPath and to

understand the role of the iterator. YARRRML is a

subset of YAML, so some prior familiarity with

YAML is useful. YARRRML is intended as a more

human-readable alternative to RML. However, argu-

ably it may be useful in debugging to at least be able

to read RML. On the other hand, the essential re-

quirements to use SPARQL Anything are familiarity

with SPARQL syntax and semantics and to under-

stand the particular triplification used. This means

that some of the problems experienced by the two

sets of participants seem quite different. However, in

both cases the most fundamental problems have their

roots in the same issues relating to the data. In par-

ticular, in our study, the need to negotiate hierar-

chical data created difficulties. For YARRRML, this

meant that participants needed to understand how to

use recursive descent. For SPARQL Anything, this

meant that they had to understand how to construct a

graph pattern that matched appropriately at various

levels of the hierarchy.

How users find the advantages and disadvantages

of the two paradigms will depend on their back-

grounds. Those very familiar with JSONPath and

XPath will have an advantage when starting to use

YARRRML. Those very familiar with SPARQL will

have an advantage when starting to use SPARQL

Anything. However, an advantage of YARRRML

over SPARQL Anything is that users of the former

need only be familiar with the data and their required

output RDF. Users of SPARQL Anything need also

to be familiar with the triplification. On the other

hand, once that triplification is understood, it is rela-

tively easy for users to modify the SPARQL to make

changes to the output, or simply to explore the data.

Indeed, it is possible to explore the data without be-

ing fully aware of its structure, and of the triplifica-

tion. One could, for instance, determine all the pred-

icates in the triplification of a JSON file, thereby

identifying all the names used in the file. Alterna-

tively, with a triplification of XML, one could in-

spect the objects of all triples with predicates rdf:type

to determine the tags used in the XML.

For YARRRML, the difference between JSON

and XML resides in the difference between the

JSONPath and XPath syntaxes. For SPARQL Any-

thing, the difference is more fundamental, since

XML tags are used to create class names. This not

only creates a difficulty in moving between JSON

and XML, but also makes for a greater complexity

when dealing with XML, as we have noted in subsec-

tion 8.1.

It may be that YARRRML has an advantage where

the required RDF is specified once and for all. Here

an approach which avoids the intermediate stage of a

triplification may be preferred. On the other hand,

SPARQL Anything may have an advantage where

we are unsure precisely what form the final output

should take, or want to explore the data. In this case,

the overhead of understanding the triplification will

be worthwhile. We summarize our comparison in

Table 4.

10. Limitations of the study

Before presenting our recommendations and con-

clusions, it is relevant to make some comments about

the limitations of our approach.

For a qualitative study of this sort, we do not re-

quire as many participants as would be required in a

quantitative study, where we are concerned with

achieving statistical significance. When using

Grounded Theory, Blandford proposes continuing

until no new insights are being gained [29]. Alt-

hough she suggests this typically occurs with be-

tween ten to twenty participants, we felt that, with

nine participants per condition, towards the end of

the study we were seeing the same repeated problems.

A more serious problem was the nature of the partic-

ipant sample. Obtaining participants for a study such

as this is always difficult; participants need a relevant

background in order to make sense of what is being

asked of them. As a result, we were not able to bal-

ance the prior knowledge of our participants against

the two paradigms. Table 5 shows the median prior

knowledge of both sets of participants with regard to

SPARQL, SPARQL Anything, RML or R2RML, and

YARRRML.

Table 4. Comparison of YARRRML and SPARQL Anything

 YARRRML SPARQL Anything

Users need ex-

pertise in …

Path statements, e.g. JSONPath and XPath;

also some understanding of YAML. Ability

to read RML may be useful in debugging.

SPARQL syntax and semantics.

Users need to

understand …

The role of the iterator and how to use path

statements.

The triplification.

The use of recursive descent to negotiate the

hierarchy.

How to construct a graph pattern to match at

various levels of the hierarchy.

Advantages Need only be familiar with data and required

output, i.e. no intermediate stage.

Easy to change SPARQL to make changes to

output or to explore the data.

Disadvantages Not so easy to change required output and to

explore the data.

Need to be familiar with triplification, which

can be complex and differs for JSON and

XML.

Recommended

usage

Use cases where the output is fixed once and

for all.

Use cases where ability to explore the data

and flexibility in varying the output is re-

quired.

Table 5 Median prior knowledge

1 = no knowledge; 2 = a little knowledge;

3 = some knowledge; 4 = expert knowledge

 YARRRML

participants

SPARQL

Anything

participants†

SPARQL 3 2.5

SPARQL Anything 1 1

RML or R2RML 2 1.5

YARRRML 1 1
†Based on eight of the nine participants; one participant did not

provide the information.

Table 5 shows that neither of the two sets of par-

ticipants had much knowledge of the two specific

technologies under trial, i.e. SPARQL Anything and

YARRRML. Nor did they have much knowledge of

RML or R2RML. They did have rather more

knowledge of SPARQL. In fact, even the

YARRRML participants had more knowledge of

SPARQL than of RML or R2RML. Ideally, it would

have been good to include more people in both of the

studies with more knowledge of RML or R2RML. In

each group there were three participants who claimed

some prior knowledge of the appropriate specific

technologies, i.e. YARRRML or SPARQL Anything.

These participants seemed to display the same mis-

takes as those with no knowledge; although the small

number of participants make it impossible to draw

any significant statistical inferences.

The fact that neither of the sets of participants had

much prior knowledge of the specific technologies

meant that we were studying the learning experience.

This explains why our participants made a considera-

ble number of errors. It gives us no indication of

what kinds of errors might persist amongst experi-

enced users. We can only conjecture that more su-

perficial errors, e.g. syntactic errors, would diminish

relatively rapidly with experience. Whereas the more

conceptual errors, e.g. understanding the use of the

iterator and recursive descent in YARRRML, and

understanding the triplification of complex data

structure in SPARQL Anything, are likely to dimin-

ish more slowly.

Our questions used the description of an artwork

held by the Tate Gallery. We did this to achieve eco-

logical validity; the JSON file was only a slight mod-

ification of a file used in a working application,

whilst the two XML files were created from the

JSON file. We have already pointed out, in subsec-

tion 2.3, that this resulted in a considerably more

challenging study than the previous usability studies

we have cited [23], [26]. However, we have no evi-

dence that the data structures were representative of

JSON and XML applications generally. To find a

representative application would have necessitated a

survey of JSON and XML-based applications. Our

data structure was hierarchical, and inevitably a

number of our participants’ difficulties were con-

cerned with negotiating hierarchies. However, there

might be other, quite different difficulties present in

real-life applications which we were not able to ex-

amine.

11. Recommendations

In Section 1 we described three goals for our

study: to recommend rules and guidelines for users of

YARRRML and SPARQL Anything; to make rec-

ommendations for future developments of

YARRRML and SPARQL Anything to improve usa-

bility; and to recommend areas of investigation and

development for mapping techniques generally. In

this section we discuss the first two of these goals;

the next section will discuss the third goal.

11.1. Recommendations for users

Firstly, we present a set of recommendations

which, if followed when writing YARRRML map-

pings, are likely to reduce many common errors. The

first two are rules, which need to be followed. The

second two are guidelines which will be helpful in

many situations. These recommendations will also

apply to other techniques which use an iterator and

path statements.

1. The iterator path must start from the root of the

document, or with a recursive descent.

2. The iterator path and each of the paths in corre-

sponding value statements must concatenate to

identify the required data element. In particular,

there should be no overlap between iterator and

value statement, and no gap between them.

3. Frequently, the iterator path should be as long as

possible, and the corresponding value statements

as short as possible, i.e. there should be no

common elements at the start of the two value

statements.

4. When dealing with hierarchical data, recursive

descent may be necessary. Where the subject

and object of the required triples vary over the

hierarchy, the recursive descent is likely to be in

the iterator. Where one of the subject or object

is fixed, the recursive descent is likely to be in

the value statement for the other.

For SPARQL Anything, we propose the following.

The first two are rules, the final point is more proper-

ly described as a guideline.

1. JSON object names and XML attribute names

must be used to create predicates in SPARQL

triple patterns; whereas XML element tags must

be used to create class names.

2. When writing SPARQL graph patterns, predi-

cates rdf:_1, rdf:_2 etc. must be used when we

wish to access a JSON array element or an XML

element or literal by position. Where we wish to

iterate across an unknown number of subele-

ments, a variable must be used to bind to rdf:_1,

rdf:_2 etc, or fx:anySlot should be used.

3. Graph patterns are not required to start from the

root of a document. When dealing with hierar-

chical information, graph patterns may need to

be designed to bind at various levels of the hier-

archy.

11.2. Future developments for YARRRML and

SPARQL Anything

Future developments need to reduce the possibility

of the kinds of conceptual and syntactic errors we

described in Tables 2 and 3.

YARRRML participants had difficulty in under-

standing the relationship between the iterator and

corresponding value statements, with the result that

the path in the iterator did not always properly con-

catenate with the paths in the value statement. These

problems could be detected as the YARRRML is

created, by comparing path statements with the struc-

ture of the data. Similarly, warning messages could

be issued where there is commonality between two

value statement paths, suggesting that this common-

ality might be moved into the iterator path. Going

further, path evaluators to show the effect of path

statements as they are being written, would aid users.

These comments can also apply to other techniques

based on path statements.

SPARQL Anything users had difficulty under-

standing the triplification. They face two problems:

understanding how the data is triplified; and under-

standing how to query the triplification. One ap-

proach would be to automatically check that

SPARQL Anything queries are consistent with the

data, e.g. that the object of an rdf:type predicate is an

IRI created from an XML tag, and not an XML at-

tribute. Another approach would be to display part

of the triplification, as required by the user, or to

provide standard queries to interrogate the triplifica-

tion.

Considering syntax, YARRRML is influenced

very much by its historical legacy, and the fact that

RML mappings are represented as RDF. The syntax

contains features which appear more determined by

implementation than the requirements of defining the

mappings. A prime example of this is the use of str1

and str2 in the condition, as in question 2. This is

purely an implementation detail, and should be

shielded from the user. The block paradigm offers

one way of mitigating these problems. An alternative

might be a tabular approach, with the user specifying

the components of a mapping, e.g. source file, itera-

tor, subject, predicate and object, in columns of a

table. Whilst such a simple approach might not satis-

fy all requirements, it might satisfy the great majority

of users. Another relatively simple approach has

been proposed, based on an analogy with style sheets

[32].

An issue with SPARQL is type conversion. Con-

version to IRI is cumbersome, as can be seen from

the solution to question 3. A simpler conversion

mechanism would be useful in SPARQL generally,

and particularly in the context of mapping to RDF.

Since our study, SPARQL Anything has addressed

this problem by the creation of a function fx:entity

which casts its arguments to string, concatenates

them and creates an IRI. Thus, line 14 in each of the

solutions in Figure 13 could be rewritten:

BIND (fx:entity (tsub: , ?topicId) AS ?topic)

Similar changes could be made to lines 12 and 13

of the solutions in Figure 14.

Other additions to SPARQL Anything have been

created to deal with sequences and container mem-

bership properties. One of these, fx:anySlot, has al-

ready been mentioned. In addition, there are a num-

ber of functions created to sequence through contain-

ers. The applicability of these functions has been

demonstrated in the context of extracting musical

features from musicXML files [33]. At the same

time, [33] has identified the need for query modulari-

sation to ease the design of sub-queries and avoid

lengthy process pipelines; this is likely to be the topic

of future research.

12. Conclusions and future directions

Our study compared two very different approaches

for mapping data to RDF, using state-of-the-art ex-

amples of each. The differences between these two

approaches are represented in the top and bottom

process flows of Figure 1. At the top, the

YARRRML user maps directly from the data to the

desired RDF graph. This requires an understanding

of the syntax and semantics both of YARRRML,

including how to merge data from separate sources,

and of the path statement language, e.g. JSONPath or

XPath. At the bottom, the SPARQL Anything user is

presented with an automatically created triplification,

which is a lossless representation of the original data.

The user needs to understand that triplification, and

its relationship to the original data. The second part

of the process is then achieved using SPARQL, with

which the user of RDF is likely to be familiar.

Some problems are common to the two approaches.

Most significantly, participants had difficulty with

the hierarchical structures in our files. For

YARRRML, this manifested itself in difficulties us-

ing recursive descent, with participants unclear about

its use and whether to place recursive descent in the

iterator or another path statement. For SPARQL An-

ything, the analogous problem was failing to under-

stand that a graph pattern can start anywhere, not

necessarily the root of the document, and bind at a

variety of levels within the hierarchy; thereby picking

out data items at all levels. More trivially, both sets

of participants had difficulties with JSON arrays,

perhaps in part through not detecting them in the

JSON.

However, many of the problems experienced were

specific to the particular approaches. What they

share is a need to thoroughly understand the data and

the use of the underlying paradigms. For

YARRRML, the use of individual path statements is

relatively straightforward; the difficulty frequently

lies in the relationship between the iterator and the

subject and object path statements. In training users,

the correct design of this relationship needs to be

stressed, with examples of the common use cases.

One way of viewing the iterator is as a mechanism to

allow path statements to share a common beginning,

and then ‘fork’. For SPARQL Anything, the difficul-

ty is understanding and querying the triplification.

Again, in training, emphasis on the various use cases

is important.

Our study used real data to achieve a degree of

ecological validity. However, we lack a clear view

of the needs of the majority of users of mapping tools,

e.g. which data formats they are predominantly inter-

ested in and what kind of data structures they are

working with. Studying actual users, e.g. via surveys

or focus groups, would enable the usability of future

tools to be designed for the common use cases; per-

haps accepting that the minority of ‘power users’

would require a greater degree of expertise to achieve

their goals.

Our study was based on observing user behaviours,

and in particular user errors. A future study would

benefit from a more quantitative approach, e.g. con-

sidering the times participants take to respond and

measuring cognitive load, e.g. using a tool such as

NASA-TLX [25]. However, such a study would

need to be based on sufficiently simple use cases that

participants could complete without assistance. It

would be useful, in such a study, to compare alterna-

tive triplifications. In particular, it would be valuable

to consider an alternative triplification of XML

which avoided creating classes from tags. It might

be possible to use tags to create predicates, differen-

tiating them from attribute names by the use of dif-

ferent namespaces.

Increased sophistication in the tools would aid us-

ers. An ideal would be tools which mirror the so-

phistication of a modern software development envi-

ronment, in checking for ‘compile-time’ errors and

making suggestions. We have made some recom-

mendations in the context of YARRRML and

SPARQL Anything. Where other tools are used,

analogous compile-time features could be imple-

mented.

A final question is whether there is an opportunity

to bring together the two paradigms, incorporating

the best features of each. One participant admitted to

wanting to use JSONPath in SPARQL Anything,

specifically to write [] xyz:creator.id ?creatorId ra-

ther than [] xyz:creator [xyz:id ?creatorId], although

knowing it was wrong. This suggests a more radical

approach in which users could directly query the data

with path statements, rather than query a triplification.

Such an approach would need to extend the syntax of

path statements, to achieve an effect equivalent to

that of the use of the iterator in YARRRML. The

work reported in [34] is relevant here; the paper de-

fines a “lightweight query language” to navigate

through JSON. This opens up the possibility of in-

corporating such a JSON query language within

SPARQL, and similarly incorporating XQUERY to

query XML.

In Table 6 we present a list of the research ques-

tions which we propose for future study.

Table 6. Research questions for future study

1 Can we characterize the use of structured data, so as to create a sample of use-cases which represents real-world usage?

2 How do YARRRML and SPARQL Anything, and similar techniques, compare with regard time to complete tasks and cognitive load

imposed?

3 Can we develop an alternative triplification for XML which imposes less cognitive load than the current triplification?

4 Can we develop effective training for YARRRML and SPARQL Anything, and related technologies, which takes account of the most

common use cases and appreciably improve user performance?

5 Is there a trade-off, as suggested in Section 9, between the YARRRML and SPARQL Anything approaches, i.e. with the former being

better suited for stable situations, and the latter being better suited for exploratory investigation?

6 Can we develop tools to support these mapping technologies, so as to improve user performance? What features should such tools in-

clude?

7 Can we include path statements within SPARQL, so as to permit querying of structed data generally, without the need to consider an

intermediate triplification? Would users find this proposed approach cognitively simpler than having to understand an intermediate

triplification?

Acknowledgements

The authors would like to thank all those who gave

up their time to participate in this study. The re-

search has received funding from the European Un-

ion’s Horizon 2020 research and innovation pro-

gramme through the project SPICE - Social Cohesion,

Participation, and Inclusion through Cultural En-

gagement (Grant Agreement N. 870811,

https://spice-h2020.eu), and the project Polifonia: a

digital harmoniser of musical cultural heritage (Grant

Agreement N. 101004746, https://polifonia-

project.eu).

References

[1] S. Das, S. Sundara, and R. Cyganiak, ‘R2RML: RDB to

RDF Mapping Language’, W3C, Sep. 2012. [Online]. Avail-

able: https://www.w3.org/TR/r2rml/

[2] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E.

Mannens, and R. Van de Walle, ‘RML: a generic language

for integrated RDF mappings of heterogeneous data’, in

Proceedings of the 7th Workshop on Linked Data on the

Web, CEUR, 2014.

[3] P. Heyvaert, B. De Meester, A. Dimou, and R. Verborgh,

‘Declarative rules for linked data generation at your finger-

tips!’, in European Semantic Web Conference, Springer,

2018, pp. 213–217.

[4] ‘Tutorial: generating Linked Data with YARRRML’. Ac-

cessed: Jan. 18, 2023. [Online]. Available:

https://rml.io/yarrrml/tutorial/getting-started/

[5] E. Daga, L. Asprino, P. Mulholland, and A. Gangemi, ‘Fa-

cade-X: An Opinionated Approach to SPARQL Anything’,

in Proceedings of the 17th International Conference on Se-

mantic Systems, SEMANTiCS 2021, M. Alam, P. Groth, V.

de Boer, T. Pellegrini, and H. J. Pandit, Eds., Amsterdam:

IOS Press, Sep. 2021, pp. 58–73. [Online]. Available:

http://oro.open.ac.uk/78973/

[6] J. Nielsen, ‘Usability 101: Introduction to Usability’. Ac-

cessed: Aug. 05, 2023. [Online]. Available:

https://www.nngroup.com/articles/usability-101-

introduction-to-usability/

[7] A. Iglesias-Molina, D. Chaves-Fraga, I. Dasoulas, and A.

Dimou, ‘Human-Friendly RDF Graph Construction: Which

One Do You Chose?’, in Web Engineering, vol. 13893, I.

Garrigós, J. M. Murillo Rodríguez, and M. Wimmer, Eds., in

Lecture Notes in Computer Science, vol. 13893. , Cham:

Springer Nature Switzerland, 2023, pp. 262–277. doi:

10.1007/978-3-031-34444-2_19.

[8] M. Hert, G. Reif, and H. C. Gall, ‘A comparison of RDB-to-

RDF mapping languages’, in Proceedings of the 7th interna-

tional conference on semantic systems, 2011, pp. 25–32.

[9] A. Crotti, C. Debruyne, and D. O’Sullivan, ‘Juma uplift:

using a block metaphor for representing uplift mappings’, in

2018 IEEE 12th International Conference on Semantic

Computing (ICSC), IEEE, 2018, pp. 211–218.

[10] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and D. Au-

mueller, ‘Triplify: light-weight linked data publication from

relational databases’, in Proceedings of the 18th internation-

al conference on World wide web, 2009, pp. 621–630.

[11] A. Dimou, M. Vander Sande, B. De Meester, P. Heyvaert,

and T. Delva, ‘RDF Mapping Language (RML)’, Nov. 2022.

Accessed: Jan. 23, 2023. [Online]. Available:

https://rml.io/specs/rml/

[12] B. DuCharme, ‘Converting CSV to RDF with Tarql’. Ac-

cessed: Nov. 10, 2022. [Online]. Available:

https://www.bobdc.com/blog/tarql/

[13] C. Stadler, J. Unbehauen, P. Westphal, M. A. Sherif, and J.

Lehmann, ‘Simplified RDB2RDF mapping’, in LDOW@

WWW, 2015.

[14] M. Lefrançois, A. Zimmermann, and N. Bakerally, ‘Flexible

RDF generation from RDF and heterogeneous data sources

with SPARQL-Generate’, in European Knowledge Acquisi-

tion Workshop, Springer, 2016, pp. 131–135.

[15] M. Lefrançois, A. Zimmermann, and N. Bakerally, ‘A

SPARQL extension for generating RDF from heterogeneous

formats’, in European Semantic Web Conference, Springer,

2017, pp. 35–50.

[16] E. Munoz, A. Hogan, and A. Mileo, ‘Triplifying wikipedia’s

tables’, LD4IE ISWC, 2013.

[17] P. E. R. Salas, K. K. Breitman, M. A. Casanova, and J.

Viterbo, ‘StdTrip: An a Priori Design Approach and Process

for Publishing Open Government Data.’, in SBBD (Posters),

Citeseer, 2010, pp. 6–1.

[18] H. Mahmud, H. Jahan, S. Rashad, N. Haider, and F. Hossain,

‘CSV2RDF: Generating RDF data from CSV file using se-

mantic web technologies’, J. Theor. Appl. Inf. Technol., vol.

96, no. 20, pp. 6889–6902, 2018.

[19] A. Dimou and D. Chaves-Fraga, ‘Declarative Description of

Knowledge Graphs Construction Automation: Status &

Challenges’, in Third International Workshop on Knowledge

Graph Construction, 2022.

[20] B. Norton, R. Krummenacher, and A. Marte, ‘Linked Open

Services: Update on Implementations and Approaches to

Service Composition’, in Future Internet Symposium, 2010.

[Online]. Available: http://ceur-ws.org/Vol-647/

[21] L. Asprino, E. Daga, P. Mulholland, and A. Gangemi,

‘Knowledge Graph Construction with a façade: a unified

method to access heterogeneous data sources on the Web’,

ACM Trans. Internet Technol. TOIT, vol. In Press.

[22] A. Crotti, C. Debruyne, and D. O’Sullivan, ‘Using a Block

Metaphor for Representing R2RML Mappings.’, in VOILA@

ISWC, 2017, pp. 1–12.

[23] A. Crotti, C. Debruyne, L. Longo, and D. O’Sullivan, ‘On

the mental workload assessment of uplift mapping represen-

tations in linked data’, in International Symposium on Hu-

man Mental Workload: Models and Applications, Springer,

2018, pp. 160–179.

[24] P. S. Tsang and V. L. Velazquez, ‘Diagnosticity and multi-

dimensional subjective workload ratings’, Ergonomics, vol.

39, no. 3, pp. 358–381, 1996.

[25] S. G. Hart, ‘NASA-task load index (NASA-TLX); 20 years

later’, in Proceedings of the human factors and ergonomics

society annual meeting, Sage publications Sage CA: Los

Angeles, CA, 2006, pp. 904–908.

[26] H. García-González, I. Boneva, S. Staworko, J. E. Labra-

Gayo, and J. M. C. Lovelle, ‘ShExML: improving the usabil-

ity of heterogeneous data mapping languages for first-time

users’, PeerJ Comput. Sci., vol. 6, p. e318, 2020.

[27] R. Pienta et al., ‘VIGOR: interactive visual exploration of

graph query results’, IEEE Trans. Vis. Comput. Graph., vol.

24, no. 1, pp. 215–225, 2017.

[28] T. Lopez, H. Sharp, M. Petre, and B. Nuseibeh, ‘Bumps in

the Code: Error Handling During Software Development’,

IEEE Softw., vol. 38, no. 3, pp. 26–34, 2020.

[29] A. E. Blandford, ‘Semi-structured qualitative studies’, Inter-

action Design Foundation, 2013.

[30] J. M. Corbin and A. Strauss, ‘Grounded theory research:

Procedures, canons, and evaluative criteria’, Qual. Sociol.,

vol. 13, no. 1, pp. 3–21, 1990.

[31] D. A. Norman, ‘Some observations on mental models’, in

Mental models, A. Stevens and D. Gentner, Eds., Psycholo-

gy Press, 2014, pp. 7–14.

[32] H.-J. Rennau, ‘semsheets’, Feb. 23, 2022. Accessed: Oct. 14,

2022. [Online]. Available:

https://lists.w3.org/Archives/Public/semantic-

web/2022Feb/0104.html

[33] M. Ratta and E. Daga, ‘Knowledge Graph Construction

From MusicXML: An Empirical Investigation With

SPARQL Anything’, 2022.

[34] P. Bourhis, J. L. Reutter, and D. Vrgoč, ‘JSON: Data model

and query languages’, Inf. Syst., vol. 89, p. 101478, 2020.

