
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Weight-aware Tasks for Evaluating
Knowledge Graph Embeddings
Wei Kun Kong a, Xin Liu b, Teeradaj Racharak a,*, Guanqun Sun a, Qiang Ma c and Le-Minh Nguyen a

a School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
E-mails: kong.diison@jaist.ac.jp, racharak@jaist.ac.jp, sun.guanqun@jaist.ac.jp, nguyenml@jaist.ac.jp
b Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan
E-mail: xin.liu@aist.go.jp
c Department of Social Informatics, Kyoto University, Kyoto, Japan
E-mail: qiang@i.kyoto-u.ac.jp

Abstract. Knowledge graph embeddings, representing entities and relations using vectors or matrices, widely participate in
solving various problems together with deep learning, such as natural language understanding and named entity recognition.
The quality of knowledge graph embeddings highly affects the performance of the models on many knowledge-involved tasks.
Link prediction (LP) and triple classification (TC) are widely adopted to evaluate the performance of knowledge graph em-
beddings. Link prediction is to predict the missing entity that completes a triple, which represents a fact in knowledge graphs,
while triple classification is to determine whether the unknown triple is true or not. Both link prediction and triple classifica-
tion can intuitively reflect the performance of the knowledge graph embedding model; however, it treats every triple equally,
which is not capable of evaluating the performance of the embedding models on knowledge graphs that offer the weight in-
formation on the triples. As a consequence, this paper originally introduces two weight-aware extended tasks for LP and TC,
called weight-aware link prediction (WaLP) and weight-aware triple classification (WaTC), respectively, aiming to better eval-
uate the performance of the embedding models on weighed knowledge graphs. WaLP and WaTC emphasize the ability of the
embeddings to predict and classify triples with high weights, respectively. Lastly, we respond to the newly introduced tasks by
proposing a general method WaExt to extend existing knowledge graph embedding models to weight-aware extensions. We test
WaExt on four knowledge graph embedding models, achieving competitive performance than the baselines. The code is available
at: https://github.com/Diison/WaExt.

Keywords: weight-aware evaluation tasks, knowledge graph embeddings

1. Introduction

Knowledge graphs (KGs) store real-world knowledge in the form of graphs, facilitating the advancement of
artificial intelligence. Facts encoded in knowledge graphs are mostly formalized as a set of triples (h, r, t), in which
h represents the head entity, t represents the tail entity, and r represents the relation between h and t. Several large-
scale knowledge graphs, such as DBpedia [1], YAGO [2], Wikidata [3], NELL [4], and KnowledgeVault [5] have
been published. The vigorous development of knowledge graphs has led to their extensive application in various
real-world scenarios, from information retrieval [6], question answering [7, 8], to recommender systems [9, 10],
and domain-specific tasks [11, 12]. Figure 1a) is an example of the knowledge graph extracted from the Wikipedia
page "Family of Donald Trump".

*Corresponding author. E-mail: racharak@jaist.ac.jp.

1570-0844/$35.00 © 0 – IOS Press. All rights reserved.

mailto:kong.diison@jaist.ac.jp
mailto:racharak@jaist.ac.jp
mailto:sun.guanqun@jaist.ac.jp
mailto:nguyenml@jaist.ac.jp
mailto:xin.liu@aist.go.jp
mailto:qiang@i.kyoto-u.ac.jp
https://github.com/Diison/WaExt
mailto:racharak@jaist.ac.jp

2 Kong et al. / Weight-aware Tasks for Evaluating Knowledge Graph Embeddings

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Ivana	Trump

Ivanka	Trump

Donald	Trump
Jr.

Eric	Trump Tiffany	Trump

Barron	Trump

Melania	Trump

daughter

wife

wif
e

wife Marla	Maples

Donald	Trump
sonson

son

da
ug
hte
r

a)

Ivana	Trump

Ivanka	Trump

Donald	Trump
Jr.

Eric	Trump Tiffany	Trump

Barron	Trump

Melania	Trump

daughter

wife

wif
e

wife Marla	Maples

Donald	Trump
sonson

son

da
ug
hte
r

6

10 7

7

14

11

3

11

b)

Fig. 1. An example of a knowledge graph 1a) and a weighted knowledge graph 1b). Both of them are extracted from the Wikipedia page of
"Family of Donald Trump"1. The weight of the triple in 1b) represents the co-occurrence of the head entity and the tail entity in the Wikipedia
page of "Family of Donald Trump".

Knowledge graph embedding (KGE) maps entities and relationships in a knowledge graph into continuous vector
spaces to enable efficient and meaningful representation learning of structured information. Two essential tasks,
link prediction (LP) and triple classification (TC), are widely utilized to assess the effectiveness of knowledge graph
embeddings. In link prediction, the objective is to predict the missing entity in an incomplete triple such as (h, r, ?)
or (?, r, t) [13]. By completing the triple with the missing entity, link prediction aims to infer previously unknown
triples in the knowledge graph. On the other hand, triple classification is concerned with determining the truth value
of an unseen triple (h, r, t). The task involves classifying whether the triple is valid and corresponds to a real-world
fact or is false and does not hold in the real world. Both link prediction and triple classification serve as critical
evaluation tasks for the quality of knowledge graph embeddings, as they assess the ability of the embeddings to
capture facts and meaningful patterns within the graph.

In the real world, facts are not discrete items that can be simply categorized as true (1) or false (0). Instead,
people assign different weights to various facts, with a heightened focus on those deemed more important. How-
ever, deterministic knowledge graphs treat all facts with equal significance, thus limiting the expressive capability
of knowledge graph embedding models. For instance, consider two facts about Donald Trump, (Donald Trump,
president, USA) and (Donald Trump, pseudonym, John Barron). The former, representing his role as the president
of the USA, holds far greater importance in learning the embedding of "Donald Trump" compared to the latter,
which pertains to a pseudonym of little relevance to most individuals. Although it is a fact that Donald Trump’s
pseudonym is John Barron, its significance is minimal in the context of knowledge graph representation learning.

Weighted knowledge graphs (WKGs) extend the concept of deterministic knowledge graphs by associating a
weight with each triple. Figure 1b) provides an example of a weighted knowledge graph, where the weights be-
tween two entities represent statistics of their co-occurrence in the Wikipedia page "Family of Donald Trump". This
formalism has proven valuable in representing uncertainty [14], confidence scores [4], degrees of relations [15],
edge importance [16], and even out-of-band knowledge [17] across an increasing number of scenarios.

Weighted knowledge graphs are instrumental in modeling interactions between entities, exemplified by their
application in representing protein interactions in STRING [17] and capturing the co-occurrence of concepts in
Probase [15]. The utilization of weighted knowledge graphs extends its benefits to various downstream tasks, includ-
ing natural language processing and knowledge discovery. For instance, they facilitate the inference of basic-level
categorization for knowledge-driven applications [18] and enable the interpretation of keywords through WKGs for
concept-based web searching [19].

1https://en.wikipedia.org/wiki/Family_of_Donald_Trump

https://en.wikipedia.org/wiki/Family_of_Donald_Trump

Kong et al. / Weight-aware Tasks for Evaluating Knowledge Graph Embeddings 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Indeed, the traditional evaluation metrics, such as link prediction and triple classification, lack the capability to
discriminate the weights of triples in weighted knowledge graphs, leading to suboptimal evaluation effectiveness.
These evaluation protocols treat all triples that are to be predicted equally, regardless of their weights, which can
be disadvantageous in many real-world scenarios where the importance of triples varies significantly based on their
weights. For instance, studies like [20] have demonstrated that protein-protein interaction networks exhibit degree-
weighted behavior. In such networks, the probability of interaction between two proteins is generally proportional
to the product of their numbers of interacting partners or degrees. In such cases, it becomes crucial to distinguish
between triples based on their weights to accurately assess the performance of knowledge graph embeddings.

1.0.1. Twofold Contributions
Link prediction and triple classification, being weight-agnostic, fall short in capturing the true performance of

KG embeddings in scenarios like the aforementioned one, as they do not adequately consider the significance of
different triples with varying weights. Hence, embeddings obtained from weighted knowledge graphs necessitate
the introduction of weight-aware evaluation tasks to accurately assess their performance on triples with different
weights. In this paper, we address this need by introducing Weight-aware Link Prediction (WaLP) and Weight-
aware Triple Classification (WaTC) as novel evaluation tasks. According to their definitions (cf. Section 3), if two
knowledge graph embedding models correctly predict the same number of triples, the one that can predict more
triples with high weights is regarded as a superior one.

To fully leverage the potential of knowledge graph embedding models on weighted knowledge graphs, we propose
a universal Weight-aware Extension (WaExt) framework that extends existing knowledge graph embedding models
by incorporating weight information into their scoring function. According to the experimental results, our proposed
framework effectively emphasizes triples with higher weights, leading to improved performance on both weight-
agnostic and weight-aware evaluation tasks. The introduction of weight-aware evaluation tasks provides a more
comprehensive assessment of knowledge graph embeddings in real-world scenarios, where the importance of triples
varies significantly. As a result, our approach offers a more meaningful understanding of the underlying patterns and
relationships within the knowledge graph.

2. Related Works

2.1. Weight-agnostic Knowledge Graph Embedding Models

Weight-agnostic knowledge graph embedding models [21] are specifically tailored for knowledge graphs that
do not include weights, with a primary focus on encoding facts within the knowledge graph. These models are
designed to handle deterministic knowledge graphs, which can be further categorized into translational distance
models, semantic matching models, and graph neural network-based models, based on their distinct approaches to
modeling the interaction between entities and relations.

2.1.1. Translational Distance Models
Translational distance models, exemplified by TransE [22] and TransH [23], employ distance-based scoring func-

tions. In these models, entities are represented as vectors in a representation space, and relations are represented
as vector operations that are applied to entity vectors. Distance-based scoring functions play a critical role in these
models for evaluating triples’ plausibility in the knowledge graph. The plausibility of a triple is measured based on
the distance between the tail entity and the translated head entity, which is operated on by the specific relation.

2.1.2. Semantic Matching Models
Semantic matching models, including DistMult [24] and ComplEx [25], represent entities and relations as vectors

and interactions of vectors, respectively. These models adopt similarity-based scoring functions, which assess the
plausibility of facts by measuring the similarity between the head entity and the tail entity under a specific interac-
tion. By leveraging similarity-based scoring functions, semantic matching models capture the semantic relationships
between entities and relations in the knowledge graph, providing a robust approach for evaluating the validity of
triples.

4 Kong et al. / Weight-aware Tasks for Evaluating Knowledge Graph Embeddings

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2.1.3. Graph Neural Network-based Models
Knowledge graphs are organized by heterogeneous graphs, which is a type of graph where different types of

nodes and edges coexist. In contrast to homogeneous graphs, which consist of only one type of node and one
type of edge, heterogeneous graphs include multiple types of nodes and edges, each representing different entities
and relationships. As graph-structured data, it is a natural fit for the application of graph neural networks [26] to
learn embeddings from knowledge graphs. Graph neural networks are built on the principle that each node in a
graph is characterized by its features and its relationships with other nodes. Originally designed for node-focused
applications with simple undirected graphs, graph neural networks have been adapted to handle knowledge graphs,
which involve multiple directed relations [27, 28].

Several works [29–31] have made significant contributions by extending graph neural networks to learn em-
beddings from knowledge graphs. These extensions are designed to handle the complexities of knowledge graphs,
which typically involve multiple types of nodes and edges representing various entities and relations. By incorpo-
rating mechanisms to account for the plural node types and plural node types in knowledge graphs, these extensions
enhance the capability of graph neural networks to effectively capture the intricate relationships and patterns present
in the knowledge graph.

2.2. Weight-aware Knowledge Graph Embedding Model

FocusE [32] introduces an add-on layer for non-weight-aware knowledge graph embedding models to enable
them to focus on high-weight triples. Regardless of the semantics of weights used in the literature, FocusE only
considers the weight value associated with each link, under the assumption that weights intensify or mitigate the
probability of the existence of a link. FocusE is adapted between the scoring and loss layers to modulate the output of
the scoring layer based on the weights of the triples, to obtain weighted losses so that FocusE can learn embeddings
from training triples with high weights. For a given positive weighted triple l+ := ⟨(h, r, t),w⟩, its corresponding
negative triple is l−, the score of a weighted triple given by FocusE layer is

h (l) = α · ln
(
1 + e f (l)

)
where f (l) is the scoring function of the base model and the modulating factor α is

α =

{
β+ (1− w)(1− β), if l+

β+ w(1− β), if l−

The hyper-parameter β ∈ [0, 1]. The loss function is

L = −
∑
t+,t−

log
eh(t+)

eh(t+) + eh(t−)

Nayyeri et al. [33] delves into the topic of introducing noise on weights during the collection of weighted triples
and its impact on the accuracy of weight fitting. It emphasizes the requirement for the model’s predicted weights to
fall within a neighborhood of the real weights, as governed by the inequality equation:

wh,r,t − η−
2

h,r,t ⩽ f (h, r, t) ⩽ wh,r,t + η
+2

h,r,t

Furthermore, the paper explores the concept of weighted rule loss as a means to introduce logic rules into the
model’s training. This is achieved by minimizing the error between the predicted weights of the triple in the rule
head and the product of the weights of the triples in the rule body. The findings and insights from this research shed
light on the challenges and potential solutions in handling noise during weight collection and incorporating logic
rules into the learning process.

Kong et al. / Weight-aware Tasks for Evaluating Knowledge Graph Embeddings 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Seo and Lee [34] focuses on the intriguing domain of whole-graph embedding, where the objective is to represent
an entire graph as a single vector. Specifically, for weighted graphs, the paper proposes a methodology involving
traversing the given graph to extract node-weight sequences. These sequences capture paths within the graph, com-
prising nodes and the weights associated with the edges between them. To encode these node-weight sequences into
fixed-length vectors, the paper adopts the employment of an LSTM autoencoder. The results and implications of this
research contribute to a deeper understanding of whole-graph embedding techniques, highlighting the significance
of capturing weighted paths in graph representation.

ProbWalk [35] considers the weights of edges in a graph as transition probabilities. The paper introduces a
novel method that outlines a strategy for sampling surrounding vertices based on their weights and generating
random walks for graph embedding, guided by the transition probability. This innovative approach provides valuable
insights into the utilization of transition probabilities as a means to capture the underlying structure of the graph
in the embedding process. The outcomes and implications of this research contribute to the advancement of graph
embedding techniques, particularly in understanding the interplay between edge weights and transition probabilities.

Mai et al. [36] revolves around the construction of a triple inference graph, aimed at improving the performance of
deterministic knowledge graph embedding models in link prediction tasks. The paper proposes a methodology that
computes triple-specific weights to enhance the modeling accuracy. Additionally, the paper introduces a framework
called RW (Rule-supported Weights), which leverages the weight of a triple to rescale the distance between positive
and corresponding negative triples. It is worth noting that RW can be considered as a special case of our proposed
model where the weight of the negative sample is set to the weight of the corresponding positive sample. The
outcomes of this research offer valuable insights into the development of efficient techniques for knowledge graph
embedding and link prediction, showcasing the benefits of triple-specific weighting and the RW framework.

2.3. Evaluation Task for Knowledge Graph Embeddings

2.3.1. Link Prediction
Link Prediction (LP) is a crucial evaluation task in knowledge graph embedding, aimed at predicting the existence

of a relation between two entities or determining the missing entity when given an entity and a relation within graph
structural data. Link prediction finds versatile applications across various domains, such as predicting friend rela-
tions among users in a social network [37], forecasting co-author relations in citation networks [38], and anticipating
interactions between genes and proteins in biological networks [39].

During the evaluation, each testing triple’s head entity is removed and replaced with each entity from the dic-
tionary in turn. The model computes scores for these corrupted triples, and the scores are then sorted in ascending
order to determine the ranking of the correct entity. This process is repeated, but this time the tail entity is replaced
instead of the head.

Mean Rank (MR)[40], Mean Reciprocal Rank (MRR)[41], and Hits@N [22] are widely used evaluation met-
rics by link prediction in the context of knowledge graph embedding. Mean Rank calculates the average of these
predicted ranks, providing an overall measure of how well the model ranks the correct entities among all possible
choices. Mean Reciprocal Rank calculates the average of the reciprocal of the ranks, emphasizing the importance of
correctly ranking the top choices. Compared to mean rank, mean reciprocal rank is indeed more robust to knowledge
graphs that contain outlier triples with extremely low plausibility. Hits@N calculates the proportion of correct enti-
ties that appear in the top N ranks, reflecting the model’s ability to make accurate predictions among the most likely
candidates. It complements MR and MRR by providing a more focused assessment of the model’s performance on
top-ranked predictions.

2.3.2. Triple Classification
The triple classification (TC) [42] is a binary classification task used to determine whether the given triple l :=

(h, r, t) is true or not. The test set used for evaluation consists of triples from the knowledge graph, along with
some number of randomly sampled negative triples. The test set is further divided into two groups based on the
triples’ scores: strong and weak/false. A testing triple l is labeled as strong if it exists in the knowledge graph and
its confidence score is greater than the threshold τ, otherwise, it is labeled as weak/false.

Accuracy and F1 score are widely adopted metrics by triple classification. Accuracy measures the proportion of
correctly classified strong and weak/false triples out of the total test set. The F1 score is a common metric used to

6 Kong et al. / Weight-aware Tasks for Evaluating Knowledge Graph Embeddings

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

measure the models’ performance on this task. It combines precision and recall, providing a balanced measure of
how well the model can correctly identify both strong and weak/false triples.

2.3.3. Tail Entity Prediction
The task of tail entity prediction introduced by UKGE [43] is designed to evaluate the performance of knowledge

graph embedding models on weighted knowledge graphs. In this task, the goal is to predict the correct tail entity
for a given corrupted triple in the form of (h, r, ?). To perform tail entity prediction, the model builds and scores
all possible triples, and then ranks all the possible triples according to their scores. The evaluation metric used
in this task is the normalized Discounted Cumulative Gain (nDCG) [44]. nDCG is commonly used to assess the
performance of ranking models, taking the relevance of the ranked items into account. In the context of learning
embeddings from weighted knowledge graphs, nDCG measures how well the model ranks the possible tail entities
according to weights of possible triples.

However, one challenge in adopting nDCG is that it necessitates having weights for all possible triples, including
negative triples, while weights of negative triples are typically not provided in the dataset. To overcome this limita-
tion, UKGE employs probabilistic soft logic (PSL) to generate weights for negative triples. Nevertheless, inferring
the weights of triplets from the model introduces uncertainty to the evaluation process.

3. Methodology

The aforementioned evaluation tasks were originally designed for deterministic knowledge graphs, where weights
were not considered during the evaluation process. However, to address this limitation and account for the impor-
tance of weights to triples, weight-aware link prediction and weight-aware triple classification have been introduced.

Given a weighted knowledge graph Gsuch that

G :=
{
⟨(hi, ri, ti) ,wi⟩

}u
i=1

, where hi, ti ∈ E, ri ∈ R, and wi ∈ R⩾0. E and R represent entity and relation sets, respectively. We will now
describe the weight-aware link prediction and weight-aware triple classification tasks as follows:

3.1. Weight-aware Link Prediction

Weight-aware link prediction extends link prediction and takes the weights assigned to positive triples into con-
sideration. The objective is to predict the existence of relations between entities, giving higher emphasis to triples
with higher weights.

3.1.1. Task Description
Given a corrupted triple in the form of (h, r, ?) (or (?, r, t)), the objective is to identify a proper entity φ ∈ E to

restore the corrupted triple to a complete form, i.e., (h, r, φ) (or (φ, r, t), respectively) with awareness of the weight
of (h, r, φ) ∈ G (or (φ, r, t) ∈ G, respectively).

3.1.2. Evaluation Protocol and Metrics
For each testing weighted triple ⟨(hi, ri, ti) ,wi⟩ in the testing set, the weight wi is omitted. Subsequently, the head

entity hi is removed and replaced by each of the entities in the dictionary in turn, generating a set of possible triples
{⟨(φ, ri, ti) , ?⟩} where ⟨(φ, ri, ti) , ∗⟩ /∈ G. Next, the models compute scores for the testing weighted triple and the
possible triples, which are then sorted in ascending order. Following the sorting process, the ranking of the testing
weighted triple ri is recorded. In order to provide additional rewards to models that perform better on triples with
higher weights, the activation function g is applied to adjust the ranking based on the weight of the testing triple,
resulting in the weighted ranking of the testing triple. For the sake of uniformity, we assume that the activation
function is monotonically increasing, so the weighted ranking of the testing triple should be

rw
i = ri ·

1

g(wi)

Kong et al. / Weight-aware Tasks for Evaluating Knowledge Graph Embeddings 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

This entire procedure is then repeated, but this time, ti is removed instead of hi.
We introduce weight-aware mean rank (WaMR), weight-aware mean reciprocal rank (WaMRR), and weight-

aware Hits@N (WaHits@N) as performance metrics for weight-aware link prediction. These metrics are represented
by Equations 1, 2, and 3, respectively. In these equations, c=

∑u
j=1 g(w j)

u represents the normalization factor. WaMR
calculates the average of the weighted rankings of all testing triples. WaMRR computes the average of the reciprocals
of the weighted rankings. WaHits@N measures the weighted count of the top N triples, which holds significance
for recommender systems. The introduced these three weight-aware metrics places emphasis on the prediction of
high-weight triples more than their weight-agnostic counterparts.

WaMR =
1

u

u∑
i=1

c · rw
i , (1)

WaMRR =
1

u

u∑
i=1

1

c · rw
i

, (2)

WaHits@N =
1

u

u∑
i=1

I[c · rw
i ⩽ N] (3)

The function g : R⩾0 → R is introduced as an activation function with the constraint g(w) ̸= 0. This activation
function is utilized to re-scale the weights, allowing for increased attention to more important triples. It is important
to note that g is defined as a general function with the non-zero constraint to limit its possible candidates. This
condition is chosen to prevent unattended triples from being overlooked. In Subsection 4.3, we provide illustrations
of suitable candidates for the function g. Finally, the I[expn] denotes the indicator function, which outputs 1 if the
expression expn is true, and 0 otherwise.

3.2. Weight-aware Triple Classification Task

Weight-aware triple classification extends triple classification, in which the gain of the model to be assessed is not
solely determined by the classification result but also by the weights associated with the true triples under testing.

3.2.1. Task Description
The task involves a set of triples comprising positive triples (hi, ri, ti) ∈ G and negative triples (h j, r j, t j) /∈ G.

The goal is to classify positive triples from negative triples while taking into account the awareness of the weights
of the triples in G. The gain for classifying a triple is calculated based on the result of classifying and the weight of
the triple.

3.2.2. Evaluation Protocol and Metrics
For each testing weighted triple ⟨(hi, ri, ti) ,wi⟩, the weight wi is omitted. The head entity hi is then removed to

create the head-corrupted testing triple (φ, ri, ti). Subsequently, the head entity of the head-corrupted testing triple is
replaced by k entities from the dictionary, resulting in a set of head-corrupted testing triples. To create the mixture
set for the head-corrupted testing triple, the testing triples are mixed with their head-corrupted testing triples:

mixh :=
{
⟨(h j, r j, t j) , ?⟩ | ⟨(h j, r j, t j) ,w j⟩ ∈ G

}
∪
{
⟨(φ, r j, t j) , ?⟩ | (φ, r j, t j) /∈ G

}
(4)

Similarly, the tail entity ti is removed to create the tail-corrupted testing triple (hi, ri, φ). The tail entity of the
tail-corrupted testing triple is then replaced by k entities from the dictionary, generating a set of possible triples for

8 Kong et al. / Weight-aware Tasks for Evaluating Knowledge Graph Embeddings

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

the tail-corrupted testing triple. To construct the mixture set for the tail-corrupted testing triple, the testing triples
are mixed with their tail-corruption testing triples:

mixt :=
{
⟨(h j, r j, t j) , ?⟩ | ⟨(h j, r j, t j) ,w j⟩ ∈ G

}
∪
{
⟨(hi, r j, φ) , ?⟩ | (hi, r j, φ) /∈ G

}
(5)

The model is tasked with scoring the triples and dividing mixh and mixt into a positive set and a negative set,
respectively, based on the score of the triples and a threshold τ. After classifying the triples, there are three types
of triples that are of interest. The first type consists of true triples classified as positive, forming a true positive set
(S tp). The second type comprises false triples classified as positive, forming a false positive set (S f p). The third type
includes true triples classified as negative, forming a false negative set (S f n). We introduce weight-aware F1 score
(WaF1) as performance metrics for weight-aware triple classification, which is represented by Equation 6. WaF1 is
the harmonic mean of the weight-aware precision wa_prec and weight-aware recall wa_recall. The proposed WaF1
metric provides greater rewards than F1 to models that correctly classify a higher number of triples with higher
weights.

WaF1 = 2 ∗ wa_prec ∗ wa_recall
wa_prec + wa_recall

(6)

where wa_prec =

∑
⟨(hi,ri,ti),?⟩∈T P

1
c
· g(wi)∑

⟨(hi,ri,ti),?⟩∈T P

1
c
· g(wi) +

∑
⟨(hi,ri,ti),?⟩∈FP

1
c
· g(wi)

wa_recall =

∑
⟨(hi,ri,ti),?⟩∈T P

1
c
· g(wi)∑

⟨(hi,ri,ti),?⟩∈T P

1
c
· g(wi) +

∑
⟨(hi,ri,ti),?⟩∈FN

1
c
· g(wi)

3.3. Weight-aware Extension Framework

Since existing deterministic knowledge graph embedding models excel at learning interactions of entities and
relations within triples, we propose a general framework called WaExt for injecting weights into these existing
models. This involves combining the weights and their scoring function f (h, r, t), as illustrated in Figure 2. In Figure
2, the operator ⊕ represents a summation operation that aggregates all the losses (in Figure 2a) and the weighted
losses (in Figure 2b). The scoring function f (h, r, t) is employed by the knowledge graph embedding model during
the training phase to calculate the score of each triple from the training set S . After being extended by the proposed
framework, the weight-aware scoring function fw(h, r, t,w) can be represented as Equation 7, calculating the score
of a triple based on both its plausibility and its weight.

fw(h, r, t,w) := g(w) · f (h, r, t) (7)

We adopt the margin ranking loss [22] as the loss function:

L=
∑

⟨(h,r,t),w⟩∈S

∑
⟨(h′,r′,t′),w′⟩∈S ′

[γ + fw(h, r, t,w)− fw (h′, r, t′,w′)]+ (8)

where [x]+ denotes the positive part of x, γ > 0 is a margin hyperparameter, w′ is the weight of the negative triples
(regarded as a hyper-parameter of the model), and S′ is the set of the negative triples defined as follows:

S ′ :=
{
⟨(h′, r, t) ,w′⟩ | h′

i ∈ E \ {hi}
}u

i=1
∪
{
⟨(h, r, t′) ,w′⟩ | t′i ∈ E \ {ti}

}u
i=1

(9)

Kong et al. / Weight-aware Tasks for Evaluating Knowledge Graph Embeddings 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ℎ/
𝑟! 𝑡/

ℎ0
𝑟" 𝑡0

… …… 𝑠𝑐𝑜𝑟𝑖𝑛𝑔
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑙𝑜𝑠𝑠!

𝑙𝑜𝑠𝑠"
… 𝑙𝑜𝑠𝑠

𝑙𝑜𝑠𝑠!

𝑙𝑜𝑠𝑠"

… 𝑙𝑜𝑠𝑠
𝑔(𝑤!)…

𝑔(𝑤")

*
*

𝑠𝑐𝑜𝑟𝑖𝑛𝑔
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

ℎ/
𝑟! 𝑡/

ℎ0
𝑟" 𝑡0

… ……

𝑤!

𝑤"

…

(Weighted) Triples Embeddings Embedded
(Weighted) Triples

ℎ 𝑟 𝑡
ℎ 𝑟 𝑡𝑤

(a)

(b)

Fig. 2. An illustration of WaExt. (a) is the process of base model, while (b) is its weight-aware extension.

Note that the model is only aware of the weights of the triples during the training process. For the testing phase,
the weights of the triples are omitted, and the weight-aware extensions score the triples using the same scoring
functions as their base models.

4. Experiments and Results

4.1. Experiment Setting

We conducted experiments on three datasets: CN15K, NL27K, and PPI5K [45]. CN15K is a subgraph of Con-
ceptNet [14] and comprises 15,000 entities 36 relations, and 229,235 weighted triples in English. The original scores
in ConceptNet vary from 0.1 to 22, while the weights in CN15K are normalized to the range [0.1, 1.0]. NL27K is
extracted from NELL [4], a weighted knowledge graph obtained from webpage reading. NL27K contains 27,221
entities, 405 relations, and 175,412 weighted triples. The weights in NL27K are normalized to the interval [0.1,
1.0]. Notably, 8 and 4 unseen relations in the training set appear in the testing and validation sets of NL27K, respec-
tively. These out-of-distribution relations could harm the models’ performance on NL27K. We also investigate this
observation in our experiments. PPI5K is a subset of the protein-protein interaction knowledge graph STRING [17],
consisting of 255,114 weighted triples for 4,999 proteins and 7 relations. STRING labels the interactions between
proteins with the probabilities of occurrence. The weights in PPI5K fall within the interval [0.15, 1.0]. For more
detailed datasets’ statistics, refer to Table 1.

The correlation between the weight and the triple degree in the three datasets is illustrated in Figure 3. The weight
distribution of triples in the three datasets is illustrated in Figure 4. In these three datasets, the weight of triples in
CN5K shows the highest concentration around 0.7 and 0.8, while the distribution in other regions is relatively
uniform. Additionally, the degree of triplets in CN5K is generally lower than 1000. Moving on to NL27K, the
weights of triples are concentrated in several intervals, with a significant concentration in the high-weight interval
[0.8, 1] and around 0.4. The degree of triples in NL27K is concentrated in two regions, near 6000 and lower than
2000. Regarding PPI5K, the weights of triples are most dispersed, mainly concentrated in the low-weight range.
Similarly, the degree of the triplets in PPI5K is generally lower than 2000.

10 Kong et al. / Weight-aware Tasks for Evaluating Knowledge Graph Embeddings

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Datasets Statistics. #Ent denotes the number of entities. #Rel denotes the number of the relations. #Tri denotes the number of the triples. INR
denotes the interval of the weights, i.e, the biggest weight minus the smallest weight. Avg(deg) denotes the average of the degree of the entities
and Med(deg) denotes the median of the degree of the entities.

#Ent #Rel #Tri INR Avg(deg) Med(deg)

CN15K
train 15000 36 193274 0.900 25.77 12
test 10659 34 19166 0.900 3.60 2
val 10158 35 16795 0.900 3.31 2

NL27K
train 27221 405 149100 0.899 10.95 4
test 9711 287 14034 0.898 2.89 1
val 9000 279 12278 0.899 2.73 1

PPI5K
train 4999 7 214661 0.847 85.88 21
test 3703 7 21566 0.847 11.65 4
val 3557 7 18887 0.847 10.62 3

0.2 0.4 0.6 0.8 1

0

2000

4000

6000

de
gr

ee

CN15K

0.2 0.4 0.6 0.8 1
weight

NL27K

0.2 0.4 0.6 0.8 1

PPI5K

Fig. 3. The Correlation of Weight and Triple Degree in CN15K, NL27K, and PPI5K. The degree of a triple is calculated as the average of the
degree of the head entity and the degree of the tail entity. The weights of the triples range from 0 to 1, while the degrees fall within the range of 0
to 7300. For analysis purposes, both the weight and degree intervals are divided into 200 subintervals. The number of triples falling within each
interval is counted and recorded as num(tri). In the visualization, each circle represents an interval. The center of the circle indicates the center
of weight and the center of degree for that interval. The color of the circle is defined using RGB=(1-num(tri)/25541, num(tri)/25541, 0), where
num(tri)/25541 is the normalized number of triples in that interval. The opacity and radius of each circle are determined by num(tri), where
higher opacity and a bigger radius signify a higher number of triples within that interval. A greener or denser color indicates a larger number of
triples in the subinterval represented by the center of the circle.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weights

0

20
00

0

40
00

0

60
00

0

80
00

0

Nu
m

be
r o

f T
rip

le
s

Train
Valid
Test

a) CN15K

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weights

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
70

00
0

Nu
m

be
r o

f T
rip

le
s

Train
Valid
Test

b) NL27K

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weights

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0

Nu
m

be
r o

f T
rip

le
s

Train
Valid
Test

c) PPI5K

Fig. 4. Weight Distribution of Triples in CN15K, NL27K, and PPI5K.

We implemented weight-aware link prediction, and weight-aware triple classification, and applied the weight-
aware extension framework to the knowledge graph embedding models with the help of the PyKEEN toolkit [46].
As for the activation function, we considered the linear function with coefficient=1 and the exponential function

Kong et al. / Weight-aware Tasks for Evaluating Knowledge Graph Embeddings 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

2

4

6

8

y

Examples of weighting functions
g(x) = ex

g(x) = 1.5x

g(x) = 0.5x

g(x) = 0.2x

g(x) = x

g(x) = (1.5 + (epoch + 3)
(epoch + 2))x

Fig. 5. The activation functions with static base and dynamic base.

with bases=[0.001, 0.01, 0.1, 0.2, ..., 0.9, 1.1, ..., 1.5, e, 3.0, 4.0]. Additionally, we explored a dynamic exponent
base, adjusting the base of the exponential function in every epoch to prevent overfitting on high-weight triples. For
this purpose, we choose

g(x) =
(

base +
(epoch + 3)

(epoch + 2)

)x

as the dynamic weighting function. An illustration of the activation functions can be found in Figure 5.
The embedding dimension was set to 50. We adopted the Adam optimizer with the initial learning rate λ = 0.001,

and the weight of the negative triples w′ from {0, 0.5, 1, avg(w), 1 − avg(w)}, where avg(w) represents the mean
of the weights of triples in the training set. The margin of the loss function γ was set to 1. The number of false
triples for every testing triple in triple classification and weight-aware triple classification was set to 100. We trained
the models for 1000 epochs, evaluated them every 10 epochs, and saved their best results. As MRR is considered a
relatively more robust and comprehensive metric, we use it as the criterion for recording the best results.

12 Kong et al. / Weight-aware Tasks for Evaluating Knowledge Graph Embeddings

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

4.2. Base Knowledge Graph Embedding Models

We have implemented the proposed framework based on two representative translational distance models: TransE
and TransH, as well as two representative semantic matching models: ComplEx and DistMult.

TransE [22] is one of the most representative translational distance models. It interprets entities as vectors and
the relation as a translation vector of the head entity in one embedding space. The scoring function of TransE is
expressed as

s = −∥h + r − t∥p

TransE is effective for 1-to-1 relations but falls short in modeling 1-to-N or N-to-N relations. In contrast,
TransH [23] addresses these limitations by introducing a mechanism that projects entities onto relation-specific
hyperplanes. The scoring function of TransH is defined as follows:

s = −
∥∥(h − w⊤

r hwr
)
+ r −

(
t − w⊤

r twr
)∥∥2

2

Here, wr represents the normal vector of a specific hyperplane associated with the relation r.
DistMult [24] represents each relation as a diagonal matrix, allowing it to model pairwise interactions between

entities and capture latent semantics effectively. The scoring function of DistMult is given by:

s = h⊤ diag(r)t

where diag(·) denotes the diagonalization function.
ComplEx [25] extends DistMult by introducing a complex vector space to embed the knowledge graph, with the

aim of better modeling asymmetric relations. The scoring function of ComplEx is asymmetric, providing different
scores for facts involving asymmetric relations, depending on the order of entities involved. The score function is
defined as follows:

s = Re
(
h⊤ diag(r)̄t

)
where t̄ represents the conjugate of t, and Re(·) takes the real part of a complex value.

4.3. Results on Link Prediction and Weight-aware Link Prediction

The results of the base models and their weight-aware extension versions on both the link prediction and weight-
aware link prediction tasks are presented in Table 2 and Table 3, respectively. In terms of link prediction, our
proposed weight-aware extension models outperform TransE, TransH, ComplEx, and DistMult on metrics such as
mean rank, mean reciprocal rank, and most of Hits@N. We attribute this improvement to the fact that triples with
higher weights tend to contain more valuable information and less noise, and the weight-aware extension models
can effectively emphasize these high-weight triples.

Regarding link prediction in greater detail, WeExt employing an exponential function with a dynamic base as
the activation equation, attains the optimal performance in 8 out of the total 12 model-dataset combinations. On
the other hand, WeExt using an exponential function with a static base as the activation equation, achieves the best
performance on the remaining 4 combinations. Additionally, WaExt adopting a linear function with coefficient=1 as
the activation equation has also resulted in significant performance improvements for 7 model-dataset combinations.
We believe that exploring optimal coefficients for the linear function could lead to even better performance. As part
of our future work, we plan to conduct more experiments to search for the optimal coefficient.

We choose FocusE as the baseline, and its results are presented in Table 4. As our implementation and FocusE are
based on different knowledge graph embedding libraries, we can not directly compare the performance of WaExt and
FocusE. Instead, we focus on comparing the improvements achieved compared to the base models. While FocusE

Kong et al. / Weight-aware Tasks for Evaluating Knowledge Graph Embeddings 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
Results of base models (TransE, TransH, ComplEx, DistMult) and weight-aware extension models (WaTransE, WaTransH, WaComplEx,
WaDistMult) on the link prediction task. “expsta." indicates the extended models adopt an exponential function with a static base, while “expdyn."
refers to the extended models adopt an exponential function with a dynamic base.

Dataset Model MR MRR Hit@1 Hit@3 Hit@5 Hit@10

CN15K

TransE 1184.3 0.1042 0.0367 0.1249 0.1721 0.2369

WaTransE
linear 1232.3 0.1094 0.0377 0.1349 0.1839 0.2498
expsta. 947.4 0.1135 0.0372 0.1404 0.1931 0.2636
expdyn. 1044.1 0.114 0.0376 0.1435 0.1943 0.2621

TransH 1768.7 0.0773 0.0419 0.0856 0.1069 0.1402

WaTransH
linear 2136.7 0.0869 0.0419 0.0998 0.1296 0.1726
expsta. 1031.2 0.1023 0.0403 0.1247 0.1615 0.2162
expdyn. 1533.6 0.1025 0.039 0.1265 0.1657 0.2239

ComplEx 1872.5 0.1232 0.065 0.1393 0.1803 0.2409

WaComplEx
linear 1866 0.1195 0.0604 0.1369 0.177 0.2362
expsta. 1743.8 0.1377 0.0756 0.1606 0.2017 0.2583
expdyn. 1864.1 0.1236 0.0655 0.1391 0.1809 0.2408

DistMult 987.4 0.105 0.0397 0.1267 0.1678 0.2264

WaDistMult
linear 954.7 0.1112 0.0394 0.1348 0.1828 0.2469
expsta. 1120.9 0.1127 0.0406 0.1386 0.1836 0.247
expdyn. 1100.7 0.1129 0.0405 0.1383 0.1853 0.2491

NL27K

TransE 130.1 0.3349 0.2116 0.398 0.4638 0.5575

WaTransE
linear 213.4 0.3196 0.1886 0.3942 0.4613 0.5501
expsta. 92.1 0.3457 0.2038 0.423 0.5013 0.6033
expdyn. 90.4 0.3411 0.1933 0.4255 0.503 0.5969

TransH 817.4 0.2654 0.1848 0.3019 0.3453 0.4054

WaTransH
linear 205.2 0.3227 0.2163 0.3728 0.4323 0.5151
expsta. 242.1 0.326 0.2231 0.373 0.4321 0.5125
expdyn. 185.9 0.3241 0.2163 0.3742 0.4356 0.5167

ComplEx 214.7 0.6468 0.5422 0.7116 0.7747 0.8467

WaComplEx
linear 229.4 0.608 0.5025 0.6674 0.7332 0.813
expsta. 271.1 0.6886 0.597 0.7447 0.8007 0.862
expdyn. 215.3 0.6469 0.542 0.7119 0.7746 0.8462

DistMult 156.6 0.4037 0.313 0.4461 0.4958 0.5652

WaDistMult
linear 160.7 0.4459 0.3576 0.4866 0.5353 0.6077
expsta. 160.7 0.4459 0.3576 0.4866 0.5353 0.6077
expdyn. 161.1 0.4461 0.3585 0.4866 0.5353 0.6063

PPI5K

TransE 27.6 0.1398 0 0.1746 0.269 0.4181

WaTransE
linear 105.3 0.1364 0 0.1823 0.2678 0.3951
expsta. 29.1 0.1515 0.0001 0.1999 0.2956 0.4403
expdyn. 30.2 0.1528 0 0.2042 0.3 0.4419

TransH 49.9 0.1093 0 0.1303 0.1959 0.3155

WaTransH
linear 1163.9 0.1216 0.0217 0.1612 0.2251 0.3207
expsta. 41 0.1395 0.0001 0.1836 0.2677 0.3967
expdyn. 52.7 0.1417 0 0.1906 0.2739 0.4067

ComplEx 7.8 0.9247 0.8735 0.9743 0.9857 0.9915

WaComplEx
linear 10.1 0.9482 0.915 0.9809 0.9885 0.992
expsta. 11.7 0.9502 0.9197 0.9804 0.988 0.9915
expdyn. 11.8 0.9503 0.9197 0.9804 0.9881 0.9913

DistMult 27.1 0.4383 0.3203 0.4932 0.5599 0.6495

WaDistMult
linear 21.2 0.4216 0.2996 0.4696 0.548 0.6552
expsta. 25.2 0.45 0.3401 0.4909 0.566 0.667
expdyn. 24 0.4556 0.353 0.4943 0.5618 0.6513

14 Kong et al. / Weight-aware Tasks for Evaluating Knowledge Graph Embeddings

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 3
Results of base models (TransE, TransH, ComplEx, DistMult) and weight-aware extension models (WaTransE, WaTransH, WaComplEx,
WaDistMult) on the weight-aware link prediction task. “expsta." indicates the extended models adopt an exponential function with a static
base, while “expdyn." refers to the extended models adopt an exponential function with a dynamic base.

Dataset Model MR MRR Hit@1 Hit@3 Hit@5 Hit@10

CN15K

TransE 1276.5 0.1068 0.0069 0.118 0.1702 0.2349

WaTransE
linear 2076.5 0.1187 0.0079 0.136 0.184 0.2502
expsta. 1038.8 0.1175 0.0075 0.1341 0.1909 0.2594
expdyn. 1166.6 0.1187 0.0077 0.1369 0.1936 0.2597

TransH 1880 0.078 0.0103 0.0829 0.1074 0.1393

WaTransH
linear 2407.6 0.0909 0.0131 0.0962 0.1298 0.1722
expsta. 1747.6 0.1067 0.0096 0.1212 0.1659 0.2201
expdyn. 1754.9 0.1071 0.0092 0.1219 0.1664 0.2226

ComplEx 2028.9 0.128 0.0344 0.132 0.1776 0.2375

WaComplEx
linear 2027.1 0.1231 0.0285 0.1291 0.1735 0.2328
expsta. 1896.4 0.1462 0.0468 0.1552 0.2009 0.256
expdyn. 2020.2 0.1284 0.0346 0.1318 0.1793 0.2384

DistMult 1066.5 0.1077 0.0107 0.1189 0.1646 0.2229

WaDistMult
linear 1042.5 0.1142 0.0108 0.1262 0.1789 0.2437
expsta. 1255 0.1168 0.0114 0.1321 0.181 0.2456
expdyn. 1230.2 0.1169 0.0108 0.1317 0.1832 0.2474

NL27K

TransE 148 0.3473 0.1567 0.3776 0.445 0.5438

WaTransE
linear 335.6 0.3549 0.1616 0.3534 0.4494 0.5433
expsta. 98.3 0.358 0.1516 0.4016 0.4796 0.5849
expdyn. 103.7 0.3573 0.1499 0.4048 0.4815 0.5833

TransH 946.3 0.2787 0.138 0.2934 0.3341 0.4006

WaTransH
linear 279.7 0.3448 0.1734 0.362 0.422 0.5077
expsta. 318.4 0.3487 0.1792 0.3607 0.4199 0.5052
expdyn. 241.3 0.3458 0.1722 0.3619 0.4228 0.5095

ComplEx 241.4 0.6453 0.3504 0.6929 0.7553 0.8372

WaComplEx
linear 270.3 0.593 0.2973 0.6516 0.7167 0.7967
expsta. 367.2 0.7054 0.4488 0.7123 0.7612 0.823
expdyn. 242.2 0.6453 0.3503 0.6932 0.7557 0.838

DistMult 174.7 0.4111 0.2157 0.4318 0.4825 0.5546

WaDistMult
linear 174.9 0.4428 0.223 0.4725 0.5209 0.5968
expsta. 174.9 0.4428 0.223 0.4725 0.5209 0.5968
expdyn. 175.5 0.4437 0.225 0.472 0.5214 0.5965

PPI5K

TransE 30.9 0.1583 0 0.1603 0.2529 0.3977

WaTransE
linear 208.3 0.19 0.0508 0.1916 0.263 0.375
expsta. 36.8 0.1767 0 0.19 0.2799 0.413
expdyn. 35.1 0.178 0 0.1923 0.2823 0.4214

TransH 55.9 0.1253 0 0.1232 0.1903 0.3024

WaTransH
linear 1347.5 0.1505 0.0198 0.1573 0.2213 0.3131
expsta. 48.6 0.1649 0 0.1756 0.2586 0.3836
expdyn. 63 0.1678 0 0.182 0.2624 0.3878

ComplEx 7.9 0.9205 0.2948 0.9651 0.9826 0.9909

WaComplEx
linear 10.2 0.9414 0.3064 0.9768 0.9878 0.9917
expsta. 11.8 0.9427 0.3066 0.9771 0.9876 0.9914
expdyn. 11.8 0.9427 0.3065 0.9776 0.9879 0.9913

DistMult 29.9 0.4306 0.0621 0.4781 0.5502 0.6465

WaDistMult
linear 22.3 0.401 0.0499 0.4486 0.5393 0.6526
expsta. 27.6 0.4384 0.0617 0.4709 0.5537 0.6643
expdyn. 26.1 0.4404 0.063 0.4765 0.5517 0.6504

Kong et al. / Weight-aware Tasks for Evaluating Knowledge Graph Embeddings 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
Results of FocusE on the link prediction task.

Model MR MRR Hits@1 Hits@3 Hits@5 Hits@10

C
N

15
K

TransE 6864.0 0.0027 0.0014 0.0020 0.0030 0.0047
+FocusE 1288.9 0.0984 0.0433 0.1149 0.1353 0.2022
DistMult 1829.8 0.0956 0.0577 0.1026 0.1265 0.1669
+FocusE 2293.6 0.1059 0.0658 0.1156 0.1316 0.1826

N
L

27
K

TransE 118.9 0.4357 0.2717 0.5421 0.6238 0.7214
+FocusE 138.7 0.3397 0.2014 0.4182 0.4585 0.5817
DistMult 117.7 0.6615 0.5540 0.7310 0.7976 0.8682
+FocusE 2566.3 0.4092 0.3183 0.4535 0.4851 0.5859

PP
I5

K

TransE 20.0 0.1858 0 0.2569 0.3790 0.5570
+FocusE 35.6 0.1526 0 0.2138 0.2685 0.4364
DistMult 4.4 0.9239 0.8647 0.9823 0.9872 0.9916
+FocusE 14.4 0.7745 0.6795 0.8402 0.8650 0.9407

improves the performance on CN15K, it leads to performance loss on NL27K and PPI5K. While WaExt brings a
more stable performance improvement to the base model compared to FocusE.

Regarding weight-aware link prediction, both WaExt utilizing the exponential function with the static base as
its activation function, and WaExt utilizing the exponential function with the dynamic base as its activation func-
tion, have demonstrated comparable performance and respectively achieved the best results among 5 model-dataset
combinations. Additionally, WaExt adopting a linear function with coefficient=1 also exhibited commendable per-
formance, with its extended TransE model achieving the optimal performance on CN15K and PPI5K.

The aforementioned results on link prediction and weight-aware link prediction do not entirely illustrate the
superiority of our proposed weight-aware evaluation tasks. To address this, we exemplify a suboptimal model to
highlight the advantages of the proposed tasks. Figure 6 illustrates the distribution of triples whose ranking is no
more than 1 predicted by the TransE and WaTransE on NL27K. WaTransE adopts an exponential function with a
static base of 1.5 as the activation function, and the weight of negative examples is set to 0.5. In the link prediction
task, TransE successfully predicted a higher number of Hits@1 triplets, resulting in a higher Hits@1 score compared
to other models. However, in the weight-dependent link prediction, WaTransE excelled in predicting a larger number
of high-weight triplets, which advantage has been significantly amplified and led to a higher WaHits@1 score.

Fig. 6. Distribution of triples with the ranking/weight-aware ranking of no more than 1.

16 Kong et al. / Weight-aware Tasks for Evaluating Knowledge Graph Embeddings

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

4.4. Result on Triple Classification and Weight-aware Triple Classification

The results of base models and their weight-aware extensions on the triple classification and weight-aware triple
classification are presented in Table 5. From the table, it is evident that our proposed weight-aware extensions out-
perform TransE, TransH, ComplEx, and DistMult on both triple classification and weight-aware triple classification
across all three datasets.

Table 5
Results of base models and their weight-aware extension models on the triple classification task and weight-aware triple classification task.
“expsta." indicates the extended models adopt an exponential function with a static base, while “expdyn." refers to the extended models adopt an
exponential function with a dynamic base.

C
N

15
K

Model F1 WaF1

N
L

27
K

Model F1 WaF1

PP
I5

K

Model F1 WaF1
TransE 0.2554 0.2826 TransE 0.3486 0.3605 TransE 0.603 0.6094

WaTransE
linear 0.2015 0.2663

WaTransE
linear 0.3097 0.32

WaTransE
linear 0.5444 0.5806

expsta. 0.3179 0.3868 expsta. 0.3622 0.3748 expsta. 0.6183 0.6233
expdyn. 0.2552 0.2833 expdyn. 0.3672 0.3739 expdyn. 0.6327 0.6423

TransH 0.0937 0.1042 TransH 0.1446 0.152 TransH 0.4872 0.51

WaTransH
linear 0.1302 0.1326

WaTransH
linear 0.2898 0.2894

WaTransH
linear 0.438 0.5794

expsta. 0.1825 0.187 expsta. 0.3078 0.3078 expsta. 0.5664 0.5569
expdyn. 0.1837 0.1886 expdyn. 0.3176 0.3153 expdyn. 0.5548 0.563

ComplEx 0.435 0.4856 ComplEx 0.3743 0.398 ComplEx 0.9762 1.0171

WaComplEx
linear 0.4015 0.7508

WaComplEx
linear 0.3486 0.4484

WaComplEx
linear 0.9475 1.2222

expsta. 0.4238 0.4987 expsta. 0.5641 0.6126 expsta. 0.9777 1.0216
expdyn. 0.4387 0.5057 expdyn. 0.3808 0.405 expdyn. 0.9772 1.021

DistMult 0.165 0.1851 DistMult 0.1873 0.2004 DistMult 0.6943 0.713

WaDistMult
linear 0.198 0.2363

WaDistMult
linear 0.2604 0.3

WaDistMult
linear 0.6862 0.7341

expsta. 0.2088 0.2474 expsta. 0.2773 0.3202 expsta. 0.7011 0.7317
expdyn. 0.207 0.2494 expdyn. 0.318 0.3576 expdyn. 0.7108 0.7495

5. Conclusion

In this paper, we originally explore the weight-aware link prediction task and propose three evaluation metrics
for weight-aware link prediction (Section 3.1). We also originally explore the weight-aware triple classification task
and propose weight-aware F1 score as the three evaluation metrics (Section 3.2). With respect to the novel tasks, we
propose a method to extend deterministic knowledge graph embedding models to their weight-aware version, and
provide the weight-aware extensions for the base models (Section 3.3).

The weight-aware tasks emphasize the ability of knowledge graph embedding models to correctly predict and
classify triples according to the weights of the triples, which is critical for applications in some scenarios that
involve non-deterministic knowledge, such as text understanding and protein-protein interaction.

We propose a general framework WaExt for extending the deterministic knowledge graph embedding models to
learn weight-aware embeddings from weighted knowledge graphs. To illustrate its usage, we apply WaExt to TransE,
TransH, ComplEx, and DistMult, and get the weight-aware extensions for them (i.e., WaTransE, WaTransH, Wa-
ComplEx, and WaDisMult, respectively). The weight-aware extensions of the base models can learn embeddings
better from triples with high weights and outperform baseline models in link prediction, triple classification, and
weight-aware tasks. Our extensive experiments reveal that the exponential activation function and the linear activa-
tion function is effective for WaExt. We will explore more suitable activation functions in the future.

Kong et al. / Weight-aware Tasks for Evaluating Knowledge Graph Embeddings 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Acknowledgements

This work was supported by JST SPRING, Grant Number JPMJSP2102. This work was also partially supported
by JSPS Grant-in-Aid for Early-Career Scientists (Grant Number 22K18004), JSPS Grant-in-Aid for Scientific
Research (Grant Number 21K12042), and the New Energy and Industrial Technology Development Organization
(Grant Number JPNP20006).

References

[1] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P.N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer and C. Bizer,
DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia, Semantic Web 6 (2015), 167–195.

[2] T.P. Tanon, G. Weikum and F.M. Suchanek, YAGO 4: A Reason-able Knowledge Base, The Semantic Web 12123 (2020), 583–596.
[3] D. Vrandeić and M. Krötzsch, Wikidata: a free collaborative knowledgebase, Commun. ACM 57 (2014), 78–85.
[4] T.M. Mitchell, W.W. Cohen, E.R. Hruschka, P.P. Talukdar, B. Yang, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, J. Kr-

ishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E.A. Platanios, A. Ritter, M. Samadi, B. Settles, R.C. Wang, D. Wijaya,
A.K. Gupta, X. Chen, A. Saparov, M. Greaves and J. Welling, Never-Ending Learning, Communications of the ACM 61 (2015), 103–115.

[5] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K.P. Murphy, T. Strohmann, S. Sun and W. Zhang, Knowledge vault: a web-scale
approach to probabilistic knowledge fusion, Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and
data mining (2014).

[6] L. Dietz, A. Kotov and E. Meij, Utilizing Knowledge Graphs for Text-Centric Information Retrieval, The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval (2018).

[7] S. Hu, L. Zou, J.X. Yu, H. Wang and D. Zhao, Answering Natural Language Questions by Subgraph Matching over Knowledge Graphs,
IEEE Transactions on Knowledge and Data Engineering 30 (2018), 824–837.

[8] X. Huang, J. Zhang, D. Li and P. Li, Knowledge Graph Embedding Based Question Answering, Proceedings of the Twelfth ACM Interna-
tional Conference on Web Search and Data Mining (2019).

[9] S. Zhou, X. Dai, H. Chen, W. Zhang, K. Ren, R. Tang, X. He and Y. Yu, Interactive Recommender System via Knowledge Graph-enhanced
Reinforcement Learning, Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval (2020).

[10] Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong and Q. He, A Survey on Knowledge Graph-Based Recommender Systems, IEEE
Transactions on Knowledge and Data Engineering 34 (2022), 3549–3568.

[11] C. Rudnik, T. Ehrhart, O. Ferret, D. Teyssou, R. Troncy and X. Tannier, Searching News Articles Using an Event Knowledge Graph
Leveraged by Wikidata, Companion Proceedings of The 2019 World Wide Web Conference (2019).

[12] P. Ernst, C. Meng, A. Siu and G. Weikum, KnowLife: A knowledge graph for health and life sciences, 2014 IEEE 30th International
Conference on Data Engineering (2014), 1254–1257.

[13] B. Taskar, M.F. Wong, P. Abbeel and D. Koller, Link Prediction in Relational Data, in: NIPS, 2003.
[14] R. Speer, J. Chin and C. Havasi, ConceptNet 5.5: An Open Multilingual Graph of General Knowledge, in: AAAI, 2017.
[15] W. Wu, H. Li, H. Wang and K.Q. Zhu, Probase: a probabilistic taxonomy for text understanding, SIGMOD (2012).
[16] O.D. la Cruz Cabrera, M. Matar and L. Reichel, Edge importance in a network via line graphs and the matrix exponential, Numerical

Algorithms 83 (2019), 807–832.
[17] D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller, J. Huerta-Cepas, M. Simonovic, A.C.J. Roth, A. Santos, K. Tsafou,

M. Kuhn, P. Bork, L.J. Jensen and C. von Mering, STRING v10: protein–protein interaction networks, integrated over the tree of life,
Nucleic Acids Research 43 (2015), D447–D452.

[18] Z. Wang, H. Wang, J.-R. Wen and Y. Xiao, An Inference Approach to Basic Level of Categorization, CIKM (2015).
[19] Y. Wang, H. Li, H. Wang and K.Q. Zhu, Concept-Based Web Search, in: ER, 2012.
[20] J. Ivanic, A. Wallqvist and J. Reifman, Evidence of probabilistic behaviour in protein interaction networks, BMC Systems Biology 2 (2007),

11–11.
[21] Q. Wang, Z. Mao, B. Wang and L. Guo, Knowledge Graph Embedding: A Survey of Approaches and Applications, IEEE Transactions on

Knowledge and Data Engineering 29 (2017), 2724–2743.
[22] A. Bordes, N. Usunier, A. García-Durán, J. Weston and O. Yakhnenko, Translating Embeddings for Modeling Multi-relational Data, in:

NIPS, 2013.
[23] Z. Wang, J. Zhang, J. Feng and Z. Chen, Knowledge Graph Embedding by Translating on Hyperplanes, in: AAAI, 2014.
[24] B. Yang, S.W.-t. Yih, X. He, J. Gao and L. Deng, Embedding Entities and Relations for Learning and Inference in Knowledge Bases, in:

Proceedings of the International Conference on Learning Representations, 2015.
[25] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier and G. Bouchard, Complex embeddings for simple link prediction, in: International conference

on machine learning, PMLR, 2016, pp. 2071–2080.
[26] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner and G. Monfardini, The Graph Neural Network Model, IEEE Transactions on Neural

Networks 20 (2009), 61–80.
[27] Y. Hu, K. Janowicz, P. Hitzler and K. Sengupta, The Semantic Web Journal as Linked Data., in: ISWC (Posters & Demos), 2015.

18 Kong et al. / Weight-aware Tasks for Evaluating Knowledge Graph Embeddings

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[28] D. Van Assche, T. Delva, G. Haesendonck, P. Heyvaert, B. De Meester and A. Dimou, Declarative RDF graph generation from heteroge-
neous (semi-) structured data: A systematic literature review, Journal of Web Semantics (2022), 100753.

[29] M. Schlichtkrull, T. Kipf, P. Bloem, R. van den Berg, I. Titov and M. Welling, Modeling Relational Data with Graph Convolutional
Networks, ArXiv abs/1703.06103 (2018).

[30] S. Vashishth, S. Sanyal, V. Nitin and P.P. Talukdar, Composition-based Multi-Relational Graph Convolutional Networks, ArXiv
abs/1911.03082 (2020).

[31] D. Nathani, J. Chauhan, C. Sharma and M. Kaul, Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs, in:
ACL, 2019.

[32] S. Pai and L. Costabello, Learning Embeddings from Knowledge Graphs With Numeric Edge Attributes, in: IJCAI, 2021.
[33] M. Nayyeri, G.M. Çil, S. Vahdati, F. Osborne, A. Kravchenko, S. Angioni, A. Salatino, D.R. Recupero, E. Motta and J. Lehmann, Link

Prediction of Weighted Triples for Knowledge Graph Completion Within the Scholarly Domain, IEEE Access 9 (2021), 116002–116014.
[34] M. Seo and K.Y. Lee, A Graph Embedding Technique for Weighted Graphs Based on LSTM Autoencoders, J. Inf. Process. Syst. 16 (2020),

1407–1423.
[35] X. Wu, H. Pang, Y. Fan, L. Yang and Y. Luo, ProbWalk: A random walk approach in weighted graph embedding, Procedia Computer

Science 183 (2021), 683–689.
[36] G. Mai, K. Janowicz and B. Yan, Support and Centrality: Learning Weights for Knowledge Graph Embedding Models, in: International

Conference Knowledge Engineering and Knowledge Management, 2018.
[37] L.A. Adamic and E. Adar, Friends and neighbors on the Web, Soc. Networks 25 (2003), 211–230.
[38] H. Cho and Y. Yu, Link prediction for interdisciplinary collaboration via co-authorship network, Social Network Analysis and Mining 8

(2018), 1–12.
[39] E.M. Airoldi, D.M. Blei, S.E. Fienberg and E.P. Xing, Mixed Membership Stochastic Block Models for Relational Data with Application

to Protein-Protein Interactions, 2006.
[40] A. Bordes, J. Weston, R. Collobert and Y. Bengio, Learning Structured Embeddings of Knowledge Bases, in: AAAI, 2011.
[41] E.M. Voorhees, The TREC-8 Question Answering Track, Natural Language Engineering 7 (2000), 361–378.
[42] R. Socher, D. Chen, C.D. Manning and A. Ng, Reasoning With Neural Tensor Networks for Knowledge Base Completion, in: NIPS, 2013.
[43] X. Chen, M. Chen, W. Shi, Y. Sun and C. Zaniolo, Embedding Uncertain Knowledge Graphs, in: AAAI, 2019.
[44] T.-Y. Liu, Learning to rank for information retrieval, Proceedings of the 33rd international ACM SIGIR conference on Research and

development in information retrieval (2009).
[45] T. Dettmers, P. Minervini, P. Stenetorp and S. Riedel, Convolutional 2D Knowledge Graph Embeddings, in: AAAI, 2018.
[46] M. Ali, M. Berrendorf, C.T. Hoyt, L. Vermue, S. Sharifzadeh, V. Tresp and J. Lehmann, PyKEEN 1.0: A Python Library for Training and

Evaluating Knowledge Graph Embeddings, J. Mach. Learn. Res. 22 (2021), 82:1–82:6.
[47] D. Liben-Nowell and J.M. Kleinberg, The link-prediction problem for social networks, Journal of the Association for Information Science

and Technology 58 (2007), 1019–1031.
[48] W.-t. Yih, M.-W. Chang, C. Meek and A. Pastusiak, Question Answering Using Enhanced Lexical Semantic Models, in: ACL, 2013.
[49] M. Chen, Y. Tian, X. Chen, Z. Xue and C. Zaniolo, On2Vec: Embedding-based Relation Prediction for Ontology Population, in: SDM,

2018.
[50] G. Ji, S. He, L. Xu, K. Liu and J. Zhao, Knowledge Graph Embedding via Dynamic Mapping Matrix, in: ACL, 2015.
[51] Y. Lin, Z. Liu, M. Sun, Y. Liu and X. Zhu, Learning Entity and Relation Embeddings for Knowledge Graph Completion, in: AAAI, 2015.
[52] M.A. Hasan, V. Chaoji, S. Salem and M.J. Zaki, Link prediction using supervised learning, 2006.
[53] A. Kimmig, S.H. Bach, M. Broecheler, B. Huang and L. Getoor, A short introduction to probabilistic soft logic, in: NIPS 2012, 2012.
[54] Z. Ye, Y.J. Kumar, G.O. Sing, F. Song and J. Wang, A Comprehensive Survey of Graph Neural Networks for Knowledge Graphs, IEEE

Access 10 (2022), 75729–75741. doi:10.1109/ACCESS.2022.3191784.
[55] J. Ivanic, A. Wallqvist and J. Reifman, Probing the Extent of Randomness in Protein Interaction Networks, PLoS Computational Biology 4

(2008).
[56] Z. Chen, M.-Y. Yeh and T.-W. Kuo, PASSLEAF: A Pool-bAsed Semi-Supervised LEArning Framework for Uncertain Knowledge Graph

Embedding, in: AAAI, 2021.
[57] J. Hu, R. Cheng, Z. Huang, Y. Fang and S. Luo, On Embedding Uncertain Graphs, Proceedings of the 2017 ACM on Conference on

Information and Knowledge Management (2017).
[58] M. Nickel, L. Rosasco and T.A. Poggio, Holographic Embeddings of Knowledge Graphs (2016).

	Introduction
	Twofold Contributions

	Related Works
	Weight-agnostic Knowledge Graph Embedding Models
	Translational Distance Models
	Semantic Matching Models
	Graph Neural Network-based Models

	Weight-aware Knowledge Graph Embedding Model
	Evaluation Task for Knowledge Graph Embeddings
	Link Prediction
	Triple Classification
	Tail Entity Prediction

	Methodology
	Weight-aware Link Prediction
	Task Description
	Evaluation Protocol and Metrics

	Weight-aware Triple Classification Task
	Task Description
	Evaluation Protocol and Metrics

	Weight-aware Extension Framework

	Experiments and Results
	Experiment Setting
	Base Knowledge Graph Embedding Models
	Results on Link Prediction and Weight-aware Link Prediction
	Result on Triple Classification and Weight-aware Triple Classification

	Conclusion
	Acknowledgements
	References

