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Abstract. Debugging and repairing Web Ontology Language (OWL) ontologies has been a key field of research since OWL
became a W3C recommendation. One way to understand errors and fix them is through explanations. These explanations are
usually extracted from the reasoner and displayed to the ontology authors as is. In the meantime, there has been a recent call
in the eXplainable AI (XAI) field to use expert knowledge in the form of knowledge graphs and ontologies. In this paper, a
parallel between explanations for machine learning and for ontologies is drawn. This link enables the adaptation of XAI methods
to explain ontologies and their entailments. Counterfactual explanations have been identified as a good candidate to solve the
explainability problem in machine learning. The CEO (Counterfactual Explanations for Ontologies) method is thus proposed
to explain inconsistent ontologies using counterfactual explanations. A preliminary user study is conducted to ensure that using
XAI methods for ontologies is relevant and worth pursuing.
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1. Introduction

Explainability has recently become a critical factor in the development of artificial intelligence (AI) algorithms
because of their increasing application in sensitive domains as well as our day-to-day life. A notorious example is the
use of AI algorithms for loan decisions [1]. The opacity of popular AI solutions hinders the ability of the customer
or even the banker to understand and explain the decision. Consequently, the criteria that led to the final decision
are unknown and may be discriminatory. Furthermore, it prevents the customer from identifying the requirements
necessary to obtain the loan. The field of explainable AI (XAI) has started to address this desire for explainability but
is heavily focused on explaining machine learning algorithms. This field explores the different types of explanations
and how to generate them to explain AI systems. One type of explanation, named counterfactual explanations, was
recently identified as an ideal candidate to explain the outcome of an AI system [2–4]. It consists in answering the
question “Why did P happen rather than Q ?” [3]. To determine the answer to such questions in an AI system, the
XAI community is designing new explanation techniques that focus on explaining machine learning models.

In the meantime, it was discussed that the level of explainability of most AI systems could be increased by apply-
ing knowledge representations and particularly Semantic Web technologies [5–7]. Furthermore, Lecue [5] argued
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that every subdomain of the AI field could benefit from explanations, including the Knowledge Representation and
Reasoning (KRR) domain. In particular, ontologies are widely used in medicine or the web, as demonstrated by
ongoing projects such as the Gene Ontology [8] or DBpedia [9]. They are able to represent knowledge and infer
new facts and thus also require some explanations to understand and debug them [10]. There already exists some
explanation techniques for ontologies, but all provide the same type of explanations intended solely for ontology
authors.

The explainability of ontologies is confronted with the same issues as XAI, with a similar goal. Both seek to
provide understandable explanations of decisions made by an algorithm. However, explanation techniques specific
to ontologies lack in variety and are not intended for the end-users i.e. domain experts or laypersons. In this paper,
we aim to tackle this problem by designing a method to generate counterfactual explanations for OWL ontologies,
that is inspired from the existing approaches for machine learning. Providing intuitive explanations to laypersons
and domain experts could help ontologies gain popularity and be used as trustworthy decision-support systems.
Moreover, it can serve as an additional tool to debug and repair ontologies in a different manner than the current
explanation techniques, as it was discussed that ontology authors still struggle to carry out this task [11]. This
work also preemptively addresses the upcoming issue of explaining new explainable AI systems that are based on
ontologies. Finally, this work is an opportunity to explore the challenges of adapting an explanation method from
machine learning to ontologies.

Explanations in OWL ontologies are necessary to help a designer or a user understand entailments, debug and
repair an ontology [10]. Since OWL ontologies are based on Description Logics, the current solutions extract ex-
planations about entailments directly from the logical reasoner that produced these entailments. They identify the
axioms of the ontology that led to a specific entailment, along with the logical steps applied to produce the entail-
ment. The resulting explanations help the ontology designers to determine and fix the faulty axioms. However, a
general issue with these methods is that they are often very large and are presented in a technical language, making
the explanations difficult to understand for a layperson or domain expert. The problem of generating explanations
that are adapted to non AI experts is addressed by the XAI field, but few techniques from this field are applicable
to non machine learning systems. Among these techniques, counterfactual explanations are being heavily studied
because they replicate a form of reasoning used by humans to explain. Moreover, they have been described as ideal
candidates to solve the explainability problem because they are technically feasible, psychologically relevant, and
compliant with recent legislation such as GDPR [2, 12]. A variety of methods to generate these explanations have
been proposed to explain machine learning systems. The community has formulated a theoretical framework to de-
fine what a counterfactual explanation is in the context of machine learning, along with several metrics to assess the
quality of the explanations. These methods all solve an optimization problem with regard to these metrics in order to
identify the best explanations. Yet, scholars voiced concerns as most of this framework was built based on intuition
of what a good explanation is. There is a lack of user studies to test these intuitions and evaluate the relationship
between the metrics and the users’ appreciation of the explanations.

Our goal is to design a method that generates Counterfactual Explanations for Ontologies (CEO). Considering the
absence of prior work with the same purpose, we propose a theoretical framework that facilitates the adaptation of
XAI techniques to ontologies. The introduced CEO method is based on this framework and is intended as a prototype
that demonstrates that it is possible to generate such explanations for ontologies. Then, we conduct two experiments
to validate the CEO method. The first experiment uses objective metrics to evaluate the ability of the method to
generate good counterfactuals. It also measures the execution time of the method and assesses its scalability. The
second experiment is a preliminary user study designed to prepare for a large-scale user study that will evaluate the
method on subjective metrics and thus avoid relying on intuition. This preliminary study is conducted on a small
ontology and seeks to verify that the method behaves as expected, ensure that the explanations are relevant and
useful, and finally identify shortcomings that would skew the results of a larger user study.

The paper is structured as follows: Section 2 presents the related literature on generating counterfactual explana-
tions for machine learning and the existing techniques to explain ontologies. Afterward, details about our approach
to design counterfactuals for ontologies are described in Section 3. The theoretical framework to generate counter-
factuals for ontologies is presented in Section 4. Section 5 introduces the CEO method that is based on this novel
framework. Then, the two experiments are presented in Section 6. To conclude this article, the contributions, results,
and future directions are discussed in Section 7.



2. Related work

To our knowledge, generating counterfactual explanations for OWL ontologies has not been attempted before.
Consequently, we observed two categories of related work in the literature: those that seek to explain OWL ontolo-
gies; and those that generate counterfactual explanations for other types of AI systems, especially machine learning
models.

2.1. Explaining OWL ontologies

Explanations in OWL ontologies are necessary to help a designer or a user understand entailments, debug, and
repair an ontology [10]. Since OWL ontologies are based on description logics, it is possible to extract some ex-
planations of these entailments by using a reasoner. Methods to generate explanations are divided into two types:
black-box and glass-box methods [13]. According to [14], glass-box methods introduce significant modifications
to description logic reasoners with the goal of using available internal information for a fast computation of diag-
noses. Black-box methods use a reasoner as an oracle to check if some set of axioms is consistent. We note that this
terminology is specific to logical reasoners and will not be used outside this section to avoid any ambiguity.

The simplest type of explanation that can be extracted from the reasoner is logical proof. They display each
step of the reasoning process that resulted in a specific entailment. The main issue with such explanations is that
they become difficult to understand when they get very large [15]. As a response to this problem, another form
of explanation called justifications is introduced [16]. They are also called MUPS for Minimal Unsatisfiability-
Preserving sub-TBoxes. They consist in finding the smallest sets of axioms necessary for a given entailment to hold.
However, as Alrabbaa et al. [17] mentioned, justifications can still be very large and thus suffer from the same issue
as proofs.

In order to overcome these issues, interactive debugging tools have been proposed. OntoDebug [14] implements
this idea. Its goal is to ask the user for additional knowledge that can reduce the length of proofs and justifications.
However, Coetzer and Britz [18] have shown that the debugging approach of OntoDebug can lead to unintuitive
results. Despite all the efforts in the development of debugging tools, ontology authors still struggle to debug and
repair their ontologies [11].

The explainability of OWL ontologies is confronted with the same issues as XAI, with a similar goal. Both seek
to provide understandable explanations of decisions made by an algorithm. In the XAI field, such algorithms are
machine learning algorithms whereas for OWL ontologies, they are reasoners. Interestingly, there is some shared
terminology, e.g. glass-box, and black-box, that also share the same notions. Finally, as Lecue [5] advocated, on-
tologies could benefit from the advances in XAI in the same manner as the XAI field benefits from the knowledge-
representation and reasoning domain. Indeed, in the majority of the reviewed literature on OWL explanations, the
explanations are made only for domain experts and ontology authors. Providing explanations to laypersons could
help ontologies gain popularity and be used as trustworthy decision-support systems.

Our contribution also extracts information from the reasoner to generate explanations. It focuses on explaining
inconsistencies caused by the ABox and assumes that the TBox is always consistent. Instead of seeking the axioms
responsible for an inconsistency, it proposes modifications to assertions in the ABox that remove the inconsistency.
Therefore, the output of this explanation is a list of possible modifications that are usually shorter in size than
justifications and do not necessitate any expertise in logical reasoning.

2.2. Counterfactual explanations

Counterfactual thinking is a well-known reasoning method for humans. In a psychology bulletin, Roese [19]
defines it as “mental representations of alternatives to the past”. It consists in altering some factual antecedent to
an event and assessing the consequences of that alteration. In the following, the terms counterfactual explanations,
counterfactuals, and CF are used interchangeably.

A classical example of counterfactual explanations is the loan approval example [12]. Suppose a bank’s customer
seeks a loan. The loan approval system uses a classifier, which studies the customer’s file. This file contains in-
formation on the customer’s identity and financial situation. In particular, four features are studied: income, credit



score, level of education, and the age of the customer. In the case of machine learning, the input vector would be
(Income,CreditS core, Education, Age). When the customer is denied the loan by this system, they may ask for
some explanations about this decision: “Why was the loan denied ?” and “What can I do differently so that the
loan will be approved in the future ?”. The first question can be answered using current explainability methods. A
probable answer to that first question might be “Your income is too low”. The second question requires a counter-
factual explanation: what are the smallest changes that the customer can make in order to change the outcome i.e.
get the loan. A possible counterfactual may be: “Your income should be of $40K instead of $30K”. Another could
be: “Your level of education should be a master’s degree instead of a bachelor’s and your income should increase
by $4K.” These formulations allow the customer to choose between different paths to get the loan. This also allows
them to understand which variables in their file are the most important for the model.

Stepin et al. [3] compare counterfactual explanations to contrastive explanations. Contrastive explanations explain
an event P by answering the question “Why did P happen rather than Q ?”. Given multiple contrastive explanations,
the explainee will have sufficient information to make abductive inferences about the event P. Thus we argue that
counterfactuals are contrastive explanations about a fact or event that occurred. According to Stepin et al. [3],
counterfactuals provide explanatory alternatives to how things would stand if a different decision had been made at
some points.

Verma et al. [12] briefly compiled works on counterfactuals in fields like philosophy, psychology and social
sciences. These articles tend to say that counterfactuals are an ideal method of explanation. Keane et al. [2] also sur-
veyed the literature and drew the same conclusions. They collected evidence from the literature that counterfactuals
are technically feasible, psychologically relevant, and GDPR-compliant. Because of these findings, counterfactual
explanations have recently been identified as a good candidate to solve the XAI problem.

2.3. Generating counterfactuals for machine learning

According to [2, 12], the generation of counterfactual explanations for machine learning models are all based on
the same approach, that was first described by Wachter et al. [4]. Wachter et al. [4] introduced a machine learning
oriented definition for counterfactuals: “Score p was returned because variables V had values (v1, v2, . . . ) associated
with them. If V instead had values (v′1, v

′
2, . . . ), and all other variables had remained constant, score p′ would have

been returned”. They proposed a generation method that relies on solving an optimization problem under specific
constraints that are motivated by psychological studies. The main constraints given by Wachter et al. [4] are the
following:

Proximity Counterfactuals should be in close possible worlds i.e. they should alter values as little as possible.
Sparsity It ensures that the minimum amount of variables are changed while the others remain constant. They state

that it is highly desirable to create human-understandable counterfactuals.
Diversity They argued that it is more informative to provide a diverse set of counterfactual explanations as it gives

the user multiple different sets of actions to change the model’s outcome.

Most methods that followed Wachter et al.’s [4] work have adopted the same idea to generate counterfactuals,
i.e. solve an optimization problem under specific constraints. Additional constraints have later been proposed to
enhance the quality of counterfactuals. Verma et al. [12] reviewed the literature on counterfactual explanations for
machine learning. They enumerated recurring desired properties along with their related mathematical constraints
and showed how to include them in an optimization problem.

Let x be an input vector and f a machine learning model. The main goal of a counterfactual explanation is to find
modifications on x to get the desired outcome ŷ with ŷ ̸= f (x) i.e. find every counterfactual x̂ where f (x̂) = ŷ. This
can be formulated as an optimization problem (see Equation 1). Constraints are added to this problem by a simple
addition operation.

argmin
x̂

( f (x̂)− ŷ)2 (1)



2.3.1. Validity
Validity of a counterfactual corresponds to whether the solution x̂ returned by the optimization problem has the

expected outcome ([4, 12]), i.e. a counterfactual x̂ is valid iff f (x̂) = ŷ. In [20], Mothilal et al. consider a CF valid
if f (x̂) ̸= f (x). The choice of validity definition is made based on the user’s expectations. In this paper, the first
definition is adopted.

2.3.2. Proximity
Proximity is a measure of the distance between the original input x and a CF x̂. This property is used in every CF

method. Verma et al. [12] associate proximity with validity, which emphasizes the importance of this property.

argmin
x̂

( f (x̂)− ŷ)2 + d(x, x̂) (2)

Equation 2 plugs a distance constraint into the main optimization problem to ensure the proximity property. The
function d is a distance metric. Many different distances have been proposed for counterfactuals. The feature vector
x may contain numerical and categorical features which need to be processed differently. Let X = X1 × · · · × XJ

be the feature space of the input x. To deal with these different feature types, the distance metric d aggregates the
distances between each feature as such: d (x, x̂) = agg(δ) where δ = (δ1, . . . , δJ) and agg is a function such that
agg : X → R+ Each component δ j represents the distance between x j and x̂ j. Finally, each δ j needs to be computed
based on the type of x j.

The MACE method [21] imposes that δ j ∈ [0, 1]. Among all the categorical features, the MACE method dis-
tinguishes a subset of features called ordinal that represents ordered categories. Equation 3 shows how each δ j is
computed. As a reminder, I [x j ̸= x̂ j] returns 1 if x j ̸= x̂ j and 0 otherwise.

δ j =

{
|x j − x̂ j| /R j if x j numerical or ordinal. R j is the range of the feature x j.
I [x j ̸= x̂ j] if x j is categorical.

(3)

Once δ is computed, MACE uses the distance function defined by Equation 4.

d (x, x̂) = α ∥δ∥0 + β ∥δ∥1 + γ ∥δ∥∞ (4)

The authors of MACE use these different norms to ensure desirable properties. The 0-norm restricts the number of
features that change and therefore ensures the sparsity of the CF. To ensure proximity, they use the 1-norm to restrict
the average change distance and the∞-norm to restrict the maximum change. This proximity metric is also used by
the GeCo method [22]. Slightly different proximity metrics are discussed in [20, 22].

2.3.3. Sparsity
Sparsity corresponds to the number of features that have been modified to create the counterfactual from the

original input. In several papers, researchers advocate for short explanations, i.e. sparse CF ([4, 12, 20]). However,
Keane et al. [2] argue that this condition is based on intuition and some loosely related psychological studies on
working memory limitations. An appropriate level of sparsity is yet to be defined. This is apparent in a user study
by Förster et al. [23], which demonstrated that users sometimes prefer longer explanations rather than shorter ones.
They explain this finding with the fact that too short explanations may fail to incorporate the most important aspects
and leave too many causes unexplained. They also mention that the ideal length depends on the context and the
user. Humans generally prefer short explanations. However, in some cases such as scientific explanations, longer
explanations are preferred.

Verma et al. [12] add a penalty function to encourage sparsity in the optimization problem, as shown in Equation
5.

argmin
x̂

( f (x̂)− ŷ)2 + d(x, x̂) + g (x̂− x) (5)



In this equation, g is the penalty function that encourages sparsity. The 0-norm or 1-norm is traditionally used ([4,
12]). Many scholars integrate the sparsity constraint directly into the proximity metric, as MACE [21] demonstrates.
Indeed, in Equation 4, the 0-norm is already included. Adding another constraint with the same effect may be
redundant.

The DiCe method [20] does not include sparsity in the optimization problem because their formulation of this
property is not convex. Instead, they encourage sparsity in the generated counterfactuals by conducting a post-hoc
operation where they restore the value of continuous numerical features to their original values greedily, until the
predicted class changes.

2.3.4. Feasibility
Feasibility and plausibility are properties that appear in many papers. Schleich et al. [22] describe feasibility as a

measure of whether a user could realistically achieve the changes made in the counterfactual. For instance, the Age
variable can only increase in a feasible CF, since it is not possible to become younger. They define plausibility as
a measure of whether the counterfactual makes sense in the real world. For instance, recommending an Age of 200
years old is not plausible.

Keane et al. [2] criticize these notions as they are not clearly defined in the literature. The main goal of these no-
tions is to make sure that counterfactuals are realistic and fair. There are many existing methods to ensure plausibility
and feasibility, the following appear the most in current works:

– Some scholars argue that a counterfactual is feasible and/or plausible if it follows the training data distribution
([12, 21]) or stays within the range of a given feature ([24]). The idea is that a counterfactual would be unre-
alistic if it resulted in a combination that is far from the training data distribution. Looking back to the loan
application example presented in Section 2.2, a customer of 18 years old with a high school diploma is denied
a loan. A counterfactual requiring this customer to get a doctorate and be 20 years old is unrealistic. Firstly,
because it is not feasible for this particular customer since getting a doctorate would necessitate more than two
years. Secondly, it is highly improbable in general to have a doctorate at this age. Therefore, such datapoint is
not in the training data distribution and the CF is neither plausible nor feasible.

– The notion of actionability of a feature is discussed in the literature ([3, 20, 21]). Non-actionable features are
features that should not be modified for various reasons. An example of non actionable feature is the birthplace
of a person. The birthplace cannot be modified. Moreover, if a CF modifies it, this shows that the model is
discriminatory. Hence, a feasible CF is a CF that does not modify any non-actionable feature.

– User-defined constraints are implemented in the latest methods ([20–22, 25]). The user or a domain expert
can determine specific constraints to generate plausible and feasible explanations. The main issue is that those
constraints need to be enunciated in a way that can be utilized by a given method. GeCo [22] defines a plau-
sibility and feasibility constraint language (PLAF) to enable experts to easily insert those constraints in the
optimization problem. DiCe [20] allows the user to define ranges for specific features. They also propose to
incorporate domain knowledge in the form of pairs of features and their relation. For example, it is possible
to say that when Education increases in a CF, then the Age should also increase. These constraints must be
respected for a CF to be feasible.

We argue, that feasibility and plausibility are not always desirable. Indeed, avoiding these properties may reveal
unexpected yet pertinent information about the model. Especially concerning fairness. Mothilal et al. [20] show
counterfactuals on the COMPAS dataset that have not been filtered to be feasible or plausible. It reveals that changing
only the race of the individual changes the outcome, which in turn lets the users understand that the model is not
fair.

2.3.5. Diversity
Diversity refers to the distance between two counterfactuals. Verma et al. [12] highlight that most proposed

algorithms return a single counterfactual for a given input. This implies that the optimization problem needs to
be solved multiple times to get multiple counterfactuals. Moreover, providing multiple different counterfactuals
is beneficial for the user since it helps further understand what the model observed as well as provides multiple
paths to modify the outcome ([4, 20, 22]). To do so, the DiCe method [20] adds a diversity term to maximize in
the optimization problem and generates a set of counterfactuals instead of a single one. Another way to generate
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Fig. 1. Flowchart of our approach to generate counterfactuals for ontologies

multiple diverse counterfactuals is proposed in the GeCo [22] method, which uses a genetic algorithm to solve the
optimization problem, that outputs a set of good counterfactuals. The most diverse counterfactuals are then selected,
based on a particular diversity metric. Diversity being the distance between counterfactuals, it is analogous to the
proximity metric. Any proximity measure can be utilized by replacing the original input with a counterfactual.

2.3.6. Evaluation
Finally, these methods must be evaluated on real datasets to assess their quality. The most used method of evalu-

ation uses objective metrics as proxies of the quality of a counterfactual. Förster et al. [23] deplore the lack of user
studies in XAI. Keane et al. [2] declare that only 31% of the papers on CF they reviewed contained user evaluations.
Stepin et al. [3] make the same observation, only 3 papers out of 31 propose a user study to evaluate their method,
while 21 of them use an objective method. Unfortunately, conducting valuable user studies is complex and costly
especially when domain experts are required [26]. That is why most papers use objective metrics as proxies of the
quality of CF. These metrics are usually validity, proximity, sparsity, feasibility, and diversity ([12, 21, 22]. Authors
set a particular proximity metric to evaluate their method against others, which may advantage their method but
allows for a normalized comparison. However, some methods cannot use different proximity metrics. When trying
to compare their GeCo method, Schleich et al. [22] could not use their proximity metric because the MACE and
DiCE methods do not support combinations of Lp-norms. The other evaluation metrics can be computed post hoc
and do not pose this issue.

In recent years, many methods to generate counterfactuals for machine learning have been designed. They all at-
tempt to solve the optimization problem. Scholars have applied different strategies to find solutions to this problem
that also satisfy the other desired properties discussed above. According to Guidotti [27], two major strategies are
commonly applied: the resolution of the problem with optimization algorithms and the resolution via a heuristic
search. Heuristic search is more efficient than the other approach but returns sub-optimal solutions. Both strategies
attempt to minimize a loss or cost function. Our proposed method to generate counterfactuals for ontologies is in-
spired by these related works for machine learning. Yet, as machine learning and ontologies have different goals and
functioning, the approach must be adapted accordingly. For instance, only a heuristic search method is applicable
since there are little to no continuous values in ontologies.

3. Approach

Our main objective is to generate counterfactual explanations for OWL ontologies to explain entailments or
inconsistencies. To the best of our knowledge, this goal was never explored before. Our approach, presented in
Figure 1, follows the same steps as similar methods for machine learning. The design of a theoretical framework
that connects the concepts of machine learning to OWL ontologies is key to being able to adapt XAI methods to
OWL ontologies. Once this framework is introduced, we can devise a generic algorithm to generate counterfactuals
that is similar to the one applied in machine learning. Nevertheless, some challenges arise due to the fundamental
differences between machine learning and ontologies. These challenges are studied and addressed in order to design
the resulting CEO method. Finally, we intend to evaluate this method by conducting a rigorous large-scale user
study. Due to the cost and complexity of such a study, we intend to run one or several preliminary user studies to
detect issues in the study methodology and in the method that may hinder the quality of the large-scale study. A first
iteration of such a preliminary study is presented and discussed in this paper.



Our overall approach replicates the approach followed by the XAI community to design counterfactuals for
machine learning. An input and output are expected for the proposed method to function. These notions do not
have an equivalent notion for ontologies. Hence, our approach will allow us to achieve the goal of generating
counterfactuals for ontologies but may not fully take advantage of the mechanisms of ontologies.

The generic algorithm to generate counterfactuals follows the same mechanism as heuristic search methods i.e.
explore the space of all possible counterfactuals and identify the best candidates according to a set of desired
properties. The search space of candidate counterfactuals is defined and a heuristic is introduced to find the best
candidates within this search space without exploring it entirely. The implementation of this algorithm is faced
with several challenges such as the computation of the proximity metric and the design of an efficient heuristic. A
proximity metric represents the difficulty of going from the original input to the counterfactual [20]. Determining
such distance for entities of an ontology was already studied in the literature by using similarity metrics. We discuss
the possible choices of such similarity metrics later in the paper. Regarding the design of a heuristic search, we
represent the space of all possible counterfactuals (i.e. the search space) as a graph. Nodes are counterfactuals and
edges represent elementary operations to go from one counterfactual to the other. This representation enables the
use of graph edit distances to compute the different metrics.

The resulting CEO method is evaluated with two experiments. The first experiment uses objective metrics and
particularly focuses on measuring the execution time required to generate the counterfactuals. The well-known Pizza
ontology1 is employed as it fully exploits the possibilities of OWL ontologies. Moreover, its application domain
does not require experts to understand and validate the explanations. The second experiment is a user study to
assess the quality and relevance of the explanations. As discussed in Section 2, user studies are crucial to adequately
evaluate the quality of an explanation method. However, conducting such a study is complex and expensive [26].
To circumvent this issue, our approach is to conduct several inexpensive small-scale studies to identify issues in
the proposed method and the study methodology. A first preliminary user study on a musical instruments ontology
is presented in this paper. The application domain of this ontology is chosen based on our easy and inexpensive
access to domain experts. Due to its scale, the results cannot be generalized and may not be representative of the
behavior of the method on other ontologies. Nevertheless, we expect that the results of these preliminary studies
will provide enough feedback to detect problems in the explanations or methodology that are independent of the
particular domain of application. This feedback will allow the preparation of a high-quality large-scale user study
which will make the most of the resources allocated to it.

4. Theoretical framework to generate counterfactuals for OWL ontologies

We set to create counterfactual explanations for OWL ontologies based on the current works in machine learning.
The first task is to map the definitions of desired properties seen in Section 2.2 to the OWL ontologies domain. This
mapping paves the way for our method described in Section 5. We use the OWL2 language as defined in [28] and
its mapping to RDF Graphs given in [29]. For ease of reading, an ontology’s class defined in its TBox is written as
Class. Any term defined in the OWL2 specification [28], the RDF specification [30] or the mapping from OWL2
to RDF [29] is written in italics.

First, the problem is reformulated, then the desired properties of a counterfactual, i.e. validity, proximity, sparsity,
feasibility, and diversity, are defined for OWL ontologies.

4.1. Problem formulation

The CF problem in machine learning is the following. Given a model f and an input vector x, a counterfactual
of x is a vector x̂ such as f (x) ̸= f (x̂). Specifically, only the supervised classification problem is studied. Let Co

be the original class predicted by f (x) and Cd be the desired modified outcome. In the loan application example
described in Section 2.2, Co corresponds to the class Denied, and the desired outcome Cd is the class Approved.

1https://protege.stanford.edu/ontologies/pizza/pizza.owl

https://protege.stanford.edu/ontologies/pizza/pizza.owl
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Fig. 2. An IKG representing a customer classified as Denied with Income = $30K, CreditS core = 560, Education = bachelor and Age = 27

The classifier f becomes an OWL ontology O. Indeed, both the classifier’s trained parameters and the ontology
contain knowledge under different forms.

Any input vector can be seen as an individual defined in the ontology’s ABox. Each feature of this input vector
corresponds to an assertion. Therefore, the input vector corresponds to the set of assertions that share the same
sourceIndividual. With the RDF Graphs representation, each assertion is a triple of the form (sub ject− predicate−
ob ject) [30]. Since every assertion of this set shares the same sourceIndividual, these assertions can be rewritten as
RDF triples where their Subject is the same. Finally, this enables the representation of this set of assertions as a star
graph, where nodes are the objects of these assertions and edges are their predicates. The center node is the shared
individual. This RDF graph corresponds to the input vector x. In the remainder of this paper, this type of graph is
named an Individual Knowledge Graph or IKG. Let I be an IKG, the individual at the center of this IKG is noted
Ic. Assertion, RDF triple, or triple will also be used interchangeably from now on. Let I be an IKG containing the
triple (Ic − rdf:type−Co). The IKG Î is a counterfactual of the IKG I if it contains the triple

(
Îc − rdf:type−Cd

)
and not the triple

(
Îc − rdf:type−Co

)
.

A graphical representation of an IKG is proposed in Figure 2. The subject of this IKG is the customer of the bank.
Every assertion in the ontology that has this particular customer as subject is represented in the IKG, in the form of
RDF triples.

4.2. Properties definition

Now that the definition of a counterfactual for an OWL ontology has been given, the different properties seen
in Section 2.2 can be applied. In this section, I is the original IKG of class Co, that is to say I contains the triple
(Ic − rdf:type−Co). It is assumed that if an IKG contains the triple (Ic − rdf:type−C), then it also contains every
triple where the object is a parent of C. Equivalently, if an IKG does not contain the triple (Ic − rdf:type−C), then
it does not contain any triple where the object is a subclass of C.

Validity Based on the definition for machine learning, a counterfactual is valid if the outcome is the one expected.
Therefore, we consider a counterfactual Î valid if:

– It contains the triple
(

Îc − rdf:type−Cd

)
.

– It does not contain the triple
(

Îc − rdf:type−Co

)
.

– The ontology is consistent after adding the IKG Î to its ABox.

Proximity Proximity is a measure of the distance between the original input and its counterfactual. In the literature,
the problem of measuring the distance between two semantic entities has already been explored. Similarity



functions are preferred to distances because they do not need to verify the triangle inequality. Similarities
based on description logics are discussed in [31]. Euzenat et al. [32] present the OLA similarity which first
encodes an ontology as a labeled graph; the similarity between two nodes of this graph depends on the
similarity of the terms (labels, names...), the similarity of the neighbors and the similarity of other local
descriptive features. Hu et al. [33] introduce the notion of signature vectors. The idea is to decompose a
concept C into a set of primitive concepts and attribute a weight to each of these primitive concepts based on
their number of occurrences in C. This concept C can now be represented as a vector where each feature is a
primitive concept and the value of the feature is the importance of this primitive concept for C. Computing the
similarity between two concepts is equivalent to computing the similarity between their signature vectors. The
principal challenge of this method is to define those primitive concepts. For each ontology, primitive concepts
must be defined which can be an arduous task for large ontologies. Finally, S. Ontañón [31] discusses the
“edge counting” distance, first introduced by Rada et al. [34]. This distance is applicable to taxonomies and
hierarchies. The taxonomy is seen as a tree where the parent relation defines the edge between the elements
in the tree. The distance is simply the number of edges that must be traversed to go from one element of the
tree to another. Overall, there exists a large choice of semantic similarity metrics, each adapted to specific use
cases.

Sparsity Sparsity is the number of features modified on the original input to get the counterfactual. For IKGs, the
definition remains the same, it is the number of assertions of the original IKG that have been modified to get
the CF.

Feasibility Feasibility or plausibility is the measure of how realistic and achievable a counterfactual is. Because
ontologies use domain knowledge, an unrealistic counterfactual should not be consistent with the ontology.
Thus the consistency of the ontology reflects the plausibility of the counterfactual. Nevertheless, the issue of
actionability persists. A CF is not feasible if it modifies non-actionable features. That is why we propose to
flag some predicates as non-actionable in the ontology. For instance, a triple (Ic − :hasRace−Caucasian)
should not be modified since race is a protected feature. Any triple with this predicate is not actionable,
therefore, the predicate definition should reflect this non-actionability. One way to do so that is used in the
CEO method is to consider non-actionable predicates as subclasses of an abstract class NonActionable

Diversity Diversity being the distance between two counterfactuals, the similarity function used for proximity can
be applied to two counterfactuals to compute the diversity.

5. Counterfactual Explanations for OWL ontologies

The CEO method takes an IKG I as input and seeks a set of valid counterfactuals, as defined in Section 4. In
the current state of our method, only ClassAssertions and ObjectPropertyAssertions are observed. A new set of
ClassAssertions is decided by the user. The set of ClassAssertions of I is then replaced by the user-defined set. The
new IKG resulting from this replacement is called Î and is considered the closest counterfactual from I. However,
it is likely that these changes render the ontology inconsistent. The method seeks appropriate modifications of the
ObjectPropertyAssertions in Î to make the ontology consistent with the changes in ClassAssertion. The CEO method
is a black-box method according to the definition given for OWL explainability methods in Section 2.1. Indeed, it
uses the reasoner as an oracle to check whether the addition of an IKG renders the ontology inconsistent.

A major difference between supervised classification and OWL ontology reasoning is that supervised classifi-
cation requires an input with a fixed set of features. An OWL ontology reasoner does not impose a specific set of
assertions to make inferences. To do so, those reasoners use the open-world assumption which considers that non-
specified assertions are unknown. Thus, the open-world assumption should be taken into account when generating
counterfactuals for OWL ontologies. Removing or adding assertions may provide additional information to the user
and should be included in the method. Different sets of modifications, insertions, and removals are found by the
method, sorted based on a set of metrics and proposed to the user as counterfactual explanations. Specifically, the
generic algorithm to generate counterfactuals is decomposed into four parts:

1. Generate a set of candidate counterfactuals.






 - :hasEducation - bachelor
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 - :hasEducation - master
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Fig. 3. Representation of a subgraph of Ω

2. Remove nonvalid and non-feasible candidates.
3. Compute proximity and sparsity on the set of valid candidates.
4. Return the valid candidates to the user, sorted by proximity and sparsity.

The CEO method which implements each step is further discussed in this section. First, a simplification is made
about the sub ject of every triple. In the definition of an IKG in Section 4, the sub ject of any triple in an IKG I is
an individual noted Ic. It can be argued that for any counterfactual Î of I, Ic = Îc. Indeed, this individual is the only
constant thing between the original IKG and its counterfactual. For instance, let Ic be the bank’s customer from the
loan application example in Section 2.2. The counterfactual provides possible modifications of assertions to obtain
the loan. The customer may be told to modify their Income or their Education but it does not make sense to modify
the nature of the customer, i.e. the sub ject of these assertions. This is why, from now on, the individual sub ject of
an IKG is considered constant and is noted Ic in every case.

5.1. Counterfactuals search space

Some counterfactual methods propose to define the search space for counterfactuals ([21, 22]) and then compute
the different metrics for the counterfactuals in this search space. In the case of OWL ontologies, this space can be
represented as a directed graph.

Let Ω = (V, E) be the graph representing the search space. V is a set of IKGs that are the nodes of this graph. E
is the set of directed edges that link one IKG to another. Three elementary operations are defined on an IKG:

Object modification This operation consists in modifying the ClassAssertions of an object in a triple.
Assertion removal This operation consists in removing an assertion from an IKG.
Assertion insertion This operation consists in adding an assertion to an IKG.

Two IKGs are connected in the graph if and only if a single elementary operation is needed to go from one
IKG to the other. For instance, let Î = {(Ic − :hasEducation− bachelor) , (Ic − :hasIncome− 10000)} and Î1 =
{(Ic − :hasEducation− master) , (Ic − :hasIncome− 10000)}. This graph is represented in Figure 3. Î and Î1 are
connected in Ω because a single object modification needs to be applied to go from Î to Î1, namely changing bachelor
to master. Let Î2 = {(Ic − :hasEducation− master)}. In this case, Î and Î2 are not connected because more than one
elementary operation should be applied. But Î1 and Î2 are connected because only an assertion removal connects
them, namely removing the :hasIncome assertion. Each elementary operation has an inverse operation as can be
seen in Figure 3. The inverse operation of object modification is itself. The inverse of assertion removal is assertion
insertion and vice versa.

5.2. Exploring the search space

The graph Ω contains all possible IKGs, making it complex to compute. Moreover, only a fraction of the IKGs in
this graph are valid. Therefore, the graph can be generated in an optimized manner, by avoiding non-valid IKGs. As
a reminder, a counterfactual of the IKG I is an IKG that contains the triple (Ic − rdf:type−Cd) and not the triple
(Ic − rdf:type−Co) where Co is the class of the original IKG and Cd is the desired class of the counterfactuals. Let



CA(I) be the set of ClassAssertions of the IKG I, OA(I) the set of ObjectPropertyAssertions of I and DA(I) the
set of DataPropertyAssertions of I. The simplest counterfactual of an IKG I is Î and is defined in Equation 6. It is
unlikely that this counterfactual is consistent and therefore valid, but it is the closest to the original IKG I. Thus,
this IKG is an ideal starting point to explore the graph Ω.

CA(Î) = CA(I) \ {(Ic − rdf:type−Co)} ∪ {(Ic − rdf:type−Cd)}
OA(Î) = OA(I)
DA(Î) = DA(I)

(6)

Algorithm 1 is proposed to generate Ω. The graph is created with Î as the starting node. Nodes that are
connected with Î by assertion removal operation are explored and added to Ω until consistent ones are found,
with the f indRemovalNeighbors function. Once these consistent nodes are known, the generateAncestors and
generateDescendants functions are invoked on every explored node. These functions generate new nodes and edges
by inserting back the removed assertions and modifying the class of their objects. The class of the objects must re-
main within the range of the predicate of the assertions.

Algorithm 1 Algorithm to generate a relevant sub-graph of Ω

function GENERATESUBGRAPH(Î)
Ω← createEmptyGraph() ▷ Ω = (V, E)
addNode(Ω, Î)
Ω← Ω ∪ f indRemovalNeighbors(Î)
for Ii ∈ V do ▷ For all IKG in Ω

Ω← compose (Ω, generateAncestors(Ii,Ω)) ▷ compose combines the nodes and edges of two graphs
into a single graph.

end for
for Ii ∈ V do ▷ For all IKG in Ω

Ω← compose (Ω, generateDescendants(Ii,Ω))
end for
return Ω

end function
function FINDREMOVALNEIGHBORS(I)

neighborsV ← {I}
neighborsE ← {}
neighbors← (neighborsV , neighborsE) ▷ neighbors is a graph.
if isConsistent(I) then ▷ If the IKG I is consistent with the studied ontology, stop search for neighbors.

return neighbors
end if
for Ai ∈ I do ▷ For all assertions in the IKG I

I′ ← assertionRemoval(Ai, I) ▷ Remove the assertion Ai from I
neighborsV ← neighborsV ∪ {I′}
neighborsE ← neighborsE ∪ {(I, I′, assertionRemoval)} ▷ I and I′ are connected with an assertion

removal operation
neighbors← compose (neighbors, f indRemovalNeighbors(I′))

end for
return neighbors

end function

This algorithm guarantees to obtain at least a consistent CF. In the worst case, this CF is an IKG with no assertion.
Intuitively, the algorithm searches for faulty assertions that provoke inconsistencies, by removing them. When a



consistent IKG is found, this means that every faulty assertion has been removed. These faulty assertions are added
back one by one with modifications on their objects to fix the inconsistency.

However, the number of candidate counterfactuals explored by Algorithm 1 in the worst case is exponential with
the number of assertions in the original IKG. Therefore, this algorithm does not scale up well with large ontologies.
Moreover, a reasoner is called for every node generated. When the number of entities in the ontology increases, the
reasoning time and the number of candidate counterfactuals to explore also increase.

5.3. Computing metrics in the graph

This graph representation enables the use of a graph edit distance to measure proximity.

GED (I1, I2) = min
(e1,...,ek)∈P(I1,I2)

k∑
i=1

c (ei) (7)

The graph edit distance written as GED(I1, I2) is defined in Equation 7, where P (I1, I2) is the set of edit paths
transforming I1 to I2 and c(e) is the cost of each elementary operation. The cost for each elementary operation must
be defined. Let cm(e) be the cost for a class modification operation, cr(e) for assertion removal operation and ci(e)
for assertion insertion. We argue that for a given assertion, the cost of removing this assertion should be greater than
modifying it. Likewise, inserting this assertion should cost more than removing the given assertion. This choice is
justified by the feasibility and comprehensibility of an operation. The original IKG directly represents the real world
therefore it is feasible.

Modifying the original assertions lowers the feasibility as it strays further away from the real-world exam-
ple. This decrease is proportional to the similarity of the modified assertion with the original one. It represents
the effort that the user has to make to go from their starting point to the new class. Removing an assertion re-
moves any information about the changes to achieve, the user loses information about what and how they should
change concerning the assertion. Finally, inserting an assertion requires the user to achieve something that was
absent from their starting point, which may lead to unfeasible or incomprehensible requests. For instance, the asser-
tion (customer − :hasEducation− bachelor) is studied. Modifying the class of the object means that the customer
should change its education level, the greater the change is, the less feasible it is. Removing this assertion removes
information about the change they must achieve. They should perhaps lose their degree, which is not feasible, or
change their degree in an unknown way. Removing an assertion leads to incomprehensible but not necessarily un-
feasible changes. Finally, inserting an education level is difficult to comprehend. The education level was missing
from the original input, adding it may not make sense depending on the reason for its original absence. Moreover,
achieving this change might not be feasible based on the customer status.

Arguably, adding an insertion should be costlier than removing an assertion, which should be costlier than modi-
fying an assertion. The following costs are proposed:

Class modification The cost is the similarity measure between the original class and the modified class.
Assertion removal The cost is greater than the cost of any class modification on this assertion.
Assertion insertion The cost is greater than the cost of removing this assertion.

Equation 8 is the proposed cost function, where sim is a similarity measure for two assertions and A is the space of
all possible assertions.

c(e) =


sim(a1, a2) if e is a class modification operation from assertions a1 to a2
maxa∈A sim(a1, a) + 1 if e is an assertion removal operation where a1 is the studied assertion.
maxa∈A sim(a1, a) + 2 if e is an assertion insertion operation where a1 is the studied assertion.

(8)



Proximity is the similarity between any counterfactual and the original input I. Since the GED only allows to
compute similarity between nodes in the graph, the original input is replaced by Î which is considered the closest
counterfactual from I. Thus, proximity of a counterfactual Îi is GED(Î, Îi), with the cost function defined in Equation
8.

It is also possible to compute sparsity in the same manner, with a different cost function. Indeed, an edge of the
graph is an elementary operation on one assertion. Therefore, the shortest path between two IKGs contains one edge
per modified assertion. The length of this path is equal to the number of modified assertions. Thus, the GED with
∀e, c(e) = 1 as cost function is a measure of sparsity. Finally, a similarity measure should be defined to compare
two objects of an assertion.

5.4. Assertions similarity

In Section 4.1, an IKG is defined as a set of assertions or sharing the same sourceIndividual. The proximity
metric for machine learning computes the distance between each feature and then aggregates these distances to get
the proximity. The same idea can be applied to an IKG, by comparing assertions together. This raises the issue of
comparing two assertions. The methodology of proximity for machine learning could be applied, i.e. decompose
the triple, measure the distance between each element of the triple, and aggregate these distances. However, in the
case of counterfactuals, we will show that the distance between triples can be simplified into the distance between
the objects.

Problem simplification The predicate of an RDF triple represents the nature of the relation between the subject and
the object. Can a distance between two predicates be defined and is it sensible to compare two triples of different
predicates? For instance, what is the distance between the predicates rdf:type and :hasAge? In machine learning,
only the same features were compared. Hence, only similarity between triples with the same predicate is defined.

In the introduction of Section 5, it was argued that the sourceIndividual remains the same for counterfactuals.
Likewise, only triples with the same predicate should be compared. Therefore, measuring the similarity between
two triples can be simplified into measuring the similarity between the respective objects of these triples. The sub-
ject of any triple in an IKG is an individual. According to the mapping of OWL2 to RDF [29], assertions that have
an individual as subject can be of the following types: SameIndividual, DifferentIndividual, ClassAssertion, Object-
PropertyAssertion and DataPropertyAssertion. Therefore, the possible types of objects are classes, individuals, and
literals. The SameIndividual and DifferentIndividual assertions are not of interest for counterfactuals and are there-
fore removed from IKGs. DataPropertyAssertions have literals as objects. Similarity measures between literals such
as strings or numbers already exist. ObjectPropertyAssertions require a similarity between two individuals. How-
ever, an ObjectProperty is defined with a Domain and a Range which are classes. The individual must belong to this
Range, thus it must have a ClassAssertion. That is why the same similarity will be used for classes and individuals.

Edge-counting similarity The edge-counting similarity measure proposed by Rada et al. [34] is a good choice for
computing similarities between classes because of its simplicity to understand and visualize. This similarity measure
is based on hierarchical is-a relations. In OWL ontologies, such hierarchy is obtained with the SubClassOf relation.
A hierarchy tree is created where the edges are the SubClassOf relation and the nodes are classes. The similarity
between two classes is the length of the shortest path from one class to the other in this tree.

Concerning individuals, three cases are possible:

– If the individual is not subject of any ClassAssertion, then the class used is owl:Thing which is the root of the
tree.

– If the individual is subject of a single ClassAssertion, this class is used to measure the similarity with another
individual.

– If the individual is subject of multiple ClassAssertions, then the similarity between each class is calculated and
the smallest one is kept.

This particular similarity measure is used to compute the weight of the edges associated to class modification
operations for the graph edit distance described in Section 5.3.



In conclusion, the CEO method takes an IKG as input and a set of desired classes given by the user. A subgraph of
all possible counterfactuals is generated in a way that guarantees at least one valid counterfactual. Invalid and unfea-
sible counterfactuals are removed from the set of candidate counterfactuals. Specifically, non-actionable assertions
are assertions that have an ObjectProperty which is a SubClassOf an abstract property named NonActionable.
If an assertion with this predicate is modified, the CF is considered unfeasible. Then, the proximity and sparsity
are computed for every valid and feasible counterfactual. Finally, the counterfactuals are sorted by proximity and
sparsity and displayed to the user. Since proximity and sparsity have the same order of magnitude, they are added
together to get the ranking of counterfactuals.

6. Experiments

In order to validate the CEO method and identify points of improvement, two experiments are conducted. The
first experiment focuses on measuring the execution time of the CEO method and whether it returns the expected
results. The second experiment is a small-scale user study designed to verify the relevance and comprehensibility of
the explanations. This user study is a preliminary to a larger user study, the intent is to detect issues in the method
and the survey methodology that would hinder a larger scale and expensive user study.

6.1. Experiment on execution time

This first experiment is focused on studying the execution time of the CEO method. Four cases are generated with
the Pizza ontology2. Each case represents a pizza of a specific class (e.g. vegetarian pizza) paired with assertions
such as the toppings or the base. The goal is to understand how the CEO method behaves with a different number
of faulty and correct assertions. Specifically, we monitor the running time of each step of the heuristic in relation to
the number of candidate counterfactuals explored. Moreover, we declare some counterfactuals that we expect e.g.
change meat topping to vegetable topping to obtain a vegetarian pizza. The rank of these expected counterfactuals
is monitored to verify that they are generated by the method and are among the counterfactuals with the lowest
proximity.

6.1.1. Test cases and results
Let Co = {MeatyPizza}, C f = {VegetarianPizza}, A f a set of faulty assertions that will produce inconsistencies

with C f and Ac a set of correct assertions that will not lead to inconsistencies. The CEO method is applied to
generate a set of valid counterfactuals, with I = Co ∪ A f ∪ Ac as the input IKG, Co as the set of classes to change
and C f as the foil (i.e. desired) set of classes.

Case 1: One faulty assertion The first case is an individual that has only one faulty assertion.

Ac = ∅

A f =
{(

i − :hasTopping − chickenTopping
)}

We expect the counterfactuals to modify chickenTopping into vegetableTopping or cheeseTopping. The CEO
method generated 41 valid counterfactuals out of 52 explored candidates. The proximity of the expected results was
tied with 5 other counterfactuals and was the second smallest proximity. The counterfactual with the smallest prox-
imity modifies chickenTopping to pizzaTopping which could represent any topping. The second smallest proximity
corresponds to a modification of chickenTopping to direct subclasses of PizzaTopping e.g. CheeseTopping,
FruitTopping or VegetableTopping. The counterfactual with the highest proximity is the only one that
deletes the assertion.

2https://protege.stanford.edu/ontologies/pizza/pizza.owl

https://protege.stanford.edu/ontologies/pizza/pizza.owl


Case 2: One faulty and one correct assertion This second example adds a correct assertion to the previous case.

Ac =
{(

i − :hasTopping − mozzarellaTopping
)}

A f =
{(

i − :hasTopping − chickenTopping
)}

We expect the counterfactuals to leave the assertion in Ac untouched and to modify chickenTopping into vegetable
Topping or cheeseTopping. The CEO method generated 348 valid counterfactuals out of 911 explored candidates.
We note that the amount of explored and valid counterfactuals drastically increased compared to the previous case.
The ranking is similar to the last case for the first 41 counterfactuals, meaning that the expected counterfactuals
ended up at the same rank with the same proximity. The CEO method tested almost every combination of pairs of
toppings resulting in this increase in the number of counterfactuals generated.

Case 3: Two faulty assertions To assess the impact of faulty assertions, we propose an example that also has two
assertions similar to the previous one, but both assertions are now faulty. Therefore, we set Ac and A f as follows.

Ac = ∅

A f =
{(

i − :hasTopping − chickenTopping
)
,
(
i − :hasTopping − hamTopping

)}
We expect the counterfactuals to change both assertions into any combination of vegetableTopping and

cheeseTopping. The CEO method generated 317 valid counterfactuals out of 1160 explored candidates. Compared
to the previous case, more counterfactuals were explored but fewer were valid. It can be explained by the increased
difficulty to get the individual consistent since both assertions are faulty. The number of explored counterfactuals
did not change significantly because the assertions are of the same nature resulting in the same combinations to
explore. The first 40 counterfactuals in the ranking have modified one topping into the abstract class pizzaTopping
while exploring every valid topping on the other assertion. Thus, our expected counterfactuals are not in these 40
counterfactuals. The rest of the assertions are similar to the last case, with every valid combination of two toppings.

Case 4: One faulty topping, one faulty base We propose an additional test case that differs from the other in the
nature of the assertions. The aim is to test the influence of the predicate on the number of counterfactuals explored.

C f = {VegetarianPizza,RealItalianPizza}

Ac = ∅

A f =
{(

i − :hasBase − deepPanBase
)
,
(
i − :hasTopping − chickenTopping

)}
The RealItalianPizza class imposes that the base is of class ThinAndCrispyBase. The number of coun-
terfactuals explored is proportional to the number of classes in the range of a predicate. The predicate :hasBase has
only three classes in its range. Therefore, a decrease in the number of explored counterfactuals should be observed.
The expected counterfactual is the modification of deepPanBase to thinAndCrispyBase and the modification of
chickenTopping to vegetableTopping.

The CEO method generated 123 valid counterfactuals out of 208 nodes explored which validates our expectations.
The 10 best-ranked counterfactuals modify the topping with different classes while always changing the base from
deepPanBase to the abstract pizzaBase, except for the tenth counterfactual which changes the base to the expected
thinAndCrispyBase. Then, every possible combination of base and topping is generated. Abstract classes (e.g.
PizzaTopping or PizzaBase) are attributed a lower proximity which favors them in the ranking. The expected
counterfactual is found by the method but ranked at the 42nd position.

Finally, we note that running these examples allowed us to identify design issues in the Pizza ontology3. These
issues are intentional as the initial goal of the Pizza ontology is to act as a tutorial that highlights typical design

3https://protege.stanford.edu/ontologies/pizza/pizza.owl

https://protege.stanford.edu/ontologies/pizza/pizza.owl
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Fig. 4. Bar plot of the detailed execution time for each example.

errors that can be made when building an ontology. Nevertheless, the CEO method showed its ability to detect such
issues.

6.1.2. Analysis
The experiments showed that the expected counterfactuals are always generated but not always well-ranked.

The computation of proximity favors these abstract classes as they systematically have the lowest proximity and
thus highest rankings. This is due to the computation of proximity which uses the edge-counting dissimilarity
measure. This dissimilarity penalizes classes that have the same level of abstraction. For instance, the dissimilarity
between the classes ParmezanTopping and MozzarellaTopping is 2. Yet, they are both direct subclasses of
CheeseTopping which should make them highly similar. The edge-counting dissimilarity favors parent classes,
the dissimilarity between CheeseTopping and any direct subclass is always 1. As a result, abstract classes lead
to low proximity.

Consequently, the top counterfactual is always too abstract to the point that it does not provide any relevant
information. In the studied cases, the top counterfactual always modified the faulty assertions to pizzaTopping,
meaning that the meat should be replaced by anything. Users who are not experts in ontologies or who do not know
the functioning of the CEO method may be confused by this counterfactual. Giving the information that meaty
toppings are problematic and should be replaced with any topping that isn’t meaty may be more valuable to the user.

The execution time observed in these test cases is not satisfactory. Figure 4 demonstrates that the last step of the
CEO method represents approximately 90% of the total execution time. The execution time is tightly linked to the
number of explored nodes. The heuristic seeks every consistent combination of assertion modifications. The number
of possible modifications for one assertion is dictated by the number of defined classes within the range of the
assertion’s predicate. In Appendix A, we pose the formula to calculate the size of the search space based on the
number of classes within the range of each assertion’s predicate. Cases 3 and 4 illustrate the consequence of the
size of the search space on the number of explored nodes The range of the predicate :hasBase contains 3 classes,
while the range of :hasTopping has 52 classes. The size of the search space for case 3 is 2809 while for case 4 it



has a size of 212. The difference in search space explains the difference in scale in the execution time. More than
90% of this time is spent by the logical reasoner4 which is called for every explored counterfactual.

Overall, the CEO method generates valid counterfactuals, including the expected ones. Nevertheless, it faces
the same problem as heuristic-based machine learning counterfactual methods i.e. a high execution time due to
large search spaces. In its current state, the CEO method does not take diversity into account when exploring the
search space. Maximizing diversity might be a way to decrease the number of explored counterfactuals without
hindering the quality of the proposed counterfactuals. Regarding the execution time, further investigations to reduce
it should be conducted. A possible direction is to explore ways to reduce the number of calls to the logical reasoner
and optimize the execution time of the logical reasoner. The heuristic may also be tuned to limit the number of
counterfactuals explored. For instance, the user may choose to ignore certain classes to decrease the size of the
search space e.g. ignore leaf classes such as ArtichokeTopping or CaperTopping to focus on their parent
class VegetableTopping.

6.2. Preliminary user study

The evaluation of the explanations generated by the CEO method requires a user study as the quality of an
explanation is mostly subjective. We discussed in Section 3 that a large-scale user study is expensive and complex
to conduct. Therefore, the quality of the survey and the method that is evaluated should be flawless to avoid wasting
resources. In this section, we conduct a preliminary user study that mimics this large-scale user study but with
reduced expenses and complexity. The intent is to discover potential issues with the method and survey methodology.
The goal of the user study is to verify the relevance and comprehensibility of the explanations. In this preliminary
study, the experimental context described in [35] is used5. This choice is motivated by privileged access to experts
in this domain.

An ontology is created, based on a simple hierarchy of musical instruments families. There are 17 classes that
each represent a musical instrument. 5 object properties are used in the class definition of these instruments: the
texture, the mechanism, the type of mouthpiece for wind instruments, the shape, and the presence of visible strings.
Several convolutional neural networks with the ResNet50 architecture, pretrained on the ImageNet dataset have
been finetuned on 4000 pictures of musical instruments. One of those models detects the type of instrument while
the others detect each object property defined in the ontology of musical instruments. The results of these models
are added to the ontology as an IKG. If the ontology is inconsistent after these additions, that means that the
instrument detected is not consistent with the properties detected. The study follows up on this idea and proposes
counterfactual explanations to render the prediction consistent. For instance, a harpsichord is detected as well as
pedals and a wooden texture. This is not consistent with the ontology because a harpsichord does not have pedals.
The goal of the CEO method is to propose modifications for these inconsistent assertions so that the user understands
which properties were wrong and how to change them.

At the beginning of the survey, the users are first presented a description of this system, what its goal is, and how it
works. Then, an image is presented with the output of the machine learning models. Figure 5 shows the description
of the output of the models for the first case of the survey and the explanations, with Figure 6 as the input image.
It is explained that the results are not consistent with expert knowledge and finally, a question is formulated: “What
changes on the properties detected should be made so that the ontology is consistent ?”. A set of valid and feasible
counterfactuals is generated and sorted by proximity and sparsity. The first ten counterfactuals are proposed to the
user, hiding the rest of the generated set. A counterfactual is presented as a text telling the user which changes to
make in no particular order. An example of a counterfactual given to a user is the following: “Replace brass metal
texture with wood AND remove pedals mechanism”.

Then, the user answers two questions:

1. Which explanation did the user prefer?
2. Which explanations seemed relevant to the user?

4We used the Pellet reasoner for the experiments.
5Code, ontology and evaluation data of this experiment are available at this link: https://github.com/matt-bellucci/CEO.

https://github.com/matt-bellucci/CEO


The AI algorithm determined that the instrument in the image is a Harpsichord.
It detected the following properties:

Wood texture
Brass texture
A keyboard mechanism
Pedals mechanism

An inconsistency is detected, these properties do not match a harpsichord.
The system proposes different explanations that answer the question "What changes on 
the properties detected should be made to make them consistent with a harpsichord ?"

1. Replace brass texture with another texture AND replace pedals mechanism with 
another mechanism.




2. Replace brass texture with wood AND replace pedals mechanism with another 
mechanism.




3. Replace brass texture with another texture AND replace pedals mechanism with 
another string instrument mechanism.




4. Replace brass texture with another texture AND replace pedals mechanism with a 
keyboard.




5. Replace brass texture with another texture AND replace pedals mechanism with 
pegs.




6. Replace brass texture with another texture AND replace pedals mechanism with 
strings.




7. Replace brass texture with wood AND replace pedals mechanism with another 
string instrument mechanism.




8. Replace brass texture with wood AND replace pedals mechanism with a keyboard.




9. Replace brass texture with another texture AND replace pedals mechanism with 
another mechanism AND replace wood texture with another texture.




10. Replace brass texture with wood AND replace pedals mechanism with pegs.


Which explanation did you prefer ? *

Sélectionner

What did the AI algorithm detect ?

Fig. 5. Description and the first four explanations of the first case of the survey

Image 1

Fig. 6. Input image of the first case of the survey.

Table 1
Results of the user study for each case presented to six domain experts.

Case Preferred explanations (% who chose it) % of relevant explanations Average AUC ROC

1 2nd (16.7%), 3rd (16.7%), 7th (50%), 8th (16.7%) 70 % 0.77
2 5th (16.7%), 10th (83.3%) 90% 0.55
3 1st (33.3%), 3rd (50%), None (16.7%) 22% 0.93
4 6th (33.3%), 7th (16.7 %), 8th (33.3%), 10th (16.7%) 80% 0.55
5 2nd (83.3%), None (16.7 %) 20% 0.96
6 3rd (16.7%), 8th (16.7%), 9th (50%), None (16.7%) 50% 0.76
7 1st (16.7%), 3rd (50%), 9th (16.7%), None (16.7%) 40% 0.87
8 7th (33.3%), 8th (66.7%) 80% 0.65
9 1st (16.7%), 3rd (66.7%), 9th (16.7%) 20% 0.78

These questions enable the evaluation of the quality of explanations and the quality of the proximity metric. Ideally,
the preferred explanations are within the first explanations because they are sorted by proximity and sparsity. The
last question permits to plot the ROC curve (Receiver Operating Characteristics) which represents the number of
relevant explanations on the y-axis and the amount of non-relevant explanations on the x-axis. The Area Under the
Curve (AUC) for the ROC curve is used in information retrieval to measure the capacity of a system to rank the
relevance of documents [36]. In this study, the AUC ROC is a measure of the quality of the ranking of explanations,
therefore is a proxy measure of the quality of the proximity and sparsity metrics.

The user study was conducted on a sample of six domain experts, i.e. experienced musicians. Nine different
examples were presented. To identify issues with the explanations and methodology, a discussion took place with
each expert after the survey in order to get their feedback.

6.2.1. Results
Results are combined in Tables 1 and 2. Table 1 shows the rank of the preferred explanations and the percentage

of experts that chose them, the percentage of relevant explanations, and finally the average AUC ROC for each case.
The AUC ROC is calculated based on the answer of each expert, and then the average of these scores is displayed
in the table. Table 2 shows key statistics for each rank of explanation. A consensus is reached when 50% or more
agree on the preferred explanation.

The first observation from Table 1 is that the quality of the explanations is highly dependent on the case. Indeed,
the amount of relevant explanations varies from 20% up to 90%. Cases 3, 5, and 9 are the only ones to include
an assertion about the shape of the instrument. Experts have identified a flaw in the ontology concerning the shape



Table 2
Results of the user study for each rank of explanation

Explanation ranking 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Proportion of relevance 9/9 (100%) 7/9 (78%) 7/9 (78%) 4/9 (44%) 3/9 (33%) 4/9 (44%) 4/9 (44%) 4/9 (44%) 3/9 (33%) 2/9 (22%)
Number of consensus 0/9 (0%) 1/9 (11%) 3/9 (33%) 0/9 (0%) 0/9 (0%) 0/9 (0%) 1/9 (11%) 1/9 (11%) 1/9 (11%) 1/9 (11%)
Occurrences of preference 4 6 12 0 1 2 6 8 5 6

Table 3
Results of the user study for each rank of explanation after removing cases 3, 5, and 9

Explanation ranking 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Proportion of relevance 6/6 (100%) 6/6 (100%) 5/6 (83%) 4/6 (67%) 3/6 (50%) 4/6 (67%) 4/6 (67%) 4/6 (67%) 3/6 (50%) 2/6 (33%)
Number of consensus 0/6 (0%) 0/6 (0%) 1/6 (16.7%) 0/6 (0%) 0/6 (0%) 0/6 (0%) 1/6 (16.7%) 1/6 (16.7%) 1/6 (16.7%) 1/6 (16.7%)
Occurrences of preference 1 1 5 0 1 2 6 8 4 6

property based on the generated explanations. The poor relevance of these cases can therefore be attributed to this
error. Table 3 is the same as Table 2 without cases 3, 5, and 9 which may bias the analysis of preferences since only
the first three explanations were relevant.

The AUC ROC is always greater than 0.5 which indicates that the relevant explanations are not packed at the
bottom of the ranking. Table 3 also shows that the proposed explanations are relevant in more than 50 % of cases,
except for the tenth explanation. However, the top explanations are not preferred by the experts. Because of the
small sample size, the occurrences of preference for each rank are also displayed in Tables 2 and 3. This measure is
the number of times it was preferred by any expert in every case. It does not take into account when experts did not
have a preferred explanation, which happened in cases 3, 5, 6, and 7. The last four explanations stand out as being
the most preferred, by cumulating a total of 24 preferences over 34 votes.

Concerning the content of the explanations, the first explanations are the most abstract. They successfully identify
the faulty assertions but give a generic change, such as “replace wood by another texture” or “replace the strings by
another mechanism”. Preferred explanations are rarely in the top ranks because experts sought more specific changes
that have the same level of abstraction as the original assertion. The other explanations are grouped by possible
modifications on one assertion. For instance, in case 1, the 3rd to 6th explanations only explore modifications to the
mechanism without modifying the other assertions. Finally, removal operations are usually positioned at the bottom
of the ranking because of the way the cost of these operations is computed. However, as Table 3 demonstrates,
experts prefer explanations at the bottom of the ranking.

Overall, the experts complained that the survey necessitated an important cognitive effort and struggled to inter-
pret the explanations. They argued that the way of presenting the explanations was problematic and suggested an
interactive interface rather than a simple text. Nevertheless, they unanimously found that counterfactual explanations
are useful to understand a decision process. They also pointed out some issues in several explanations that come
from flaws in the design of the ontology. Finally, they deplored the absence of assertion insertions that could have
been highly relevant in some cases. For instance, wind instruments always have a mouthpiece. When a mouthpiece
was not present in the original IKG, it was not present in the counterfactuals either. Experts expected the addition
of a mouthpiece in these cases.

6.2.2. Analysis
The main point of this study was to assess whether the proposed explanations are relevant to identify issues in the

CEO method that would alter the results of a larger-scale survey. Four cases had less than 50% relevant explanations
and three among them were justified because of a faulty axiom in the ontology. Ontologies are designed with domain
experts, therefore using the CEO method during the design phase can prove useful to detect errors. Indeed, the
automatic exploration of candidate counterfactuals may create unexpected individuals that a human would not have
tested. However, the current exploration algorithm is computationally costly since the number of counterfactuals
generated scales exponentially with the number of assertions in the original IKG.

The valid candidates generated and presented to the users are mostly relevant and the AUC ROC scores show good
results. This would indicate that the proximity and sparsity metrics functioned as desired. However, the preferred
explanations are mostly at the bottom of the ranking. This is an issue because experts complained that there were



too many explanations for each case. If 5 explanations were retained instead of 10, the best explanations would have
been missed. Likewise, the best explanations may not be present in the 10 explanations shown, since more than 10
valid candidates were generated for most cases. Therefore, the chosen proximity metric is not adequate to sort the
explanations for this particular application.

Two problems with the proximity metric have been identified. First, explanations with the lowest proximity are
the most abstract which is not what experts expect. They prefer to be shown classes that have the same depth as
the original class. The similarity metric that compares two assertions should be modified to walk the hierarchical
tree breadth-first instead of depth-first. Secondly, explanations with assertion removals are ranked at the bottom
because of the design of the cost function. Yet it was shown that the bottom explanations are the most preferred. In
some cases, the removal of an assertion was the expected explanation by the experts. The cost function for assertion
removal should be modified to prevent relevant removals from being placed in the bottom explanations. These
changes are relevant to this particular ontology. For other ontologies and applications, different similarities may be
better suited. Finding a similarity suited for an application is a challenge that needs to be addressed to apply the
CEO method.

Another issue of the current sorting system is that there are groups of counterfactuals that modify the same
assertion. In Section 2.2, the notion of diversity was introduced. Adding diversity to the sorting system may alleviate
this problem. Still, diversity is analogous to proximity and is exposed to the same issue which is the choice of a
similarity metric. Furthermore, there is a risk that a high-quality explanation will not be displayed because it is too
similar to a lower-quality explanation that got a better ranking. Before adding a diversity constraint, a satisfying
proximity must be found. That is why diversity was not included in the current version of CEO.

As was pointed out by the experts, the lack of assertion insertion is problematic. Some explanations could have
greatly benefited from such operations. The generation of the subgraph Ω must be reworked to include assertion
insertions efficiently. Likewise, some counterfactuals are not explored and thus the best explanations may be missing
from the set of valid and feasible counterfactuals. The impact of this issue is hard to measure since it is not possible to
know if the best explanations have been explored. A cause of confusion for the experts was the meaning of removing
an assertion. For them, removing an assertion meant that it is absent from the instrument. But with the open-world
assumption, removing an assertion means that it is unknown, not missing. A way to render removal assertions more
intuitive is to add NegativeObjectPropertyAssertions to the IKG when a removal operation is done. Thus removing
an assertion will have the same meaning for the user and the OWL ontology. Similarly, the CEO method does
not handle DataPropertyAssertions which may be needed in some applications such as the loan approval example
described in Section 2.2.

To address the complexity of understanding the counterfactual explanations, their presentation should be re-
worked. An interactive interface that allows the user to see and visualize the explanations in the graph may decrease
their cognitive effort to understand the explanations. Representing the graph of possible counterfactuals may also
solve the problem of diversity, by visually identifying clusters of nodes that all modify the same assertion in differ-
ent ways. This interface may also allow the user to modify key elements of the CEO method such as the similarity
metric. A new user study should be conducted to verify this hypothesis.

6.3. Discussion

The conducted experiments demonstrated that the CEO method achieves our goal of generating counterfactuals
for ontologies. The analysis of the execution time revealed that, in its current state, the execution time of the CEO
method scales worse than linearly with the size of the search space. The size of the search space is linked to the size
of the ontology; the method would not execute in a reasonable time for a large ontology. Other explanation methods
for ontologies only run the logical reasoner a few times ([18], [15]), whereas the CEO method calls it for every
explored counterfactual. Hence, it is not yet adequate for debugging large ontologies. Still, this method is useful to
explain the entailments to laypersons, unlike the existing explanation methods. Execution time is not a crucial factor
in choosing explanation methods, which is why it was not a major focus of the CEO method.

The preliminary user study was conducted with a small sample size of six domain experts on a single ontology.
Thus, the results may not be representative of the actual quality of the method, and a large user study on multiple
ontologies with more subjects is required. Nevertheless, it uncovered several issues in the CEO method and the study



methodology that would have impacted a larger user study. Namely, the proximity metric and ranking system that
displays similar and abstract explanations. Similarly, the removal of an assertion is not intuitive and complicates the
comprehension of the counterfactuals. These observations from the user study are aligned with our observations on
the execution time experiment on a different ontology. Furthermore, the quantity and presentation of the explanations
should be improved to facilitate their comprehension.

7. Conclusion

In this paper, counterfactual explanations for ontologies were studied, inspired by the literature on counterfactuals
for machine learning. As a result, the Counterfactual Explanations for Ontologies (CEO) method was presented. It
is divided into 4 steps. First, a graph of candidate counterfactuals is generated, then these counterfactuals are filtered
to keep only the valid and feasible ones. Afterward, proximity and sparsity metrics are computed with a graph
edit distance to finally present the explanations sorted based on these metrics. Each step is independent from one
another. This renders the CEO method highly modular and adaptable. Choices for each step must be made based on
the application. For instance, a tradeoff between computation time and the number of explanations generated must
be made for the graph generation method. Likewise, concerning the proximity, an adapted similarity must be chosen.
This modularity is both an advantage and a drawback. Indeed, the CEO method can be tailored to each user which
is encouraged to improve explainability. However, it requires making informed choices for each step which makes
it complex to implement. Two experiments on the CEO method were conducted. The first experiment focused on
measuring execution time and ensuring that the expected counterfactuals are generated. The results demonstrated
that the CEO method succeeds in identifying the expected counterfactuals. However, its execution time is high
as the scaling is not linear with the size of the ontology. Although the process of generating explanations is not
time-sensitive, the scalability of the method does not allow to apply it on large ontologies.

The second experiment is a preliminary user study intended to prepare for a larger-scale study. The domain of
application of this experiment was motivated by our inexpensive and easy access to experts in this domain. The
experiment was conducted on a musical instrument classification task, with the goal of verifying the relevance and
quality of generated explanations. Six experts filled out a survey to assess the quality and relevance of explanations.
The results of this method should not be used to compare CEO with different methods as the small sample size
may skew the results. Likewise, the results should not be generalized to other ontologies. Nonetheless, this pre-
liminary user study identified several problems regarding the CEO method and the study methodology that could
have negatively impacted the results of a large-scale user study. Several points of improvement regarding the com-
prehensibility and quality of the explanations were identified. The proximity metric and the chosen similarity are
not adequate for the tasks of the experiments. Moreover, some machine learning methods look for the most diverse
explanations, which is not yet applied in the CEO method. It may help to find a variety of ideal explanations that
are not too similar. Overall, the surveyed experts found the explanations overwhelming, due to the high number of
presented explanations, the way they were presented, and the counter-intuitive nature of the removal operation.

Some choices in the implementation of the CEO method also lead to limitations. Insertion operations are not
explored as they would significantly increase the size of the search space and consequently increase the execution
time. Likewise, some types of assertions are not yet handled, namely DataPropertyAssertions and NegativeObject-
PropertyAssertions. Handling these assertions may improve the compatibility of this method with a larger set of
applications and improve the intuitiveness of the counterfactuals.

In future work, we plan to conduct a large-scale user study on multiple ontologies. Beforehand, the observed
issues must be addressed. The addition of a diversity constraint will be explored to avoid groups of similar coun-
terfactuals in the presented explanations. A positive side-effect of this addition will be to enable the decrease of the
number of presented explanations without compromising on their relevance. In the meantime, other proximity met-
rics will be investigated to develop a library of proximity metrics that are suited for different tasks and audiences.
Particularly, a variation of the edge-counting similarity that favors classes with the same depth will be investigated,
as well as other classes of similarity metrics that were seen in the literature. The ability to handle new types of
assertions will be added, especially NegativeObjectPropertyAssertions that may be used to address the intuitiveness



problem of the removal operations. Regarding execution time, different heuristics to explore the graph more effi-
ciently will be explored. Furthermore, in the presented CEO method, only hierarchical relations are exploited while
the rest of the TBox is unused to explore the graph. Exploiting the TBox may reduce computation time without hin-
dering the quality and diversity of explanations. Doing so may also facilitate the exploration of assertion insertions
which is lacking in the current version.

Finally, other rounds of similar preliminary user studies will be required to ensure that the proposed improvements
correctly address the issues. The large-scale user study will evaluate the quality and relevance of the explanations
for multiple audiences e.g. ontologists, domain experts, or laypersons. Likewise, several tasks, application domains,
and ontology sizes will be used to evaluate the ability of the CEO method to be compatible with most ontologies.

Appendix A Size of the search space

The search space Ω is defined as the set containing every possible counterfactual of an individual. The current
heuristic to explore this space does not insert new assertions to create counterfactuals. Therefore, the search space
contains every combination of modification and deletion operations on the set of assertions of the original IKG. We
note N the number of modifiable assertions of the original IKG i.e. every assertion except ClassAssertions.
The total number of possible modifications for a single assertion is defined by the number of classes in the predicate’s
range. Let ni be the number of classes in the predicate’s range for the i-th assertion.

Let us consider the case where N = 2. The search space contains every possible modification of the two assertions,
every possible modification on one assertion and the deletion of the other, and the deletion of both assertions.

|Ω| = 1︸︷︷︸
Two deletions

+ n1 + n2︸ ︷︷ ︸
Deletion of one assertion

+ n1 × n2︸ ︷︷ ︸
No deletion

(9)

Equation 9 shows the size of the search space when N = 2. There is only one combination when every assertion
is deleted, n1 modifications when the second assertion is deleted, n2 modifications when the first assertion is deleted
and n1×n2 modifications when both assertions are kept. We can apply the same reasoning for an undefined number
of assertions.

|Ω| = 1︸︷︷︸
Deletion of all N

assertions

+

N∑
i=1

ni︸ ︷︷ ︸
Deletion of

N − 1 assertions

+
∑

(k1,k2)∈C2
N

nk1 × nk2︸ ︷︷ ︸
Deletion of N − 2

assertions

+ · · ·+
∑

(k1,...,kN−1)∈CN−1
N

N−1∏
j=1

nk j

︸ ︷︷ ︸
Deletion of 1 assertion

+

N∏
j=1

n j︸ ︷︷ ︸
No deletion

(10)

Equation 10 shows the intuitive formula of the search space. The first term is always 1 and corresponds to the
deletion of all assertions. The second term corresponds to every combination for the deletion of every assertion but
one. The third term calculates every combination of two assertions for every possible pair of assertions, where Ck

N
represents the set of combinations of k assertions picked from a set of N assertions. For instance, C2

3 is the set of
all possible unordered pairs picked from a set of three elements e.g. {(AB), (AC), (BC)}. In general, each term of
Equation 10 corresponds to the number of possible counterfactuals for a given number of deleted assertions.

|Ω| =

N∑
i=0

∑
(k1,...,ki)∈Ci

N

i∏
j=1

nk j (11)

Equation 11 is the formula to calculate the size of the search space Ω. However, this formula is tricky to compute
and we propose an alternative formula. We observe when rearranging Equation 10 that a pattern emerges as shown
in Equation 12.



|Ω| = 1 + n1 + n2 (1 + n1) + n3 (1 + n1 + n2 (1 + n1)) + . . . (12)

Let σ be a series defined as:

σ (k) =



1 if k = 0

1 + n1 if k = 1

nk

k−1∑
i=1

σ (i) if k > 1

(13)

Theorem A.1.

∀N ⩾ 1 ∈ N, |Ω| =
N∑

i=1

σ(i)

Proof. We will prove this statement by induction.

Base case For N = 1, |Ω| = 1 + n1.

1∑
i=1

σ(i) = σ(1)

= 1 + n1

= |Ω|

Inductive step Suppose the theorem holds for all values of N up to some t, t ⩾ 1. Let us verify the theorem for
N = t + 1.

t+1∑
i=1

σ(i) = σ(t + 1) +
t∑

i=1

σ(i)

= nt+1

t∑
i=1

σ(i) +
t∑

i=1

σ(i)

= (1 + nt+1)

t∑
i=1

σ(i)

= (1 + nt+1)

t∑
i=0

∑
(k1,...,ki)∈Ci

t

i∏
j=1

nk j

=

t∑
i=0


∑

(k1,...,ki)∈Ci
t

i∏
j=1

nk j

︸ ︷︷ ︸
Combinations without (t + 1)-th assertion

+ nt+1

∑
(k1,...,ki)∈Ci

t

i∏
j=1

nk j

︸ ︷︷ ︸
Combinations with at least the (t + 1)-th assertion





=

t+1∑
i=0

∑
(k1,...,ki)∈Ci

t+1

i∏
j=1

nk j

= |Ω|

So the theorem holds for N = t + 1. By the principle of mathematical induction, the theorem holds for all
N ∈ N.

We can now compute the size of the search space by calculating and summing up each term of the series σ.
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