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Abstract. Differential privacy is a framework that provides formal tools to develop algorithms to access databases and answer
statistical queries with quantifiable accuracy and privacy guarantees. The notions of differential privacy are defined independently
of the data model and the query language at steak. Most differential privacy results have been obtained on aggregation queries
such as counting or finding maximum or average values, and on grouping queries over aggregations such as the creation of
histograms. So far, the data model used by the framework research has typically been the relational model and the query language
SQL. However, effective realizations of differential privacy for SQL queries that required joins had been limited. This has
imposed severe restrictions on applying differential privacy in RDF knowledge graphs and SPARQL queries. By the simple
nature of RDF data, most useful queries accessing RDF graphs will require intensive use of joins. Recently, new differential
privacy techniques have been developed that can be applied to many types of joins in SQL with reasonable results. This opened
the question of whether these new results carry over to RDF and SPARQL. In this paper we provide a positive answer to this
question by presenting an algorithm that can answer counting queries over a large class of SPARQL queries that guarantees
differential privacy, if the RDF graph is accompanied with semantic information about its structure. We have implemented our
algorithm and conducted several experiments, showing the feasibility of our approach for large graph databases. Our aim has
been to present an approach that can be used as a stepping stone towards extensions and other realizations of differential privacy
for SPARQL and RDF.

Keywords: Differential Privacy, SPARQL

1. Introduction

As many social norms, privacy, or the right to pri-
vacy, is an evolving term that is invoked in many con-
texts as eloquently described by Louis Menand in [1]:
“Privacy is associated with liberty, but it is also asso-
ciated with privilege (private roads and private sales),
with confidentiality (private conversations), with non-
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conformity and dissent, with shame and embarrass-
ment, with the deviant and the taboo (...), and with sub-
terfuge and concealment".

In order to get some formal underpinning of privacy
in the context of electronic data collection and publish-
ing, Li et al [2] have looked at privacy breaches, stud-
ied their general characteristics, and concluded, that
electronic privacy breaches always ended with giving
an attacker the ability to identify (using public data)
whether an individual is member of a set or class that
had been intended to be anonymous (e.g., the class of
individuals with high cholesterol). Hence, they define
preservation of privacy as avoiding privacy breaches
in the sense of not disclosing set memberships of indi-
viduals.
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For the public good, such as the advance of public
health, or the fair distribution of government resources,
such data is frequently made public. There are also sit-
uations in which governmental and commercial orga-
nizations collect and analyze data to improve or pro-
vide new services. Especially in such cases, society ex-
pects a certain level of privacy on the way these orga-
nizations use the data. Publishing data with perfect pri-
vacy means that no assumption can be made about the
prior knowledge an attacker may have about the sup-
posedly anonymous set. Under this assumption, there
would be little utility in published data if perfect pri-
vacy is expected [2, 3]. Therefore, the research com-
munity has looked at weaker definitions of "accept-
able" privacy. Useful concepts like k-anonymity [4],
l-diversity [5] and t-closeness [6] were developed but
they were shown to have weak privacy guarantees [7].

In spite of its limitations [8], but because of its for-
mal properties, a privacy notion that has gained a lot of
acceptance is differential privacy. We will present pre-
cise definitions later in the paper, but informally, dif-
ferential privacy tries to hide the identity of individuals
that are members of a particular class, while still pro-
viding quantifiable utility guarantees to the data pub-
lished about the class. The basic principle is simple.
Given a universe D of all possible datasets and a query
f : D → R that can be applied to a dataset D in D and
results in a value of an abstract domain R, f is said
to be differentially private if it yields indistinguish-
able results when applied to similar datasets. Differ-
ential privacy uses randomized algorithms to answer
queries, typically by adding noise to the true query re-
sults. This noise is calibrated according to query sen-
sitivity —how much the query result varies between
similar datasets—, turning the task of query sensitivity
computation essential for the endeavor of differential
privacy. In practice, calculating the exact sensitivity of
a query is not trivial and approximations are used in-
stead [9].

Even though the notion of differential privacy is in
principle independent of the data model and query lan-
guage at steak, so far most practical, automated imple-
mentations over well-established languages have been
in the context of relational databases, over SQL, and
have been restricted to aggregation queries or group-
ing. Aggregations are queries such as counting, finding
maximum or average values over a certain data subset;
grouping is the creation of histograms based on aggre-
gations.

Furthermore, to allow for reasonable approxima-
tions of sensitivity, the support of these implemen-

tations for queries with joins has been rather lim-
ited [10]. It was only in 2018, when Johnson et al. [11]
introduced a new approach to approximate sensitivity
that can be applied to a wider class of SQL joins, with
reasonable results.

In the past decades, graph data models have enjoyed
a growing adoption in comparison to the more tradi-
tional relational model. One such notable example is
the RDF data standard, queried over by the SPARQL
language, which have become extremely popular, in
particular, for their role in the development of the Se-
mantic Web. By the simple nature of RDF, it can be
stored using binary relations [12] and most interest-
ing queries will require operations equivalent to joins.
This raises the question whether Johnson et al.’s ap-
proach [11] can also be applied to RDF and SPARQL.

In this paper we provide a positive answer to this
question by presenting an algorithm that can answer
counting queries over a large class of SPARQL queries
that guarantees differential privacy. This result has
been made possible by introducing the notion of a dif-
ferential privacy schema that allows redefining John-
son et al.’s sensitivity approximation of SQL queries in
the appropriate terms for answering SPARQL queries.
A differential privacy schema groups sets of RDF tu-
ples into sub-graphs that can be then used as single
units for privacy protection. Examples show that this
type of schema naturally arises from the semantics of
the data stored in the tuples, and it should not be diffi-
cult for a database administrator to define.

We demonstrate the applicability of our approach by
implementing a differential privacy query engine that
uses the approximation to answer counting and group-
ing SPARQL queries, and evaluate the implementa-
tion running simulations using the Wikidata knowl-
edge base [13].

The rest of the paper is organized as follows: in Sec-
tion 2 we introduce the readers to the fundamental con-
cepts of differential privacy. In Section 3, we present
the core concepts of SPARQL used within the paper,
including the notion of differential privacy schema. In
Section 5 we prove the correctness of our proposed ap-
proximation to sensitivity and in Section 6 we eval-
uate the effectiveness of our proposed approximation
in an implementation that we apply to both synthetic
and real world datasets and queries. We present related
work in Section 7, and we conclude the paper in Sec-
tion 8.
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2. Preliminaries about Differential Privacy

We now describe the framework of differential pri-
vacy, the problem that arises when applying differen-
tial privacy to SQL queries with general joins and how
it has been addressed by the scientific community.

2.1. Definition

Intuitively, a randomized algorithm [14] is differen-
tially private if it behaves similarly on similar input
datasets. To formalize this intuition, the framework of
differential privacy relies on a notion of distance be-
tween datasets. We model datasets as a multiset of tu-
ples and we say that two datasets are k-far apart if one
can be obtained from the other by changing the value
of k tuples. Formally, this corresponds to (a mild gen-
eralization of) the notion of distance used for defin-
ing bounded differential privacy [15], which quantifies
(only) over pairs of datasets of the same size. In the
remainder, we let D be the set of all possible datasets,
and use d(D,D′) = k to denote that D,D′ ∈ D are
k-far apart. In particular, two datasets D,D′ ∈ D that
are 1-far apart are called neighbors, written D ∼ D′.

Definition 1. Let ϵ, δ ⩾ 0. A randomized algorithm A
is (ϵ, δ)-differentially private if for every pair of neigh-
bor datasets D,D′ ∈ D and every set S ⊆ range(A),

Pr[A(D) ∈ S ] ⩽ eϵ Pr[A(D′) ∈ S ] + δ .

This inequality establishes a quantitative closeness
condition between Pr[A(D) ∈ S ] and Pr[A(D′) ∈ S ],
the probabilities that on inputs D and D′, the out-
come of A lies within S . The smaller the ϵ and δ, the
closer these two probabilities are, and therefore, the
less likely that an adversary can tell D and D′ apart. In
other words, parameters ϵ and δ quantify the privacy
guarantees of the randomized algorithm.

Multi-table datasets Our notions of dataset and dis-
tance between datasets can be extended to collections
of datasets as follows: A dataset formed by multi-
ple sets D1, . . . ,Dn will contain (tagged) data points
belonging to D1, . . . ,Dn and the distance between
two such datasets D,D′ will reduce to d(D,D′) =∑n

i=1 d(πi(D), πi(D′)), πi(D) representing the subset
of data points from D belonging to Di. In the context of
relational databases, the Di’s correspond to relational
tables.

2.2. Realization via Global Sensibility

Establishing differential privacy for numeric queries
of limited sensitivity is relatively simple. The Lapla-
cian mechanism [16] says that we can obtain a dif-
ferentially private version of query f : D → R by
simply perturbing its output: On input D, we return
f (D) plus some noise sampled from a Laplacian dis-
tribution. The noise must be calibrated according to
the global sensitivity GS f of f , which measures its
maximum variation upon neighbor datasets; formally,
GS f = maxD,D′|D∼D′ | f (D)− f (D′)|.
Theorem 1. Given a numeric query f : D → R of
global sensitivity GS f , the randomized algorithm

A(D) = f (D) + Lap
(

GS f

ϵ

)
is an (ϵ, 0)-differentially private version of f .

Here, Lap(λ) represents a sample from the Laplacian
distribution with parameter λ, a symmetric distribution
with probability density function pdf (x) = 1

2λe−|x|/λ,
mean 0 and variance 2λ2. Parameter λ measures how
concentrated the mass of the distribution is around its
mean 0: The smaller the λ, the less noise we add to
the true query result and therefore, the more faithful
the mechanism becomes. In the realm of differential
privacy, this “faithfulness” property is referred to as the
mechanism utility [7]. An important point here is that
utility and privacy are always conflicting requirements:
adding more noise results in more private and—at the
same time—less useful mechanisms.

In practice, when implementing the Laplacian mech-
anism we approximate the global sensibility of queries
by exploiting their structures: Numeric queries are typ-
ically constructed by first transforming the original
dataset using some standard transformers and by re-
turning as final result some aggregation on the ob-
tained dataset. For example, we join two tables, fil-
ter the result (dataset transformations) and return the
count (aggregation) of the obtained table. The global
sensitivity of such a query can be estimated from the
so-called stability properties of the involved transform-
ers. Intuitively, a stable transformer can increase the
distance between nearby datasets at most by a multi-
plicative factor. Formally, we call a dataset transformer
T : D → D α-globally-stable if d(T (D),T (D′)) ⩽
α d(D,D′) for every D,D′ ∈ D. Transformers with
bounded global stability yield bounded global sensi-
tivities: GS f◦T ⩽ αGS f whenever T is α-globally-
stable.
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Conversely, the use of transformers with unbounded
stability might result in queries of unbounded sensitiv-
ity. A prominent example of a transformer exhibiting
this problem is join. Assume we join two tables, say t1
and t2, by matching a pair of their attributes. A modi-
fication in a mere tuple from t1 may result in the addi-
tion and/or deletion of an unpredictable number of tu-
ples in the result of the join, leaving elementary queries
such as counting the number of tuples in a join already
out of the scope of the Laplacian mechanism. The ap-
plicability of differential privacy approaches based on
query global sensitivity is thus rather limited.

2.3. Realization via Local Sensibility

To handle queries that involve transformers of un-
bounded stability, such as joins, we require the use
of more advanced techniques. The Laplacian mecha-
nism calibrates noise according to the query, overlook-
ing the fact that queries are done on concrete datasets,
hence the employed noise could be potentially cus-
tomized for each dataset. Nissim et al. show how to ex-
ploit this idea of instance-based noise [17]. Their ap-
proach relies on the notion of local sensitivity.

Definition 2. The local sensitivity LS f (D) of a nu-
meric query f : D → R on dataset D ∈ D is defined
as

LS f (D) = max
D′ | d(D,D′)=1

∣∣ f (D)− f (D′)
∣∣ .

The local sensitivity LS(k)
f (D) at distance k ∈ N0 of D

is defined as

LS(k)
f (D) = max

D′ | d(D,D′)=k
LS f (D′) .

Observe that LS(0)
f (D) coincides with LS f (D). Similar

to global stability, a dataset transformer T : D → D,
is α-local-stable for a dataset D if d(T (D),T (D′)) ⩽
α d(D,D′) for every D′ ∈ D. And as with global sen-
sitivity, LS f◦T (D) ⩽ α LS f (D) whenever T is α-local-
stable for D.

For answering a query f on dataset D, we can-
not simply use noise calibrated according to LS f (D)
because the noise level itself may reveal information
about D [11]. Instead, we should use an approximation
of LS f that is insensitive to small variations of its input
dataset. This is captured by the notion of smooth upper
bound.

Definition 3. A function U f : D → R⩾0 is called a β-
smooth upper bound of the local sensitivity LS f : D →
R⩾0 of query f : D → R if it satisfies the following
requirements:

1. U f (D) ⩾ LS f (D) for all dataset D, and
2. U f (D) ⩽ eβ U f (D′) for all neighbor datasets D

and D′.

We can readily achieve differential privacy by adding
noise calibrated according to a smooth upper bound of
the query local sensitivity [18, Corollary 2.4].

Theorem 2. Let f : D → R be a numeric query and
let U f : D → R⩾0 be a β-smooth upper bound of its
local sensitivity LS f . Moreover, let δ ∈ (0, 1) and let
β ⩽ ϵ

2 ln(2/δ) . Then, the randomized algorithm

A(D) = f (D) + Lap
(

2U f (D)
ϵ

)
is an (ϵ, δ)-differentially private version of f .

The benefits of this mechanism are twofold. On the
one hand, it allows handling queries that fail to have
a bounded global sensitivity, but do have a bounded
local sensitivity. These include e.g. the query we con-
sidered earlier, consisting of the count of the join be-
tween two tables. On the other hand, it does not require
computing the local sensitivity of the queries itself, but
only a smooth upper bound thereof. This is key for
its practical adoption since calculating the local sen-
sitivity of queries is computationally prohibitive: As
observed by Johnson et al. [11], “it requires running
the query on every possible neighbor of the original
dataset”.

To apply the mechanism from Theorem 2, we must
provide a smooth upper bound for the local sensitivity
of queries. We can construct the smooth upper bound
using approximations for the local sensitivity at fixed
distances.

Lemma 1. Let f : D → R be a numeric query and as-
sume that U (k)

f is a pointwise upper bound of the local

sensitivity LS(k)
f of f at distance k, that is,

U (k)
f (D) ⩾ LS(k)

f (D) for all D ∈ D .

Then,

U f (D) = max
0⩽k⩽size(D)

e−βk U (k)
f (D)
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is a β-smooth upper bound of the local sensitivity
LS f (D) of f on D, where size(D) denotes the number
of rows (in all the tables) in D.

The goal of Section 5 is to apply the differential pri-
vacy mechanism from Theorem 2 to SPARQL count-
ing queries. To do so, we will use Lemma 1 to derive
smooth upper bounds of the local sensitivity of queries.
In turn, this requires constructing upper bounds for the
local sensitivity of queries at fixed distances, for which
we will leverage local stability properties of SPARQL
dataset transformers.

3. Toward Differential Privacy over RDF Graphs

In this section we examine the semantic information
that is necessary considering over RDF graphs, in or-
der to answer counting queries in a differentially pri-
vate manner. This comprises a data schema and upper
bounds on the predicate multiplicities.

3.1. Privacy schema

Motivation
As mentioned earlier, the goal of differential privacy

is to protect the (possibly sensible) contribution of
each individual within a dataset when publicly releas-
ing aggregate information about the dataset —in our
case, the result of counting queries. In the relational
model, individuals are typically identified with rows
of the database which significantly simplifies all the
technical development. For instance, if the database at
stake consists of a single table, we consider two in-
stances of the database neighboring, i.e. differing in the
contribution of a single individual, if they differ in a
single row. On the other hand, if the database consists
of multiple tables, we consider two database instances
neighboring if they differ in a row of some of the ta-
bles (see paragraph Multi-table datasets in Section 2).
The underlying assumption behind this is that each ta-
ble groups attributes of individuals in a particular en-
tity type, e.g. people, political parties or companies, or
part thereof, whose identities must be protected.

To be able to apply differential privacy to a dataset
in the form of an RDF graph, we must thus begin by
identifying the different types of entities present in the
graph, and the set of individuals in each type. Con-
sider, for instance, the RDF graph G in Figure 1, which
will be the running example of our presentation. This
graph contains information about three types of enti-

ties: people, companies and cites. In particular, it con-
tains information about two people (depicted in blue),
two companies (depicted in red) and two cities (de-
picted in green). Said otherwise, there are two individ-
uals of each entity type, adding up to six individuals
in all. When querying the graph, we will be interested
in protecting the contribution of all these individuals,
and when applying differential privacy techniques to
this end, we will then consider as a neighbor any other
graph that differs in the contribution of either of them.

We refer to the semantic information necessary to
identify the individuals in an RDF graph G as a dif-
ferential privacy schema. More formally, its goal is to
partition G as a set {g1, . . . , gn} of sub-graphs, where
each gi represents the contribution of an individual,
and G =

⊎
i gi is the disjoint union of all these sub-

graphs. For example, the graph in Figure 1 is decom-
posed as the disjoint union of the pair of sub-graphs
in blue, the pair of sub-graphs red and the pair of sub-
graphs green. Observe that in the relational model, this
corresponds to nothing more than understanding a (set
of) table(s) as the disjoint union of its (their) rows.
Here, our interest is to protect the contribution of the
individuals represented by each gi. In Figure 1, this
means, for example, the data related to Alice and to the
Walt Disney company.

Formal definition
We briefly review some basic RDF terminology fol-

lowing standard notation used in the literature [19, 20],
where more details can be found. The RDF language
assumes the existence of an infinite set U (of URI ref-
erences), an infinite set B (of blank nodes), and an in-
finite set L (of RDF literals). An RDF triple is a term
of the form (v1, v2, v3) ∈ (U ∪ B)× U × (U ∪ B∪ L).
An RDF dataset is a finite set of RDF triples. RDF
triples are interpreted as labeled arcs or edges in a di-
rected graph from a vertex v1, called the triple sub-
ject, to a vertex v3, called the triple object, and label
v2, called the triple predicate. Figure 1 shows an ex-
ample of an RDF graph G. We denote by voc(G) the
finite subset of elements from (U ∪ B ∪ L) that ap-
pear in G. More importantly, because of the nature of
the aggregation queries under consideration, we will
restrict ourselves to graphs without blank nodes, i.e.
graphs where B = ∅.2 We also require a restricted ver-
sion of the concept of triple patterns, which, similarly

2Calculation of query sensitivity will depend on the the domain of
blank nodes which can change under different contexts and imple-
mentations. This is a topic of future research.
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Walt Disney Starbucks

Burbank Seattle

Alice Bob

employs employs

employs

headquarter headquarter

10 30dailyRobberies dailyRobberies

142 km2

+141555526

phone

livesIn

45 km2area area

livesIn
Skull and 

Bones

member

+132562846

phone

+141568782

phone

Figure 1. RDF graph G containing information about three types of entities: people, companies and cites.

to RDF triples, are terms of the form (v1, v2, v3) ∈
(U∪B∪V)×U×(U∪B∪L∪V), with V an infinite set
of variables, and basic graph patterns (BGPs) which
are finite sets of triple patterns.3

To hint how we can formally define entities within
an RDF graph, observe first the six colored sub-graphs
identified in Figure 1: two green, two blue and two red.
All have a star shape [21], consisting of a “center” with
outgoing and/or incoming edges, i.e. predicates. Sub-
graphs representing individuals of the same entity type
are built from the same set of predicates. For example,
both (blue) sub-graphs, representing people, are built
from predicates phone, livesIn and member. We can
characterize entity types through a set of triple patterns
(i.e. a BGP) that share a common or “join” vertex. For-
mally, a join vertex in a BGP is a variable that appears
either as a subject or as an object multiple times in
the BGP. The type of BGP’s that we need have further
restrictions, which are captured by the notion of star
BGP below:

Definition 4 (Star BGP). A BGP is called a star if

1. both the subject and the object of all its triple pat-
terns are variables,

2. all triple patterns have different predicates, and
3. it consists of either

3The more general definition of triple patterns allows also for vari-
ables in the predicate component of triple patterns.

(a) a single triple pattern with no join vertex,
i.e. a triple pattern whose subject and object
are distinct variables, or

(b) multiple triple patterns with a single join
vertex, which appears once and only once in
every triple pattern

Example 3.1 (Star BGP). The three stars employed to
identify the different entities in our running example
(Figure 1) are (modulo variable renaming):

S1 = {(?c1, livesIn, ?o1), (?c1, phone, ?o2),

(?s2,member, ?c1)}

S2 = {(?c2, employs, ?o3), (?c2, headquarter, ?o4)}

S3 = {(?c3, area, ?o5), (?c3, dailyRobberies, ?o6)}

Note that in each Si, the vertex denoted by ?ci plays
the role of the star center, joining all the triple patterns
in Si. Furthermore, there are no common predicates
across S1, S2 and S3. Formally, we define the center
of a star as the join vertex if the star contains multiple
patterns, or the variable appearing in the subject of the
triple pattern in case it consists of a single triple pat-
tern.4 We say that a set of stars is pairwise predicate-

4The notion of star BGP that we use here is similar to that of star
query from [21], except that in a star query the center of the star must
always appear as subject.
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disjoint (or simply pairwise disjoint when no ambigu-
ity arises), if no pair of stars in the collection share
a common predicate. They thus define what we call a
differential privacy schema:

Definition 5 (Dp-schema). A differential privacy schema
(dp-schema, for short) P is a finite pairwise predicate-
disjoint set of stars.

The set {S1, S2, S3} is a dp-schema. as well as its
sub-set {S1, S2}. However, this second schema falls
short of describing the whole graph G, as it leaves out
the information related to cities. To formally capture
this completeness condition, we require the notion of
induced sub-graph, whose formal definition is based
on (solution) mappings. In SPARQL, a (solution) map-
ping is a partial mapping from variables to URI refer-
ences or blank nodes, µ : V → U ∪ B. For a triple pat-
tern tp, µ(tp) denotes the triple obtained after replacing
the variables in tp according to µ. If µ is defined for all
variables in tp, µ(tp) is an RDF triple. Given a graph
G, the solution mappings of a triple pattern tp over G,
denoted by JtpKG , is defined by the set {µ | µ(tp) ∈ G}.
Now, we are ready to define the concept of induced
sub-graph:

Definition 6 (Induced sub-graphs). Let G be an RDF
graph and ?x the center of a star BGP S. Given some
y ∈ U, let µy denote the mapping {?x → y}. The sub-
graph of G induced by S and y, denoted by ind(S )y

G ,
is defined by the set of RDF triples {µ(µy(tp)) | µ ∈
Jµy(tp)KG ∧ tp ∈ S}, and the subgraphs of G induced
by S, denoted by SLGM, is the set of RDF sub-graphs
{ind(S )y

G | y ∈ voc(G)}.

Example 3.2 (Induced sub-graph). The star S1 in-
duces two sub-graphs g1 and g2 over G, i.e. S1LGM =

{g1, g2}. These correspond to the blue sub-graphs in
Figure 1, which are formally defined as:

g1 = {(Alice, livesIn,Burbank),

(Alice, phone,+132562846),

(Skull and Bones,member,Alice)}

g2 = {(Bob, livesIn,Seattle)

(Bob, phone,+141555526),

(Bob, phone,+141568782)}

Likewise, S2LGM = {g3, g4}, where

g3 = {(Walt Disney, employs,Alice),

(Walt Disney, headquarter,Burbank)}

g4 = {(Starbucks, employs,Alice),

(Starbucks, employs,Bob),

(Starbucks, headquarter,Seattle)}

Intuitively, the set of induced sub-graphs SLGM can
be recovered by evaluating S over G, but assuming that
the triple patterns in S are optional. This assumption is
already exposed by the example, where the triple pat-
tern (?s2,member, ?c1) belongs to S1, but it is not ma-
terialized in g2. From the privacy point of view, the
values of the star center are the unique identifiers of
the entities contributing the data in each sub-graph, and
their values must be kept confidential.

The notion of induced sub-graphs naturally extends
from single stars, to dp-schemas, i.e. sets of stars. Con-
cretely, we let PLGM =

⋃
S∈P SLGM be the set of sub-

graphs of G induced by dp-schema P . In our example,
{S1, S2}LGM = {g1, g2, g3, g4}.

Now we have all the prerequisites to define the core
concept of this section:

Definition 7 (Dp-schema compliance). We say that
an RDF graph G complies with a dp-schema P iff
G coincides with the graph induced by P in G, i.e. if
G =

⋃
g∈PLGM g.

Example 3.3 (Dp-schema compliance). Our running
example G complies with dp-schema {S1, S2, S3}. In
contrast, it does not comply with dp-schema {S1, S2}.

In summary, if a graph G complies with a dp-schema
P , the schema partitions the graph into a finite set
PLGM of sub-graphs, which intuitively model the dif-
ferent individuals in the graph. The fact that sub-
graphs are disjoint follows from the definition of dp-
schema, which requires stars in the schema to be pair-
wise predicate disjoint, and that all the occurrences of
variables in a star are different except for the center of
the star. The fact that the set of sub-graphs cover the
entire graph follows from the definition of compliance.

Discussion
We now address a few key points about dp-schemas.

No shared attribute between entities. At first sight,
the requirement that stars in a dp-schema be predicate
pairwise disjoint might seem a limitation, as it requires
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that each attribute belong to a single entity type. For
instance, it might seem natural to consider that predi-
cate employs should be part of both the employer and
the employee, and it should be thus present in both S2
(which identifies companies) and S1 (which identifies
people). However, for the sake of protection it makes
no difference to which star it belongs, since our appli-
cation of differential privacy will protect the contribu-
tion of all individuals, regardless of its type.

Existence of dp-schemas. RDF graphs always admit
compliant dp-schemas. In particular, every graph com-
plies with a trivial dp-schema comprising the union of
all singleton BGP’s of the form {(?x, p, ?y)}, where p
ranges over the set of predicates appearing in G. Intu-
itively, this schema indicates that each RDF triple is the
contribution of a different individual. Even though this
is a valid dp-schema, it will yield very weak privacy
guarantees. In general, database administrators should
aim to provide dp-schemes with a maximal number of
triple patterns per star since, as we will see later, it will
allow better approximations of queries’ local sensitiv-
ity, and thus, better privacy guarantees.

Compliance verification. Checking whether an RDF
graph complies with a given schema P is algorithmi-
cally straightforward as it amounts to verifying that all
predicates in the graph appear also in (some star of)
the schema (which, using a hashing algorithm, can be
done in O(n) steps, n being the number of predicates
in the graph).

Dp-schema provision. For practical purposes, we as-
sume that the database administrator of the RDF graph
at stake is responsible for designing the dp-schema the
graph shall comply with, and for ensuring the com-
pliance as the graph evolves. In this latter regard, ob-
serve that removing an RDF triple from the graph al-
ways preserves the dp-schema compliance, and adding
a triple also preserves compliance provided the pred-
icate in the triple already appears in the dp-schema.
We believe this is a natural assumption, as in the re-
lational data model this would correspond to changing
the schema of the database by adding a new attribute
to a relation if the new predicate is incorporated into
an existing star of the dp-schema or creating a new ta-
ble if the predicate is added to the dp-schema as a new
star.

3.2. Predicate multiplicity

Automatic approaches to answer dataset queries in a
differentially private manner are typically obtained by

adding noise to the query results, calibrated according
to their sensitivity. Thus, a prerequisite to apply differ-
ential privacy to counting queries over RDF graphs is
that they have bounded sensitivity. Unfortunately, this
does not occur in the general case.

To see this, consider graph G of our running example
and query “How many phone numbers are currently
in use?”. If we evaluate the query over G, the answer
is 3. Now assume we consider a neighboring graph
G′, where Bob’s contribution (i.e. sub-graph g2) is re-
placed by somebody else’s contribution. The query an-
swer over this neighboring graph can certainly be any
integer n ⩾ 1, since a priori we do not know how many
phone numbers this new individual might have. There-
fore, the sensitivity of the query becomes unbounded.

This problem arises because of the presence of pred-
icates that are not one-to-one. To recover bounded sen-
sitivities, we have to restrict ourselves to predicates
that have bounded multiplicity. For instance, if the ad-
ministrator of graph G requires that individuals de-
clare at most 5 phone numbers, then the above query
will have a local sensitivity of at most 5 (recall that if
n1, n2 ⩽ α, then |n1− n2| ⩽ α). This approach was al-
ready taken by other authors [9, 22] to bound the sen-
sitivity of counting queries (in the presence of joins),
and is the price one has to pay to apply differential pri-
vacy over RDF graphs.

On the formal level, we associate such bounds to
triple patterns rather than to predicates. This is be-
cause in the presence of compliant dp-schemas, predi-
cates are identified with triple patterns (every predicate
within a dp-schema occurs in a single triple pattern, in
a single star).

Definition 8 (Triple-pattern multiplicity). Let G be an
RDF graph that complies with a dp-schema P . A mul-
tiplicity bound κ associates to each triple pattern tp in
a star S of P an integer κ(tp) that upper-bounds the
number of solution mappings µ ∈ JtpKG with the same
image for the center of S.

Many predicates (or equivalently, triple patterns)
would have a natural multiplicity bound of 1. For in-
stance, a city has a unique area and a unique number of
dailyRobberies. Likewise, we can assume that a person
livesIn a single city (at least for formal purposes). On
the other hand, if a predicate does not admit a natural
bound for its multiplicity, think e.g. of predicate friend,
we can either a) choose an upper bound that covers
most of the cases in practice or b) establish an upper
bound in accordance with the size of the graph that the
administrator is willing to support.



Differential Privacy and SPARQL 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Henceforth, in the remainder we assume the sys-
tem administrator provides a dp-scheme P and that ev-
ery graph G is compliant with the dp-scheme P . Fur-
thermore, we assume that the administrator establishes
an upper bound κ(tp) for each triple pattern tp in P .
Hence, the graph space that we consider for the pur-
poses of differential privacy will be that of graphs that
comply with both P and κ.

For bounding the local sensitivity of queries in Sec-
tion 5, it will suffices a coarser notion of multiplicity,
at the level of stars rather than triple patterns. The re-
quired generalization is straightforward:

Definition 9 (Star multiplicity). Let G be an RDF
graph that complies with a dp-schema P and has a
multiplicity bound κ. We call the multiplicity of a star
S ∈ P , by notation convenience written κ(S), to the
product of the multiplicity bound of the triple patterns
in S, i.e. κ(S) =

∏
tp∈S κ(tp).

Example 3.4 (Star multiplicity). Assume that a graph
administrator adopts dp-schema P = {S1, S2, S3} and
requires that each individual liveIn (at most) a single
city, declare at most five phone numbers and be mem-
ber of at most 3 secret societies. Then the star S1 will
have multiplicity κ(S1) = 1× 5× 3 = 15.

4. Queries

In this section we describe the subset of queries over
RDF graphs for which we provide differential privacy,
and show how dp-schemes enable a decomposition re-
sult for the evaluation of such queries.

4.1. Supported queries

We develop differential privacy for counting queries
over the SPARQL fragment of basic graph patterns
with filter expressions, also known as constrained ba-
sic graph pattern (CBGP) [21]. In this fragment, a
query is denoted by a pair

B̄ = ⟨B, F⟩ ,

where B is a finite set of triple patterns, i.e. a BGP,
and F = { f1, . . . , fn} is a finite (possibly empty) set
of filter expressions. B̄ represents the SPARQL graph
pattern

P = ((. . . (B FILTER f1) . . . ) FILTER fn) ,

and its meaning over an RDF graph G, denote by JB̄KG ,
is the multiset of solution mappings JPKG as defined
by the standard semantics of SPARQL queries [20].

For simplicity, we consider only CBGPs that are se-
mantically valid. We also assume that in a graph G that
complies with a dp-schema P , all predicates appearing
in triple patterns of a CBGP also appear in P .

Example 4.1. Take RDF graph G, which complies
with dp-schema P = {S1, S2, S3}. Now assume we
want to know how many people have a coworker in a
company with headquarters in a city with over 20 daily
robberies? The query can be cast in terms of the CBGP
B̄ = ⟨B, F⟩, where

B = {(?x, employs, ?p1), (?x, employs, ?p2),

(?p2, livesIn, ?c), (?c, dailyRobberies, ?n)}

F = {?n ⩾ 20}

Triple patterns in an RDF graph compliant with
a dp-schema P naturally inherit the notion of center
from the star they “belong to”. Specifically, for a star
S ∈ P and a triple pattern tp = (s, p, o) such that
(X, p,Y) belongs to S, for some variables X,Y , we let
center(tp,P) = s if X is the center of S; otherwise
center(tp,P) = o. For instance, in the above example
we have

center((?x, employs, ?p1),P) = ?x

center((?x, employs, ?p2),P) = ?x ,

since star S2 which contains the triple pattern

(?c2, employs, ?o3)

has center ?c2. Note that center is a well-defined func-
tion because the predicate of any triple pattern can only
appear in single star of the dp-schema. In the remain-
der, we write center(tp) for center(tp,P ) when P is
understood from the context (e.g. when referring to
the dp-schema established by the administrator of the
RDF graph at stake).

Finally, a user query is a CBGP B̄ wrapped by either
of the two following aggregation operations:

1. COUNT?x(B̄), whose semantics JCOUNT?x(B̄)KG
is defined as the cardinality of the multiset JB̄KG .

2. COUNTDISTINCT ?x(B̄), whose semantics
JCOUNTDISTINCT ?x(B̄)KG is defined as the cardi-
nality of the set {µ(?x) | µ ∈ JB̄KG}.
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3. COUNT?x
?x1...?xn

(B̄), where ?x, ?x1, . . . , ?xn are vari-
ables appearing in B̄, and whose semantics
JCOUNT?x

?x1,...,?xn
(B̄)KG is defined by grouping the

solution mappings from JB̄KG according to (the
values they assign to) variables ?x1 . . .?xn and re-
turning the number of mappings within each of
the resulting groups. Loosely speaking, this cor-
responds to a histogram over tuples grouped by
keys created by the different combinations of the
values assigned to variables ?x1 . . .?xn by the so-
lution mappings from JB̄KG .

Example 4.2. The query from the previous example
can be expressed as COUNTDISTINCT ?p1(B̄) using the
previous CBGP.

4.2. Evaluation decomposition

Continuing with the previous example, assume we
want to evaluate B (from Example 4.1) over G (from
Figure 1), that is, to compute JBKG (observe that if
we are interested in obtaining J⟨B, F⟩KG instead, we
simply add a FILTER operation on top of the eval-
uation of JBKG). We can do this in a compositional
fashion, leveraging the partition that dp-schema P =
{S1, S2, S3} induces on G. Concretely, we can split B
as

B1 = {(?x, employs, ?p1)}

B2 = {(?x, employs, ?p2)}

B3 = {(?p2, livesIn, ?c)} (1)

B4 = {(?c, dailyRobberies, ?n)}

Hence, for any query B̄ = ⟨B, F⟩, we can formally
define a split B÷P of B from a dp-schema P , as fol-
lows: B÷P = {B1, . . . , Bn} iff the following two con-
ditions hold

1. every Bi ∈ B÷P i) is a maximal subset of B
for which there exists a star S ∈ P such that
pred(Bi) ⊆ pred(S), and ii) has no predicate rep-
etitions;

2. for any two triple patterns tp, tp′ ∈ Bi, center(tp) =
center(tp′).

Because the stars in P are predicate disjoint and the
Bi’s in B÷P are maximal, the split B÷P is unique. In
the context of Condition 1 above, we call S the cover-
ing star of Bi. Moreover, we call a BGP B elementary
if |B÷P | = 1, and, by construction, all members of a
split will be elementary.

Example 4.3. For the CBGP from Example 4.1, B is
split into four elementary BGPs by dp-schema P =
{S1, S2, S3}, i.e. B÷P = {B1, B2, B3, B4} as defined
in Equation 1 above. Note that B1 and B2 have both
the same covering star S2, but they are consireded dif-
ferent elementary BGPs because they share predicate
employs. The covering stars of B3 and B4 are S1 and
S3, respectively.

If B were extended, e.g., with triple pattern

tp = (Skull and Bones,member, ?p1) ,

the splitting B÷P would contain a fifth, member B5 =
{tp}. In this case, B3 and B5 share the same covering
star, S1, but remain different members of B÷P because
their triple patterns have different centers (?p2 is the
center of triple patterns in B3 and ?p1 the center of the
triple pattern in B5). Alternatively, if B were extended,
e.g., with triple pattern

tp′ = (?x, headquarter,Burbank) ,

the number of elementary BGPs does not change but
B1 and B2 should be both augmented with tp′ due to
the maximality condition of each Bi. (In this case, B1

and B2 remain being covered by star S2.)

Note also that the elementary BGP where a triple
pattern belongs to is determined by the center of the
triple pattern, all triple patterns in the same split must
share the same variable or RDF term as their center.
The interest in B÷P = {B1, . . . , Bn} resides in that it
lets us isolate the fragment of the graph necessary to
answer each Bi. Assume we denote by GSi the subgraph
induced by star Si, i.e. GSi =

⋃
g∈SiLGM g.

Lemma 2. If Si is the covering star of Bi then

JBiKG = JBiKGSi

Then, following the terminology defined in [23] for
joins between multisets of solution mappings, we can
extend the lemma to B as follows:

Lemma 3.

JBKG =

JB1KGS1
▷◁ (JB2KGS2

▷◁ · · · ▷◁ (JBn−1KGSn−1
▷◁ JBnKGSn

))

We have already observed that B̄ is such that JBKG
can be evaluated using only equi-joins. Therefore,
there must exist an ordering of the elements in B÷P
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such that JBiKGSi
▷◁ JBi+1KGSi+1

can also be done
with equi-joins. In other words, an ordering where
|var(Bi) ∩ var(Bi+1)| = 1 for all 1 ⩽ i < n. We call
this order a normal ordering of B÷P , and without loss
of generality denote by ?xi the variable in the equi-join
JBiKGSi

▷◁ JBi+1KGSi+1
. For convenience, in the remain-

der we assume that the indexing used for B÷P follows
a normal order. Note that this is already the case for the
splitting from Example 4.3 (B1 and B2 share variable
p2, and B2 and B3 share variable c).

We are now in a position to establish differential pri-
vacy for SPARQL count and histogram queries.

5. Towards Differential Privacy for SPARQL

In this section we develop all the prerequisites to ex-
tend Lemma 1 from the relational model to the graph
model, in terms of the SPARQL queries over RDF
graphs described in the previous section.

5.1. Preliminary notions

We begin defining the notion of size and distance
between RDF graphs. These are straightforward adap-
tations of the relational case, where the induced sub-
graphs play the role of table rows. Concretely, the size
of a graph refers to the number of individuals present
in it. Formally, given an RDF graph G that complies
with a dp-schema P = {Bi}i∈I , we define the size of
G w.r.t. P as size(G)P =

∑
i∈I |BiLGM|.

Moreover, we say that two graphs are k far apart
if one can be obtained from the other by replacing
k of its induced sub-graphs. Formally, given a pair
of RDF graphs G1,G2 that comply with a dp-schema
P = {Bi}i∈I and such that size(G1)P = size(G2)P ,
their distance is defined as the size of their difference,
i.e. d(G1,G2)P = size(G1 \G2)P . Note that in the gen-
eral case where the sizes of G1 and G2 need not coin-
cide, their distance is defined as the size of the their
symmetrical difference (G1 \G2)∪ (G2 \G1), but when
the sizes coincide, this reduces to the size of either
their differences, making distance commutative as ex-
pected.

Finally, this notion of distance between RDF graphs
readily induces a notion of local sensitivity (at distance
k) LSQ(G) (LS(k)

Q (G)) of SPARQL query Q over RDF
graph G, as given by Definition 2.

In order not to clutter the presentation, we usually
omit the underlying dp-schema when referring to the
size of an RDF graph, the distance between a pair of

RDF graphs, and the local sensitivity of a SPARQL
query if the dp-schema is understood from the context.

5.2. Elastic sensitivity

Our next step is, given a user query Q and an RDF
graph G that complies with a dp-schema P , to com-
pute an upper bound of the local sensitivity LS(k)

Q (G)
(denoted by U (k)

Q (G) in Lemma 1).
To this end, observe that the naive approach of eval-

uating the query on every neighbor (at distance k) of
G is not a feasible solution, since the number of neigh-
bors can be extremely large. To address this problem
in the relational setting, Johnson et al. [11] has intro-
duced the notion of elastic sensitivity, which leverages
(maximum) frequency values of the join keys (that can
be precomputed or statistically estimated) to provide
more efficient upper bounds for the local sensitivity of
queries with joins.

In the remainder of the section we adapt John-
son et al.’s approach to the case of RDF graphs and
SPARQL. Intuitively, our notion of elastic sensitivity
of a SPARQL query Q at distance k of a concrete graph
G (that complies with the dp-schema P) regards the
evaluation of Q as the composition of successive trans-
formations applied to G, and is defined in terms of the
stability properties of such transformations.

In our case, these transformations are given by the
CBGP of user queries, more concretely, by their BGP
part. We thus introduce the auxiliary notion of BGP
elastic stability. A key property of this notion is that
it allows bounding the local sensitivity of counting
queries: Given a BGP B, its elastic stability at distance
k with respect to a graph G that complies with a dp-
schema P , bounds the local stability for any graph G′

that also complies with P and is at distance k of G.
Hence, it bounds the local sensitivity at distance k of
COUNT?x(B̄) (for any B̄ = ⟨B, F⟩) over G′.

The formal definition of elastic stability relies on the
frequency of most popular values. More precisely, if
?x is a variable occurring in an elementary BGP B, we
use mpv(?x, B,G) to denote the frequency of the most
popular value to which ?x is mapped to, when evaluat-
ing B over G. We can use SPARQL itself to determine
mpv(?x, B,G) through the query

SELECT (COUNT(?x) as ?c) WHERE B
GROUP_BY ?x ORDER_BY ?c DESC LIMIT 1

Loosely speaking, this corresponds to first evaluating
COUNT?x(B), and then selecting the value with the
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largest count. This is an upper bound for the frequency
of the most popular value yielded by ?x within a CBGP
query B̄ = ⟨B, F⟩, regardless of the filter F, since it
can only reduce the size of the result. Alternatively, we
could also use the query

SELECT (COUNT(?x) as ?c) WHERE tp
GROUP_BY ?x ORDER_BY ?c DESC LIMIT 1 ,

where tp is obtained from a triple pattern in B that 1)
has ?x as one of its non-predicate (i.e. subject or ob-
ject) components; 2) ?x is participating in a join of the
full query B̄; and 3) it has the other non-predicate com-
ponent replaced by a fresh variable.5

The counting on the latter query will be greater than
(or equal to) the one on the former query and, there-
fore, a valid (possibly looser, though) upper bound for
mpv(?x, B,G). Nevertheless, the benefit is that since
the second query is merely a variable renaming of a
tp′ ∈ S, the values can be pre-computed for all tp′ ∈ S
within a dp-schema, and simply retrieved during (dif-
ferentially private) query evaluation. This is possible
because the dp-schema of an RDF graph is defined
with a set of predicates that includes all the predicates
appearing the graph. In contrast, if the former query
is used to determine mpv, the sensitivity is likely to
be more accurate (i.e. tighter approximations) result-
ing in better privacy guarantees (smaller ϵ’s), but pre-
computations cannot be done, possibly impacting sys-
tem performance.

To compute the the elastic stability of BGP B at dis-
tance k of graph G, written S(k)

B (G), we start by ap-
plying Lemma 3 to decompose B as a sequence of el-
ementary BGPs. Once we fix a normal ordering, we
have B÷P = B1 ▷◁ (B2 ▷◁ (. . . ▷◁ Bn) . . .). This de-
composition allows estimating the frequency of most
popular values of graphs k far apart from G. Formally,
the frequency of the most popular values for variable
?x in a BGP B for graphs at distance k of G, written
mpv(k)(?x, B,G), is defined by induction on the length
|B÷P | as follows:

Base case: If |B÷P | = 1, we let

mpv(k)(?x, B,G) = mpv(?x, B,G) + k × κ(S),

5Observe that there might be multiple such triple patterns in B,
all of them yielding valid upper bounds for mpv(?x, B,G). If we are
interested in obtaining tighter privacy guarantees, we should choose
the most precise bound.

where S is the covering star of B1 (recall that, in this
base case, B÷P = {B1}).

Inductive case: If |B÷P | > 1, we let

mpv(k)(?x, B,G) = mpv(k)(?x1, B÷P \ {B1},G)

× mpv(k)(?x, B1,G) ,

where ?x1 is the common variable shared by B1 and
(B2 ▷◁ (. . . ▷◁ Bn) . . .), used for their equi-join.

The intuition behind the base case is easy to grasp.
For k = 1, we take a subgraph from PLGM, induced by
a star BFP S in the schema, and replace it with a differ-
ent one. The maximal difference between the new and
the old value on the count of the most popular map-
ping value of ?x is κ(S). This is an upper bound of
all the mappings that can be produced by the instance
due to the triple-pattern multiplicity, if the instance re-
moved didn’t have an instance of the value and a new
instance of the same value is added. Hence, k changes
will at most increment the count by k × κ(S). For the
inductive case, we need to worry about the most fre-
quent mapping value of ?x1 in B÷P \ {B1} since for
every mapping of ?x obtained from B1, if this map-
ping maps ?x1 in B1 to the same value of the most
frequent value of x1 in B÷P \ {B1}, the value of ?x
will be repeated as many times in the combined map-
ping of B. Hence, the most frequent value of ?x in
JB1KS1 can be duplicated, in the worst case, as many
as mpv(k)(?x1, B÷P \ {B1},G) times in the multiset of
solution mappings JBKG , giving us a safe upper bound
for the count. Importantly, observe that because the
multiplication operation is commutative, the frequency
is not affected by the selected normal ordering.

We are now ready to define the elastic stability of a
BGP B at distance k of graph G, denoted by S(k)

B (G).
The definition also proceeds by induction on the car-
dinality of a fixed normal ordering of B÷P = B1 ▷◁
(B2 ▷◁ (. . . ▷◁ Bn) . . .):

Base case: If |B÷P | = 1, we let

S(k)
B (G) = κ(S),

where S is the covering star of B1.

Inductive case: If |B÷P | > 1, let B′ = B÷P \ {B1}.
We have two cases. If the covering star S of B1 is not
the covering star of any other B j ∈ B′, we let
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S(k)
B (G) = max

{
mpv(k)(?x1, B1,G)× S(k)

B′ (G),

mpv(k)(?x1, B′,G)× S(k)
B1

(G)
}

(2)

If the covering star S of B1 is also the covering star of
another B j ∈ B′, we let

S(k)
B (G) = mpv(k)(?x1, B1,G)× S(k)

B′ (G) +
mpv(k)(?x1, B′,G)× S(k)

B1
(G) +

S(k)
B1

(G)× S(k)
B′ (G)

Loosely speaking, this definition captures the amount
of changes that the transformations (i.e. the joins)
within the query, add to the final result, when modify-
ing a single element in the induced schema.

As so defined, the local stability bounds the local
sensitivity of counting queries:

Lemma 4. For any CBGP query B̄ = ⟨B, F⟩, any k ∈
N and any graph G compliant with dp-schema P:

S(k)
B (G) ⩾ LS(k)

COUNT?x(B̄)(G) .

The main intuition behind the proof is that changes
made to a graph to get a new graph at distance 1, are
limited to a sub-graph Gi, that must be covered by a
single star pattern S in P . Then the maximum num-
ber of RDF tuples that can change to get the graph at
distance 1 is limited by the multiplicity of the pred-
icates in S . Therefore, the change in the number of
mappings obtained from the new graph of an elemen-
tary BGP covered by S is bounded by κ(S). If these
RDF triples contribute in the result mappings of a join
vertex, the number of new mappings can increase by
as much as the frequency of the most popular result
mapping of the joining triple pattern. For example, if
B = {(?v0, p, ?u), (?u, p′, ?v1)}, and the triple (s, p, o)
is part of G1 and o happens to be the most popular re-
sult mapping for (?u, p′, ?v1), then there will be at most
mpv(1)(?u, (?u, p′, ?v1),G) new mappings in the result.

Proof. The proof of this lemma follows the same strat-
egy as the proof in [11, Lemma 2], and is by induction
on the length of B÷P .

– Case |B÷P | = 1. Let S be the covering star of
B. Hence, its elastic stability is κ(S), a parameter
given by the DBA. Thus, we have

κ(S) = S(k)
B (G) ⩾ LS(k)

COUNT?x(B̄)(G)

since the local sensitivity at distance k is calcu-
lated as the max of the sensitivities of all graphs at
distance 1 of all graphs at distance k or less of G,
meaning the modification of a single star, which
may change by at most κ(S) tuples and the filter
in B̄ doesn’t affect its local stability.

– Case |B÷P | = n + 1: we have a covering star S 1

for partition B1 and a set with n covering stars for
partitions B′ = {B2, . . . Bn+1}. We want to bound
the number of RDF triples that can change in
graphs G′ at distance k of G to get a graph at dis-
tance 1, based on the star multiplicities. First, let’s
assume S 1 is not the covering star of any other Bi

in B′. Hence, changes can happen in either G′
S 1

or in a graph G′
S ′ induced by a star S ′ different

from S 1 that covers some other other Bi ∈ B′, but
not in both graphs since the new graph must be at
distance 1 from G′. Thus, either S(k)

B1
(G) = 0 or

S(k)
B′ (G) = 0:

1. When S(k)
B1

(G) = 0, the changes in G′
S ′ ,

by induction hypothesis using Eq (2), pro-
duce at most mpv(k)(?x1, B1,G) × S(k)

B′ (G)
changed mappings since one change in G′

S ′

might affect at most mpv(k)(?x1, B1,G) triplets
in the same join when applied to a graph at
distance 1 of G′.

2. In the symmetric case, when S(k)
B′ (G) = 0,

G′
S 1

may contain S(k)
B1

(G) = κ(S) changed
triplets, producing at most
mpv(k)(?x1, B′,G)× S(k)

B1
(G) changed map-

pings in the joined SPARQL pattern.

We chose the largest of the two values when cal-
culating S(k)

B (G). On the other hand, if S 1 also
covers another Bi ∈ B′, a change in G′

S 1
can

also imply changes in G′
S ′ . This can cause, in the

worst case, mpv(k)(?x1, B1,G)×S(k)
B′ (G) changed

mappings for the change happening in G′
S ′ , plus

mpv(k)(?x1, B′,G) × S(k)
B1

(G) changed mappings
caused by the change in GS 1

, which may contain
S(k)

B1
(G) = κ(S) changed triplets. We also need

to consider that the change may cause new joins
between then new triplets in both G′

S 1
and G′

S ′ ,
for a total of S(k)

B1
(G) × S(k)

B′ (G) changed map-
pings in the joined SPARQL pattern. The sum
of these three values is what the definition of
S(k)

B (G) uses.
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Now we have all the prerequisite to define the elastic
sensitivity of user queries (at fixed distances of a given
graph):

ES(k)
COUNT?x(B̄)(G) = S(k)

B (G)

ES(k)
COUNTDISTINCT ?x(B̄)(G) = S(k)

B (G)

ES(k)

COUNT
?x0
?x̄ (B̄)

(G) = 2S(k)
B (G)

And as in Johnson et al. [11], the above lemma read-
ily leads us to the desired bound for (the three kind of)
user queries:

Lemma 5. For any user query Q, and any graph G
compliant with schema P:

ES(k)
Q (G) ⩾ LS(k)

Q (G) .

Proof. By case analysis on the type of user query Q:

– For plain counting queries (Q = COUNT?x(B̄)):
the result follows directly from Lemma 4 since
the result of the counting query is given by the
application of the sensitivity calculation for the
CBGPs in the query.

– For plain unique counting queries (Q =
COUNTDISTINCT ?x(B̄)): it can be noted that
DISTINCT reduces the elastic stability of the ele-
mentary BGP, B′, containing ?x from κ(S ′) to 1,
where S ′ is the star covering B′.

– For counting queries after grouping (Q =
COUNT?x0

?x̄ (B̄)): During the grouping, each
changed triple can affect two result mappings in
the query since one modified triple may generate
a mapping that will fall into a new group, and at
the same time the old mapping is dropped from
another group.

Lemma 5 readily establishes our main result, which
allows applying differential privacy to SPARQL queries
over RDF graphs:

Theorem 3. Assume that our universe of (valid) RDF
graphs is composed by the graphs that comply with dp-
schema P and multiplicity bound κ and let G be any of
those graphs. Let Q be a user query and let

UQ(G) = max
0⩽k⩽size(G)P

e−βk ES(k)
Q (G) ,

where ϵ > 0, 0 < δ < 1, β ⩽ ϵ
2 ln(2/δ) and the elas-

tic sensitivity ES(k)
Q (G) of Q is computed, as previously

described, from multiplicity bound κ and the frequen-
cies of most popular values mapped to the variables in
Q as specified by function mpv(k). Then, the random-
ized algorithm

A(G) = JQKG + Lap
(

2UQ(G)
ϵ

)
is an (ϵ, δ)-differentially private version of Q.

The theorem follows immediately from Theorem 2
and Lemmas 1 and 5.

6. Evaluation

Having characterized formally how an algorithm
can be implemented to enforce differential privacy on
SPARQL queries based on privacy schemes, in this
section, we present an empirical evaluation of how the
algorithm would behave in real scenarios.

Setup We conducted our evaluation on a 2018 Mac-
book Pro with 16 GB of RAM memory having in-
stalled a Fuseki instance on a 2 AMD Opteron server
with an SSD drive and 64GB of RAM memory. We
used Java 1.17 to implement our proof of concept. We
also used the SecureRandom Java class to generate
the random numbers to calculate the Laplacian prob-
ability distribution since that class implements a well-
tested random number generator6, an essential compo-
nent for ensuring the correctness of our privacy guar-
antees algorithm. The code and all the queries used for
this evaluation are available in GitHub 7.

Data In the evaluation we used real world data and
queries from Wikidata [13]. Wikidata is a collabora-
tively edited knowledge base hosted by the Wikime-
dia Foundation. It is a common source of data for
Wikimedia projects such as Wikipedia, and it has been
made available to the general public under a public do-
main license. Wikidata stores 86,671,701 items (RDF
resources), and 1,084,935,969 statements (triples8).
We selected a subset of the Wikidata Truthy from
2021-06-23, which has all but direct properties (i.e
http://www.wikidata.org/prop/direct/P*) removed [24,
25]. The data is available to download from Google

6https://docs.oracle.com/javase/8/docs/api/java/security/
SecureRandom.html

7Repository https://github.com/cbuil/DPSparql
8https://tools.wmflabs.org/wikidata-todo/stats.php

https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://github.com/cbuil/DPSparql
https://tools.wmflabs.org/wikidata-todo/stats.php
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Drive9. We also provide the scripts to generate this
Wikidata version in our Github repository10. We use
the following prefixes from Wikidata along this sec-
tion:

wdt: <http://www.wikidata.org/prop/
direct> # prefix for referring to
properties

wd: <http://www.wikidata.org/entity> #
prefix for referring to data

6.1. Privacy schema

Our dp-schema is defined based on three pairwise
disjoint stars, P1, P2, and P3, representing data from
Humans, Organizations, and Professions, built around
Wikidata’s P31 property (the instance of property).
We extracted URIs from all the instances of the classes
Human, Organization and Profession using
queries like:

SELECT ?center WHERE {
?center wdt:P31 wd:Q5

# wd:Q5 represents the Human class
}

This gathers the instances of the class Human. Star in-
stances were formed by selecting a subset of proper-
ties of the three classes using star queries centered in
the URIs (each instance representing either a Human,
an Organization or a Profession) to define three sub-
graphs covered by three stars, P1, P2, and P3. In other
words, we used the mappings of ?center from the
initial queries as star centers and for each center we
retrieved a few of their properties and used the result-
ing RDF graph as the basis for our queries. Differential
privacy is applied to protect the privacy of the centers.
We present the schema with all the properties we used
for each star in the following example.

Evaluation Privacy Schema The three stars employed
to identify the different entities in our evaluation

9https://drive.google.com/u/0/uc?id=1oDkrHT68_
v7wfzTxjaRg40F7itb7tVEZ

10https://github.com/MillenniumDB/benchmark/blob/master/src/
database_generation/filter_direct_properties.py

schema are (modulo variable renaming):

S1 = {(?c1,P569, ?o1), (?c1,P570, ?o2), (?c1,P106, ?c3)}

(?c1,P108, ?c3), (?c1,P2002, ?o2), (?c1,P21, ?o3)}

(?c1,P40, ?c3)}

S2 = {(?c3,P1963, ?o5), (?c3,P101, ?o6), (?c3,P425, ?o6)}

S3 = {(?c2,P106, ?o3), (?c2,P178, ?o4), (?c2,P112, ?o5)}

These three stars shouldn’t be used directly as a
privacy schema because S1 and S3 share a property,
P106. Nevertheless, the sets of instances of the prop-
erty in the sub-graphs induced by S1 and S3 are disjoint
because instances of ?c1 (human UIRs) and ?c2 (or-
ganization URIs) are disjoint. Hence, for the purpose
of our evaluation, we consider this partition of P106
as two different properties that we refer to as P106
Profession in S1 and P106 Occupation in S3,
keep S3 as it is, and rename them P1, P2, and P3 re-
spectively.11

The Wikidata properties that allow joining data from
two different stars are P108 Employer from Hu-
mans to Organizations, P106 Profession from
Humans to Professions, P106 Occupation from
Organizations to Professions and P112 Founded
by from Organizations to Humans. Table 1 shows
statistics about the instances of the stars in our data,
including star size (on top of the table).

6.2. Queries

We selected 26 queries from the query logs in [24,
25] containing the predicates used in our dp-schema.
Since the amount of COUNT queries in the query logs
is small [26] for each of these queries we added the
COUNT keyword and we removed the triples from the
query that were not accessing our schema. In addi-
tion, these queries were modified to get a diverse set of
query results and types.

We consider star queries which are queries covered
by a single star from the dp-schema. These queries can
only add filters and remove triple patterns from the
star. Therefore, a star query is centered around a sin-
gle join vertex ?x0, corresponding to the center of the
star (Figure 2). We also have linear queries describ-
ing a path that must include a join variable that ap-
pears in a place that is not the center of any star from

11Note that this observation suggests a more subtle definition of
privacy scheme would be useful.

https://drive.google.com/u/0/uc?id=1oDkrHT68_v7wfzTxjaRg40F7itb7tVEZ
https://drive.google.com/u/0/uc?id=1oDkrHT68_v7wfzTxjaRg40F7itb7tVEZ
https://github.com/MillenniumDB/benchmark/blob/master/src/database_generation/filter_direct_properties.py
https://github.com/MillenniumDB/benchmark/blob/master/src/database_generation/filter_direct_properties.py
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Humans: 9,181,487

P569 P570 P106 P108 P2002

5,109,648 2,511,719 6,446,811 1,085,617 159,194

P21 P40

7,223,891 707,747

Professions: 7,786

P1963 P101 P425

97 95 3,018

Organizations: 72,879

P106 P178 P112

50 16 2,789
Table 1

Table showing key statistics about the data in our privacy schema
(the largest schema is by far the Humans star)

?human

?organizations

P108

?twitter

P2002

Figure 2. Star-shaped query Q16 accessing the Humans privacy
star

the dp-schema (Figure 3), and snowflake queries (Fig-
ure 4), a concatenation through a join variable of a star
query with other queries of different shapes, as defined
in [21]. The queries are listed in Appendix B and they
can also be found in the companion Github repository
for this article. Table 3, also in Appendix A, summa-
rizes their characteristics. We show Q3 in Figure 4,
which queries the Humans star, accessing sex, birth
and death dates for each human as well as their profes-
sions. We use the ?professions variable for con-
necting to the Professions star. From that star we re-
trieve each profession’s field of work (property P425),
obtaining a snowflake-shaped query.

6.3. Results

We report the results of our evaluation in Table 2,
showing the actual count output by the queries and the
average result to these queries with added noise (calcu-

?professions ?field
P425

?organizations
P106

Figure 3. Linear query Q15 accessing the Humans privacy star

?humans ?birth_dateP569

?professions

?death_date

P570

?sex

?field_occupationP425

P21

P106

Figure 4. Snowflake query Q3 accessing the Humans and Orga-
nization privacy schemas

lated applying the method described in Section 5). We
followed the query schema introduced in Section 5.2,
that uses the BGP part of each query to calculate the
initial most popular values (mpv). We report the results
using two values for ϵ, 0.1 and 1.0. We also report the
median error percentage for ϵ = 1.0 in Figure 5 be-
tween the real counts vs. the counts with added noise
segregated by the type of query. To calculate the error
we used the following Equation:

median
(
(ActualCount − NoiseResulti) ∗ 100

ActualCount i=1...100

)
We use δ = n−ϵ ln n where n is the size of the dataset
(i.e. the sum of all the different RDF resources in
the schema that the queries access) and β = ϵ/(2 ×
log(2/δ)) for the β parameter.

(Blue) squares in Figure 5 represent star queries
(typically accessing a single star within the dp-schema),
have a very low error (and thus a high utility) com-
pared to the other two types of queries that involved at
least one "join" operation across stars.

However, the smaller the result from the COUNT,
the larger the error introduced. (Red) triangles repre-
sent path queries and thus queries with join opera-
tions. Only query Q9 is close to the 10% error thresh-
old to be considered a query with enough utility. That
query is only two triple patterns that retrieve all data
from the Professions and Organizations stars. (Grey)
circles represent Snowflake queries, which are queries
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that join two or more stars in the schema, and also
access several properties from each star pattern. Only
those queries returning a result greater than 1,000,000
(queries Q3,6) have a high utility result.
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Q20

Q18

Q9

Q8

Q12

Q19

Q22

Q24

Q11

Q17

Q7

Q21

Q14

Q10

Q16

Q23

Q25

Q26

Q6

Q4

Q5

Q3

Q2
Q1

Q13

COUNT Result

M
ed

ia
n
E
rr
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r

Star-shaped Query

Path Query

Snowflake query

Figure 5. This plot shows that star-shaped queries (blue
squares) have the greatest utility, since they are likely not to
have joins between stars in the schema. It also shows that
queries accessing large amounts of data have high utility. No-
tice that Q15 does not appear in the plot since its result is 0.

The sensitivity and stability columns in Table 2
clearly show that the larger the degree in the stabil-
ity polynomial the greater the query sensitivity, and
thus, the higher the error in the result. Note that in
most cases the derived queries produce smaller results
than the simpler queries, thus the errors are larger. The
only queries where this is not the case are queries Q1,2.
However, the errors in these queries are so small that
much more data should be collected to really estab-
lish if they are statistically different. A class of queries
with large errors are queries with small outputs and at
least one join. See, for example, queries Q9,18,20. In
general, the more joins in the query and the smaller the
result size, the worse results. Joins directly affect the
stability polynomial, more joins imply larger degree.
The effect is exacerbated if the value representing the
most popular mapping is large. Large amounts of noise
are introduced to results of the three queries associated

with polynomials of degree 2, Q20,21,22, which access
data from 3 different stars. Even though the results of
the original queries are not small (>2,000), the error
introduced is very high. Compare that to the single join
query Q9 that produces a small result and high errors,
but it is much smaller than the errors of Q21 and Q22.
Results from queries accessing a single star from the
dp-schema are good as expected, since without joins
they have low query sensitivity and, hence, small er-
rors.

7. Related Work

The study of how to guarantee the privacy of indi-
viduals contributing personal data to datasets is a long
studied problem. In this work we have focused on how
to guarantee this privacy in RDF data graphs accessed
through SPARQL queries using differential privacy.
The related work can be roughly classified into those
that provide some privacy guarantees to accesses to
data stored in (social) graphs and those that guarantee
privacy over the results returned by SPARQL queries.
We briefly look over these works in this section.

7.1. Privacy over SPARQL

There have been several approaches to address pri-
vacy concerns related queries to RDF data. A good sur-
vey can be found in [27]. There is a basic anonymiza-
tion protection that a SPARQL engine must provide
to queries that directly return individuals, as opposed
to aggregated data. Similar to the case of relational
databases where attribute values are anonymized us-
ing nulls, the work presented in [28] uses blank nodes
to hide sensitive data. Delanoux et al. [29] intro-
duce a more general framework with formal sound-
ness guarantees for privacy policies that describe in-
formation that should be hidden as well as utility poli-
cies that describe information that should be avail-
able. The framework checks whether policies are com-
patible with each other, and based on a set of basic
update queries that use blank nodes and deletions of
triples, automatically derives from the policies candi-
date sets of anonymization operations that guarantee
to transform any input dataset into a dataset satisfying
the required policies. However, their soundness guar-
antees do not imply any formal privacy guarantees.
Two early methods developed for privacy protection
when answering queries about classes in a dataset are
k-anonymity and l-diversity. In particular, k-anonymity
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Query Id Actual Re-
sult

Average Private
Result using
Epsilon = 0.1

Average Private
Result using
Epsilon = 1.0

Sensitivity Stability S (k)(Qi, ?x)

Q1 2,275,177 2,275,176 2,275,176 1.0 1

Q2 1,717,945 1,717,940 1,717,945 1.0 1

Q3 1,274,788 1,189,636 1,270,649 290,415 (x+290,863) * 1

Q4 17,440 17,464 17,319 245 (x+18) * 1

Q5 86 110.8 203.1 245 (x+18) * 1

Q6 1,170,315 3,860,469 1,137,687 400,363 (x+400,981) * 1

Q7 3,018 3019 3,017 1.0 1

Q8 50 57 50 1.0 1

Q9 31 1577 37 241.3 (x+8) * 1

Q10 14,477 14,472 14,477 1.0 1

Q11 2,789 2,792 2,789 1.0 1

Q12 221 1,144 89 1,162.2 (x+1,164) * 1

Q13 6,446,811 6,446,812 6,446,810 1.0 1

Q14 3,615 3,613 3,614 1.0 1

Q15 0 71 8 250.8 (x+33) * 1

Q16 21,683 21,682 21,682 1.0 1

Q17 2,789 2,788 2,788 1.0 1

Q18 25 465 34 248.5 (x+27) * 1

Q19 865 864 865 1.0 1

Q20 7 7,087,181 44,254 1,656,501 (x+6,189) * (x+8) * 1

Q21 3,213 1,739,549 31,357 1,651,883 (x+6) * (x+6,189) * 1

Q22 2,092 377,638,493 1,600,610 408,594,207 (x+7) * (x+1,694,747) * 1

Q23 23,450 23,449 23,449 1.0 1

Q24 2,626 1,071,418 231,278 628,018 (x+628,987) * 1

Q25 29,352 1,593,488 42,317 628,018 (x+628,987) * 1

Q26 29,352 29,350 29,351 1.0 1
Table 2

Results of the execution of Wikidata queries using our differential privacy method. Those queries with sensitivity “1.0” are star queries since
the sensitivity of a COUNT query over a single star schema is 1 (a COUNT query over a table), and their elastic stability is “x” as described in
Section 5.2 If there are joins between star BGPs, the sensitivity increases based on the stability polynomial, calculated according to Theorem 3.

is used in [30, 31] to answer queries in RDF datasets.

Unfortunately, it is well-known these methods, in con-

trast to differential privacy, do not provide formal guar-

antees for privacy.
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The only work known to us that directly applies
differential privacy to SPARQL queries is [27]. But
surprisingly, differential privacy is realized through
local sensitivity alone without the use of a smooth-
ing function necessary for correctness [8]. A privacy-
preserving query language for RDF streams is in-
troduced in [32]. Limiting queries to that language
servers can continuously release privacy-preserving
histograms (or distributions) from online streams. Han
et al. [33] provide differentially-private variants of the
algorithms TransE and RESCAL, aimed at construct-
ing knowledge graph embeddings in the form of real-
valued vectors. While the authors show that these en-
codings allow performing some analyses with a rea-
sonable privacy-utility tradeoff, inlcuding clustering
and link prediction, it is an open question whether this
generalizes to further analyses or counting queries as
addressed in the current article.

7.2. Privacy in Social Graphs

A central task to the development of any practi-
cal differentially private analysis tool is finding appro-
priate approximations and alternatives to global sen-
sitivity: it should be easy to calculate, and, at the
same time, close enough to the real sensitivity to al-
low the computation of statistically useful results. A
well-known approach is to rely on the concept of re-
stricted sensitivity [9]. Restricted sensitivity is tailored
to provide privacy guarantees assuming datasets come
from a specific subgroup of the universe of all possi-
ble datasets, and it was introduced in the context of
social-graph data analysis. There are two natural no-
tions from which one can define adjacency of graphs:
differences on edges and differences on vertices. The
distance between two graphs, G1 and G2, can be then
given by the smallest number of changes (either on
edges or vertices) needed to transform G1 and G2 into
the same graph, giving rise to two definitions of re-
stricted sensitivity. Blocki et al. [9] provide efficient
algorithms to calculate approximations of these sen-
sitivities for a class of social graph queries that in-
volve only one type of join: aggregations over prop-
erties of a node and its neighbors (the specific sub-
group of interest). Proserpio, Goldberg and McSherry
extended the edge-based definition of restricted sensi-
tivity to include weighted datasets [34]. Briefly, the in-
tent was to increase the utility of the answer by consid-
ering weights associated with edges during the calcula-
tion of noise. Our notion of dp-schema sensitivity can
be seen as a vertex-based sensitivity if each induced

subgraph gi ∈ PLGM is interpreted as a single node
with its attributes. Our proposed elastic sensitivity can
be then interpreted as a generalization to handle mul-
tiple joins. The polynomial to calculate the selectivity
of a query with a single join is always of degree 1. Fur-
thermore, social graphs are essentially defined using
a single relationship type. Using our terminology, this
implies that the dp-schema would consist of a single
star BGP. Hence, Blocki et al. [9] argue that, in prac-
tice, the value of x in the degree-1 polynomial (i.e. the
frequency of the most popular value) can be bounded
by a constant (which would be provided by the RDF
data administrator). This is closely akin to our predi-
cate multiplicity. Elastic sensitivity, on the other hand,
uses a variable selectivity (the values of x are obtained
directly from the dataset), and generalizes to multiple
joins. Other works such as [35] proposed differential
privacy methods for subgraph counting queries with
unrestricted joins (through node differential privacy),
however, answering this type of queries is computa-
tionally difficult (NP-hard). The result is then more of
theoretical interest and limited for general application.

8. Conclusions

In this paper we have introduced a framework to
develop differential privacy tools for RDF data repos-
itories. We have used the framework to develop an
(ϵ, δ)-Differential Privacy SPARQL query engine for
COUNT queries. A crucial component of our frame-
work is the concept of differential privacy schema or
dp-schema. Without it, we would have not been able
to develop a differential privacy preserving algorithm
to publish data of acceptable quality. The concept is
independent of the sensitivity approximation used and
we hope that others can build on the concept to get bet-
ter query answering algorithms. In our algorithm, we
adapt the concept of elastic sensitivity of SQL queires
from [11] to SPARQL.

We have implemented our algorithm and tested it
using the Wikidata RDF database, queries from its log
files and other example queries found at the Wikidata
endpoint. The simulations show the approach to be
effective for queries over large repositories, such as
Wikidata, and in many cases for queries within the
10 of thousands answers to aggregate. However, even
though elastic sensitivity has been designed to bind
the stability of joins, the sensitivity of a query with
joins can still be very high. As in the case of SQL
queries in relational databases, in order to keep the
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noise in SPARQL queries under a single percentage
digit, query results should have over 1M tuples and
ϵ = 1. The evaluation shows though that we can safely
evaluate star queries.

There are many pending issues to address. We can
still apply several optimizations to our framework. For
example, public graphs can be treated as public ta-
bles. If they participate in joins, we can directly use
their most popular result mappings during calculation
of the query sensitivity. From the more practical point
of view, more operations need to be implemented. We
can consider the approaches described in [11] for SQL
to add aggregation functions like sum and averages to
our framework. There are also issues to consider about
the impact that such algorithms will have on SPARQL
query engines. From the more formal side, it is still im-
portant to keep searching for better approximations of
local and global sensitivities as well as alternative def-
initions that are less onerous than differential privacy.
One possibility is to find a way to apply restricted sen-
sitivity to more types of queries by adding more se-
mantic information to a dp-schema. It might also be
possible to find a more accurate approximation for the
elastic sensitivity of DIS T INCT queries to make them
independent or partially independent of predicate mul-
tiplicity. We should point out that most queries that
will require privacy protection will be DIS T INCT
(e.g. how many human exists with properties A and B
that work in company C?).
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fined in 6, the query shape, the amount of tripe patterns
in the queries as well as the number of variables, the
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Query
ID Schemes Shape Triple Pat-

terns Join Variables Star Info

Q1 Humans Star 3 tp, 4 vars No join variables

1,717,255 Humans
with Professions,
10,337 Professions at
Humans star, 2,991
distinct Professions
at Professions star

Q2 Humans Star 4 tp, 5 vars No join variables

Q3 Humans and
profs Snowflake 5 tp, 6 vars COUNT(?professions) =

3018 (from profs star)

Q4 Humans Path 1 tp, 2 vars

COUNT(?humans) =
3615 (from Professions
star) COUNT(?humans) =
1,648,629 (from Humans
Star)

1,648,629 distinct
humans educated
at (P69), and 3,615
Humans have Or-
ganizations (Q2b),
2,789 professions
(Q2c 6 developer
field)

Q5 Humans and
Orgs Snowflake 2 tp, 3 vars COUNT(?humans) = 3,615

from Professions Star

Q6 Humans and
Profs Snowflake 3 tp, 4 vars

COUNT(?professions)
= 7,764 from Humans,
COUNT(?professions) =
3,018 from professions

Q7 Profs Star 1 triple, 2
vars No join variables

3018 distinct profs
50 distinct organi-
zations with profes-
sions, 3018 distinct
professions

Q8 Orgs Star 1 triple, 2
vars No join variables

Q9 Orgs and
Profs Path 2 tp 4 vars

COUNT(?professions) = 54
from organizations, ?profes-
sions = 3,356 Professions

Q10 Humans Star 1 triple 2
vars No join variables

14,382 distinct Hu-
mans, 2,789 distinct
Organizations

Q11 Orgs Star 1 triple 2
vars No join variables
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Q12 Humans and
Orgs Snowflake 3 tp 6 vars

COUNT(?organizations) =
33,423 from humans star,
COUNT(?organizations) =
3,814 form Organizations
star

Q13 Humans Star 1 triple 2
vars No join variables

6,446,811 distinct
Humans, 2,789 dis-
tinct Organizations

Q14 Orgs Star 1 triple 2
vars No join variables

Q15 Humans and
Orgs Path 2 tp 4 vars

COUNT(?organizations) =
8,501,245 at Humans star,
COUNT(?organizations) =
3,814 at Organizations star

Q16 Humans Star 2 tp 4 vars No join variables

21,651 Humans with
Twitter accounts
and a employer,
13,814 distinct
Organizations

Q17 Orgs Star 1 triple 2
vars No join variables

Q18 Humans and
Orgs Snowflake 3 tp 4 vars

COUNT(?organizations) =
35,419 from Humans Star,
COUNT(?humans=3814)
from Organizations star

Q19 Organizations Star 2 tp No join variables 5 distinct organiza-
tions

Q20
Profs, Hu-
mans and
Orgs

Snowflake 3 tp 6 vars No join variables

3,018 distinct profs,
90,341 Organiza-
tions at Humans
star, 31 distinct
Organizations at
Organizations star

Q21
Humans,
Occupations,
Professions

Path 3 tp, 4 vars

COUNT(?occupationsStar)
= 90,341 (humans side),
COUNT(?opccupationsStar)
= 15,524 (occupationsStar
side), 3,018 professions
(Professions side)

6,446,860 occupa-
tionsStar, 3,018 Pro-
fessions, 1,448,232
Humans with occu-
pations at Humans
Star
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Q22
Organizations,
Occupations,
Professions

Path 3 tp, 4 vars

COUNT(?occupationsStar)
= 3,615 (organizations side),
15524 (occupationsStar
side), 3018 professions
(professions side)

6,446,860 occu-
pationsStar, 2,789
Organizations Star,
3,018 Professions
Star

Q23 Humans Star 2 tp, 3 vars 23,450 Humans with
Athlete profession.

Q24 Humans and
Profs Snowflake 2 tp, 3 vars

?COUNT(?professions) =
23,451 form Humans Star,
?COUNT(?professions) = 4
form Professions Star,

Q25 Profs, Hu-
mans Snowflake 5 tp, 3 dif-

ferent vars
?COUNT(?professions) =
15,359

1 profession,
4,969,877 humans

Q26 Humans Star 2 tp, 2 vars ?COUNT(?humans) =
29,352 humans (distinct)

Table 3: table showing the main characteristics of each query to the privacy schema
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Appendix B. Queries

In this Section we present the queries we used in
Section 6. There are 11 base queries with several vari-
ations, totaling 26 SPARQL COUNT queries.

Query Q1:

SELECT (COUNT( DISTINCT ? humans ) as ?
count ) WHERE {

? humans wdt : P21 ? v1 .
? humans wdt : P569 ? v4 .
? humans wdt : P570 ? v2 .
}

Query Q2:

SELECT (COUNT( DISTINCT ? humans ) as ?
count ) where {

? humans wdt : P21 ? v1 .
? humans wdt : P569 ? v4 .
? humans wdt : P570 ? v2 .
? humans wdt : P106 ? o c c u p a t i o n .
}

Query Q3:

SELECT (COUNT( DISTINCT ? humans ) as ?
count ) where {

? humans wdt : P31 wd : Q5 .
? humans wdt : P21 ? v1 .
? humans wdt : P569 ? v4 .
? humans wdt : P570 ? v2 .
? humans wdt : P106 ? p r o f e s s i o n s .
? p r o f e s s i o n s wdt : P31 wd : Q28640 .
? p r o f e s s i o n s wdt : P425 ?

f i e l d _ o c c u p a t i o n
}

Query Q4:

SELECT (COUNT( DISTINCT ? humans ) as ?
count ) WHERE {
? humans wdt : P69 ? v2 .
? o r g a n i z a t i o n s wdt : P112 ? humans .

}

Query Q5:

SELECT (COUNT( DISTINCT ? humans ) as ?
count ) WHERE {
? humans wdt : P69 ? v2 .
? o r g a n i z a t i o n s wdt : P178 ? d e v e l o p e r

.
? o r g a n i z a t i o n s wdt : P112 ? humans

}

Query Q6:

SELECT (COUNT( DISTINCT ? humans ) as ?
count ) WHERE {
? humans wdt : P69 ? v2 .
? humans wdt : P106 ? p r o f e s s i o n s .
? p r o f e s s i o n s wdt : P425 ? f i e l d

}

Query Q7:

SELECT (COUNT( DISTINCT ? p r o f e s s i o n s ) as
? count ) WHERE {

? p r o f e s s i o n s wdt : P425 ? va r6 .
}

Query Q8:

SELECT (COUNT( DISTINCT ? o r g a n i z a t i o n s )
as ? count ) WHERE {

? o r g a n i z a t i o n s wdt : P106 ? p r o f e s s i o n s
.

}

Query Q9:

SELECT (COUNT( DISTINCT ? o r g a n i z a t i o n s )
as ? count ) WHERE {

? p r o f e s s i o n s wdt : P425 ? va r6 .
? o r g a n i z a t i o n s wdt : P106 ? p r o f e s s i o n s

.
}

Query Q10:

S e l e c t (COUNT ( DISTINCT ? humans ) as ?
count ) where {

? humans wdt : P40 ? c h i l d .
? humans wdt : P108 ? o r g a n i z a t i o n s .

}

Query Q11:

S e l e c t (COUNT ( DISTINCT ? o r g a n i z a t i o n s )
as ? count ) where {

? o r g a n i z a t i o n s wdt : P112 ? founded_by
}

Query Q12:

SELECT (COUNT ( DISTINCT ? humans ) as ?
count ) WHERE {

? humans wdt : P40 ? c h i l d . # wi th at
l e a s t one P40 ( c h i l d ) s t a t e m e n t

? humans wdt : P108 ? o r g a n i z a t i o n s .
? o r g a n i z a t i o n s wdt : P112 ? founded_by

}
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Query Q13:

SELECT (COUNT( DISTINCT ? humans ) as ?
count ) where {

? humans wdt : P106 ? o r g a n i z a t i o n s .
}

Query Q14:

SELECT (COUNT( DISTINCT ? humans ) as ?
count ) where {

? o r g a n i z a t i o n s wdt : P112 ? humans
}

Query Q15:

SELECT (COUNT( DISTINCT ? humans ) as ?
count ) where {

? humans wdt : P106 ? o r g a n i z a t i o n s .
? o r g a n i z a t i o n s wdt : P112 ? founded_by
}

Query Q16:

SELECT (COUNT ( DISTINCT ? humans ) as ?
count ) WHERE {

? humans wdt : P2002 ? t w i t t t e r . # wi th
at l e a s t one P40 ( c h i l d ) s t a t e m e n t

? humans wdt : P108 ? o r g a n i z a t i o n s .
}

Query Q17:

SELECT (COUNT ( DISTINCT ? o r g a n i z a t i o n s )
as ? count ) WHERE {

? o r g a n i z a t i o n s wdt : P31 wd : Q43229 .
? o r g a n i z a t i o n s wdt : P112 ? founded_by

}

Query Q18:

SELECT (COUNT ( DISTINCT ? humans ) as ?
count ) WHERE {

? humans wdt : P2002 ? t w i t t t e r . # wi th
at l e a s t one P40 ( c h i l d ) s t a t e m e n t

? humans wdt : P108 ? o r g a n i z a t i o n s .
? o r g a n i z a t i o n s wdt : P112 ? founded_by

}

Query Q19:

SELECT (COUNT ( DISTINCT ? o r g a n i z a t i o n s )
as ? count ) WHERE {

# ? o r g a n i z a t i o n s wdt : P31 wd : Q43229 .
? o r g a n i z a t i o n s wdt : P112 ? founded_by .

? o r g a n i z a t i o n s wdt : P106 ? p r o f e s s i o n s
.

}

Query Q20:

SELECT (COUNT( DISTINCT ? humans ) as ?
count ) WHERE {

? p r o f e s s i o n s wdt : P425 ? va r6 .
? o r g a n i z a t i o n s wdt : P106 ? p r o f e s s i o n s

.
? o r g a n i z a t i o n s wdt : P31 wd : Q43229 .
? humans wdt : P108 ? o r g a n i z a t i o n s .
? humans wdt : P31 wd : Q5 .

}

Query Q21:

SELECT (COUNT ( DISTINCT ? humans ) as ?
count ) WHERE {

? humans wdt : P108 ? o c c u p a t i o n s S t a r .
? o c c u p a t i o n s S t a r wdt : P106 ?

p r o f e s s i o n s .
? p r o f e s s i o n s wdt : P425 ? va r6 .

}

Query Q22:

SELECT (COUNT ( DISTINCT ? o r g a n i z a t i o n s )
as ? count ) WHERE {

? o r g a n i z a t i o n s wdt : P112 ?
o c c u p a t i o n s S t a r . # humans l i n k

? o c c u p a t i o n s S t a r wdt : P106 ?
p r o f e s s i o n s .

? p r o f e s s i o n s wdt : P425 ? va r6 .
}

Query Q23:

SELECT (COUNT( DISTINCT ? humans ) as ? c n t )
WHERE {

? humans wdt : P106 wd : Q2066131 .
? humans wdt : P21 ? v2 .

}

Query Q24:

SELECT (COUNT( DISTINCT ? humans ) as ?
count ) WHERE {

? humans wdt : P106 ? p r o f e s s i o n s .
? humans wdt : P21 ? v2 .
? p r o f e s s i o n s wdt : P425 wd : Q349 .

}

Query Q25:
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SELECT (COUNT( DISTINCT ? humans ) as ?
count ) WHERE {

? humans wdt : P106 wd : Q901 .
? humans wdt : P21 ? v2 .

}

Query Q26:

SELECT (COUNT( DISTINCT ? humans ) as ?
count ) WHERE {

? humans wdt : P106 ? p r o f e s s i o n s .
? humans wdt : P21 ? v2 .
? p r o f e s s i o n s wdt : P425 wd : Q336 .

}
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