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Abstract. Semantic rule mining can be used for both deriving task-agnostic or task-specific information within a Knowledge
Graph (KG). Underlying logical inferences to summarise the KG or fully interpretable binary classifiers predicting future events
are common results of such a rule mining process. The current methods to perform task-agnostic or task-specific semantic
rule mining operate, however, a completely different KG representation, making them less suitable to perform both tasks or
incorporate each other’s optimizations. This also results in the need to master multiple techniques for both exploring and mining
rules within KGs, as well losing time and resources when converting one KG format into another. In this paper, we use INK,
a KG representation based on neighbourhood nodes of interest to mine rules for improved decision support. By selecting one
or two sets of nodes of interest, the rule miner created on top of the INK representation will either mine task-agnostic or task-
specific rules. In both subfields, the INK miner is competitive to the currently state-of-the-art semantic rule miners on 14 different
benchmark datasets within multiple domains.
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1. Introduction

Knowledge graphs (KGs) are increasingly used as
data structures to combine domain expertise with raw
data values [1]. In this work, we refer to a KG as a
multi-relational directed graph, G = (V, E), where
V are the vertices or entities in our graph and E the
edges or predicates. The example KG represented in
Figure 1 shows eight interlinked nodes describing four
members of the band Coldplay. Three of these mem-
bers have a common subgraph as they all studied and
were born in England. One member was born in Scot-
land which is, at time of writing, still a part of the
United Kingdom (UK).

Numerous applications are built upon these KGs,
covering various domains such as industry 4.0, perva-
sive health and smart cities [3–5]. These applications
interact with the KGs directly or transform the graph
into a vector representation to perform Machine Learn-
ing (ML) related tasks [6]. Rule mining is also such a

*Corresponding author. E-mail: bram.steenwinckel@ugent.be.

Fig. 1. Simple example of a KG, extracted from DBpedia [2]. Eight
nodes are defined, linked to each other by four unique labelled edges.

KG application, where the goal is to find logical rules
in a given KG. For example, a rule mining application
for the given example KG in Figure 1 could find the
logical rule: If X has Alma mater Y and Y is Located
In Z, Then X is born in Z. Such logical rules will come
with a certain confidence score, defining the general
applicability of the rule. The more reliable rules can
then be used to complete the KG, perform downstream
tasks such as fact prediction, fact checking or anomaly
and error detection.
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Rule mining is part of data mining in general, where
two broad subfields exist. On the one hand, there is
task-agnostic or descriptive mining, where one wants
to mine some general information about the KG or
some general facts, which hold beyond this provided
KG and are generally applicable. This subfield was
originally created to discover hidden knowledge from
transactional data, such as relational databases. Asso-
ciation Rule Mining (ARM) is the best-known descrip-
tive technique. A transaction in ARM is an observa-
tion of the co-occurrence of a set of items. One possi-
ble way to apply ARM to semantic data or KGs is by
converting the internal representation to a set of trans-
actions. ARM thus identifies the transactions that iden-
tify co-occurrences of items that appear frequently in
the KG by calculating the associated metrics to quan-
tify this, such as the confidence and the support of the
transactions. The logical rule defined, If X has Alma
mater Y and Y is Located In Z, Then X is born in Z, is
such a possible hidden rule that could be mined with
an ARM application. ARM for KGs is used in data in-
tegration and KG completion tasks [7, 8].

On the other hand, prescriptive mining is more task-
specific and performs inferences on the current data,
to make predictions in the future [9]. Inductive Logic
Programming (ILP) is the best-known paradigm in this
subfield. The ILP techniques deduce logical rules from
a positive set of nodes and require some (generated)
negative set of counter-examples. An example ILP task
could be to find one general rule to describe all four
members of the Coldplay band in Figure 1. The posi-
tive set of nodes selected for this mining task are un-
derlined in Figure 1. One possible rule could state the
born In ?x and ?x Part of UK relationships hold for all
members.

Both subfields are complementary. While the ILP
field is able to handle task-agnostic cases, it is most
known by its task-specific capabilities, as specific facts
are needed for those cases. Therefore, ILP directly cap-
tures the available related information in the KG to
generate the rules. The ILP program will immediately
use the available predicate-object information to dis-
criminate between the provided positive and negative
set. ILP can, however, be relatively slow and can there-
fore not handle the huge amount of data that KGs pro-
vide today. ARM can handle large KGs and generate
rules for fully task-agnostic problems. It is fast and
scales to large graphs. This often results in the fact that
ARM generates a lot of nonsense or too generally ap-
plicable rules as it considers all triples or facts. The
generated ARM rule for our example KG is such a rule

with limited effect, because people do not always study
where they were born.

There does not exist a technique which can perform
both prescriptive (task-specific) and descriptive (task-
agnostic) rule mining for KGs. The main reason, to
our knowledge, is that the current techniques available
for both tasks require a different internal representa-
tion of the KG. These transformations are performed
in relation to the subfield they are operating on. ARM
mainly requires the KG to be represented as transac-
tions, which reduces the linked aspects of the existing
KG. ILP directly works on the graph representation it-
self, leading to the earlier discussed performance is-
sues.

The main contribution of this work is to use the
existing paradigms of rule mining within ML such
as ILP and ARM directly on the KG to perform
both task-specific and task-agnostic rule mining tasks.
We propose a technique to perform such rule mining
on KGs by Instance Neighbouring using Knowledge
(INK) [10]. INK represents a KG by analysing the
neighbourhoods of selected nodes of interest. Given a
set of nodes of interest T, a subset of V, INK finds all
paths with a certain depth D starting from T. By mark-
ing each path with its destination, a binary feature set is
created for each node within T that can be used in fur-
ther downstream tasks. In the case of mining rules over
the whole KG, T will be equal to V and a mining al-
gorithm was developed to search for frequently occur-
ring combinations of relationships within the INK rep-
resentation. When a more specific task is given, only
the neighbourhoods of the nodes which have to be con-
sidered are taken into account. An interpretable ML
rule set approach was adapted to work with the INK
representation to mine the relevant rules.

Combining these ILP and ARM techniques into a
framework that is capable of directly mining the most
interesting rules, without changing the internal repre-
sentation of the KG, makes INK capable of seamlessly
switching between task-agnostic and task-specific rule
mining. This makes INK capable of dealing with vary-
ing scenarios and use cases without the need to change
the internal representation.. For both these mining
paradigms, INK is able to capture the complexity of
the KG in an efficient manner.

The remainder of this paper is structured as follows.
Section 2 gives an overview of the currently avail-
able semantic rule mining techniques for both the task-
agnostic and task-specific field. Section 3 details the
INK KG representation. Section 4 shows how INK
can be incorporated into a rule mining system. Both
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the implementation of INK and the accompanying rule
miner are discussed in Section 5. In Section 6, we eval-
uate INK for both the task-agnostic and task-specific
rule mining, and compare the results with the current
state-of-the-art. Section 7 discusses the advantages and
drawbacks of INK in the perspective of task-agnostic
and task-specific mining. At last, the conclusion of this
work is provided in Section 8.

2. Related work

Rule mining has a long history, but the existing tech-
niques can be either based on ARM or ILP. ARM
searches for implication (if ... then ...) rules, such as "If
a person X has an Alma mater Y, and Y is located in
Z, then X is born in Z". ILP techniques deduce logical
rules from ground facts. Using ILP in the perspective
of task-specific rule mining might use negative state-
ments as counterexamples to optimize the mining pro-
cess. For task-agnostic cases, this counterexample gen-
eration process is not necessarily required. In this sec-
tion, the applicability of both these techniques for ei-
ther task-specific, task-agnostic or both are described
in the context of KGs.

2.1. Task-agnostic semantic rule mining

Task-agnostic semantic rule mining is the term that
relates the closest to the general description of rule
mining within ML. The goal of rule mining here is to
find a rule or pattern for those examples that frequently
occur together. The approach relies on the generation
of so-called frequent itemsets, where sets of two or
more items occurring together are combined with other
itemsets to create rules [11]. Within the realm of KGs,
task-agnostic rule mining approaches are less depen-
dent upon the generation of these frequent itemsets.
The goal is also different: the rule mining process tries
to derive new facts and complete an existing KG, im-
prove the reasoning quality or help to identify potential
errors [12].

The rules generated within these KG rule miners are
Horn clauses and are denoted as Horn rules when they
contain an implication. They usually consist of a head
and a body, where the head is a single atom:

B1 ∧ B2 ∧ ... ∧ Bn ⇒ r(x, y)

with head r(x, y) and body B1 ∧ B2 ∧ ...∧ Bn. All these
atoms in our head and body are binary predicates. The

body atoms are, therefore, frequently represented as a
binary vector ~B. The rules state that if all instantiated
body atoms appear in the KG, the head atom can be de-
rived. Additional rule specifications can be introduced
to reduce the search space. Searching for connected
and closed rules that are not reflexive can be such a
rule specification:

– A rule is connected if every atom is connected
transitively to every other atom of the rule.

– A rule is closed if all its variables are closed. A
variable is closed when it appears at least twice in
the rule.

– A rule is reflexive if it contains atoms of the form
r(x,x)

The example rule "If a person X has an Alma mater Y,
and Y is located in Z, then X is born in Z" is an example
of a connected and closed, not reflexive rule.

Solutions have been proposed for mining such rules
in large KGs. These solutions, such as AMIE, use
a generation-then-evaluation approach [13]. For ex-
ample, given a head predicate (say born_in(x, y)),
the available techniques first generate all possible
rules within a certain length with this head predicate
and then evaluate their quality to find high quality
rules (such as alma_mater(x, y) ∧ located_in(y, z) →
born_in(x, y)). To define whether a rule is of high qual-
ity, widely used statistical measurement, such as sup-
port and confidence, from the ML rule mining field
were used.

The support of a rule quantifies the number of cor-
rect predictions in the existing KG. More in general,
the support of a rule R in a KG G is the number of
true derivations r(x, y) (with r(x, y) the head atom as
explained above) that the rule makes in the KG:

support(R) =|{r(x, y) : (G ∧ R |= r(x, y))

∧ r(x, y) ∈ G}|

By providing a threshold on this support value, rules
and facts which are less common can be pruned.

Confidence is a measure that also takes the incor-
rect rule implications into account. The standard con-
fidence of a rule is the ratio of all its predictions that
are in the KG. All facts that are not in the KG are seen
as negative evidence.

con f (~B⇒ r(x, y)) =
support(~B⇒ r(x, y))

|(x, y) : ~B|
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Despite the fact that approaches like AMIE could
mine rules from large KGs, the efficiency and effec-
tiveness needed to be improved to overcome many
drawbacks. ML rule mining operates under the closed
world assumption: a statement that is true is also
known to be true and conversely, what is not currently
known to be true, is false and introduces negative ev-
idence for those cases which are not available in the
dataset. KGs can, however, be incomplete and follow
the open world principle: the truth value of a state-
ment may be true irrespective of whether or not it is
known to be true [14]. The partial completeness as-
sumption (PCA) is therefore proposed to debias the
statistical estimation of the support and confidence
measurements [15]. For efficiency, sampling and ap-
proximation measures [9] are adopted to reduce time
overheads of accurate rule evaluations; besides, many
efficiency optimizations are proposed [10] to speed
up rule evaluation. All these modifications resulted in
tools like AMIE+ and AMIE3 [16]. Nevertheless, the
time-consuming candidate generation step is still in-
evitable.

The recent advances in the area of embeddings and
KG vector representations resulted in some additional
rule mining methods. The main goal of such miners
is to deal with the possible incompleteness or large
scale of the KGs, which reduces the need for par-
tial completeness calculations [17]. One such miner
is RuLes [18]. It iteratively constructs rules over a
KG and collects feedback for assessing the quality of
(partially constructed) rule candidates through specific
queries issued to a precomputed embedding model.
Within the Rules framework, the confidence measures
capture the rule quality better than other techniques
because they now reflect the patterns in the missing
facts. The improved confidence measures, therefore,
improve the ranking of rules. An embedded version of
the KG is used here to define the quality of the rule and
is not used to mine the task-agnostic rules themselves.

Another such technique is RLvLR (Rule Learning
via Learning Representations) miner, an embedding-
based approach to rule learning focusing on descriptive
rule mining [19]. This miner specifies a target predi-
cate in a KG to mine quality rules whose head has that
predicate. The combination of the technique of em-
bedding in representation learning together with a new
sampling method results in more quality rules than ma-
jor systems for rule learning in KGs such as AMIE+.
The main focus of the RLvLR miner is defined in the
scope of only mining specific rules for a given predi-
cate. The RLvLR miner is, however, not made publicly

available, except for an compiled executable to repro-
duce the fixed experimental setup.

2.2. Task-specific semantic rule mining

ILP was created in between the worlds of ML and
Logic Programming where the logic programs or rules
are derived from examples and the available KG. Rules
here can be seen as hypotheses and the available ex-
amples are used to support the evidence for these hy-
potheses.

Learning hypotheses or descriptions for certain con-
cepts gained interest in the field of ILP along the adop-
tion of OWL and Description Logic (DL). Within this
realm of concept learning, the obtained rules are dif-
ferent from the ones described in Section 2.1. Here, the
logical rules capture the relationships and dependen-
cies among attributes, providing explicit explanations
of the learned concept based on the available data.
The current state-of-the-art approaches for rule min-
ing within ILP start from a general concept > (Thing)
and further on refine this concept iteratively [20, 21].
Learning algorithms can be designed by combining
such a refinement operator with a search heuristic.

DL-Learner is such a tool that can learn logically
entailed rules for a specific set of examples within a
KG. The aim of DL-Learner is to find those rules cov-
ering as many positive examples while only applying
to as few as possible negative examples [22]. Refine-
ment operators are used to explore the search space
of possible concept descriptions. Learning within DL-
Learner can be seen as the search for such a correct rule
description. Suitable operators to traverse the search
space can be easily found but the goal of DL-Learner is
to use those operators that have many useful properties
like finiteness, non-redundancy, properness and com-
pleteness, while still allowing to efficiently traverse
through the search space in pursuit of good hypothe-
ses. DL-FOIL is another technique that uses refine-
ment operators and progressively constructs the rule as
a disjunction of partial descriptions [20]. Each partial
description covers a part of the positive examples and
rules out as many negative or uncertain membership
examples as possible.

Both the strength of these two techniques is that they
use reasoning techniques under the hood to derive ex-
pressive task-specific rules. On the other hand, this is
also a weakness as it makes them less scalable and
robust when they have to deal with large KGs. Large
KGs might also result in a large search space when the
conditions of the generated candidate rules never ap-
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pear in the provided set of examples. Therefore, meth-
ods such as EvoLearner were designed that instead of
refining the top concept >, start with biassed random
walks from the positive examples within the KG and
use evolutionary algorithms to further refine these ini-
tial candidate rules [23].

Starting bottom-up (from the available positive and
negative set) is quite common in the realm of ML.
Here, the positive and negative sets are seen as data
samples. The task is to find a good separation between
these two sets. In addition to a reliable decision, one
would also like to understand how this decision is gen-
erated, and more importantly, what the decision says
about the data itself. Here, a few summarising and de-
scriptive rules can provide intuition about the data and
help to understand the decision process. The whole
realm of interpretable ML models uses this idea to
replace black-box models (e.g. random forests) with
simpler models (e.g. rule sets) while improving inter-
pretability and computational efficiency, without sac-
rificing predictive accuracy [24]. To our knowledge,
none of these techniques are applied to KGs in a task-
specific rule mining context, mainly due to the charac-
teristics of the original graph representation.

2.3. Combining them both

The advancements within the ILP domain also re-
sulted in task-agnostic techniques that use the avail-
able schema information within the knowledge graph
to mine generic rules [25]. They can even be used for
scheme completion or find faults within this schema
level [26]. Those techniques are not optimised to solve
task-specific problems, but can be applied for this
when limiting, e.g., the search space to a specific pred-
icate.

3. INK representation

While many task-specific and task-agnostic min-
ing techniques use refinement operators to traverse the
search space, INK builds its internal representation by
transforming the neighbourhood of the nodes of inter-
est into a binary matrix representation. With this bi-
nary matrix representation, column operations based
and comparisons of columns for a large number of
nodes of interest can be easily performed to reveal new
patterns or rules. The binary representation can be seen
as a KG embedding and was evaluated in this perspec-
tive for multiple node classification tasks [10]. To ex-

plain how this binary representation is built, we use
the example KG visualised in Figure 1 throughout this
section.

3.1. Neighbourhood dictionary

INK operates by selecting nodes of interest. This
can be both all nodes within a graph (for task-agnostic
mining), as well as some nodes specified upfront
(task-specific mining). In our example KG, we se-
lect two nodes of interest: Chris Martin and Guy
Berryman. INK will first query the neighbourhood
of a given depth for all these nodes of interest. If we
define the depth parameter K to be two, the neighbour-
hood for Chris Martin will exist of the ALMA

MATER and BORN IN relations, together with the
neighbourhood of the University College London node
providing the LOCATED IN relation and the neighbour-
hood of the England node with the PART OF relation.
To store these neighbourhoods efficiently, a dictionary
representation is used. For a given node of interest, this
dictionary is built in an iterative fashion. The predi-
cates in a neighbourhood of depth one are inserted first
into our dictionary, together with their corresponding
objects as values. These dictionary values are lists, as
a single predicate can occur multiple times with dif-
ferent objects in the neighbourhood of a node. For our
given example node Chris Martin, we represent
the neighbourhood at depth one by:

{ALMA MATER −→ [University College London],

BORN IN −→ [England]}

To add the neighbourhoods of depths > one, INK
concatenates the predicates together. By concatenat-
ing these relations, INK provides a path from the node
of interest to another node within our graph without
providing detailed information about all intermediate
nodes on that path. However, this information is still
available in the (key, value) pairs added to our dictio-
nary at the lower neighbourhood’s depths. In our ex-
ample node, the previous dictionary will be extended
with the following (key, value) pairs at depth two:

ALMA MATER.LOCATED IN −→ [England]

BORN IN.PART OF −→ [UK]

Here, we see a link from the node of interest to the UK
node over the BORN IN relation. The BORN IN object
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value is not represented in this (key, value) pair, but
was specified at the previous depth 1.

In several cases, it is also beneficial to indicate that
the relationship itself within the neighbourhood of a
node of interest is provided. The current dictionary
structure does not explicitly indicate this presence. To
ensure relationship edges within their neighbourhoods
can be compared against each other on a predicate
level, the transformation step will also explicitly state
that a particular predicate is available:

ALMA MATER −→ True,

BORN IN −→ True,

ALMA MATER.LOCATED IN −→ True

BORN IN.PART OF −→ True

Here, no lists were used as values for our dictionary
as we just want to indicate a specific relationship is
available for that particular node of interest.

Completely similar, the dictionary representation of
Guy Berryman until depth 2 is:

{BORN IN −→ [Scotland],

BORN IN.PART OF −→ [UK]

BORN IN −→ [True],

BORN IN.PART OF −→ [True]}

More in general, combined for all nodes of interest
N , the initial data structure of INK uses the following
list format:

[(n, neighbourhood(n, k)) ∀ n in N ]

where the neighbourhood(n, k) is the function which
outputs the dictionary representation for our node n till
a defined depth k.

3.2. Binary format

As the [(n, neighbourhood(n, k))] representation is
3 dimensional (one axis for the nodes of interest, one
for the dictionary relation keys and one for dictionary
object list values), an additional transformation is re-
quired to provide a binary representation of this data.
All of the object’s values inside our neighbourhood
dictionary are combined using a delimiter § to their
corresponding key. In the strict sense, the binary for-
mat is created by unravelling the lists within our dic-

tionary by string concatenating them with the corre-
sponding dictionary key. When our 3 dimension repre-
sentation contains the following entry,

[

(Guy Berryman, {

BORN IN −→ [Scotland],

BORN IN.PART OF −→ [UK]

BORN IN −→ [True],

BORN IN.PART OF −→ [True]

})

]

our string concatenation operation would create the
following features for the Guy Berryman entry:

BORN IN§Scotland

BORN IN.PART OF§UK

BORN IN§True

BORN IN.PART OF§True

Such features can be easily represented in a binary
matrix, indicating for e.g. Guy Berryman that those
features hold using a Boolean mark. Creating this bi-
nary representation for only one node of interest is
not that interesting. When we combine the created fea-
tures till depth 2 for both Chris Martin and Guy
Berryman, more features will be available and some
of these features will be a discriminator for either one
of them.

ALMA MATER§University College London (1)

BORN IN§England (2)

BORN IN§Scotland (3)

ALMA MATER.LOCATED IN§England (4)

BORN IN.PART OF§UK (5)

ALMA MATER§True (6)

BORN IN§True (7)

ALMA MATER.LOCATED IN§True (8)

BORN IN.PART OF§True (9)



B. Steenwinckel et al. / Instance-based Neighbouring by using Knowledge 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

The binary INK representation for both Chris
Martin and Guy Berryman is visualised in Ta-
ble 1. The rows are defined by the nodes of interest,
such that each cell indicates whether or not the sub-
ject of interest contains the relation(s)§object value.
In this matrix, column (3) is a specific feature (BORN
IN§Scotland) for Guy Berryman and could be of in-
terest to differentiate Guy Berryman from the other
team members.

Table 1
INK’s binary representation of Chris Martin and Guy
Berryman nodes in the example graph of Figure 1

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Chris Martin 1 1 0 1 1 1 1 1 1
Guy Berryman 0 0 1 0 1 0 1 0 1

3.3. Extension modules

While the binary representation of INK reflects the
whole KG, it can derive additional information based,
e.g. datatype properties or the amount of relationships
that are available. This subsection describes two op-
tional extension modules which are available in INK.

3.3.1. Numerical inequality
To deal with numerical data, a preprocessing mod-

ule will check if the values corresponding to a specific
relation are all floats or integers for all the correspond-
ing objects and nodes of interest. When such a relation
is found, we build a set of all possible inequalities us-
ing all the found objects for that relation. In our exam-
ple KG, we could add the birth year of all our Cold-
play members, which would be an integer value. When
this extension module is enabled, all these integer val-
ues will be stored inside a set. INK compares for each
node of interest the value of the BIRTH YEAR relation
with all possible values in our set and adds a new entry
to our neighbourhood dictionary as follow:

BIRTH YEAR < l −→ [True or False] &

l >= BIRTH YEAR −→ [True or False],

∀ l in inequality set

Concrete, eight new entries for will be added,
describing if the BIRTH YEAR of Band Member
X is smaller than the BIRTH YEAR of the Band
Member Y, or if BIRTH YEAR of Band Member
X is greater than or equal the BIRTH YEAR of the

Band Member Y, with both X and Y ∈ Chis
Martin, Will Champion, Guy Berryman,
Jonny Buckland.

3.3.2. Relation count
Another preprocessing module is available in INK

to deal with relations having more than one object
value. It can be beneficial to indicate how many of
these relationships are available for a given node of in-
terest. Therefore, a module was added that counts the
objects related to a relationship starting from the node
of interest. This model adds new entries to the neigh-
bourhoods dictionary indicating how many times the
objects share the same relationship, starting from the
node of interest. More specifically, if in our example
graph Chris Martin would have a second ALMA

MATER relation, this module would add the following
entry:

COUNT.ALMA MATER −→ [2]

This entry can be directly transformed to

COUNT.ALMA MATER§2

as described above. The previous inequality module
can also use these counting values, as they are stored
as integer values.

4. INK Rule Mining

The 2D matrix representation discussed above can
be seen as a KG embedding and it was already eval-
uated regarding a node classification task in this per-
spective [10]. It can be used to perform both task-
specific and task-agnostic rule mining. More in gen-
eral, rules will be built based on the column de-
scription or features of our binary matrix, as shown
in Table 1. The fourth column in this example, i.e.
ALMA MATER.LOCATED IN§England, already intro-
duced implicitly a variable to ignore the specific alma
mater located in England. This fourth column states
that there is a relation from our nodes of interest about
a non-specified university, school, or college that one
formerly attended which is located in England. This
column can be interpreted more formally by:

ALMA MATER(?i, ?x) ∧ LOCATED IN(?x,England)

with ?x and ?i a variable.
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As both task-specific and task-agnostic techniques
use this representation, the only difference between
them is how they interact and extract the relevant in-
formation. The task-agnostic miner operates on the
columns themselves, comparing the Boolean values to
build so-called frequent itemsets and create the rules.
The task-specific miner operates on the rows to differ-
entiate between the nodes of interest. The task-specific
miner uses the columns as features within its model to
define a more specific rule given the task it wants to
solve.

4.1. INK task-agnostic mining

To apply ML ARM techniques, the INK task-
agnostic mining component must define frequent item-
sets. Here, the frequent itemsets will be based on the
columns of INK’s binary representation. But in order
to build these frequent itemsets, we first have to extract
the neighbourhood for all subject nodes containing a
fact in our KG. For our example graph in Figure 1, this
means that not only the neighbourhoods for Chris
Martin and Guy Berryman will be extracted, but
also for all other nodes in our KG as they are also sub-
jects of facts.

The frequent itemsets exist out of one or a combina-
tion of relationships accompanied with the calculated
support. Despite the fact that many different combina-
tions of relationships exist, INK use the anti-monotone
property of support (adding a new relationship to a fre-
quent itemset will never increase the support value)
and searches for the following defined patterns in the
KG:

x
relationship−−−−−−→ y (10)

x
relationship 2
←−−−−−−−−−−−−−−−−−−−−→

relationship 1
y (11)

x
relationship 1−−−−−−−→ z

relationship 2−−−−−−−→ y (12)

x
relationship 1−−−−−−−→ z

relationship 2←−−−−−−− y (13)

x
relationship 1←−−−−−−− z

relationship 2−−−−−−−→ y (14)

The combination of some of these patterns could lead
to a plausible rule within our KG. If we combine the
patterns of (10) and (12) for example, the rule miner
could create rules such as :

x
relationship 1−−−−−−−→ z ∧

z
relationship 2−−−−−−−→y =⇒ x

relationship 3−−−−−−−→ y

Traditional ML ARM rule mining techniques can eas-
ily derive these rules when the frequent itemset is be-
ing provided. The above derived rule was originated
from the following frequent itemsets:

itemset1 = {x relationship 1−−−−−−−→ y}

itemset2 = {x relationship 2−−−−−−−→ y}

itemset3 = {x relationship 3−−−−−−−→ y}

itemset4 = {x relationship 1−−−−−−−→ z , z
relationship 2−−−−−−−→ y}

itemset5 = {(x
relationship 1−−−−−−−→ z , z

relationship 2)−−−−−−−→ y),

x
relationship 3−−−−−−−→ y}

Accompanying this itemset are all unique x & y nodes
that hold for that itemset. The length of these unique
node sets is our support metric.

INK actively searches for these itemsets within its
2D matrix representation. Some of these itemsets are
trivial to calculate. The itemsets originating from pat-
tern (10) described above can be easily identified
within our matrix representation. INK extracts by de-
fault the relation§object columns but the task-agnostic
miner is more interested in colums obeying the §ob-
ject values. These columns already introduce a vari-
able near the end, for example we can write ALMA

MATER(?X) to indicate that those columns contain an,
not specified, alma mater, indicated through the vari-
able X. Based on these relation columns, INK calcu-
lates the occurrence of the associated subject and ob-
ject pairs. If the amount of pairs is higher than a de-
fined support threshold, a frequent itemset for that spe-
cific relationship is created.

Frequent itemsets defined by the patterns in (11)
and (12) might be harder to calculate. In traditional
frequent itemset miners, the number of items inside
the set must be defined upfront. Due to the INK rela-
tionship concatenation, they can be treated as the ones
in (10). INK can fix the number of items within an
itemset to two, as the depth parameter of the neigh-
bourhood already implicitly introduces additional pre-
configured items in our itemsets with possible lengths
greater than one. In our example graph, the rela-
tion ALMA MATER.LOCATED IN is already such a



B. Steenwinckel et al. / Instance-based Neighbouring by using Knowledge 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

predefined item, combining the ALMA MATER and
LOCATED IN relationship. As this combined rela-
tion can already be found in the neighbourhood of
the nodes of interest, there is a high chance that
they can occur frequently together. When we add
to this combined relation, a second, single relation,
we implicitly have a frequent itemset of length 3 as
shown above in itemset5. For example, if we com-
bine ALMA MATER.LOCATED IN, with BORN IN,
we get an itemset stating (ALMA MATER(?X, ?Y) ∧
LOCATED IN(?Y, ?Z), BORN IN(?X, ?Z)). However,
purely algorithmic, the length of the itemset remains
to two. We just provided additional variables within
the items themselves to chain relationships, occurring
frequently together, within the KG.

Computationally hard to calculate are the frequent
itemsets belonging to patterns (13) and (14). Here the
pairs of x & y have to be determined between two re-
lationships where they share one variable z. These cal-
culations are hard to perform efficiently in terms of
time and memory ass,multiple intersections of x & y
pairs have to be filtered to reduce the possible dupli-
cate pairs. The INK miner will first find all z values in
its 2D representation that are shared between two rela-
tionships as indicated in (13) and (14). Next, for each
z, all x & y combinations are stored in a set. In the end,
the length of this set is our support measure for this
itemset.

Whether the items within an itemsets can be used
in an interesting rule, depends on the calculated sup-
port value and corresponding threshold. The support
for each itemset within INK is calculated using the fol-
lowing rule:

|∀R1
in Cink,∀R2

in Cink

R1!=R2∑
∀ o in OR1∩R2

R1§o & R2§o|

Where Cink are all the relation-only columns of our
INK representation, OR1∩R2 contains the intersection
of all object values of the two relations R1 and R2 and
& is the bitwise and operator. Note that both R1 and
R2 can be a chain of relationships as discussed above
and that the sets used to calculate the intersection are
calculated upfront. The algorithm to define these item-
sets for each of the provided patterns (10-14) is given
in pseudocode in Listing 1.

input : INK 2D m a t r i x I , S u p p o r t t h r e s h o l d T
output : f r e q u e n t i t e m s e t s fq

fq = {}
r e l _ x y = {}

f o r c in I . columns :
r e l , o b j = c . s p l i t ( )
f o r n o i in I [ c ] :

r e l _ x y [ r e l ] . add ( ( noi , o b j ) )

f o r r in r e l _ x y :
i f l e n ( r e l _ x y [ r ] ) >T :

fq [ ( r , ) ] = l e n ( r e l _ x y [ r ] )

r e l _ x z y = {}
f o r r1 in r e l _ x y :

f o r r2 in r e l _ x y :
i f r1 != r2 : / / p a t t e r n ( 1 0 , 12)

combined = i n t e r s e c t ( r e l _ x y [ r1 ] , r e l _ x y [ r2 ] )
e l s e : / / p a t t e r n ( 1 1 )

combined = i n t e r s e c t ( r e l _ x y [ r1 ] , i n v ( r e l _ x y [ r2 ] ) )
i f l e n ( combined ) >T :

fq [ ( r1 , r2 ) ] = l e n ( combined )

/ / p r ep p a t t e r n ( 1 3 )
r1_z = [ x [ 0 ] f o r x in r e l _ x y [ r1 ] ]
r2_z = [ x [ 0 ] f o r x in r e l _ x y [ r2 ] ]
r 1 _ r 2 _ z = i n t e r s e c t ( r1_z , r2_z )

p a i r s = s e t ( )
f o r p1 in r e l _ x y [ r1 ] :

f o r p2 in r e l _ x y [ r2 ] :
i f p1 [ 0 ] in r 1 _ r 2 _ z and p2 [ 0 ] in r 1 _ r 2 _ z :

p a i r s . add ( ( p1 [ 1 ] , p2 [ 1 ] ) )

r e l _ x z y [ ( r1 , r2 ) ] = p a i r s

/ / p r ep p a t t e r n ( 1 4 )
r1_z = [ x [ 1 ] f o r x in r e l _ x y [ r1 ] ]
r2_z = [ x [ 1 ] f o r x in r e l _ x y [ r2 ] ]
r 1 _ r 2 _ z = i n t e r s e c t ( r1_z , r2_z )

p a i r s = s e t ( )
f o r p1 in r e l _ x y [ r1 ] :

f o r p2 in r e l _ x y [ r2 ] :
i f p1 [ 1 ] in r 1 _ r 2 _ z and p2 [ 1 ] in r 1 _ r 2 _ z :

p a i r s . add ( ( p1 [ 0 ] , p2 [ 0 ] ) )

r e l _ x z y [ ( r1 , r2 ) ] = p a i r s

f o r comb in r e l _ x z y :
f o r r3 in r e l _ x y :

combined = i n t e r s e c t ( r e l _ x z y [ comb ] , r e l _ x y [ r3 ] )
i f l e n ( combined ) >T :

fq [ ( comb , r3 ) ] = l e n ( combined )

r e t u r n fq

Listing 1: INK task-agnostic mining pseudocode

Based on these itemsets, we can select both an an-
tecedent and consequent to get rules of interest. Mea-
sures such as confidence, lift and conviction are calcu-
lated from the support values and can be used to filter
these rules.

INK is in this perspective also not limited to mine
closed rules as any item within our itemset can be ei-
ther head or body within our rule mining approach.
The rule can still be connected. The head atom can also
contain additional free variables due INK’s item repre-
sentation within the frequent itemsets.

4.2. INK task-specific mining

The INK 2D representation is used directly within a
task-specific mining approach. The task-specific min-
ing approach is based on the Bayesian rule set min-
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ing technique described by Wang et al. [27]. In this ap-
proach, the model consists of a set of rules and each
rule is a conjunction of conditions. The model predicts
that an observation is in a positive class when at least
one of these rules is satisfied. In contrast, the observa-
tion belongs to the negative class if none of the rules
apply. This problem is also visually represented in Fig-
ure 2 where the goal is to find a set of rules for the
positive class.

Fig. 2. Illustration of a rule set. The area covered by any of the rule
squares is classified as positive. Areas not covered by any rules are
classified as negative. The goal is to select those rule areas within
the positive class but with as minimal areas outside this oval.

More formally, a set of rules is denoted as R. Check-
ing if one of the rules within R applies for a x within
a dataset {xn, yn}n = 1..N where yn ∈ 0, 1 and x ∈ V
(as it is in our case a node of interest) can be performed
by the general R(.) function. Let r represent a rule and
r(.) a corresponding Boolean function:

r(.) : V→ {0, 1}.

r(x) thereby identifies if x satisfies the rule r. Checking
if this applies for the whole rule set can simply defined
by:

R(x) =

{
1 ∃r ∈ R, r(x) = 1.

0 otherwise.

The approach described by Wang et al. optimises the
search for these rule sets by relying on Bayesian anal-
ysis. In a first phase, candidate rules are generated us-
ing a random forest approach. Instead of using the cre-
ated classifier, the rules within the built decision trees
are collected and provided in a set. In a second phase,
the rules are divided in different pools based upon their
length. The length of a rule is defined upfront by the
user. If the user sets the maximum rule length to L, L
pools will be created. In the third phase, a globally op-
timised rule set is learned by considering both the ac-

curacy and the interpretability of a model, while keep-
ing computation simple. By controlling the parameters
of the Bayesian prior, rules are drawn and combined
independently from the pools. Large models are pe-
nalised. For the Bayesian Rule Set model, this results
in a smaller number of rules. Since a small number of
rules must cover the positive class, each rule in this
model must cover as many observations as possible.
To enforce this, a threshold on the number of exam-
ples satisfying the rule, more commonly known as the
support of a rule, is introduced. It is due to this thresh-
old that a significant reduction of the rule set’s search
space can be made. Due to the anti-monotone property
of the support metric, rules for which the support is ini-
tially too low will not be added to their corresponding
Pool.

The required input for this Bayesian rule set min-
ing is a binary matrix, which fits with the proposed
INK representation of Section 3. This also means that
this approach can’t work with numerical values such as
floating points. INK is accompanied with several ex-
tension modules to enrich this binary representation,
such that it can resolve these issues.

To train this model, INK will extract the neigh-
bourhoods from two sets of nodes of interest, for a
given depth parameter. One set contains all the posi-
tive nodes, the other set contains all negative ones. For
task-specific cases, it is therefore required to specify
these sets upfront. The labels for each node are stored
in a different array. Optional parameters, such as the
support, maximum length of the concatenation and the
maximum number of rules in the rule set can be pro-
vided as input for the algorithm. A more formal algo-
rithm is provided in pseudocode within Listing 2. Here
we show the different aspects of rule set candidate gen-
eration and how 4 different actions influence the differ-
ent rule candidate set. More information about the full
implementation of this Bayesian Rule Set approach
can be found in the original paper of Wang et al.

input : INK 2D m a t r i x I , L a b e l s Y, S u p p o r t t h r e s h o l d T
Max Length L

o u t p u t : r u l e s

r u l e s = [ ]
f o r l in range ( 0 , L ) :

f o r e s t = RandomForest ( max_depth= l )
f o r e s t . f i t ( I , Y)
f o r e in f o r e s t . e s t i m a t o r s :

r u l e s . e x t e n d ( e x t r a c t _ s i m p l e _ r u l e s ( e ) )

f o r r in r u l e s :
r u l e s , r u l e _ l e n = s c r e e n _ r u l e s ( r , T )

p o o l s = {}
f o r l in L :

f o r r u l e s wi th r u l e _ l e n == l :
p o o l s [ l ] . add ( r u l e s )
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c a n d i d a t e _ s e t = random . s e l e c t ( p o o l s )
whi le i <1000:

s e l e c t _ a c t i o n = random . i n t ( 4 )
i f s e l e c t _ a c t i o n ==1:

#Add r u l e t o c a n d i d a t e s e t
i f s e l e c t _ a c t i o n ==2:

# Cut r u l e from c a n d i d a t e s e t
i f s e l e c t _ a c t i o n ==3:

# Cut & add r u l e from c a n d i d a t e s e t
i f s e l e c t _ a c t i o n ==4:

# c l e a n r u l e ( remove d u p l i c a t e s )

r u l e s = c a n d i d a t e _ s e t
re turn r u l e s

Listing 2: INK task-agnostic mining pseudocode

The output of the Bayesian rule set mining mod-
ule contains both the rules learned on the given train-
ing dataset to discriminate both positive and negative
nodes of interest, as well the mechanism to evaluate
the rules on the new unseen nodes.

5. Implementation

The INK representation described in Section 3 and
the INK rule mining module of Section 4 are both im-
plemented in Python. To extract the neighbourhoods
for a given set of nodes of interest, a component was
implemented which can query these relations itera-
tively. Two options are currently available inside this
component: either a KG or a SPARQL endpoint is
given as input. When a KG file is given, RDFLib [28]
will be used to load the graph in the internal mem-
ory of the operating system. However, some large KGs
can be hard to fit within the internal memory. There-
fore, INK can use RDFLib in combination with the
Header, Dictionary Triples (HDT) file format [29].
HDT compresses big RDF datasets while maintaining
basic search operations, such as providing the neigh-
bourhood of a node of interest. Listing 3 shows the
query used for both options to extract the neighbour-
hood nodes and relation. The variable subject <ind>
starts with the nodes of interest, but differs in each
iteration given the graph. The datatype of the object
within this query is used to determine if queried ob-
jects can be used as subjects in the next iteration (when
the neighbourhood depth is not reached yet). The pred-
icates and objects in each iteration are stored as de-
scribed in Section 3. Python’s internal multiprocessing
library is used to speed up the extraction of the neigh-
bourhoods, as this operation can be performed over
multiple processors given the amount of nodes of in-
terest.

To transform the initial representation into a binary
matrix, we used the Scikit-learn DictVectorizer [30]
with the sparse option set to true and specifying the
data type to be Boolean. This is necessary when we
want to deal with large KGs and a large number of
nodes of interest.

If positive and negative labels are defined together
with these nodes of interest, the INK miner assumes a
task-specific mining operation must be executed. Code
from Wang et. al. [27] was adapted to operate on our
representation.

When no target array, task-agnostic mining is exe-
cuted on the neighbourhoods of all nodes of interest.
The task-agnostic code uses the MLxtend library [31]
to produce the rules based on the calculated frequent
itemsets, based on the INK representation.

The whole INK package is made available on
GitHub1.

SELECT ? p ? o ? d t
WHERE {

<ind > ? p ? o .
BIND ( d a t a t y p e ( ? o ) AS ? d t )

}

Listing 3: SPARQL query

6. Evaluation set-up & results

Both the task-specific and task-agnostic mining ca-
pabilities are evaluated on multiple benchmark datasets
as specified below. To extract the neighbourhoods of
interest, all benchmark datasets were transformed to an
HDT format such that the SPARQL query of listing 3
can be executed performant. All evaluations were per-
formed on an Intel(R) Xeon(R) CPU E5-2650 v2 @
2.60GHz processor with 32 cores and 128gb RAM.

6.1. Task-agnostic evaluation

To compare the task independent rule mining capac-
ities, we made a comparison between INK and AMIE3
on five benchmark datasets, which were already fre-
quently used during various AMIE evaluations. Many
competitors of AMIE exist as defined [32] and most
of them improve the efficiency of the rule mining
process, providing metrics to deal with the incom-
pleteness of the KG and taking into account the open

1https://github.com/IBCNServices/INK
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Table 2
Comparison between INK and AMIE3 on 5 benchmark datasets. Both the average standard confidence measures and standard deviation (between
brackets) for the best 10, 25 and top N rules of either INK or AMIE3 are visualised. N is determined by the minimum number of rules of either
AMIE3 or INK. An indication of the total number of mined rules and the time it takes to run both INK and AMIE are provided.

Confidence Top 10 Confidence Top 25 Confidence Top N # Rules Duration (min)
INK AMIE3 INK AMIE3 INK AMIE3 INK AMIE3 INK AMIE3

Yago2 0.553 (0.09) 0.507 (0.08) 0.421 (0.13) 0.353 (0.15) 0.12 (0.15) 0.086 (0.13) 294 166 4.30 0.50
Yago2s 0.927 (0.05) 0.898 (0.08) 0.787 (0.14) 0.707 (0.18) 0.31 (0.24) 0.221 (0.23) 754 405 52.65 241.0
DBpedia 2.0 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 0.329 (0.27) 0.238 (0.3) 16957 8963 676.5 235.0
DBpedia 3.8 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 0.162 (0.22) 0.126 (0.21) 16499 9383 644.4 85.0
Wikidata 1.0 (0.0) 1.0 (0.0) 0.998 (0.0) 0.998 (0.0) 0.287 (0.29) 0.223 (0.3) 3993 2121 482.9 233.0

world assumption. This comparison focuses more on
the quantitative mining capabilities of AMIE. . YAGO
(2 and 2s) is a semantic knowledge base derived from
Wikipedia, WordNet and GeoNames [33]. The lat-
est version, YAGO2s, contains 4.1M facts, where the
first YAGO version contained 0.9M facts. The DBpe-
dia datasets (2.0 and 3.8) are a subset of the crowd-
sourced community effort to extract structured infor-
mation from Wikipedia [2]. DBpedia 2.0 and DBpe-
dia 3.8 contain 6.7M and 11.02M facts respectively.
The Wikidata dataset is a Wikidata dump from De-
cember 2014 and contains 8.4M facts. Wikidata is a
free, community-based knowledge base maintained by
the Wikimedia Foundation with the goal to provide
the same information as Wikipedia but in a computer-
readable format [34]. All 5 benchmark datasets are
made available by the Max Planck Institute2.

Both AMIE and INK prune rules based on both the
default support level of 100 and a default max rule
length of 3. To mine rules of length 3, the INK neigh-
bourhood’s depth parameter was set to 2. This could
result in rules containing atoms for both the head and
body of length 2. When the support level of those
atoms is above the provided thresholds, they can both
be combined into a rule which implicitly results in a
rule with length of 4. To make a fair quantitative com-
parison towards the mined AMIE rules of length 3, we
filtered all those length 4 rules.

For all datasets, the average standard confidence of
the top 10, top 25 and top N, with N the smallest num-
ber of rules from either INK or AMIE are compared as
shown in Table 2. The standard deviation is provided
between brackets. When, e.g., AMIE mines 166 rules
and INK mines 294 rules, the Top N confidence will
be the average of the 166 rules with the highest confi-
dence for both AMIE and INK. The total number of fil-

2https://www.mpi-inf.mpg.de/departments/
databases-and-information-systems/research/yago-naga/amie

tered rules and the time it requires to mine these rules
are also listed for both AMIE and INK.

6.2. Task-agnostic discussion

Compared to AMIE3, INK mined in all datasets
more rules and most of these rules have also a high
standard confidence level. The larger number of rules
are mainly due to the fact that INK is also capable
of analysing head atoms with more than 2 variables.
While in previous works the perception raised that
those rules could be neglected as their confidence level
should be extremely low, INK showed that some of
these rules do occur quite frequently in large datasets.
An example of such a rule in DBpedia 3.8: ?a isCi-
tizenOf ?b ⇒ ?a wasBornIn ?x ∧ ?x isLocatedIn ?b
(confidence: 0.27). In this case, the introduction of the
variable ?x in the head of the rule allows for more
flexibility in capturing relationships between the en-
tities involved. The rule suggests that if ?a is a citi-
zen of ?b, then there exists some place ?x where ?a
was born, and that place ?x is located in ?b. By al-
lowing the introduction of new variables in the head,
open rules can capture a wider range of associations
and potentially discover more patterns in the data. Be-
sides more flexibility, these non-closed rules enable
the discovery of implicit relationships, such as the
relationship between wasBornIn and isLocatedIn. As
INK is not constrained to closed rules, it can extract
more general rules that capture broader associations
in the data. The downside is that these non-closed
rules introduce additional complexity and require ad-
ditional, mostly human-based, validation and interpre-
tation. Post-processing analyses showed that all rules
that were mined with AMIE were also available in the
rules generated by INK. All additional INK rules were
these non-closed or open rules, as the head atoms con-
tain a variable inside the rule that didn’t occur in its
body (such as the ?x in the example above). These

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/amie
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/amie
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rules can be of interest to either further summarise or
investigate certain parts of our KG.

INK does have some disadvantages compared to
AMIE3. INK consumes a large amount of RAM in or-
der to build the internal representation and to generate
the frequent itemsets. The time needed to create those
rules is, except for the Yago2s dataset, substantially
higher compared to INK. Further analyses, represented
in Table 3, shows that the initial INK representation
can be built quite fast and INK requires more time to
actually mine all the relevant rules.

Table 3
Detailed overview of the embedding size and the time needed to cre-
ate the INK representation for the task-agnostic rule mining datasets.

INK creation time (min) #noi #columns

Yago2 0.78 470483 607102
Yago2s 12.83 1653880 1057539

DBpedia 2.0 6.71 1376877 6946046
DBpedia 3.8 11.38 2198871 5647489

Wikidata 12.93 2990435 2983585

Another advantage of AMIE3 is that it is designed
to mine rules iteratively and therefore uses less RAM
to obtain rules. INK’s configuration settings are cur-
rently also limited as AMIE can also take into account
constants, PCA confidence, removals of perfect rules,
etc. INK does however have the capability to mine long
rules (rules with a large amount of atoms) without ex-
panding the frequent itemsets.

6.3. Task-specific evaluation

To compare the INK miner in the context of task-
specific mining, we used the Structured Machine
Learning benchmark framework (SML-Bench) [35].
This framework enables some specific tasks where
structured hypotheses are learned from data with a rich
internal structure or knowledge representation, usu-
ally in the form of one or more relations. The sys-
tems within this framework might differ in the knowl-
edge representation languages they support and the
programming languages they are written in. Many dif-
ferent systems can be incorporated within this SML-
Bench framework but due to the nature of this paper
regarding rule mining within KG, we selected those
techniques from the related work in Section 2 that
can be applied on KGs (more specifically, those tech-
niques that take an OWL or triple file as input). INK
was incorporated in this framework and a comparison
was made between the top-down approach DL-learner

and a bottom-up evolutionary approach EvoLearner.
The code to incorporate INK within the SML-Bench
framework is provided online3 such that INK can also
be used in future evaluations.

In total, nine different datasets are available in
the SML-Bench 3.0 version, all containing an OWL
knowledge base and a single task based on two sets of
files indicating the positive and negative nodes of inter-
est. An overview of all these different datasets is pro-
vided in Figure 6.3. All these datasets vary in terms of
number of axioms, number of available classes, num-
ber of object and data properties. They all have a differ-
ent amount of nodes of interest and can be either more
or less balanced towards one class (either positive or
negative).

The default SML-Bench configuration options were
used within all our evaluations: 10-fold cross vali-
dation was used with a maximum execution time of
15 minutes for each fold. DL-learner version 1.5 was
used with the SML-Bench default parameters for each
learning task: For all tests, the CELEO algorithm was
used to traverse the search space guided by the Pel-
let reasoner. By using these settings, DL-Learner will
keep searching for relevant rules until the time thresh-
old has passed. The optimised parameters provided
by the original authors of the EvoLearner algorithm
were used to evaluate their system. INK was initialised
with a maximum neighbourhood depth of 3 such that
the neighbourhoods of the neighbours from our start
nodes were taken into account during the rule gener-
ation phase. The numerical levels and relation count
extension modules described in Section 3.3 were also
enabled. The OWL datasets were transformed into the
HDT format, which was used as input to generate the
INK representation. Four different metrics are reported
in Table 5:

– Accuracy score: The number of correct predic-
tions divided by all predictions. All learning tasks
are binary classification problems, but can be un-
balanced. We report the average accuracy score
between 0 and 1 together with the standard devi-
ation across the 10 folds.

– F1 score: The harmonic mean of the precision
and recall: F1 = 2 ∗ precision∗recall

precision+recall . Again, the av-
erage and standard deviation over 10 folds are re-
ported.

– Matthews Correlation Coefficient (MCC): This
metric takes into account the true and false pos-

3https://github.com/IBCNServices/INK
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Table 4
Overview of the datasets that are part of SML-Bench with their number of axioms (#A), classes (#C), object properties (#O), datatype properties
(#D) and their description

Dataset #A #C #O #D N.o.i. pos/neg Prediction of
Carcino 74,566 142 4 15 298 1.19 Carcinogenic drugs
Hepatitis 73,114 14 5 12 500 0.70 Hepatitis type based on patient data
Lympho 2,187 53 0 0 148 1.21 Diagnosis class based on lymphography patient data
Mammo 6,808 19 3 2 961 0.86 Breast cancer severity
Muta 62,066 86 5 6 42 0.44 Mutagenicity of chemical compounds
NCTRER 92,861 37 9 50 224 1.41 Molecule’s oestrogen receptor binding activity
Prem. League 214,566 10 14 202 81 0.97 Goal keepers based on player statistics
Pyrimidine 2,006 1 0 27 40 1.0 Inhibition activity of pyrimidines and the DHFR enzyme
Suramin 13,506 46 3 1 17 0.70 Suramin analogues for cancer treatment

itives and negatives and is generally regarded as
a balanced measure which can be used even if
the classes are of very different sizes: MCC =

T P∗T N−FP∗FN√
(T P+FP)(T P+FN)(T N+FP)(T N+FN)

. MCC returns

a value between −1 and +1: A coefficient of +1
represents a perfect prediction, 0 no better than
random prediction and −1 indicates total dis-
agreement between prediction and observation.
Again, averages and standard deviations over 10
folds are reported.

– Duration: The time needed to find the most de-
scriptive rule, based on the nine out of 10-folds +
the time to evaluate this rule on one holdout fold.
Averages and standard deviations over 10 folds
are reported in seconds.

The results for each learning task are provided in
Table 5. The task-specific rule mining results showed
that INK is highly competitive with DL-Learner and
is competitive in terms of time and predictive perfor-
mance compared to EvoLearner.

6.4. Task-specific discussion

The INK miner holds both a predictive and time ad-
vantage compared to DL-Learning in the context of
task-specific rule mining, given a large enough posi-
tive and negative set of instances. DL-Learner always
searches for better, more descriptive and generic rules
when enough time is left. This behaviour is also stated
in the obtained results of Table 5. Here, nevertheless
the used dataset, the duration of the DL-Learner train-
ing and evaluation phase is almost always the same.
The difference in time across multiple datasets is due
to the loading phase of the dataset itself before the ac-
tual rule mining starts. DL-Learner outputs the spec-
ified rules whenever they appear. In this perspective,

it is possible to run DL-Learner in a forever state and
receive updates of new rules whenever they become
available. In a ML context, this might not be a de-
sired behaviour as results and prediction should be fi-
nal. In critical domains, the fact that an algorithm fi-
nalises within a certain amount of time is important to
ensure the feasibility of the system. In that perspective,
having a finalising process like INK and EvoLearner is
of uttermost interest. The maximum execution time is
a parameter within the DL-Learner configuration file.
INK does not have such a timing constraint, but is
constrained in rule mining’s search space by limiting
the neighbourhood’s depth. As shown in the performed
experiments, high quality rules can already be found
when limiting the neighbourhood depth to three.

EvoLearner provides similar and for some cases
even better results in terms of predictive performance
compared to INK. The different parameters within Ev-
oLearner were already optimised upfront during this
evaluation setting. In contrast, INK learns the ideal set
of rules within each fold and verifies this trained set
towards unseen instances. The fact that INK is capable
of doing this in a very short amount of time is again
relevant in a broader ML context.

More in depth, within the Carcinogenesis dataset,
the accuracy measures for both INK and DL-Learner
are similar. DL-Learner, however, optimises its rules to
benefit the instances of the majority class. These cases
are reflected in a MCC score close to zero, which indi-
cates that the used rules hold the same predictive per-
formance as a random classifier. MCC score is a good
metric to show the difference between the available
task-specific rule miners. It is a metric that takes into
account the number of false negatives. DL-Learner fo-
cuses on the positive examples and will optimise to-
wards true positives and try to reduce the number of
false positives. This is reflected in the accuracy and
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Table 5
SML-Benchmark comparison between INK, DL-Learner (abbreviated by DL) and EvoLearner (abbreviated by Evo) for 4 metrics on 9 benchmark
datasets. The results show both the average and standard deviation (between brackets) for a 10-fold cross validation evaluation.

Accuracy (std) F1 (std) MCC (std) Duration (std)
INK DL Evo INK DL Evo INK DL Evo INK DL Evo

Carcino 0.56 (0.12) 0.54 (0.02) 0.66 (0.17) 0.47 (0.13) 0.70 (0.01) 0.72 (0.12) 0.18 (0.28) 0.00 (0.09) 0.31 (0.38) 191.4 (23.31) 888.3 (0.46) 146.7 (33.08)
Hepatitis 0.78 (0.03) 0.49 (0.06) 0.85 (0.04) 0.73 (0.07) 0.61 (0.03) 0.83 (0.05) 0.56 (0.09) 0.21 (0.07) 0.72 (0.06) 55.4 (1.28) 879.0 (0.0) 86.7 (12.61)
Lympho 0.80 (0.09) 0.82 (0.1) 0.80 (0.13) 0.82 (0.07) 0.86 (0.07) 0.84 (0.1) 0.64 (0.15) 0.67 (0.18) 0.62 (0.26) 33.3 (1.27) 873.7 (0.46) 45.7 (10.88)
Mammo 0.83 (0.04) 0.49 (0.02) 0.83 (0.04) 0.80 (0.05) 0.64 (0.01) 0.82 (0.05) 0.66 (0.07) 0.12 (0.1) 0.67 (0.08) 85.8 (2.52) 874.1 (0.3) 67.4 (3.04)
mutagenesis 0.98 (0.06) 0.94 (0.13) 1.0 (0.0) 0.97 (0.1) 0.93 (0.13) 1.0 (0.0) 0.96 (0.12) 0.9 (0.2) 1.0 (0.0) 31.4 (0.8) 883.0 (0.0) 53.6 (0.66)
NCTRER 0.99 (0.2) 0.59 (0.04) 1.0 (0.0) 0.99 (0.02) 0.73 (0.02) 1.0 (0.0) 0.98 (0.04) 0.01 (0.12) 1.0 (0.0) 201.9 (3.14) 885.2 (0.87) 242.0 (0.45)
Prem. League 0.99 (0.04) DNF 1.0 (0.0) 0.99 (0.04) DNF 1.0 (0.0) 0.98 (0.07) DNF 1.0 (0.0) 167.9 (2.7)) DNF 169.0 (0.77)
Pyrimidine 0.95 (0.1) 0.82 (0.16) 0.88 (0.17) 0.93 (0.13) 0.84 (0.14) 0.89 (0.14) 0.92 (0.17) 0.69 (0.3) 0.77 (0.32) 28.0 (0.89) 874.0 (0.0) 38.2 (1.72)
Suramin 0.65 (0.32) 0.71 (0.25) 0.65 (0.32) 0.33 (0.42) 0.71 (0.33) 0.27 (0.42) 0.20 (0.4) 0.43 (0.49) 0.20 (0.4) 26.7 (0.9) 875.0 (0.0) 42.1 (1.22)

F1 scores but they give a misleading result when the
dataset is imbalanced.

For both the rules of the Carcinogenesis and NC-
TRER datasets, DL-Learner obtained such a MCC
score of zero. INK and Evolearner obtain a posi-
tive MCC score for these datasets. These differences
in MCC score also illustrate the difference in learn-
ing mechanisms. INK and EvoLearner are bottom-
up learners, starting from the available instances. DL-
Learner is a top-down approach and starts from the
available knowledge inside the KG and uses mainly the
positive class to verify the mined generic rules.

In contrast, for the Lymphography and Suramin
dataset, INK’s MCC scores are lower than the MCC
scores of DL-Learner. The explanation is two-fold.
First, DL-Learner introduces negation within its rules.
By explicitly stating within a rule, a concept must not
be available, DL-Learner is able to obtain a predic-
tive advantage. DL-Learner has a competitive advan-
tage on the Suramin dataset based on its top-down rea-
soning capabilities. Second, some of the benchmark
datasets have a too small set of nodes of interest for
INK to be operational. While DL-Learner is able to
correctly define generic rules for the Suramin dataset,
INK’s strengths lie within larger datasets, with more
nodes of interest to mine rules from.

For the Prem. League dataset, DL-Learner was un-
able to finish the training procedure within the time
limit of 15 minutes. In contrast, the most interesting
rules generated from the INK and EvoLearner miner
were available within less than 3 minutes.

The INK and EvoLearner rules for the Hepatitis,
Mammographic, Mutagenesis and Pyrimidine datasets
extend in some sort the obtained DL-Learner rules. In
most of these cases INK finds additional information
within the neighbourhood and adds one or two extra
rule atoms or sub rules to achieve a better predictive
performance. INK and EvoLearner are also able to bet-
ter define the numerical properties within a rule. DL-

Learner tries to minimise the full integer or floating
point range when mining such rules, while INK and
EvoLearner use the available data within the neigh-
bourhood to already limit the ranges upfront in the rule
mining process.

7. Remarks

Based on the results provided in Section 6, the INK
representation and defined INK miners show for both
task-specific and task-agnostics rule mining interesting
results.

The task-agnostic approach showed the benefit of
using the concatenation of relationships to build fre-
quent itemsets. However, this approach had some
drawbacks related to time and memory consumption.
Increasing the number of facts within the dataset re-
sults in more time needed to mine the rules. This trend
is noticed for both INK and AMIE as they both use
these amounts of facts to determine the support and
confidence levels. INK does generate additional over-
head by the implicitly mined rules of length 4 when
only rules of length 3 are requested. The need for ad-
ditional filtering operations and the fact that INK is
written in Python while AMIE is purely Java clari-
fies the differences in performance. AMIE’s Java im-
plementation has also many optimizations under the
hood, which lead to faster rule mining generation op-
erations in those KGs that might have fewer predicates
compared to the number of subjects and objects. INK
can currently not take advantage of some of these op-
timizations as the binary representation of INK and
subsequent rule mining is performed depth-first over
the whole KG up to the specified depth. This depth-
first approach is a relevant choice when dealing with
tasks like node classification, where the INK represen-
tation was originally designed for, as it can capture the
relevant aspects of the neighbourhood until a certain
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depth fast. Optimizing the implementation of the cre-
ation of the INK representation to a breadth-first ap-
proach would already resolve some of the performance
drawbacks as INK will then be able to 1) show prelim-
inary results faster by returning the mined rules after
every depth, and 2) use the results at lower depths to
prune the more complex rules that are already below
the set support level. This is possible due to the fact
that adding additional conditions to a rule will never
increase its support. This last optimization can reduce
the large number of columns that needs to be checked.

For both task-specific and task-agnostic mining, an
INK representation must be created. As already men-
tioned before, this comes at a certain cost in terms
of memory consumption and as visualised in Table 3.
These results are mainly dependent on the amount
of nodes within the dataset and the provided INK
depth parameter. The time to create this representation
is, however, neglectable in all evaluated task-specific
evaluations as the datasets are very small. Even within
the task-agnostic evaluations, the creation of our INK
representation only covers a small portion of the time
required to mine confident rules. To resolve memory
issues, it might be a good idea to reduce the number
of string variables in INK’s dictionary structure. Every
string takes at least 40 bytes in Python. Hashing both
the predicates and object results of a query and keep-
ing these mappings of the hash values with the orig-
inal string on disk could already resolve these issues.
This on-disk dictionary is smaller than our INK dic-
tionary because the nodes of interest can have similar
relationships, resulting in similar paths and thus simi-
lar dictionary entries. Another solution would be to use
HDT identifiers instead. HDT builds such a hash index
by default to make this structure queryable for systems
with a lower amount of memory. The triples in our KG
are defined by 3 integer hashes in the HDT structure.
They thus inherently map the URIs to an integer index
that represents the hash Transforming these integer in-
dices back to their original string representation comes
with an additional performance cost, but this cost is ne-
glectable if it can avoid that INK needs to store parts of
its internal representation to disk during the rule gen-
eration phase (as was the case in our experiments).

The task-specific approach indicates that training
and searching for a set of rules and filtering them to-
wards the task that needs to be performed is an interest-
ing approach. INK showed that many of the top-down
drawbacks can be resolved in this perspective and that
it can compete with similar top-down approaches such
as EvoLearner. The fact that INK can mine these rules

in a finite time, using an interpretable ML rule set over
a KG, is relevant for a large number of application do-
mains. DL-Learner still has the advantage that it uses
a reasoner under the hood. This reasoner enables DL-
Learner to traverse a search space which uses inferred
knowledge, something which is not inherently possi-
ble with INK and EvoLearner. The SML-bench results
do not show this lack of reasoner. Only in the Suramin
dataset, which has a very low amount of instantiated
data samples, DL-Learner shows that it is able to de-
liver a rule which is more generically applicable com-
pared to INK and EvoLearner.

As discussed before, the evaluation performed in
this work was mainly focused on the quantitative ca-
pabilities of the rule miners in a closed-world setting.
Closed-world evaluations use the fact that anything not
explicitly stated in the knowledge graph is false. This
here leads to more straightforward rules as they do not
need to handle uncertain or incomplete information.
The rule mining techniques used on top of the INK
representation originate from the ML domain and in-
herently consider the KG as complete. AMIE and DL-
Learner are designed to deal with open-world cases
and incomplete KGs. Future research is needed to de-
sign new rule mining algorithms based on the INK rep-
resentation that also take into account the incomplete-
ness of the KG, to allow and evaluate the open world
cases.

8. Conclusion

In this work, we addressed the current problems of
both task-specific and task-agnostic semantic rule min-
ing and the need for one technique which can perform
both. The main contribution to fulfil this need is the
development of an internal representation benefiting
both techniques. INK is such a representation, where
the neighbourhood of nodes in a KG are represented
as a binary matrix. Combining this INK representation
with a Bayesian Rule miner resulted in outperforming
the current state of the art top-down methods to per-
form structured machine learning, both in prediction
performance and in time. The same representation can
be used to mine frequent itemsets of nodes of inter-
est and build general rules filtered by confidence and a
given support level. Compared with the filtered results
of AMIE, more confident and new rules were mined
by INK for several benchmark datasets.

The INK representation resembles a binary vector
matrix, and can be used in several other situations go-
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ing beyond the general purpose of rule mining. Future
work will try to resolve some of the stated remarks re-
garding memory and the time constraint for large KGs.
Another interesting research path is the combination of
INK with a reasoner such as Fact++ [36] or by using
reasoning on query mechanism to use inferred knowl-
edge. Beyond the scope of this work, future work will
adapt INK to mine rules with both constants or a wider
range scalar data in combination with a temporal as-
pect. This would enable INK to mine temporal rules,
originated from a sensor or more broader, Internet of
Things (IoT) streaming data domain.
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