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Abstract

Several OWL ontologies have been developed for the AEC industry to manage domain-specific information, yet they often
overlook the domain of building services and HVAC components. The Flow Systems Ontology was recently proposed
to address this need, but it does not include HVAC components’ size and capacity-related properties. Also, despite
their strengths in representing domain-specific knowledge, ontologies cannot efficiently identify poor data quality in
BIM models. A four-fold contribution is made in this research paper to define and improve the data quality of HVAC
information by: (1) extending the existing Flow Systems Ontology, (2) proposing the new Flow Properties Ontology, (3)
proposing an HVAC rule set for compliance checking. (4) Moreover, we use semantic web technologies to demonstrate
the benefits of efficient HVAC data management when sizing components. The demonstration case shows that we can
represent the data model in a distributed way, validate it using 36 SHACL shapes and use SPARQL to determine the
pressure and flow rate of fans and pumps.

Keywords: Building Information Modelling, Heating, Ventilation and Air Conditioning (HVAC), SHACL, Semantic
Web technologies, Linked Data, Compliance checking, SPARQL

1. Introduction

1.1. A Document-centric AEC Industry

Architecture, Engineering and Construction (AEC) pro-
jects have become more technically complex and involve
many stakeholders that must exchange information to com-5

plete a project successfully [1]. Since the Building In-
formation Modeling (BIM) methodology was introduced
in the early to mid-2000s [2], the AEC industry has ex-
perienced improvements in coordination and communica-
tion between project stakeholders and digital tools. The10

BIM methodology aims to achieve a more collaborative
workflow and addresses the need for a Digital Informa-
tion Hub [3]. It provides a method for managing struc-
tured, accessible, and reliable building data to represent
the physical and functional characteristics of a 3D build-15

ing model. Current BIM applications have improved the
workflows across the building life cycle and typically in-
clude 3D modelling. For that reason, its use is focused
on phases of the building life cycle where 3D modelling
is a requirement [4]. Today, BIM methodology is mainly20
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based on a document-centric approach in the AEC indus-
try, leading to poor data management across the building
life cycle, disciplines, and digital tools [5]. Data is often
outdated and not in sync with the real building model, for
which no live access is available.25

The Industry Foundation Classes (IFC) is currently the
standard format of building information and has been ap-
plied to exchange the needed information among stake-
holders, mainly in a file-based or document-centric ap-
proach. Extending the IFC schema with new domain-30

specific knowledge becomes difficult due to its monolithic
structure and complexity [6]. In addition, the schema does
not describe cross-domain information such as occupancy
data, meteorological data, data from building automation
and control systems (BACS), etc., nor information that35

links the different domain information to each other [4].

1.2. Linked Data & Semantic Web

The World Wide Web Consortium (W3C), with its par-
ticipants consisting of academic and industrial partners,
has developed open data standards for software develop-40

ers to support the shift from a “Web of Documents” to
a “Web of Data” [7]. They have developed the Seman-
tic Web Technologies consisting of Resource Description
Framework (RDF), RDF Schema (RDFS), Web Ontol-
ogy Language (OWL), SPARQL Protocol and RDF Query45

Language (SPARQL), and Shapes Constraint Language
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(SHACL). It is a framework that enables sharing, access-
ing, conforming, and linking data over the web in a machine-
interpretable format [8, 9].

Contrary to the IFC schema, which has well-known50

limitations such as limited-expression range, difficulty par-
titioning information, and describing the same informa-
tion in multiple ways, the W3C suggests more modular,
polylithic, and simple data formats, also called ontologies,
that can be interlinked and easily extended over time [6,55

10, 11]. Figure 1 shows the concept of interconnected on-
tologies, and it can be seen that the domain-specific on-
tologies can be separated as smaller graphs and linked with
other ontologies. An ontology does not need to cover an
entire domain, such as HVAC systems. It can also cover60

minor subdomains for HVAC, such as representing differ-
ent component types and their properties alone or the con-
nectivity of HVAC components and their relations to sys-
tems and subsystems. Developing smaller ontologies that
target one building domain will yield a practical and flex-65

ible way of modelling knowledge when combined [4, 12].

Figure 1: Interlinked domain-specific ontologies.

1.3. Interlinking Domain-specific Knowledge

In this context, the W3C LBD Community Group (W3C
LBD CG) has defined and shared a set of ontologies like
Building Topology Ontology (BOT) [13], Flow Systems70

Ontology (FSO) [14], TUBES System Ontology (TUBES) [15],
Property Set Definition Ontology (PROPS) [16], and Prod-
uct Ontology (PRODUCT) [17] etc. for the AEC indus-
try. While FSO describes the energy and mass flow re-
lationships between systems and their components and75

their compositions [14, 18], it lacks system components’
capacity- and size-related properties. A key research ques-
tion here is whether such properties need to be added di-
rectly to the FSO ontology, or can be kept separate, e.g. in
its own module or ontology. In our research, we intend to80

investigate whether the best approach is to create an on-
tology, called the Flow Properties Ontology (FPO), that
includes only those properties and aligns it with other ex-
isting ontologies in the Linked Building Data (LBD) con-
text, in particular with the FSO ontology that focuses on85

HVAC domain.

1.4. Conforming Domain-Specific Knowledge

Despite their strengths in representing domain-specific
knowledge, ontologies cannot solve the problem that many
BIM models are poorly modelled and lack building ele-90

ments or metadata. Currently, poor data quality in build-
ing models contributes to faulty design decisions and down-
falls in the information stream. Due to the increasing level
of information, it is challenging to create sufficient BIM
models [10, 19–21]. Architects and owners can spend hun-95

dreds of hours manually assessing conformity [22]. Due to
the time-consuming process and the need for high-perfor-
ming BIM models, many research publications have ad-
dressed conformance checking. The most prominent pub-
lications on conformance checking of BIM models cover100

various frameworks, tools, rule languages, rule models, and
rule engines [23–33]. As their data models rely on IFC or
their rule models lack semantic expressivity, they all have
limitations and cause poor query performance [34, 35]. So-
man et al. [36], Stolk and McGlinn [9], and Oraskari et105

al. [37] describe a promising approach to surpass the lim-
itations of IFC and improve conformance checking. They
use a semantic web approach with a data model written in
OWL and a rule model written in SHACL to verify con-
straint violations. Soman et al. [36] applied the method to110

the construction field, while Stolk and McGlinn [9] applied
the method to geospatial field, and Oraskari et al. [37] to
the energy simulation field. However, these publications
do not describe how to validate an HVAC model with
SHACL, nor do they apply the framework to a real-world115

large building project. In addition, we intend to develop a
rule model written in SHACL for validating HVAC-related
constraints.

1.5. Contribution

Considering the above, several innovations are needed.120

In fact, our research includes five contributions. Firstly,
our research aims to extend FSO to support an alignment
with the proposed FPO ontology. Secondly, we propose
the FPO ontology itself to represent HVAC components’
capacity and size-related properties. Thirdly, we propose a125

set of rules to validate HVAC-related constraints. Fourthly,
our work produces a demonstration environment for a real-
world building project, showcasing how to conform a HVAC
model using semantic web technologies. Lastly, the demon-
stration environment will showcase how FPO and the HVAC130

rule model can support the description and validation of
hydraulics in HVAC components and the capacity of HVAC
components.
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1.6. Outline

Table 1 shows the namespaces and prefixes used in this135

article. The remainder of this article is structured as fol-
lows. Section 2 describes previous work on knowledge rep-
resentation and rule checking related to buildings and sys-
tems. The presented work is limited to OWL-based data
models and SHACL-based rule models. The development140

of FPO and extension of FSO are explained in Section 3.
Section 4 outlines our framework and rules for validating
HVAC-related constraints. We utilize a real-world build-
ing model in Section 5 to illustrate how FPO can rep-
resent capacity- and size-related properties and be used145

to design an HVAC device. Additionally, the real-world
building model will be validated against our rule model in
Section 5 where a process of four steps and a web applica-
tion is introduced and applied to generate validation and
capacity design results and display the results within a web150

interface. The validation results pinpoint the components
or properties in the data model that are violating our rule
model, while the capacity results show the flow rate and
pressure of each flow-moving device that is represented in
the data model.The validation and capacity design results155

are discussed in Section 6, and conclusions are presented
in Section 7.

Table 1: Used prefixes and namespaces.

Prefix Namespaces

fpo https://w3id.org/fpo#
fso https://w3id.org/fso#
fsosh https://w3id.org/fsosh#
bot https://w3id.org/bot#
s4bldg https://saref.etsi.org/saref4bldg#
s4syst https://saref.etsi.org/saref4syst#
brick https://brickschema.org/schema/1.1/Brick#
seas https://w3id.org/seas#
rdfs http://www.w3.org/2000/01/rdf-schema#
rdf http://www.w3.org/1999/02/22-rdf-syntax-

ns#
ex https://example.com/ex#
inst https://example.com/inst#
owl https://www.w3.org/2002/07/owl#

2. Backround

2.1. Scope of the HVAC domain

The HVAC engineer is responsible for designing a build-160

ing’s HVAC system. The purpose of an HVAC system
is to provide building occupants with acceptable thermal
comfort and indoor air quality. HVAC engineers must
go through a series of steps to design an HVAC system,
such as defining the distribution strategy for HVAC, defin-165

ing the control strategy, calculating HVAC demand by
zones, and determining the capacity and size of HVAC
systems and their components. To determine whether an

HVAC system is designed sufficiently, its cooling, ventila-
tion and heating effects are compared with the building’s170

cooling, ventilation, and heating demands. The HVAC
system is considered sufficient when the capacity exceeds
the building’s demand. The HVAC engineer must design
each HVAC component’s capacity individually since an
HVAC system’s capacity equals the sum of its components.175

The HVAC component’s size is then determined based on
its capacity. The HVAC engineer can choose a product
from a manufacturer once the capacity and size have been
defined. By the time all HVAC components have been
designed, the HVAC engineer has completed the HVAC180

design process.
Since our research project seeks to represent and vali-

date an HVAC system’s and HVAC component’s capacity
and size-related properties in a semantic web context, Sec-
tion 2.2 provides an overview of what research has been185

achieved in this field and what is missing.

2.2. System representation in a Semantic Web context

A number of ontologies have been proposed to handle
data within the AEC industry since the early 2000s. The
first significant contribution towards moving BIM data190

into the Semantic Web is the ifcOWL ontology. IfcOWL is
an OWL representation of the IFC schema [38, 39], and it
is available at the buildingSMART website1 as just another
serialisation of the IFC schema, next to eXtensible Markup
Language Schema Definition (XSD) and EXPRESS [40].195

It is recognized that IFC is not the easiest method to model
a building or infrastructure due to the complex relation-
ships between building elements (mostly n-ary relation-
ships) and the fact that it is an extremely extensive schema
that is difficult to extend. Hence, this has hampered its di-200

rect use among AEC stakeholders [8, 41]. Moreover, it cov-
ers a wide range of domains, making it monolithic, rigid,
and hard to extend [42]. The direct translation from the
IFC schema to an OWL ontology does not change these
inherent features of IFC, and so also the OWL ontology205

has the same limitations (complexity, limited extensibility,
size). To resolve the issues, the W3C LBD CG developed a
more modular and lightweight principle named LBD. This
LBD approach takes a small, simple, and extensible build-
ing ontology at its core, known as the Building Topology210

Ontology (BOT) [13]. A BOT graph can be expanded with
more specific details by interlinking with other ontologies
like FSO, DOT, Brick, SAREF, etc.

BOT describes the relationship between building zones
and elements [43]. A zone can be a building, a floor, a215

space, or a group of spaces. The building can be connected
to the floor level by asserting that an entity of bot:Building
is related to an entity of bot:Storey with bot:hasStorey.
The same method can be applied between the storey and
the space. Zones are related in BOT in a similar way220

1https://technical.buildingsmart.org/standards/ifc/

ifc-schema-specifications
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to the Babushka concept. In Babushka, smaller dolls are
nested in larger dolls, whereas in BOT smaller zones are
nested in larger zones. BOT can be used to describe the
connections between zones in a building, but it cannot
describe building systems.225

SEAS describes the relationships between physical sys-
tems [44]. There are three main modules in the ontology,
namely, The System Ontology, The Features Of Interest
Ontology, and The Evaluation Ontology. The Features Of
Interest Ontology allows to describe features of interest230

and their properties. A car, as an example, can be con-
sidered a feature of interest with a property called speed.
Properties are either evaluated directly or through a qual-
ified evaluation in the Evaluation Ontology. In a direct
evaluation, a value is assigned to the property. A qual-235

ified evaluation needs to outline three categories: type,
the context of validity, and provenance data. The Sys-
tem Ontology describes the systems and the relationships
between them. There are three levels of connectivity: be-
tween systems, connections, or connection points. The240

SEAS ontology focuses primarily on electrical systems but
can also be used to represent higher-level building services
systems [44]. Yet, it does not describe any building ser-
vice components or their relationships to building service
systems.245

Building service components are included in the Brick
ontology [45] and the Smart Applications REFerence (SAREF)
ontology [46] at different conceptual levels and scopes. The
Brick ontology describes data points and their relation-
ships to physical, logical, and virtual assets in buildings.250

It consists of a core ontology to describe fundamental con-
cepts and their relationships and a domain-specific tax-
onomy. The ontology focuses on data points and their
relations to location, equipment, and resource [45]. Relat-
ing a data point to a location expresses in which area of255

the building the data point is located. It can be located
in a room, on a floor, in a duct, etc. Relating a data point
to a specific equipment expresses how the data point con-
trols the system or component. For example, take a room
temperature sensor positioned in a room. The room tem-260

perature sensor regulates how much air an air handling
unit (AHU) must supply to the room. Lastly, the resource
is the medium being measured and regulated by the data
point and equipment. For example, the medium of an
AHU is the air that is being supplied to a room.265

The SAREF Smart Appliances Reference ontology is a
reference ontology for smart appliances (devices) [46]. It
aims to bring meaningful interactions between Internet of
Things (IoT) devices in various domains. There are cur-
rently 13 extensions to the core ontology. SAREF4SYST270

is based on the concepts of seas:SystemOntology to de-
scribe higher-level building service systems. SAREF4BLDG
is based on the IFC taxonomy and describes building ser-
vice devices. Even if it is similar to IFC and BOT, these
structures are not fully the same [47]. Together, SAREF4-275

SYST and SAREF4BLDG can represent building systems
and their connectivity with IoT devices. Like Brick, the

SAREF ontology represents medium-level building system
devices such as a fan or pump. Furthermore, SAREF4BLDG
represents capacity-related building service devices to some280

extent. Those parameters are based on the IFC taxonomy.
However, both Brick and SAREF ontologies are primarily
focused on the operational phase of the building life cycle.
As a result, they do not represent any passive building
service devices such as pipes, ducts, tees, elbows, etc., nor285

their properties.
An OWL ontology that is similar to the SAREF4BLDG

ontology, but does not include any building topology to
avoid semantically overlapping ontologies, is the Mechan-
ical, Electrical and Plumbing (MEP) ontology2. This on-290

tology is structured as a very simple hierarchical taxonomy
for devices and is directly created based on the Distribu-
tionElement subtree in the IFC schema. It needs to be
combined with the BOT ontology to be of use and works
well to classify distribution elements such as air terminals,295

etc.
FSO focuses on the design and operational phase of the

building life cycle [14]. It describes the mass flow and en-
ergy relationships between systems and components and
the composition of such systems [14]. FSO gives the abil-300

ity to connect both passive and active components to sys-
tems and subsystems. For example, a heating system can
include a supply and return system as subsystems. A seg-
ment or fitting can be related to a supply or return system.
A component can also be connected to a supply and return305

system, such as a heat exchanger. A segment can supply
or return fluid to another component based on what sys-
tem it belongs to. Unlike Brick and SAREF ontologies,
FSO only represents higher-level components such as flow-
moving device or flow-controlling devices (also included in310

the MEP ontology). The taxonomy of building service de-
vices for all four ontologies is based on the IFC taxonomy.
However, FSO does not represent both active and passive
components’ size- and capacity-related properties. With-
out that representation, HVAC engineers cannot design an315

HVAC system nor an HVAC component during the design
phase using FSO.

FPO and an extended version of FSO are introduced in
Section 3 to fill this research gap and describe the size- and
capacity-related properties of both active and passive com-320

ponents within the design phase. Ontologies are mainly
used to represent domain-specific knowledge. To check
whether a BIM model lack building elements or metadata,
we need a rule language. Section 2.3 describes the process
of compliance checking, which rule languages exists and325

what research have achieved in this area in a Semantic
Web context.

2.3. Compliance checking in a Semantic Web context

Compliance checking, code-checking, rule-based check-
ing, and constraint checking are all terms that describe330

2https://pi.pauwel.be/voc/distributionelement
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a passive process that notifies whether a rule has been
violated [48]. The process does not modify the building
but validates the building design against different types
of requirements such as client requirements, functional re-
quirements, aesthetic requirements, building performance335

requirements, building code and regulations, complete dis-
cipline assessment and complete BIM data [22, 49]. Cur-
rently, companies primarily apply compliance checking to
assess the quality and perform collision control on BIM
models by utilizing the commercial tool Solibri Model Chec-340

ker (SMC). Solibri Model Checker uses predefined rules for
geometrical clashes, property completeness, and relation-
ships between building elements. Using SMC does not
allow the use of predefined rules in other applications or
the creation of customized or complex rules [22]. In order345

to perform compliance checking on BIM models without
being restricted to specific types of constraints or appli-
cations in general, Eastman et al. [50] provide a four-step
manual approach.

1. Rule interpretation: Human-readable rules are con-350

verted into a machine-interpretable format that con-
tains the information needed to be checked in the
correct format, also known as the rule model.

2. Building model preparation: Building information
is converted into a machine-readable format, also355

known as the data model.

3. Rule execution: The data model is validated against
the rule model.

4. Rule check reporting: A validation report describing
whether the data model has passed or violated any360

constraints.

By following these steps, custom rules can be written
without being limited to a particular application. How-
ever, the process is passive and only informs the user or
system whether any constraints have been met or violated.365

For actively correcting the violation in the data model,
Solihin et al. [49] introduce a fifth step:

5. Automatic correction: If any constraints are vio-
lated, the user or system is not only notified, but new
data is created to correct the violation. Users can be370

notified to implement the new data as an option or
the new data can be implemented automatically. As
some violations can be solved by multiple solutions,
the system should be able to notify the user of all
the possible solutions, allowing them to choose the375

appropriate one.

Moreover, Solihin et al. [49] suggest categorizing the
defined rules based on their complexity into four cate-
gories:

Class 1: entities and attributes are queried and checked380

against a single value.

Class 2: additional values are calculated (e.g. distance)
and checked.

Class 3: additional geometry is created, in order to cal-
culate spatial relationships.385

Class 4: problem solutions are calculated, and new data
is created.

Defining each rule in the rule interpretation phase re-
quires a rule language. In the following subsection, we de-
scribe several prominent rule languages developed by the390

W3C.

2.3.1. Rule languages

In 2004, the W3C introduced the Semantic Web Rule
Language (SWRL) as a member submission3. SWRL is a
combination of the OWL Description Language (DL) and395

OWL Lite sublanguages of OWL with the Unary/Binary
Datalog RuleML sublanguages of the Rule Markup Lan-
guage. OWL knowledge bases are integrated with Horn-
like rules in the rule language. The rules are expressed in
terms of OWL concepts, such as classes, properties and400

individuals. Because OWL ontologies are limited in their
ability to express complex logical reasoning, SWRL allows
users to create custom rules and apply them to OWL on-
tologies [51, 52].

Similar to SWRL, the Rule Interchange Format (RIF)405

introduced in 2005 by W3C allows rules to be expressed in
XML syntax. In order to enhance interoperability between
rule languages, RIF was designed to be the standard ex-
change format for rules on the Semantic Web. As of today,
RIF consists of 12 parts, including RIF-core, which is the410

core of all RIF dialects [52, 53] .
Notation3 (N3), is an assertion and logic language that

supports expressing RDF-based rules. It was introduced
in 2011 by W3C as a team submission to extend RDF by
adding formulae, variables, logical implication, and func-415

tional predicates, as well as to provide an alternative syn-
tax to the XML syntax that SWRL and RIF use. By
using shortcuts and syntactic sugar, it is able to simplify
statements in the form of triples [54].

The SPARQL Inferencing Notation (SPIN) was intro-420

duced by W3C in 2011 as a member submission and has be-
come a de facto industry standard for describing SPARQL
rules and constraints. The key feature of SPIN, compared
to SWRL, RIF, and N3, is the ability to specify constraints
using SPARQL queries. In this way, property values can425

be calculated based on other properties, or a set of rules
can be isolated for execution under certain conditions. It
is also possible to use SPIN to check the validity of con-
straints based on the assumption of a closed world [55].

SHACL is the successor to SPIN and was published430

as a W3C Recommendation in 2017 [56, 57]. A higher

3https://www.w3.org/2021/Process-20211102/
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status has been granted to SHACL by W3C in compar-
ison to SWRL, RIF, N3 and SPIN. As a result, SHACL
has become the web standard today for validating RDF
graphs. SHACL is heavily inspired by SPIN, but it offers435

far more flexibility in defining target constraints. SPIN is
limited to classes, while SHACL can be applied to classes
or sets of nodes by various target mechanisms, including
customized targets. Furthermore, SHACL advanced fea-
tures allow validation of more complex constraint types,440

such as sub-graph pattern validation, conditional valida-
tion, etc.. SHACL contains two major components:

Data graph: A data model containing domain-specific
knowledge.

Shape graph: A rule model, consisting of user-defined445

constraints. User-defined shapes can be node shapes
or property shapes. Node shapes specify constraints
on target nodes, while property shapes specify con-
straints on target properties and their values.

By separating the data model and rule model, SHACL450

follows the Business Rule Management Systems (BRMS)
principle of decomposing knowledge into logic and data,
enabling them to be independently manipulated [36]. In
addition, SHACL outputs an RDF graph with validation
results, which describes whether a data model passed or455

failed a given rule-set.
The following section highlights the research gap based

on an overview of recent research on applying SHACL to
perform conformance checking within the AEC industry.

2.3.2. The research gap in case studies460

Stolk and McGlinn [9] demonstrated how ifcOWL can
be validated using SHACL. The authors showed how ifc:lengt-
hValue IfcQuantityLength can be restricted to only have
values of type ifc:IfcLengthMeasure and how cardinality
constraints can be used to restrict IfcDoorPanel proper-465

ties.
Hagedorn and König [56] developed an approach for

compliance checking linked building models. The proposed
method implements the four steps mentioned by Eastman
using semantic web technologies. Using the IFC2RDF con-470

verter, the authors converted an IFC schema into ifcOWL.
Their rule model involved a set of rules to validate the
path between an identifier of a link and the original iden-
tifier. In order to validate their data model against the
rule model and receive a validation report, they used the475

W3C SHACL Test Suite.
To define and check complex and dynamic scheduling

constraints in construction, Soman et al. [36] developed
a linked-data based constraint-checking approach utiliz-
ing semantic web technologies. The approach was im-480

plemented through a web application that validated con-
struction scheduling violations using different types of con-
straints. The pySHACL library was used to define and
validate SHACL shapes and the RDFlib library was used

to design and store a RDF graph. They used IfcOWL485

and LinkOnt to capture the model information of a real-
building model.

Oraskari et al. [58] defined rules within the energy sim-
ulation field for validating windows of specific sizes, check-
sums of properties, and alignments of BOT classes and490

properties. They validated two data models against each
other in order to align BOT classes and properties with
ifcOWL. The IFC schema of a conceptual building model
was converted to ifcOWL and BOT using the IFCtoLBD
and IFC2BOT converters. The rule modelling, validation495

and reporting was performed using the TopBraid SHACL
Application Programming Interface (API).

None of the mentioned authors developed a SHACL-
based rule model nor performed a conformance check again-
st an OWL-based HVAC model. Soman et al. [36] is the500

only author that uses a real building model, but a model
of low complexity and size. For that reason, a constraint-
checking approach to define and validate HVAC-related
constraints on a large real-building model using seman-
tic web technologies is introduced in Section 4 to fill this505

research gap.

3. Flow Properties Ontology

FPO is developed as an extension to FSO [14] to rep-
resent FSO component’s capacity and size-related proper-
ties. The development of FPO is closely related to FSO,510

but the authors in [14] sought to keep FSO as lightweight
as possible, to describe a myriad of different flow sys-
tems. As a result, we developed FPO as an extension
to FSO. It contains 50 classes, 50 object properties and 6
data properties and has a Description Logic expressivity515

of ALRF(D) [59]. A practical guide [60] was used to de-
sign and structure the classes, object properties and data
properties in FPO. Classes, for instance, should always be-
gin with capital letters, also known as upper camel case,
and should not contain spaces. In contrast, object proper-520

ties and data properties should always be written in lower
camel case and with verb senses.

It is necessary to know the HVAC component type to
describe its properties. A property of one HVAC compo-
nent may differ from another, and the data type or unit525

of one property may vary from another property. A pump
has different properties than a fan, and the flow rate can
be expressed in liters per second or cubic meters per hour
which is different from a ventilation fan. An elbow can
differ in properties from a tee by having an angle even530

if both are fittings. Moreover, while a tee has three flow
ports and elbow has two flow ports. Conceptually, Fig-
ure 2 illustrates how a component can have a property,
and the property a value. As there are two steps between
the component (Type / Object) and the value, this prop-535

erty modelling approach is a Level 2 (L2) property mod-
elling approach, as defined by Bonduel and Pauwels [61].
Other property modelling approaches are L1 (direct object
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and data properties), and L2 (more metadata for tracking
property states over time).540

Component

hasProperty

Property Value

hasValue

Figure 2: Relationship between components, properties, and prop-
erty values.

It is possible to represent buildings, spaces, and their
relationships with systems and components using FSO and
BOT. Adding FPO, the representation can identify whe-
ther a particular system or component is able to heat, cool,
or ventilate a specific building or space.545

The following subsections provide a more detailed de-
scription of FPO. To determine the scope of the ontology,
Section 3.1 lists a set of competency questions. In Sec-
tion 3.2.2, FSO is extended with medium-level components
to represent component interfaces and their connections550

with other components. Section 3.3 reviews FPO classes
and their properties. Finally, reasoning examples will be
enabled in Section 3.4, followed by alignments to FSO,
SAREF4BLDG, MEP, and Brick in Section 3.5. Both the
extension of FSO, the development of FPO and the align-555

ments are made available on GitHub4.

3.1. Competency questions

Competency questions are listed in Table 2 to deter-
mine FPO’s scope and purpose formally. The scope of the
ontology is verified in Section 5 with SPARQL queries.560

Table 2: Competency questions

Reference Competency question

CQ1 What is the heating, cooling or ventilation
capacity of a system?

CQ2 What is the heating, cooling or ventilation
capacity of an HVAC component?

CQ3 What is the size of a given HVAC compo-
nent?

3.2. Flow System Ontology Extended

3.2.1. Connection between components

FSO represents the energy and mass flow relationships
between systems and their components and their composi-
tion. However, the current version of FSO does not express565

the opening or passage that directs the flow of energy or
mass. The existing version of FSO expresses a segment.
This simplistic representation is insufficient to determine
an HVAC component’s size or capacity during the building

4https://github.com/Semantic-Web-Tool/

Orchestrator-Service/tree/main/public/Ontologies

design phase. An actual component contains a fluid, which570

is in motion. This is known as flow. Ports are added for the
fluid to flow in and out of each component. The existing
FSO taxonomy is therefore extended with fso:Port and
fso:Flow. As a result, a hierarchical relationship can be
described among systems, components, ports, and flows.575

The concept of relating a fso:Port and a fso:Flow for
multiple components is shown in Figure 3. An fso:Segment

can be linked to an fso:Port with fso:hasPort, and an
fso:Port can be linked to a flow with fso:hasFlow. With
fso:hasPort and fso:hasFlow available, an fso:Fitting580

can be related to its ports and flow. The direct relationship
between the ports of both components is expressed using
fso:suppliesFluidTo. In some cases, it is sufficient to
just represent the ports and not to explicitly indicate the
flow. In that case, the fso:Flow instances can simply be585

left out.

FlowPort

hasPort hasFlow

Segment Fitting

hasFlow hasPort hasFlow hasPort

hasFlow

hasPort

Flow Port

suppliesFluidTo

PortFlow

Flow

Port

FSO current class

FSO current object property
FSO extended class

FSO extended object property

Figure 3: A segment partitioned with ports and flow connects to an
fitting through its ports

In addition, the opening can also be expressed as a
fso:ConnectionPoint instead of a fso:Port. A single
connection point can be used to represent connections be-
tween components instead of multiple ports. The fso:Con-590

nectionPoint is an interface between two components
that transports fluid. Figure 4 illustrates how multiple
components can be related using fso:ConnectPoint. The
fso:Segment relates to a fso:ConnectionPoint with fso:-

ConnectsTo, while the fso:Fitting relates to a fso:Con-595

nectionPoint with fso:ConnectsFrom. A connection poi-
nt’s relationship to a component also determines the in-
tended direction of the flow, which is crucial information
when performing hydraulic calculations. The fluid is trans-
ported from the fso:Segment to the fso:Fitting in Fig-600

ure 4. Both fso:Port and fso:ConnectionPoint are sub-
classes of bot:Interface.

A relationship can be described among systems, and
components as shown in Figure 5. The components share
the same fso:ConnectionPoint. Flows and Ports are not605

available in this example, but could be modelled as well,
after the example in Figure 3.

The proposed extension to FSO makes it capable of
representing components and interfaces in multiple ways,
which adds some flexibility. The definition of the men-610

tioned classes and relationships in this section is defined
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Segment FittingConnectionPoint

connectsFrom connectsTo

connectsFrom

ConnectionPoint

FSO extended class

ConnectionPoint

connectsTo

FSO current class

FSO extended object property

Figure 4: A segment connects to a fitting through connection points.

ConnectionPoint

connectsTo connectsFrom

System

Component

connectedWith

hasComponent

hasSubSystem

connectedWith

Extended taxonomy

Current taxonomy

Figure 5: Current and extended taxonomy of FSO with connection
points.

as follows:

• fso:Port is defined as “An opening or passage that
directs flow of a mass or energy”.

• fso:Flow is defined as a “A fluid flowing into or out615

of a port to another port”.

• fso:ConnectionPoint is defined as “A point of in-
teraction between components”.

• fso:hasPort is defined as “The relation from a com-
ponent to a port.”620

• fso:hasFlow is defined as “The relation from a port
to a flow.”

• fso:connectsTo is defined as “The relation from a
connection point to a component.”

• fso:connectsFrom is defined as “The relation from625

a connection point to a component.”

3.2.2. Extended component abstraction level

Currently, FSO represents eight high-level component
types. For several reasons, we must subdivide the eight
high-level component types into 19 medium-level compo-630

nents. For instance, the hydraulic sizing of a pump or a fan
are different. The sizing of a pump includes the pressure
drop from both supply system components and return sys-
tem components, but sizing of a fan only includes pressure

drop of either supply or return side. We have to define the635

types explicitly when performing hydraulic calculations.
Often components lack the required properties to per-

form a hydraulic calculation. For example, if an elbow
does not have a specified angle, we will not be able to dif-
ferentiate between an elbow or transition since they both640

are represented as a fso:Fitting and have two ports. To
accommodate the difference in properties, the eight high-
level FSO components have been nested into 19 medium-
level components as shown in Figure 6.

Component

EnergyConversionDevice

Fitting

Boiler
Chiller
HeatExchanger
HeatPump

Cap
Elbow
Reducer
Tee

FlowController
Damper
Valve

FSO current classes
FSO extended classes

FlowMovingDevice
Fan
Pump

Segment
Duct
Pipe

StorageDevice
Terminal

AirTerminal
ChilledBeam
SpaceHeater

TreatmentDevice
DuctSilencer
Filter

Figure 6: A class hierarchy of current and extended FSO compo-
nents.

3.3. Property relationships645

FPO provides 6 data properties: value, unit, abbre-
viation, design condition and curve. They can be used
to relate an entity literal to an entity class. Combined,
the 50 classes, 50 object properties and 6 data properties
represent the size and capacity of the FSO components.650

Figure 7 demonstrates how properties are added to com-
ponents, ports, or flows. An fso:Segment can be related
to the property fpo:Length with fpo:hasProperty. With
fpo:hasValue and fpo:hasUnit, fpo:Length can be con-
nected to the value ′15′ and the unit meter. In this exam-655

ple, fso:Segment and fpo:Length are both classes, while
fpo:hasProperty is an object property and fpo:hasUnit

and fpo:hasValue are data properties. This method is
applied to both fso:Port and fso:Flow. With this ap-
proach, we entirely follow the L2 property modelling ap-660
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proach that is documented by Bonduel and Pauwels [61]
and in principle follows a one-to-many pattern.

FlowPortSegment

hasProperty

Length WallThickness FlowRate

hasProperty hasProperty

meter 3 milli-
meter

15 Kilogram 
Per Second

0.02

hasFlow hasPort hasFlowhasPort

Flow Port

WallThicknessFlowRate

hasProperty hasProperty

Kilogram 
Per Second

0.02

unit value

milli-
meter

15

unit valueunit valueunit valueunit value

FPO inferred class
FPO object property
FPO data property

FSO current class
FSO extended class
FSO extended object property

Figure 7: Describing the relationship between an fso:Segment and
and its properties with FPO classes, object and data properties.

3.4. Reasoning

Semantic Web technologies enable deductive reason-
ing as well as explicit assertions. A few examples of how665

FPO and the extended FSO allow for reasoning are pre-
sented in this section. Every object property in FPO is
assigned a domain and a range. For example, the at-
tribute fpo:hasLength has the domain fso:Component

and range fpo:Length. This means that, whenever we670

have a subject of type fso:Component and a predicate
of type fpo:hasLength, then the object must be of type
fpo:Length. This also means that a reasoning engine will
automatically infer the class fpo:Length when the object
property fpo:hasLength is provided in the input instance675

data. This can similarly be done for all the other proper-
ties shown in Figure 7.

An fso:Segment is shown in Figure 3 supplying fluid to
an fso:Fitting with the property fso:suppliesFluidTo.
However, with the extended FSO, it is possible to infer680

that if a segment port supplies fluid to another port of
a fitting, then the segment must also feed fluid to the
fitting (transitive object property). Figure 8 illustrates
the inferred knowledge. This can similarly be done for an
fso:connectionPoint (example shown in Figure 4). If a685

connection point is connected to a segment and connected
from a fitting, it can be inferred that the segment feeds
fluid to the fitting.

3.5. Alignments

Figure 9 shows the relation between BOT, FSO and690

FPO. The figure also illustrates how this network of ontolo-
gies can be used to show the relationship between a heat-
ing system, its components, properties, and the building
it serves. It simplifies the relationship between the HVAC
components and their properties for illustration purposes.695

The taxonomy of components in FPO, FSO, MEP,
SAREF4BLDG, and Brick is based mainly on the IFC
taxonomy and can therefore be aligned. Of course, they

FlowPort

hasPort hasFlow

Segment Fitting

hasFlow hasPort hasFlow hasPort

hasFlow

hasPort

Flow Port

suppliesFluidTo

feedsFluidToInferred knowledge

Asserted knowledge

PortFlow

Flow

Port

FSO current class

FSO current object property
FSO extended class

FSO extended object property

Figure 8: Deducing that the segment feeds fluid to the fitting as a
port of the segment supplies fluid to a port of the fitting.

can never be fully aligned because of their difference in se-
mantic meaning and definitions. Mappings between these700

and other ontologies always remain limited, faulty, and
very much open to interpretation and use; by the very na-
ture of mapping ontologies [62]. The mentioned ontologies
do not represent all the same components, nor are they
conceptually equivalent. Both SAREF4BLDG and Brick705

represent some component properties but are not intended
to describe the capacity or size of each component as FPO
does. Even the definition for Zone, which is available in
SAREF4BLDG and BOT, for example, has very different
meanings in both ontologies and should not be translated710

or mapped to one another [13, 46].
Classes, object properties, and data properties are nev-

ertheless compared between the ontologies in this section.
It is nevertheless recommended to not rely fully on these
ontology mappings and instead rely much more on instance715

linking, as recommended by Schneider [63], Rasmussen [43]
and Terkaj [64]. An instance can hereby be annotated as a
Brick class, BOT class, and FPO class using the advantage
of multi-typing in RDF graphs [14, 65, 66].

For the ontology mapping in the below section, we fol-720

low standard approaches and aim to organize FPO classes
as either sub-classes or equivalents to classes in another on-
tology. This notion also applies to object and data prop-
erties. It can either be a sub-property or equivalent to
another ontology. This is the case when aligning FPO and725

SAREF4BLDG as shown in Table 3. We are able to align
14 object properties between FPO and SAREF4BLDG.
For example, fpo:hasKv is a sub-property of s4bldg:flow-
Coefficient, while fpo:hasVolume is an equivalent prop-
erty to s4bldg:volume. Moreover, fpo:hasDesignAir-730

flowRate is equivalent to s4bldg:airFlowRateMin, as their
definitions are equivalent.

Just like SAREF4BLDG, Brick components can be equa-
lly aligned with FPO components. We can align 2 of
the 50 FPO object properties with Brick. For example,735

fpo:hasVolume is equivalent to brick:volume as shown
in Appendix A. Care needs to be taken, as it is very easy
to introduce false assumptions in the data using these map-
pings.
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Figure 9: Combining multiple ontologies to represent building, spaces, systems, HVAC components, their properties and their relationships

Table 3: Alignments between FPO and s4bldg.

owl:Class
owl:ObjectProperty

rdfs:subClassOf
rdfs:subPropertyOf
owl:equivalentClass

fpo:hasDesignAirflowRate s4bldg:airFlowRateMin
fpo:hasCrossSectionalArea s4bldg:faceArea
fpo:hasKv s4bldg:flowCoefficient
fpo:hasHeight s4bldg:height
fpo:hasOuterDiameter s4bldg:inletConnectionSize
fpo:hasDesignVolume s4bldg:waterStorageCapacity
fpo:hasPressure s4bldg:openPressureDrop
fpo:hasOuterDiameter s4bldg:outletConnectionSize
fpo:hasDesignHeatingPower s4bldg:outputCapacity
fpo:hasOuterDiameter s4bldg:outerDiameter
fpo:hasRoughness s4bldg:roughness
fpo:hasThermalConductivity s4bldg:thermalConductivity
fpo:hasVolume s4bldg:volume
fpo:hasLength s4bldg:length

4. HVAC rule model740

The HVAC rule model was developed to check the com-
position of HVAC components, their systems, and their ca-
pacity and size-related properties. The HVAC rule model
consists of 36 shapes and 122 constraints and is made avail-
able on GitHub5. A shape of constraints can, for example,745

determine whether a pipe is a part of a system, has two
flow ports and is connected to other components. It can
also check whether the port of a pipe has the capacity-
related property flow rate or the pipe has the size-related
property diameter. In a validation process, the HVAC rule750

model will ensure that the necessary BIM information is
available to calculate the size and capacity of HVAC sys-
tems and their components. The calculation is also known
as the hydraulic calculation.

A rule can differ in complexity and range from 1-4, as755

defined by Solihin et al. [49]. In this section, we showcase
a SHACL-based rule for each complexity level.

4.1. Verifying pipes explicitly

In hydraulic calculations, it is essential to know the lo-
cation of each pipe segment in relation to upstream and760

downstream components, as well as roughness and length.

5https://github.com/Semantic-HVAC-Tool/Rule-Service/

tree/main/Public/Shapes/fsosh.ttl
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The shape fsosh:Pipe applies 7 constraints to an fso:Pipe

and has a complexity level of 1 and are described as fol-
lows:

Constraint 1: An fso:Pipe must have exactly two flow765

ports.

Constraint 2: A pipe must feed fluid to exactly one com-
ponent.

Constraint 3: A pipe must be fed with fluid by exactly
one component.770

Constraint 4: A pipe must be connected to exactly one
system.

Constraint 5: Exactly one property of material type must
be present in a pipe.

Constraint 6: Exactly one property of length must be775

present for a pipe.

Constraint 7: Exactly one property of roughness type
must be present for a pipe.

In Listing 1, only the first constraint is expressed in
SHACL. The remaining 6 SHACL constraints are made780

available on GitHub6. In the first constraint, the cardinal-
ity constraints sh:minCount and sh:maxCount are applied
to check that the fso:Pipe has two ports. A minimum
and maximum cardinality of 2 will satisfy this constraint.
In addition, we use the value type constraint sh:dataType785

with the value xsd:anyURI to ensure the triple includes an
URI. If the cardinality constraint or value type constraint
is not satisfied, the message “A pipe must have exactly
two flow ports” will be thrown.

Listing 1: A SHACL shape to constrain the number of fso:Ports with
fso:hasPort for each fso:Pipe.790

1 fsosh:Pipe

2 a sh:NodeShape;

3 sh:nodeKind sh:IRI ;

4 sh:targetClass fso:Pipe ;

5 sh:property[

6 sh:path fso:hasPort ;

7 sh:dataType xsd:anyURI;

8 sh:minCount 2;

9 sh:maxCount 2;

10 sh:message "A pipe must have exactly two flow

ports"↪→

11 ]; #... the shape continues

4.2. Verifying the demand versus capacity by derived in-
formation

HVAC systems and their components must be designed
to provide sufficient heating, cooling, and/or ventilation to795

6https://github.com/Semantic-HVAC-Tool/Rule-Service/

tree/main/Public/Shapes/fsosh.ttl

buildings. For example, an HVAC terminal is designed cor-
rectly if its capacity to heat, cool, and ventilate a space ex-
ceeds the space’s demand. With the following constraint,
we demonstrate how the capacity of a supply air termi-
nal can be compared with the supply airflow demand of a800

space:

Constraint 1: The supply air terminal capacity should
be higher than the space’s required supply airflow
demand.

The rule is expressed in a single SHACL shape, as805

shown in Listing 2 and the constraint belongs to the shape
fsosh:AirTerminalCapacityCheck. A SPARQL-based con-
straint is used to implicitly find the comparison between
capacity and demand since it is not explicitly defined. Be-
cause this rule requires derived information, it reaches810

complexity level 2. A nested SPARQL select query is
shown in Listing 2. There can be more than one sup-
ply air terminal in a space. To sum the capacity of all
air terminals grouped by space, we apply an inner select
query. In the outer select query, we find the supply air-815

flow demand for each space and filter them according to
the constraint. This rule will be violated when the supply
air terminal capacity exceeds the supply airflow demand
of the space.

Listing 2: The listing shows a SHACL shape to constrain the capacity
of an supply air terminal versus the supply airflow demand of an
space.820

1 fsosh:AirTerminalCapacityCheck

2 a sh:NodeShape;

3 sh:nodeKind sh:IRI ;

4 sh:targetClass bot:Space ;

5 sh:sparql [

6 a sh:SPARQLConstrain ;

7 sh:message "The supply air terminal capacity shall

not be lower the required supply air flow demand of

the space" ;

↪→

↪→

8 sh:prefixes (fpo: fso: ex: inst: bot:);

9 sh:select """PREFIX bot:<https://w3id.org/bot#>

10 PREFIX ex: <https://example.com/ex#> PREFIX fso:

<http://w3id.org/fso#> PREFIX fpo:

<http://w3id.org/fpo#>

↪→

↪→

11 SELECT ?this {

12 ?this ex:designSupplyAirflowDemand ?flowDemand .

13 ?flowDemand fpo:hasValue ?flowDemandValue .

14 BIND (ROUND(?flowDemandValue) AS ?demand) .

15 {

16 SELECT ?this (ROUND(SUM(?flowCapValue)) AS

?capacity) WHERE {↪→

17 ?this a bot:Space .

18 ?airTerminal a fso:AirTerminal .

19 ?airTerminal fpo:hasAirTerminalType

?airTerminalType .↪→

20 ?airTerminalType fpo:hasValue "inlet" .

21 ?airTerminal fso:feedsFluidTo ?this .

22 ?airTerminal fso:hasPort ?port .

23 ?port fpo:hasFlowDirection ?flowDirection .

24 ?flowDirection fpo:hasValue "Out" .

25 ?port fpo:hasFlowRate ?flowCapacity .

26 ?flowCapacity fpo:hasValue ?flowCapValue .

27 } GROUP BY ?this

28 }
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29 BIND (((?capacity/?demand)-1)*10 as ?oversizing) .

30 FILTER (?demand > ?capacity || ?oversizing > 10 )

31 } """ ;] .

4.3. A rule of thumb to verify pressure drop in pipes

The pressure drop in pipes affects the economy of build-
ing projects, the material’s lifetime and the energy con-
sumption of HVAC systems. A high pressure loss will re-825

sult in a lower cost price, a shorter lifetime, and higher
energy consumption. As a result, most HVAC engineers
apply a guideline to their design, e.g. a maximum pipe
pressure loss of 100 Pa/m. This guideline or rule cannot
be conveyed through explicit information. Calculations830

and derived information are also required. The complex-
ity level of the shape fsosh:PipePressureDrop reaches 3
because an engine is used to calculate the pressure drop
and velocity of each distribution component. The engine
is discussed in detail in Section 5.1. The only constraint835

in this rule is targeting an fso:Pipe and is described as
follows:

Constraint 1: The pressure drop of a fso:Pipe shall not
exceed 100 Pa/m.

Listing 3 shows the rule expression in SHACL. The840

pressure drop in pipes is not explicitly defined in Pa/m in
FSO or FPO. We can, however, implicitly find the infor-
mation using a SPARQL constraint. Our SPARQL-based
constraint contains a SPARQL select query. The select
query returns all instances of fso:Pipe that exceeds 100845

Pa/m in pressure drop. By dividing the length of the pipe
by the pressure drop at the outlet port, we can determine
the pressure drop in Pa/m for each fso:Pipe instance.

Listing 3: A SHACL shape to constrain the maximum pressure drop
of each fso:Pipe.

1 fsosh:PipePressureDrop

2 a sh:NodeShape;

3 sh:nodeKind sh:IRI ;

4 sh:targetClass fpo:Pipe ;

5 sh:sparql [

6 a sh:sh:SPARQLConstraint ;

7 sh:message "The pressure drop of a fso:Pipe shall

not exceed 100 Pa/m";↪→

8 sh:prefixes (fpo: fso: inst:) ;

9 sh:select """PREFIX fso: <http://w3id.org/fso#>

10 PREFIX fpo: <http://w3id.org/fpo#>

11 PREFIX inst: <https://example.com/inst#>

12 SELECT ?this ?value

13 WHERE {

14 ?this a fso:Pipe .

15 ?this fpo:hasLength ?length .

16 ?length fpo:hasValue ?lengthvalue .

17 ?this fso:hasPort ?port .

18 ?port fpo:hasFlowDirection ?flowDirection .

19 ?flowDirection fpo:hasValue "Out" .

20 ?port fpo:hasPressureDrop ?pressureDrop .

21 ?pressureDrop fpo:hasValue ?pressureDropValue .

22 bind ((?pressureDropValue / ?lengthvalue) AS

?value) .↪→

23 FILTER (?value > 100)} """ ; ] .

850

4.4. Redesigning the size of pipes automatically

During the HVAC design process, HVAC components
are often oversized or undersized due to limited time. Rath-
er than just creating a rule that notifies whether HVAC
components are right-sized passively, we will generate new855

data actively and add it to the model. By increasing the
diameter of the pipe, we can decrease the pressure drop.
That is precisely what Listing 4 is doing. Listing 4 is
an inference rule expressed in SHACL. Using a SPARQL
construct query, the pipe diameter is increased based on860

the material type and standard manufacturer size. The di-
mensions are limited to the material type PEX7 and range
from 0.012 to 0.050 meters. For every fso:Pipe that vi-
olates the previous rule, fsosh:PipePressureDrop, the
active rule generates a new diameter. For instance, a pipe865

diameter of 0.012 meters will automatically be increased
to 0.015 meters and added to the data model. Since this
rule can generate new information, it reaches a complexity
level of 4.

Listing 4: A SHACL shape to increase the size of a fso:Pipe auto-
matically870

1 fsosh:PipePexSizing

2 a sh:NodeShape ;

3 sh:targetClass fso:Pipe ;

4 sh:rule [

5 a sh:SPARQLRule ;

6 sh:prefixes (fpo: fso: ex: );

7 sh:construct """

8 CONSTRUCT {?diameter fpo:hasValue ?newSize.}

9 WHERE {

10 ?this a fso:Pipe .

11 ?this fpo:hasMaterialType ?type .

12 ?type fpo:hasValue "PEX 6 bar varme" .

13 ?this fso:hasPort ?port .

14 ?port fpo:hasOuterDiameter ?diameter .

15 ?diameter fpo:hasValue ?diameterValue .

16 BIND (

17 IF(?diameterValue = 0.012, 0.015,

18 IF(?diameterValue = 0.015, 0.018,

19 IF(?diameterValue = 0.018, 0.020,

20 IF(?diameterValue = 0.020, 0.022,

21 IF(?diameterValue = 0.022, 0.028,

22 IF(?diameterValue = 0.028, 0.032,

23 IF(?diameterValue = 0.032, 0.040,

24 IF(?diameterValue = 0.040, 0.050,

25 ?diameterValue))))))))

26 AS ?newSize)} """ ;

27 condition: fsosh: PipePressureDrop

28 ] .

7https://www.bobvila.com/articles/pex-pipe
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5. Demonstration Environment

This section aims to demonstrate how capacity and
size-related properties within the HVAC domain can be
represented and validated for a real-world BIM model.875

The use case process is illustrated in Figure 10.
The first step of the process is to create a data graph

and shape graph. As the shape graph is already produced
in Section 4, it does not require further processing and
can be used as-is8. In contrast, converting a BIM model880

will create the data graph. This step is identical to the
building model preparation phase of Eastman et al. [50].
The data graph contains BOT, FSO, and FPO vocabular-
ies so that it matches with the rules in our shape graph
and can proceed to the rule execution phase of Eastman885

et al. [50]. Using these three vocabularies, we can describe
the building, its services, its interactions, and properties.
For example, we can express how the HVAC system or
an HVAC component relates to the building or a specific
room.890

In the second step, a rule execution process will be per-
formed to check the shape graph against the data graph.
The data graph will be manually corrected if any con-
straints are violated during rule execution. Depending on
the violation type, manual correction can be achieved at895

three levels; BIM model, parser or data graph. In cases
where we do not want to modify the BIM model, we can
use SPARQL on the data graph or add the information
through the parser.

When the rule execution conforms, we can proceed to900

step 3. This step involves hydraulic calculations for ducts,
pipes, and fittings to determine each distribution compo-
nent’s pressure drop and fluid velocity. A second confor-
mance check will be conducted to check the shape graph
against the data graph and the hydraulic results. When-905

ever a constraint is violated, an HVAC rule at level 4 in
complexity from the shape graph will be used to correct
the violation.

When the rule execution conforms, we will have all the
information necessary to size the flow-moving device. Step910

4 will therefore involve calculating the capacity of each
flow-moving device, represented in the data graph. After
the flow-moving devices’ capacities has been calculated,
the result is given, and the process ends.

5.1. A Semantic HVAC tool915

We developed the Semantic HVAC tool to perform
the process shown in Figure 10. The web tool has a
microservice-oriented system architecture and contains four
layers, which is illustrated in Figure 11. The source code
of the Semantic HVAC Tool and the material used to per-920

form the process shown in Figure 10 is made available on
GitHub9. The following sections first describe the data

8https://github.com/Semantic-HVAC-Tool/Rule-Service/

tree/main/Public/Shapes/fsosh.ttl
9https://github.com/Semantic-HVAC-Tool

flow in detail and then demonstrate the Semantic HVAC
tool in a use case.

5.1.1. Presentation layer925

The presentation layer handles the user interface logic
and displays data on the page. The Graphical User Inter-
face (GUI) relies on React components to improve page
rendering [67]. Using the GUI, users can perform confor-
mance checking, perform hydraulic calculations, calculate930

the capacity of flow-moving devices, and view the results.
The user has to initiate the conformance checking and cal-
culations in the right order as shown in Figure 10. It is
therefore necessary for the user to initiate the conformance
check first. The user must correct all violations manually935

if any exist. If any violation exists, the GUI will not allow
the user to perform the hydraulic calculation. Using this
method, we ensure that the data model contains all the in-
formation we need to calculate the hydraulics. The same
applies to the capacity calculation of flow-moving devices.940

If any violations occur after the second conformance check,
the GUI will not allow the user to initiate the flow-moving
device calculation.

The GUI displays the conformance check results in two
different tables. Based on the type of HVAC component,945

the HVAC system, and size and capacity properties, the
first table shows the number of violations. The first table
is interactive. By clicking on a specific HVAC component
type in the first table, the GUI will display the second ta-
ble. The second table lists the violations for that specific950

HVAC component in more detail, including the instance
ID, constraint type, and violation description. Addition-
ally, the GUI shows the results of the flow-moving device
calculation in a table. The table displays the type, ID,
flow rate, and pressure of each flow-moving device.955

5.1.2. Communication layer

The orchestrator handles the communication between
the service components in the Semantic HVAC Tool via
HTTP requests.

There are two ways to communicate between services:960

decentralized and centralized. Decentralized communica-
tion allows microservice components to communicate di-
rectly with each other. In central communication, mi-
croservices will communicate through an orchestrator ser-
vice. As illustrated in Figure 11, we have implemented965

a central orchestrator to handle the communication be-
tween the presentation layer, the business layer, and the
database layer. The orchestrator is developed as an Ex-
pressJS server [68] in NodeJS [69]. When the user initiates
the conformance checking, the following communication970

will happen:

1. the client requests conformance checking results from
the orchestrator.

2. the orchestrator requests conformance checking re-
sults from the rule service.975
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Figure 10: The process of performing conformance checking and design calculations for an HVAC model.
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Figure 11: The system architecture of the Semantic HVAC Tool.

3. the rule service sends a rule model expressed in turtle
format to the orchestrator.

4. the orchestrator sends the rule model to the data-
base.

5. as the database already stores the data graph, it per-980

forms the rule execution and sends the conformance
checking results expressed in JSON-LD to the or-
chestrator.

6. the orchestrator sends the conformance checking re-
sults to the client.985

7. the client displays the conformance checking results
in two tables.

Similar to the conformance checking, the orchestra-
tor handles communication between the different services
when performing hydraulic- and flow-moving device calcu-990

lations.

5.1.3. Business layer

The business logic is spread over multiple microser-
vices in the web application. We have divided our logic
into two microservices: the capacity service and the rule995

service, as shown in Figure 11. Rule logic is handled by
the rule service, while the capacity service handles HVAC
design logic. The rule service consists of two functions.
When requested, the first function provides a shape graph
in turtle format, while the second function performs an1000

automatic conformance check and produces a validation
report in JSON-LD format.

The capacity service has one function. When requested,
it performs a hydraulic calculation and delivers the pres-
sure drop result for each distribution component, which is1005

of type fso:Pipe, fso:Duct, fso:Elbow, fso:Transition
and fso:Tee. The output of the function is expressed in
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JSON-LD format. Both microservices are developed sep-
arately in FastAPI. To perform hydraulic calculations, we
use the fluids library [70].1010

5.1.4. Database layer

The database layer consists of a Jena Fuseki server [71]
that stores RDF data. The microservices in the busi-
ness layer share the same database to access information
from different domains easily. Jena Fuseki has SPARQL,1015

SHACL, and Update endpoints. The SPARQL endpoint
retrieves data, while the Update endpoint inserts, deletes,
or updates data.

For example, when the user initiates the flow-moving
device calculation, the client requests a list of flow-moving1020

devices from the orchestrator. The orchestrator then re-
quests three SPARQL queries10. The first SPARQL query
is illustrated in Appendix B and is able to sum the pres-
sure drops of the critical branch to determine the necessary
pressure of each fso:Pump represented in the data graph.1025

The second SPARQL query performs the same calculation
for every fso:Fan, while the third query calculates the
total flow rate of each flow-moving device. Once the or-
chestrator hits the SPARQL endpoint in the Jena Fuseki
Server with the SPARQL queries, it retrieves the results1030

and sends them to the client to be displayed in the flow-
moving device table.

5.1.5. Parsing the BIM model

The parser11 and the BIM model12 are not part of the
Semantic HVAC Tool. The parser is developed as a .NET1035

Framework (C-Sharp) plugin in Revit [72], using the Revit
API, while the BIM model is developed as a BIM model
in Revit. The parser has two functions; the first function
serializes Revit BIM objects into a data graph expressed in
turtle syntax and, while the second sends the data graph to1040

the orchestrator via an HTTP request. The orchestrator
then redirects the data graph to the database for storage.

5.2. Results

To showcase the tool in use, we used a BIM model of a
real-world building located in Sorø, Denmark. The build-1045

ing is a primary school constructed in 2017 and named
Frederiksberg Skole. Frederiksberg Skole has a gross floor
area of 6970 m2 and is divided into a northern building
and southern building. Each building has three floor lev-
els, as shown in Figure 12. The original BIM model has1050

been modified by Seeberg and Tangeraas [73] to include
only the northern building and its heating and ventila-
tion system. It has 86 rooms, each heated with radia-
tors and ventilated with supply and extract air terminals.
Both systems are located in the basement of the northern1055

10https://github.com/Semantic-HVAC-Tool/

Orchestrator-Service/tree/main/public/Queries
11https://github.com/Semantic-HVAC-Tool/Parser
12https://github.com/Semantic-HVAC-Tool/Other/blob/main/

BIM-Model.rvt

building. The results of parsing Frederiksberg Skole as a
data model, performing two conformance checks, calculat-
ing the hydraulics and designing flow-moving devices with
the Semantic HVAC tool are presented in this section.

5.2.1. Parsing the data model1060

The process of serializing Frederiksberg Skole from Re-
vit to the Semantic HVAC Tool took 17.1 seconds to com-
plete. Moreover it took the Semantic HVAC Tool 8.3
seconds to store the data model of 369054 triples in the
database. The triples are also made available on GitHub13.1065

Since FSO represent HVAC components, we can extract
the sum of components by type. Table 4 shows that the
data model consists of 6137 HVAC components, 36 HVAC
systems and 65851 HVAC size- and capacity-related prop-
erties. In total, the data model consists of 84887 instances.1070

Table 4: The table shows the amount of HVAC components, systems
and size- and capacity-related properties in the data model

Type Amount

fso:EnergyConversionDevice 1
fso:Segment 2766
fso:Fitting 2912
fso:FlowMovingDevice 3
fso:FlowController 85
fso:Terminal 370
fso:System 36
fso:Port 12827
fso:Flow 36
fpo:Property 65851
total 84887

5.2.2. Conformance checking Frederiksberg Skole

The process of validating the data model against the
rule model took 3.1 seconds to complete. Table 5 shows the
results of the first conformance check. For example, Ta-
ble 5 shows that instances of type fso:System in the data1075

model have violated the constraints 32 times. The HVAC
rule model is also violated by instances of type fso:Duct,
fso:SpaceHeater, fso:Port, and fpo:Property. The to-
tal amount of violations is 372. Since the data graph con-
tains 84887 instances this means that approximately 0.5%1080

of the components are violating the HVAC rule model. We
can also observe, that the majority of violations are caused
by instances of type fso:Port, which accounts for approx.
73% of the total violating instances.

We can access Table 6 in the client by clicking on1085

fso:System in the first conformance checking table. Ta-
ble 6 lists the violation details for fso:System. The GUI
displays all 32 violations, but Table 6 is limited to the first
two violations, indicating that instance inst:5eb8aa6a...

13https://github.com/Semantic-HVAC-Tool/Other/blob/main/

Data-Model.ttl
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Figure 12: The illustration shows the floor plans of Frederiksberg
Skole in Sorø, Denmark. The south building is marked with red,
while the north building is marked with blue [73]

Table 5: Results of the first conformance check, showing the number
of violations, based on HVAC component type, HVAC system and
size- and capacity-related properties

Type Amount

fso:HeatExchanger 0
fso:Pipe 2
fso:Duct 2
fso:Elbow 0
fso:Transition 0
fso:Tee 0
fso:Fan 0
fso:Pump 0
fso:AirTerminal 0
fso:SpaceHeater 3
fso:Damper 0
fso:Valve 0
fso:System 32
fso:Port 251
fso:Flow 0
fpo:Property 82
Total 372

violates the SHACL constraint type sh:MinCountConstrain-1090

Component and throws the message “A return system must
contain at least one component”.

Table 6: Results of the first conformance check, showing the first two
results of fso:System violations in details

ID Constraint type Description

inst:5eb8aa6a-
0ed0-4fea-b226-
dd7fa9ae035e-
0019ec8a

sh:MinCountCon-
straintCompo-
nent

A return sys-
tem must have
at least one
component

inst:98e9914f-
25c6-4c43-a0fb-
912eba89c13d-
0019dbff

sh:MinCountCon-
straintCompo-
nent

A supply sys-
tem must have
at least one
component

All 32 violations were corrected in the data graph by
performing the SPARQL update query shown in Appendix
C directly in the Jena Fuseki Server. The query deletes all1095

fso:SupplySystem and fso:ReturnSystem instances that
lack the predicate fso:hasComponent.

The remaining violations were corrected manually in
the BIM model, parser, and data graph, which results in
an empty validation table. A blank validation table at this1100

stage indicates that the data graph conforms, and we have
completed step 2 of the process illustrated in Figure 10.

5.2.3. Hydraulic calculation and second conformance check

Performing the hydraulic calculation on Frederiksberg
Skole took 5.4 seconds. The violation results of the second1105

conformance check are shown in Table 7. It can be seen
that instances of fso:Pipe are violating the HVAC rule
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model 14 times, and the total number of violations in step
3 of the process illustrated in Figure 10 is 14.

Table 7: Results of performing the second conformance check, show-
ing the amount of violations, when the hydraulic results are added
to the data graph

Type Amount

fso:HeatExchanger 0
fso:Pipe 14
fso:Duct 0
fso:Elbow 0
fso:Transition 0
fso:Tee 0
fso:Fan 0
fso:Pump 0
fso:AirTerminal 0
fso:SpaceHeater 0
fso:Damper 0
fso:Valve 0
fso:System 0
fso:Port 0
fso:Flow 0
fpo:Property 0
Total 14

Clicking on fso:Pipe in the first conformance checking1110

table in the client will display Table 8. The table displays
the violation details within the category of fso:Pipe. While
the GUI of the Semantic HVAC Tool displays the violation
details of all 14 violations, Table 8 is limited to the first
two violations. The first result indicates that the instance1115

inst:745522df... is violating the SHACL constraint
type sh:SPARQLConstraintComponent. The message it
throws indicates that the pressure drop of the fpo:Pipe

instance is exceeding 100 Pa/m.

Table 8: Results of the second conformance check, displaying the first
two results of fso:Pipe violations in detail after running the hydraulic
calculation

ID Constraint
type

Description

inst:745522df-
9a78-4732-
8b22-
f56765e86201-
002bec43

sh:SPARQL-
Constraint-
Component

The pressure
drop of a pipe
should not
exceed 100
Pa/m

inst:745522df-
9a78-4732-
8b22-
f56765e86201-
002bec25

sh:SPARQL-
Constraint-
Component

The pressure
drop of a pipe
should not
exceed 100
Pa/m

In the GUI the user can implement the correction of1120

all 14 violations automatically. If the corrections are im-
plemented, the violations will be removed from Table 7,
and the total number of violations will be decreased to 0.

The violations at this stage were corrected automatically
in this way, which resulted in an empty validation table.1125

A blank validation table at this stage indicates that the
data graph conforms, and we have completed step 3 of the
process illustrated in Figure 10.

5.2.4. Flow-moving device capacity calculation and second
validation1130

Since we have performed the rule execution and hy-
draulic calculation, we are now ready to calculate the ca-
pacity of each flow-moving device represented in the data
graph. The results of the flow-moving device calculation
are shown in Table 9. It took 87 seconds to calculate the1135

total amount of flow rate and pressure for each flow-moving
device using three SPARQL queries and to display the re-
sults in the flow-moving device table. Two fans and one
pump are shown in Table 9 as flow-moving devices. Ta-
ble 9 provides the component ID, flow rate, and pressure1140

for each fso:Fan and fso:Pump. For example, it shows
that the instance inst:0fc738e3... of type fso:Pump

has a total flow rate of 0.84 L/s and a total pressure of
16867 pascal. The fan pressure includes the ductwork, air
terminal, and AHU pressure drop. Using this informa-1145

tion, correctly sized fans and pumps can be selected from
manufacturers product catalogues.

Table 9: Flow-moving device results showing the type of each flow-
moving device, its component ID, flow rate and pressure.

Type Component ID Flow
rate
[L/s]

Pressure
[Pa]

fso:Fan inst:36aec977-8efa-403c-
b1e6-3b29521aac43-
002f6bf5

7943 724

fso:Fan inst:f4ad7dcb-2875-4fe5-
be51-f41510b75979-
002f583e

8124 822

fso:Pump inst:0fc738e3-3eb1-4344-
b913-b3883e4083b0-
0033212a

0.84 16867

6. Discussion

This section describes the achievements, limitations,
and future work.1150

6.1. Achievements

This paper shows how an ontology can be extended,
constructed and aligned from scratch to represent the ca-
pacity and size-related properties of HVAC systems and
their components. We also demonstrated how separate1155

and lightweight ontologies such as BOT, FSO and FPO
can be interconnected to represent the building, its services
and their relationships in a modular way. Moreover, we
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developed a set of constraints to increase the data quality
of BIM models within the HVAC domain. We developed1160

the Semantic HVAC tool and applied it to a real-world
building to demonstrate the feasibility of expressing and
conforming an HVAC model. We have created a reliable
data model to perform hydraulic calculations and design-
ing the capacity of flow-moving devices. Considering the1165

time spent on conformance checking, (re-)sizing and qual-
ity control in the industry, this study implements techni-
cal solutions and demonstrates a path towards better data
quality in BIM models, time savings due to computeriza-
tion and increased transparency.1170

6.2. Limitations

6.2.1. Logical complexity

Schwabe et al. [33], Oraskari et al. [58], and Hagedorn
and König [56] applied a reasoner to perform an automatic
rule check. In the same way, we used a SHACL inference1175

rule to automatically increase the diameter of a pipe when
the pressure in the pipe exceeded 100 Pa/m. Although
the SHACL component could generate the new data, it
could not delete the old data. SHACL inferencing rules
can only infer new knowledge. We implemented a sepa-1180

rate SPARQL query in the Semantic HVAC Tool to delete
the existing data after the SHACL inferencing rule was
performed. In any web tool, spreading logic this way will
increase its logical complexity.

6.2.2. Query efficiency1185

The rule execution is performing well since it took only
3.1 seconds to validate The HVAC rule model consisting of
36 shapes and 122 constraints against Frederiksberg Skole
with 369054 triples. In contrast, it took 87 seconds to cal-
culate the total pressure and flow rate of each flow-moving1190

device, represented in the data graph using three SPARQL
queries. Two of the SPARQL queries have a Filter Not
Exists statement, which is responsible for the slow query
performance. Using the Filter Not Exists statement, we
iterate through all HVAC components in the graph and re-1195

turn only those with ports that belong to the same HVAC
system. Iterating through all HVAC components and their
ports slows down the query efficiency. This could be im-
proved by replacing the Filter Not Exists statement.

6.2.3. Abstraction level of HVAC components1200

FSO is limited to eight high-level HVAC components
and 19 medium-level HVAC components. In practice, it is
possible to subdivide FSO further. For example, a pump
can be subdivided into centrifugal pumps, positive dis-
placement pumps, etc. There are also several levels of1205

centrifugal pumps. To retain FSO as a lightweight ontol-
ogy we did not nest further.

6.2.4. Geometry-based constraints

The data graph and shape graph we developed in our
research do not represent HVAC component geometry and1210

its geometry-related properties nor validate geometry-based
constraints, such as separation distances between HVAC
components and components from other domains or ser-
vice distances, such as structural components. The de-
livery of BIM models with incorrect separation and ser-1215

vice distances between HVAC components from the de-
sign phase to the construction phase is a common problem
affecting a building project’s economy and schedule and
should therefore be a focal point in further development.J

6.3. Future work1220

The proposal for future work in this paper can be di-
vided into three steps.

A literature review of geometry-related ontologies should
be conducted first. If a sufficient geometry-related ontol-
ogy doesn’t exist, an existing one should be extended, or1225

a new one should be developed to describe the geometry
and the relation between geometries.

Secondly, to represent separation and service distances
for HVAC components, the geometry-related ontology shou-
ld be interconnected with BOT, FSO, and FPO.1230

Lastly, a set of geometry-based constraints should be
added to the HVAC rule model and validated against the
data graph.

7. Conclusions

This paper presents a demonstration environment to1235

represent and validate the composition of HVAC compo-
nents, their systems, and their capacity and size-related
properties using semantic web technologies. This paper
aimed to:

1. Extend FSO to support an alignment with the pro-1240

posed FPO ontology.

2. Propose the FPO ontology to represent HVAC com-
ponents’ capacity and size-related properties.

3. Propose a rule model for the HVAC domain.

4. Produce a demonstration environment to show the1245

conformance of an HVAC model.

5. Use the demonstration environment to show how
FPO and the HVAC rule model can support the de-
scription and validation of hydraulics in HVAC com-
ponents and the capacity of HVAC components.1250

We extended FSO with three classes and four prop-
erties related to the connectivity between ports and flu-
ids. This made it possible to describe the relationship
between HVAC components, their flow ports and the fluid
being transported in three ways and aligned with FPO. We1255

also extended FSO to represent 19-medium level compo-
nent types. We developed FPO to represent the size- and
capacity-related properties of HVAC components. FPO
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has a Description Logic expressivity of ALRF(D) and con-
tains 50 classes, 50 object properties and 6 data properties.1260

Moreover, we developed an HVAC rule model that re-
stricts the composition of HVAC components, their sys-
tems, and their size- and capacity-related properties. The
rule model consists of 36 shapes and 122 constraints.

A four-step process and the Semantic HVAC Tool were1265

developed to demonstrate how a real-world building model
can be represented, validated, and used to compute hy-
draulic calculations and design the capacity of a flow-moving
device. Frederiksberg Skole consists of 369054 triples and
was used as the real-world building model. We managed to1270

perform conformance checking twice. The first rule execu-
tion resulted in 372 constraint violations, and the second
resulted in 14 constraint violations. These rule violations
were fixed both manually and automatically. Finally, using
the conformed model, we performed hydraulic calculations1275

and used the results to design the capacity of two fans and
a pump, which were represented in the real-world building
model.
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Appendix A. Mapping between Flow Properties
Ontology (FPO) and1550

Brick

Table A.10: Alignments between FPO and Brick.

owl:Class
owl:ObjectProperty

rdfs:subClassOf
rdfs:subPropertyOf
owl:equivalentClass

fpo:hasDesignCoolingPower brick:coolingCapacity
fpo:hasVolume brick:volume

Appendix B. Querying fso:Pump pressure

1 SELECT ?pump (MAX(?sumOfSupplyPressureDrop +

?sumOfReturnPressureDrop +

?terminalPressureDropValue) AS ?pressure)

↪→

↪→

2 WHERE {

3 {

4 SELECT ?pump ?terminal ( SUM(?supplyValue) AS

?sumOfSupplyPressureDrop)↪→

5 WHERE {

6 ?pump a fso:Pump .

7 VALUES ?terminalType {fso:HeatExchanger

fso:SpaceHeater}↪→

8 ?terminal a ?terminalType .

9 ?supplySystem fso:hasComponent ?pump .

10 ?supplyComponent fso:feedsFluidTo+ ?terminal .

11 ?supplySystem fso:hasComponent ?supplyComponent .

12 ?supplySystem a fso:SupplySystem .

13 ?supplyComponent fso:hasPort ?supplyPort .

14 ?supplyPort fpo:hasFlowDirection ?flowDirection .

15 ?flowDirection fpo:hasValue "Out" .

16 ?supplyPort fpo:hasPressureDrop ?pressureDrop .

17 ?pressureDrop fpo:hasValue ?supplyValue .

18 FILTER NOT EXISTS {

19 ?supplyPort fso:suppliesFluidTo ?connectedPort .

20 ?connectedComponent fso:hasPort ?connectedPort .

21 ?connectedComponent fso:feedsFluidTo+ ?terminal .

22 ?connectedComponent a fso:Tee .

23 }} GROUP BY ?pump ?terminal

24 }

25 {

26 SELECT ?pump ?terminal ?terminalPressureDropValue

?sumOfReturnPressureDrop↪→

27 WHERE {

28 ?terminal fso:hasPort ?port .

29 ?port fso:returnsFluidTo ?anotherPort .

30 ?port fpo:hasPressureDrop ?pressureDrop .

31 ?pressureDrop fpo:hasValue

?terminalPressureDropValue .↪→

32 {

33 SELECT ?pump ?terminal ( SUM(?returnValue) AS

?sumOfReturnPressureDrop)↪→

34 WHERE {{

35 ?pump a fso:Pump .

36 VALUES ?terminalType {fso:HeatExchanger

fso:SpaceHeater}↪→

37 ?terminal a ?terminalType .

38 ?supplySystem fso:hasComponent ?pump .

39 ?terminal fso:feedsFluidTo+ ?returnComponent

.↪→

40 ?returnSystem fso:hasComponent

?returnComponent .↪→

41 ?returnSystem a fso:ReturnSystem .

42 ?returnComponent fso:hasPort ?returnPort .

43 ?returnPort fpo:hasFlowDirection

?flowDirection .↪→

44 ?flowDirection fpo:hasValue "Out" .

45 ?returnPort fpo:hasPressureDrop ?pressureDrop

.↪→

46 ?pressureDrop fpo:hasValue ?returnValue .

47 }} GROUP BY ?pump ?terminal

48 }}}} GROUP BY ?pump

Listing 5: A SPARQL query to calculate the pressure of each
fso:Pump
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Appendix C. Deleting systems, which doesn’t have
any components

1 DELETE {

2 ?system a ?systemType .

3 ?system ?systemPred ?systemObj .

4 ?system fso:hasFlow ?flow .

5 ?flow ?flowPred ?flowObj .

6 ?flow fpo:hasTemperature ?temperature .

7 ?temperature ?tempPred ?tempObj

8 }

9 WHERE {

10 VALUES ?systemType {fso:ReturnSystem fso:SupplySystem}

?system a ?systemType .↪→

11 ?system ?systemPred ?systemObj .

12 ?system fso:hasFlow ?flow .

13 ?flow ?flowPred ?flowObj .

14 ?flow fpo:hasTemperature ?temperature .

15 ?temperature ?tempPred ?tempObj

16 FILTER NOT EXISTS {?system fso:hasComponent ?component}

.↪→

17 }

Listing 6: A SPARQL update query to remove all fpo:SupplySystem
and fpo:ReturnSystem, which is missing the predicate
fso:hasComponent from the data model
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