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Abstract. In recent years, knowledge graphs have been considered pyramids of interconnected data enriched with semantics
for complex decision-making. The potential of knowledge graphs and the demand for interpretability of machine learning (ML)
models in diverse domains (e.g., healthcare) have gained more attention. The lack of model transparency negatively impacts
the understanding and, in consequence, interpretability of the predictions made by a model. Data-driven models should be em-
powered with the knowledge required to trace down their decisions and the transformations made to the input data to increase
model transparency. In this paper, we propose InterpretME, a tool for fine-grained representations in a knowledge graph, of the
main characteristics of trained machine learning models. They include data- (e.g., features’ definition and SHACL validation)
and model-based characteristics (e.g., relevant features and interpretations of prediction probabilities and model decisions). In-
terpretME allows for defining a model’s features over knowledge graphs (KGS) and relational data in various formats, including
CSV and JSON; SHACL states domain integrity constraints. InterpretME traces the steps of data collection, curation, integra-
tion, and prediction; it documents the collected metadata in the InterpretME KG. InterpretME is publicly available as a tool; it
includes a pipeline for enhancing the interpretability of ML models, the InterpretME KG, and an ontology to describe the main
characteristics of trained ML models.

Keywords: Interpretability, Knowledge Graphs, Machine Learning Models, SHACL, Ontologies

1. Introduction

Interpretability is the degree to which humans can understand the decisions made by computational frameworks.
Specifically, in Artificial Intelligence (AI), the higher the interpretability of predictive models, the easier for hu-
mans to understand why a model makes certain decisions. The recent advancements and complexity of machine
learning methods have demonstrated their success in forecasting complex problems (e.g., disease diagnosis or pro-
gression [1, 2]). Unfortunately, they are often opaque and do not offer interpretations for their predictions, and it
is not always possible to comprehend the results. Interpretable predictive models have rapidly become a relevant
problem [3]. Nevertheless, although various tools aim to interpret the algorithmic decisions of ML models [4, 5],
they are incapable of capturing the knowledge required to translate a model’s insights into the application domain.
On the contrary, KGs encode data and knowledge; they, together with domain ontologies (e.g., ML Schema [6]),
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represent building blocks for increasing the understanding of the behavior and effects of a predictive model.
Our Tool: we propose an analytical tool, named InterpretME, for tracing and explaining the predictive models
built over data collected from KGs. InterpretME implements a set of validating integrity constraints that provide a
meaningful description of a target entity of a prediction model, and its main properties. InterpretME is designed to
work with both knowledge graphs (accessible via Web interfaces, e.g., SPARQL endpoints), and datasets in various
formats (e.g., CSV or JSON). InterpretME represents as factual statements all what is collected during the process
of training a ML model and its interpretation; the InterpretME KG integrates these statements. To retrieve data for
the predictive pipeline, the user must provide either a SPARQL endpoint or the path to a dataset. If the data is re-
trieved from KGs, InterpretME can validate constraints expressed in SHACL, align the InterpretME KG to the input
KGs, and execute federated queries. On the other hand, in input data is collected from files, a user can still explore
interpretations with the InterpretME KG. The latest version of InterpretME is customized for supervised machine
learning models (e.g., decision trees and random forests) and interpretable tools (e.g., LIME [5]). InterpretME is
publicly available as a resource in GitHub1, Zenodo2, and in PyPI3. We empirically evaluate InterpretME in real-
world KGs regarding execution time, interpretation quality, and traceability of target entities. The observed results
reveal the key role of Semantic Web technologies in the interpretation of the outcomes of predictive models.

The rest of the paper is structured as follows: Section 2 describes the main concepts and motivates our work.
Section 3 defines the InterpretME architecture, while Section 4 reports the results of our experimental studies.
Section 5 presents the main characteristics of InterpretME as a resource. Section 6 discusses the state of the art, and
our conclusions and future work are outlined in Section 7.

2. Preliminaries and Motivation

2.1. Main Concepts

2.1.1. Predictive Modeling Frameworks.
Predictive Modeling comprises methods to forecast future outcomes based on data encoding what has happened

in the past (e.g., historical data) and what is currently happening (e.g., current data). Predictive modeling resorts to a
variety of models and algorithms (e.g., random forest, gradient boosted model or decision trees) to solve predictive
problems (e.g., classification or outlier detection) [7]. Despite the large spectrum of mature models and well-defined
problems, predictive modeling is a complex task that requires user expertise in the domain context and modeling.
De Bie et al. [3] conceptualizes predictive modeling in four stages, as depicted in Figure 4.

a) Data Engineering comprises the tasks of acquiring, organizing, curating, and preparing data for prediction
modeling. b) Data Exploration includes the understanding of an application domain, and the interpretation of miss-
ing values, integrity constraints, and data structures. c) Model Building involves the selection of the predictive model
(e.g., machine or deep learning), target function, hyperparameters, and relevant features. d) Exploitation covers the
transformation of the predictions into the decisions on the application domain.

Predictive modeling complexity and the mandatory requisite of knowledgeable users motivate automated tech-
niques for facilitating the implementation of the stages in Figure 4. De Bie et al. [3] identify three forms of automa-
tion: i) Mechanization is used in well-known tasks that can be performed algorithmically without human interven-
tion. Functions and modules, for example, can be used to perform tasks such as clustering algorithms and standard-
izing table values. Packages for performing such operations are available as a library that can be easily integrated
into any project. ii) Composition is performed on a series of tasks that are implemented as workflows in high-level
programming languages. For example, algorithm selection, hyperparameter optimization, model selection, and so
on fall under the stage of Model Building, which is covered in Composition. iii) Assistance implemented to enhance
interpretability and user efficiency by presenting visualizations, prediction scores, and explanatory model decisions.

1https://github.com/SDM-TIB/InterpretME
2https://doi.org/10.5281/zenodo.7684228
3https://pypi.org/project/InterpretME/

https://github.com/SDM-TIB/InterpretME
https://doi.org/10.5281/zenodo.7684228
https://pypi.org/project/InterpretME/
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This includes constantly monitoring what humans are doing during the data science process so that an automated
assistant can identify inappropriate choices and make appropriate recommendations.

Current developments in automation have mainly impacted the stages of Model Building and Exploitation. In
particular, Automated Machine Learning (AutoML) systems (e.g., AutoML4 and AutoWeka [8]) successfully im-
plement mechanization, and can automatize the processes of model and feature selection, and the optimization of
the hyperparameters and target functions. Furthermore, interactive tools like RapidMiner5, the Local Interpretable
Model-agnostic Explanations (LIME) framework [5], and SHapely Additive exPlanations (SHAP) [4] provide assis-
tance by reporting explanations of a model’s results. Specifically, LIME relies on local surrogate models to explain
the prediction of each entity of a test dataset. It computes, for the tested entities, the feature contribution for each
target class and the prediction probability. In general, LIME is independent of the original algorithm given to the
model and works locally to provide explanations for the prediction relative to each instance. LIME tries to fit the
local model using sample data points that are similar to the instance being explained.

2.1.2. Knowledge Graph Frameworks.
The Semantic Web [9] aims at humans and machines working cooperatively in data exchange. Technologies

capable of encoding semantics have been defined to achieve this goal. One of these technologies is the Resource
Description Framework (RDF) [10]; the W3C standard for publishing and exchanging data over the web. An RDF
graph G = ⟨VG , EG⟩ is a directed graph with labeled edges [11]. The nodes represent subjects and objects of RDF
triples, while predicates correspond to the labels of edges between nodes. We will use the terms RDF graph and
knowledge graph [12] interchangeably. In the context of machine learning, a knowledge graph [13] can be used to
store and reason about the outcome of a machine learning model.

SPARQL [14] is the W3C recommendation language to query RDF graphs. SPARQL 1.1 [15] provides the SER-
VICE clause and allows for specifying a federated query over various RDF graphs accessible via SPARQL end-
points. However, usually, SPARQL endpoints prohibit using these clauses. Federated query engines offer the possi-
bility to answer federated queries without the need to know from where parts of a query will be answered [16].

The Shapes Constraint Language (SHACL) [17] is the W3C recommendation language to define integrity con-
straints over RDF data. SHACL integrity constraints are expressed in RDF and modeled as a network of shapes,
called shape schema. A shape consists of i) a definition of the target; usually an RDF class or set of nodes,
and ii) a set of constraints that are imposed over the instances of the target. Constraints can also link shapes to
each other, hence, a shape network. An RDF graph’s entity that matches the target definition of a shape, satis-
fies the shape if it validates all the constraints of the shape; the problem is, in general, intractable [18]. How-
ever, algorithms have been proposed and implemented to validate tractable SHACL fragments [19, 20] efficiently.

Fig. 1.: InterpretME KG shows an instance of a target entity high-
lighted in light green. This entity contains several key features high-
lighted in yellow, including hyperparameters, LIME and SHACL.

Definition 2.1 (InterpretME KG). An InterpretME KG is a
heterogeneous graph where each node and edge is assigned
to a type, i.e., InterpretME KG = (V , E, L, T ), where: i) V
represents the set of nodes, where each node v ∈ Vi is asso-
ciated with a type Ti(v) (i.e., Classes in Figure 2); ii) E is the
set of edges, where each edge l ∈ E connects two nodes of
different types, i.e., T (v) ̸= T (u); iii) L represents a set of
directed edge labels (i.e., Properties in Figure 2); and iv) T
represents the set of entity types (i.e., Classes in Figure 2),
where each entity type Ti is associated with set of entities Vi.

The target entity is a specific node in Vi of the input KG,
which is of particular interest, and the goal might be to pre-
dict the properties of that node based on the local context in the knowledge graph. For instance, Figure 3a demon-
strates the classification task of a lung cancer patient being positive for biomarker ALK. In this case, the target

4https://www.automl.org/
5https://rapidminer.com/

https://www.automl.org/
https://rapidminer.com/
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ML Schema
Run

Implementation
ModelEvaluationClass

HyperParameter
executes
realizes
hasInput

implements
hasOutput

specifiedBy
hasValue

Properties

hasHyperParameter

(a) ML schema vocabulary

InterpretME
Class EndpointSPARQL

endpoint Properties hasEndpoint
Class CrossValidationCross

Validation Properties hasCrossValidation
Class PredictionClassesPrediction

Classes Properties hasClasses
Class FeatureDefinition

hasFeature
hasDefinition

Feature
Definition Properties

hasRun
Class TargetEntity

hasEntity
owl:sameAs

Entity
Alignment Properties

hasRun
Class ImportantFeatureImportant

Features Properties hasImportantFeature
Class PrecisionRecall

hasClasses
hasPrecision

hasRecall
hasF1score
hasSupport

Model
Evaluation Properties

hasRun
Class SamplingStrategySampling

Strategy Properties hasSampling

(b) InterpretME vocabulary

InterpretME
Class SHACLValidation

hasSHACLResult
hasSHACLSchema
hasSHACLShape

hasSHACLConstraints
hasConstraintID
hasSHACLIC

SHACL
Constraints Properties

hasRun
PredictionFeatures
FeaturesWeightsClass

TestedTargetEntity
hasEntity

hasFeatureWeight
hasFeature
hasWeight

hasGeneratedBy
hasInterpretedFeature

LIME
Interpreted
Features Properties

hasRun
PredictionInterpretabilityClass TestedTargetEntity

hasEntity
hasClass

hasPredictionProbability
hasGeneratedBy

hasRun

LIME
Prediction

Probablities Properties

hasEntityClassProbability

(c) InterpretME vocabulary

Fig. 2. Vocabulary Figure 2a shows the properties of the classes used to describe the machine learning models. Figure 2b and Figure 2c showing
the extension of ML schema used to describe the predictive model characteristics and also incorporates the SHACL validation results. The
required properties and classes are utilize for presenting the traced knowledge of the predictive models in the InterpretME KG.

entity will be a specific patient with known characteristics. The combination of the relationships and attributes of
a target entity in the input KG with the predicted relationships and attributes generated by the trained predictive
model provides more comprehensive interpretation of the knowledge represented in the InterpretME KG.

2.2. Motivating Example

The motivation for our work originates from the lack of automated assistance despite the great potential of in-
tegrating knowledge graphs with predictive modeling frameworks. Tracing and explaining the predictive models
built over data collected from the KGs in order to provide assistance is the main goal of our tool InterpretME. Even
though the state-of-the-art successfully developed automated machine learning systems, through mechanization and
composition, pipelines for predictive modeling are unable to generate human- and machine-readable decisions to
assist users and enhance their efficiency. Figure 3a depicts a predictive modeling pipeline, where an automated ma-
chine learning system (e.g., AutoML) is utilized for model and feature selection, and hyperparameters’ optimiza-
tion. Moreover, interpretable tools (e.g., LIME) provides interpretable results. Figure 3a illustrates the pipeline B ;
an input dataset A is collected from an RDF knowledge graph that integrates data about lung cancer patients. The
SPARQL query is used to extract features from the KG, describing the main characteristics of a lung cancer patient,
i.e., patient identifier (a.k.a. EHR is electronic health record of a patient), Gender, Age, cancer stage (a.k.a. Can-
cerStage), smoking habits (a.k.a. SmokingHabit), and lung cancer Biomarkers. Additionally, the dataset comprises
information about the cancer types of the relatives of the lung cancer patients; this information is maintained in the
features CancerType and FamilialDegree. The predictive task is a binary classification to predict if a patient will be
positive for the biomarker ALK or by any other biomarker. AutoML performs model selection and hyperparameter
optimization C ; based on AutoML recommendations, the random forests and decision tree models are selected
to implement the classification problem. Further, the interpretable surrogate tools LIME and Decision trees are uti-
lized to provide local interpretations of each patient in the test dataset. Decision trees yield the relevant features
which contribute to the model outcomes D . E depicts an exemplar entity where LIME determines a prediction
probability of 0.7 to belong to the target class ALK (i.e., Class 0), otherwise, 0.3 target class Others (i.e., Class 1).
LIME also identifies the top 10 relevant features for the target entity and assigns weights. These outcomes allow for
understanding the quality of the implemented pipeline. Nevertheless, when they are reported to oncologists, many
questions may still arise Figure 3b: Q1) Who is this patient interpreted by LIME? Q2) How does the Stages feature
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200 Male IV …. PDL1
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1083 Male IV …. ROS1

PREFIX lc:<https://LungCancer.eu/>

SELECT DISTINCT * WHERE {
     ?EHR  a lc:Patient ;
           lc:hasID  ?EHR .
     ?EHR    lc:gender ?Gender .
     ?EHR  lc:stage  ?Stage .
              :
     ?EHR    lc:biomarker ?Biomarker.}
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AutoML hyperparameter optimization
{
'classifier': 'DecisionTreeClassifier', 
'random_state': 123, 
'min_samples_split': 2, 
'min_samples_leaf': 1, 
'min_weight_fraction_leaf': 0.0, 
'ccp_alpha': 0.0, 'criterion': 'gini', 
'splitter': 'best', 'max_depth': 4
}

A

B

C D

E

(a) Motivating Example

Example Questions

Q1. Who is this patient interpreted by LIME?

Q2. How does the Stages feature contribute to classification of this patient in the class ALK?

Q3. Which other features are relevant for this classification?

Q4. Does this patient satisfy the domain integrity constraints?

Q5. What are the main characteristics of this patient?

(b) Example Questions

Fig. 3. Lung Cancer KG Example: Figure 3a depicts the motivation of a pipeline that integrates knowledge graphs and data-driven frameworks,
i.e., AutoML, Decision Trees, LIME. SPARQL queries are utilized to extract the data from KG, the classification task is to predict whether
a patient is positive for biomarker and Figure 3b illustrates the questions reported by domain experts regarding the issue in interpreting such
data-driven frameworks, shows that such frameworks still lack in terms of interpretability and traceability.

contribute to the classification of this patient in the target class ALK? Q3) Which other features are relevant for this
classification? Q4) Does this patient satisfy the domain integrity constraints? Q5) What are the main characteristics
of this patient? The oncologists gave us the feedback that InterpretME facilitates their understanding of the reasons
for the classification. Notably, the users comprehended better the answers to the queries over the InterpretME KG
and the Lung Cancer KG than simply the answers of LIME. Although, the user would have been able to interpret the
results produced by LIME, he/she would need to trace back these results to the original data properties to know if,
for example, the reported patient violates the domain constraints or not. For instance, ‘If a patient is given a drug for
the treatment, then he/she is cured’. InterpretME combines local explanations with knowledge graphs and SHACL
constraints to ensure traceability. In order to support our justification a user case study which will be discussed in
the later sections was also carried out. The assessment outcomes suggest that following the Linked Data principles
to document, in a KG, facts- about a target entity and its links to the KGs from where it is collected- contributes to
a better understanding of the decisions made by an ML model.

3. InterpretME: An Interpretable Pipeline for Predictive Modeling over Knowledge Graphs

3.1. Tracing Metadata in Machine Learning Pipelines

We aim to collect metadata during the different stages of a predictive model pipeline. Figure 4 shows, in a
pictorial view, the characteristics of the data collected towards the improvement of automation assistance. In the
data engineering stage, InterpretME captures metadata from the input KG (e.g., features’ definition, endpoint, and
target classes) and records the SHACL constraints, used for data validation. During the model building, sugges-
tions from AutoML systems can be considered. InterpretME traces the optimized hyperparameters and estimated
features’ relevancy, and records the model performance metric outcomes (e.g., precision) for a particular run.
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Fig. 4.: Tracing Metadata depicts traced meta-
data (e.g., model characteristics) of the trained
predictive models at each layer of the pipeline,
i.e., Mechanization, Composition, Assistance.

SHACL validation reports are stored too. InterpretME also exploits de-
cision trees and visualizes the validation report to enhance exploration.
Lastly, for exploitation, InterpretME aligns target entities with entities in
KGs, where the model’s features are defined. These facts allow for i) trac-
ing back the main properties of target entities in the input KG; ii) under-
standing the interpretability models’ results (e.g., LIME prediction prob-
abilities, interpreted features, and associated weights); and iii) checking
SHACL validation reports. InterpretME identifies uniquely all the col-
lected metadata. As a result, tracing the collected metadata enhances ex-
planations about an ML model behavior.

3.2. The InterpretME Architecture

Figure 5 depicts the InterpretME architecture. InterpretME is a tool for
fine-grained representations of the main characteristics of a trained predictive modeling framework. The architecture
of InterpretME deals with training the predictive models and collecting information generated as output of predictive
models (i.e., model accuracy, list of important features, prediction probabilities, and classified classes for each
instance), and provides assistance (Figure 4) to the user by tracing metadata to generate instances of the InterpretME
KG and executes federated queries on top of the InterpretME KG and the input KG to trace back, and answers
questions in Figure 3b. InterpretME takes a JSON file as input (i.e., endpoints of KGs, features’ definition, target
definition, SHACL constraints, sampling strategy, and class definition)6; a SPARQL query is generated based on the
feature definition given by the user and the query is used to retrieve the application domain data from the input KGs.
Users perform the step of providing a SPARQL endpoint or path to a dataset and its corresponding feature definition
in the input JSON file. InterpretME performs additional steps automatically, such as extracting data based on the
query, running predictive models, saving prediction results, and so on. The structure of the query enables entities
in the input KGs can be aligned to the identifiers of the instances in the ML models’ datasets. These alignments
facilitate the SHACL validation and federated query processing over the InterpretME KG and the input KGs.

1. InterpretME evaluates the SHACL constraints over the nodes of the input KGs and outputs a validation
report per constraint and target entity. These results indicate whether an entity validates or invalidates the constraints
defined by the user. This validation reports state the validity of data used by the predictive models7. Thus, SHACL
constraints are a crucial part of the InterpretME KG, to identify if a particular entity is violating the integrity
constraints, where True represents the particular entity is valid, inversely represented by False.

2. Data preparation includes transforming data collected from the input KGs into a form that can be used
in the training of a predictive model. Many machine learning models cannot handle categorical values directly,
InterpretME generates one hot-encodings using the Python library sklearn to transform the model’s categorical
features into binary features usable for predictive models8; it makes training data more expressive, and can be easily
re-scaled. Also, the target class can be defined in InterpretME. The Lung Cancer KG has many categorical features,
e.g., Age, Gender, Biomarker, CancerType, and FamilyDegree.

Sampling strategies (e.g., under-sampling or over-sampling) are also received to reduce data imbalance so that
the machine learning algorithms can perform better. Many machine learning algorithms, like decision trees, random
forests, and neural networks resort to class distribution in the training dataset to compute the probability of instances
in each class when the model will be used to make predictions. Model building can be done based on automated
systems’ selections (e.g., AutoML/OpenML) or based on a user’s preferences. Automated tools (e.g., Optuna [21])
can be used to generate optimized hyperparameters for predictive models. Here, the automated model 3. can also
perform stratified shuffle split cross-validation with random forest, and identify the relevant features; they are used
to train a decision tree classifier to predict and visualize the outcomes9.

6https://github.com/SDM-TIB/InterpretME/blob/v1.2.0/example/example_kg_french_royalty.json
7https://github.com/SDM-TIB/InterpretME/blob/v1.2.0/InterpretME/pipeline.py#L153-L185
8https://github.com/SDM-TIB/InterpretME/blob/v1.2.0/InterpretME/preprocessing_data.py#L57-L84
9https://github.com/SDM-TIB/InterpretME/blob/v1.2.0/InterpretME/classification.py

https://github.com/SDM-TIB/InterpretME/blob/v1.2.0/example/example_kg_french_royalty.json
https://github.com/SDM-TIB/InterpretME/blob/v1.2.0/InterpretME/pipeline.py#L153-L185
https://github.com/SDM-TIB/InterpretME/blob/v1.2.0/InterpretME/preprocessing_data.py#L57-L84
https://github.com/SDM-TIB/InterpretME/blob/v1.2.0/InterpretME/classification.py
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[[Q]]KG

dbo:Person a 
sh:NodeShape ;
sh:targetClass 
dbo:Person ;
sh:property[sh:
path dbo:spouse 
; sh:datatype 
xsd:string; 
sh:minCount 1].

<InputEndpoint>
rml:logicalSource
[rml:source 
"interpretme/files/endpoint.csv";
rml:referenceFormulation ql:CSV];
rr:subjectMap [
rr:template"http://interpretme.org/entity/
{run_id}_{endpoint}";
rr:class intr:Endpoint];
rr:predicateObjectMap [rr:predicate 
intr:hasEndpoint;
rr:objectMap [rml:reference "endpoint"]].

Traced Metadata

● Sampling Strategy
● One-hot Encoding
● AutoML

● Classification
● Precision
● Accuracy

SHACL constraint

…

KGs

Heterogeneous 
data sources

1. 2. 3. 4. 5. 6. 7.

InterpretME

PREFIX intr: 
<http://interpretme.org/vocab/>
PREFIX dbr: 
<http://dbpedia.org/resource/>
SELECT DISTINCT ?LIMEentity WHERE 
{
  ?entity a intr:TargetEntity .
  ?entity intr:hasEntity 
?LIMEentity.}

SELECT DISTINCT ?predicate ?value 

WHERE {

?entity owl:sameAs?sourceEntity .}

SERVICE <$$SPARQL_ENDPOINT_URL$$> 

{ ?sourceEntity ?predicate ?value 

}}

PREFIX lc:<https://LungCancer.eu/> 
SELECT DISTINCT ?EHR ?gender 
?Biomarker
WHERE {
?EHR1 a lc:LCPatient ;
           lc:hasID  ?EHR .
?EHR lc:sex ?gender .
?EHR lc:hasBio ?Biomarker .}

Fig. 5. The InterpretME Architecture. The input of InterpretME is either Knowledge graphs or datasets in formats, i.e., CSV or JSON. In
Mechanization layer, SHACL validation, data preprocessing, and AutoML are utilized. The Composition layer performs the predictive task,
and the interpretable tools like Decision trees and LIME are implemented for understanding the predictions. In Assistance layer, InterpretME
generates an InterpretME KG with the traced metadata of the trained predictive model, to provide users with more enhanced and reliable
interpretations. Generating and Exploiting the InterpretME KG involves RML mappings and Federated Query Processing.

4. Interpretation is utilized to enhance the understanding of the trained predictive model. Also, a visualization of
the decision tree can be obtained with associated constraints. This module provides more insights of a validated/in-
validated feature, and interpretable surrogate tools like LIME [5] (as in Figure 3a) yields the most relevant features
and local explanations list. They reflect the contribution of each feature to the prediction.

5. Knowledge graph creation is a module of InterpretME, where mapping rules are defined with the RDF
Mapping Language (RML) [22] using the data collected from the predictive models. RML triple map; it is composed
of rml:logicalSource, rr:subjectMap, rr:predicateObjectMap. The mapping rule component (1) states the logical
source using the term rml:logicalSource. (2) The rr:subjectMap element defines the class of subject. (3) The term
rr:predicateObjectMap establishes how the predicate intr:hasDefinition will be populated with the collected data.

6. SPARQL queries can be executed to explore the InterpretME results of a particular target entity. Users can
identify patterns and correlations between the given features and also perform statistical analysis of a particular
target entity. The InterpretME KG provides clarification and eases the interpretation of the model’s prediction of a
particular entity aligned with the SHACL validation results.

7. Federated query processing is utilized to query both the input KGs and the InterpretME KG. At this point,
the user is involved in executing federated SPARQL queries to gain more insights from the predictive model’s
decision. As a result, the advantage of comparing the predictive model’s characteristics in the InterpretME KG to
the characteristics of a specific entity in the input KGs is obtained. Mostly interpretable tools results are related to
the target entity in the dataset, which is hard to interpret and understand the characteristics of the target entity. Thus,
a user can trace back via query federation to interpret the results for a specific target entity with input characteristics
aligned with SHACL validation results. Exemplar queries are shown in InterpretME GitHub repository10.

3.3. Running example

To exemplify different components of the InterpretME architecture, we have used the following running example
( Figure 6). The prerequisites to run an example of the French Royalty KG with InterpretME is available11.

10https://github.com/SDM-TIB/InterpretME/tree/v1.2.0/example/queries/template
11https://github.com/SDM-TIB/InterpretME/v1.2.0/example/InterpretME_french_royalty.ipynb

https://github.com/SDM-TIB/InterpretME/tree/v1.2.0/example/queries/template
https://github.com/SDM-TIB/InterpretME/v1.2.0/example/InterpretME_french_royalty.ipynb
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Traced Metadata from input configuration

Input KG

……….

Mechanization
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d
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Fig. 6. Running example demonstrates the InterpretME internal architecture over the Lung Cancer KG. At each stage, all that InterpretME traces
about the features’ definition, SHACL validation, and the predictive model characteristics are shown as an RDF graph. InterpretME integrates
all these traced metadata to generate the InterpretME KG.

a (Lung Cancer KG). This KG integrates the features’ and class target definitions about lung cancer patients;
their constraints are defined in terms of SHACL. Features’ definitions are classified into independent and dependent
variables. Independent variables are features that the user selects for analyzing the model’s prediction. On the other
hand, a dependent variable is a feature under investigation that is expected to change in response to changes in the
independent variable. They are used later in the predictive modeling pipeline and are defined as follows:

{
"Endpoint": "https://example_lungcancer/sparql",
"Index_var": "EHR",
"Independent_variable": {
"Gender": "?EHR <https://LungCancer.eu/vocab/sex> ?Gender."

},
"Dependent_variable": {
"Biomarker": "?EHR <https://LungCancer.eu/vocab/hasBio> ?Biomarker."

}
}

where EHR is the electronic health record of a patient, the first part states the feature name (i.e., Gender), and
the later part (i.e., <https://LungCancer.eu/vocab/sex>) describes the feature in the KG. Figure 6 shows the traced
input configuration, i.e., features’ definitions, sampling strategies, class definitions, number of important features,
SPARQL endpoint that are represented in the form of RDF triples, later used for the InterpetME KG. In the current
running example Figure 6, the target class (Biomarker) is imbalanced (i.e., patient with target class ALK is 872
instances while a patient with Others as target class is 432). Therefore, the under-sampling technique12 is selected
for this use case to tackle the problem of imbalance.

b Considering our running example in Figure 6, the SHACL shapes represent integrity constraints. A SHACL
schema defines integrity constraints, used by InterpretME for validation results and for uncovering their impact on
a model’s decisions. Here, the "constraint": "Afatinib is not recommended for NSCLC EGFR negative (hasDrug)"
is applied over the extracted data from input KG. The above constraint states a medical protocol that Afatinib is a

12https://github.com/SDM-TIB/InterpretME/blob/v1.2.0/InterpretME/sampling_strategy.py

https://github.com/SDM-TIB/InterpretME/blob/v1.2.0/InterpretME/sampling_strategy.py
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drug that is not recommended for a patient having EGFR negative biomarker. Figure 6 depicts the traced metadata
about SHACL validation, i.e., EHR: 1501042 with EGFR positive satisfying the constraint, an entity alignment is
performed to trace original entity of input KG with SHACL validation results and predictive modeling pipeline.

c The preprocessed and sampled data with optimized hyperparameters is then fed to the automated tools for
model building (e.g., ensemble learning) to perform predictive task. Here, the automated model can also perform
stratified shuffle split cross-validation with models like Random forest, AdaBoost classifier, Gradient boost classi-
fier, and identify the relevant features; they are used to train a decision tree classifier to predict and visualize the
outcomes13. InterpretME stores the metadata about the evaluation of the model for a particular run.

d The trained predictive model in c can be visualized by means of Decision trees; they can be visualized with
SHACL constraints to observe which subtree validates or invalidates the protocol14. To understand the predictive
model’s outcomes, InterpretME resorts to interpretable tools, e.g., LIME, to provide a local explanation of each
entity. LIME provides the prediction probability of the target class ALK (i.e., Class 0) as 0.65 and target class Others
(i.e., Class 1) as 0.35. The relevant features list is often used to illustrate which features may cause a change in the
prediction of the trained model. LIME results are also represented in the InterpretME KG.

e Traced metadata can be semantified using RML mappings. RML mapping rules specify the role of transform-
ing collected metadata into RDF triples for the InterpretME KG15. The unified schema of InterpretME represents
the meaning of data in the InterpretME KG16. The following RML syntax is used to define one of the mapping file:

<InputEndpoint>
rml:logicalSource [ rml:source "interpretme/files/endpoint.csv";

rml:referenceFormulation ql:CSV; ];
rr:subjectMap [
rr:template "http://interpretme.org/entity/{run_id}_{endpoint}";
rr:class intr:Endpoint ];

rr:predicateObjectMap [
rr:predicate intr:hasEndpoint;
rr:objectMap [ rml:reference "endpoint" ] ].

SDM-RDFizer [23] integrates entities collected during the training of a ML model, into the InterpretME KG as
factual statements. A user can query factual statements of the InterpretME KG to compute statistics about the results
of a data-driven pipeline. In the appendix 7 of the paper, we have included some queries to be executed on the
SPARQL endpoint of InterpretME whose answers provide insights into the behavior of the trained ML models.
RML provides a declarative definition of the classes and properties of the InterpretME ontology and ML schema to
the collected entities. As a result, the InterpretME KG comprises machine and human statements that document the
trained ML behavior. The generated RDF data is uploaded to an instance of Virtuoso. Entities in the InterpretME KG
and the input KGs are aligned to ensure traceability. InterpretME can accept input from multiple KGs and therefore
the process of entity alignment as shown in the figure Figure 7 plays a vital role. The federation of KGs requires
the identification of a specific entity, as well as the source of the entity. As a result, the URI of an entity in the
input KGs differs from the URI in the InterpretME KG. The InterpretME federated query engine allows for tracing
back the ML models’ results, i.e., main properties of target entities, LIME prediction probabilities, and SHACL
validation reports. InterpretME provides an advantage of analyzing target entities not only based on ML models but
also according to how all the properties that characterize the entity. The short tutorial is available to demonstrate the
use of InterpretME in the example17 of the GitHub repository.

4. Empirical Evaluation

We evaluate InterpretME with the goal of answering the following research questions: RQ1) What is the impact
of integrating predictive modeling frameworks with KGs to enhance interpretability? RQ2) Can InterpretME trace

13https://github.com/SDM-TIB/InterpretME/blob/v1.2.0/InterpretME/classification.py
14https://github.com/SDM-TIB/InterpretME/tree/v1.2.0/images
15https://github.com/SDM-TIB/InterpretME/tree/v1.2.0/InterpretME/mappings
16https://github.com/tibonto/InterpretME
17https://github.com/SDM-TIB/InterpretME/blob/v1.2.0/example/InterpretME_french_royalty.ipynb

https://github.com/SDM-TIB/InterpretME/blob/v1.2.0/InterpretME/classification.py
https://github.com/SDM-TIB/InterpretME/tree/v1.2.0/images
https://github.com/SDM-TIB/InterpretME/tree/v1.2.0/InterpretME/mappings
https://github.com/tibonto/InterpretME
https://github.com/SDM-TIB/InterpretME/blob/v1.2.0/example/InterpretME_french_royalty.ipynb
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decisions made by predictive models? RQ3) To which extent does the InterpretME KG satisfy standard quality
criteria? RQ4) How much is the observed overhead at each stage of InterpretME? The experimental settings utilized
to evaluate InterpretME are as follows:
Benchmarks. Table 1 presents our KGs in numbers. The French Royalty KG [24] is fully curated. For each person
in the KG, we added the class dbo:Person, the number of children, the number of predecessors, and triple-
related counts like the number of distinct predicates. Furthermore, we added the ground truth for the relationship
hasSpouse. Forecasting whether a member of the French Royalty has a spouse is our predictive task. We created
ten SHACL constraints of which some are inspired by the logical rules presented in [24], e.g., ‘if I have a child, this
child has another parent which is not me’. The other constraints follow a similar pattern, e.g., if a person has two
different parents, the parents are likely to be married. We use a private KG from the biomedical domain – The Lung
Cancer KG [25] – which integrates lung cancer patients mentioned as in Section 2. This KG includes information
describing the main characteristics of a lung cancer patient.The prediction task is a binary classification to predict
the biomarker of the patient, which can be ‘ALK’ or ‘others’. The SHACL constraints used are the medical protocols
that recommend when treatments should be prescribed according to a patient’s biomarkers; we defined four different
SHACL constraints stating that ‘EGFR negative’ patients should not take Afatinib or Gefitinib.
Machine Learning Models. InterpretME resorts to ensemble learning techniques to solve the previously described
prediction tasks. Random forests create multiple decision trees by bootstrapping datasets created from the KGs,
and randomly selecting a subset of variables at each step of the decision tree. A random forest generates the list
of relevant features iteratively with a stratified shuffle split cross-validator (5 fold-validation with training 70% and
testing 30%). A decision tree uses this list to train the predictive model. The generated classification decision tree
is easy to understand due to its visualization of the decision process. Accuracy without the random-forest stratified
shuffle split is 69% in the Lung Cancer KG predictive task and 95% in the French Royalty KG, but with our
approach, accuracy is increased to 77.50% and 96.17%, respectively.
Metrics. Execution Time: The time elapsed at each component of the pipeline is reported. The reported times
correspond to absolute wall-clock system time in seconds as reported by Python’s time.time() method. The
average execution time of five runs is reported. The experiments are run on a machine equipped with an Intel®

Core(TM)i7- 10850H at 2.71 GHz and 16 GiB RAM.

4.1. Degree Distribution of the InterpretME KG

In graph theory and complex networks, an entity’s degree (or the number of neighbors ignoring edges’ direction)
is defined as the number of relations with other entities. Increasing the degree of an entity expresses a richer, more
accurate view of the particular entity. Better context means better interpretability, not just volume. For instance, in
the predictive task about the patient positive for biomarker ALK. The predictive model states the decision of a par-
ticular target entity, and it is obscure how the decisions are been made, with just knowing the node of a patient and
the features. While InterpretME tries to increase more contextual edges of a patient node via annotating the other
contextual information and behavior about the patient (e.g., Validation) in the pipeline. In a nutshell, increasing the
degree of a node with more context makes not only human-understandable easier but also machine-readable. Inter-
pretME traces the entities of the target classes (e.g., ALK) defined as independent variables via SPARQL queries
over the input KGs. In the InterpretME KG, these entities are described in terms of metadata collected by Inter-
pretME components (e.g., hasInterpretedFeature, hasFeatureWeight, hasEntityClassProbability, hasPredictionProb-
ability, hasSHACLResult, hasSHACLConstraint). For instance, Figure 7 shows entity alignment. Given a predictive
task over the Lung Cancer KG, we know the main characteristics of a target entity lc:11315856 (i.e., LCPatient,
Age, smoking habit, biomarker) in the input KG as well the characteristics from the predictive model (i.e., predic-
tion, accuracy, relevant features, feature contribution, hyperparameter’s, model, target class), and also the knowl-
edge about the entity satisfying the domain constraint. The entity in the input KG (lc:11315856) is aligned with
the target entity via owl:sameAs. InterpretME utilizes Leibniz’s Inference Law [26], E[X := R] = E1, where E1
is the result of simultaneously replacing in E all the instances of xi ∈ X by the corresponding expression Ri ∈ R, In-
terpretME entails all the characteristics of the entity lc:11315856. Here, the outdegree of entity lc:11315856
is 6 in the input KG, while in the InterpretME KG is 11 with the traced metadata, while in the federation of the
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(a) Lung Cancer KG (b) InterpretME KG

(c) Combined KG

Fig. 7. Entity Alignment. Figure 7a shows a target entity lc:11315856 from the Input KG with the features, i.e., age, gender, smoking habit,
and biomarker. Figure 7b illustrates the InterpretME KG of a target entity (intr:11315856) with the traced metadata from the predictive
model. Figure 7c demonstrates the entity from the Lung Cancer KG is aligned with the target entity from the InterpretME KG via owl:sameAs.
The out-degree distribution of lc:11315856 is 6 in the input KG, 11 in the InterpretME KG, and goes to 17 in the Combined KG.

Fig. 8. Degree distributions of the entity targets in the French Royalty KG. The distribution in blue depicts the degrees of the target entities
semantically enhanced with InterpretME, while green shows their original degree distribution.

input KG and the InterpretME KG, the outdegree distribution increases to 17. Thus, more contextual edges are
represented in the Combined KG and provide a user with more detailed interpretations of the model’s decision.

Figure 8 depicts the degree distribution results of French Royalty KG; the average number of neighbors is With-
InterpretME: 27.19 (with a standard deviation of 6.13) and 11.39 (with a standard deviation of 5, 06) WithoutInter-
pretME. InterpretME increases the number of RDF triples that describe a target entity; a user can query these triples
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to explore the predictive model decisions. The InterpretME KG properties are retrieved. These values of degree dis-
tribution quantify the information gained for each target entity in terms of all that InterpretME traces. The execution
of queries 1 and 4 18 over the InterpretME KG retrieves the values of these properties for interpretME:Louis_XIV.
As a result of tracing the machine learning pipeline, the number of properties of interpretME:Louis_XIV (i.e., out-
degree) goes from 32 in the French Royalty KG to 55, and thus, the entity’s degree is increased. Based on these
outcomes, we can answer the RQ1), and InterpretME enhances the interpretability of a target entity dbr:Louis_XIV
and provide the user more contextual insights into the prediction task.

Table 1
Statistics about Input KG and InterpretME KG

Knowledge Graph #triples #entities #predicates #objects #triples /#entities

French Royalty
Input KG 31,599 3,439 133 4,390 9.18
InterpretME KG 245,981 30,914 152 35,622 7.96

Lung Cancer
Input KG 77,466,343 21,420,170 357 15,053,863 2.30
InterpretME KG 62,393 8,877 152 11,546 7.03

4.2. Traceability

We evaluate InterpretME in terms of the traceability of a target entity. Table 2 reports on the average number of
answers to the type of questions presented in our motivating example (Section 2). InterpretME efficiently traces the
target entity and provides the user with additional information about the prediction probability of the entity. Also, it
helps users to uncover relevant features of an entity that contribute to the prediction, with assigned weight distribu-
tion for the top-10 features. The federated query engine, DeTrusty [27], evaluates SPARQL queries to retrieve data
from the original KG, the InterpretME KG, or both. Instances in the InterpretME KG are linked to the entity in the
original KG via owl:sameAs. The KGs are accessible via SPARQL endpoints. In Table 2, the questions presented
in Section 2 are expressed as SPARQL queries over the two KGs. For the French Royalty KG, InterpretME models
LIME interpretations in terms of 10 RDF triples (on average), and the contribution of a given feature is documented
with 2 RDF triples on average for the binary classification task. Moreover, target entities satisfy the 10 domain in-
tegrity constraints, and the average number of main characteristics of the target entities in the French Royalty KG is
12.24. The average number of answers in the Lung Cancer KG is higher because a lung cancer patient is described
in more detail than a person in the French Royalty KG. Based on these outcomes, we can positively answer RQ2)
because InterpretME can translate back to the original KGs, the decisions made by the predictive models.

Table 2
Average Number of Answers per Target Entity to Questions from Figure 3a

Avg Answers in
ID Question

Lung Cancer KG French Royalty KG

Q1 Which is the target entity interpreted by LIME? 20.57 10.00

Q2 How does feature contribute to the classification of this entity? 2.05 2.00

Q3 Which other features are relevant for this classification? 11.65 4.47

Q4 Does this target entity satisfy the domain integrity constraints? 4.00 10.00

Q5 What are the main characteristics of the target entity? 46.28 12.24

18https://github.com/SDM-TIB/InterpretME/blob/v1.2.0/example/queries/french_royalty

https://github.com/SDM-TIB/InterpretME/blob/v1.2.0/example/queries/french_royalty
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Table 3
Evaluation Metrics

Metric Value Explanation Formula (in [28])
Accuracy Section 2.2.1

Synt. validity of RDF doc 1 RDF files are valid msynRDF(g)
Synt. validity of literals 1 Literals have a label that defines a range of possible values msynLit(g)

Semant. validity of triples 1 Literals are collected from input or can be measured msemTriple(g)

Trustworthiness Section 2.2.2
KG level 0.25 Automated data curation from structured data sources mgraph(hg)

Statement level 0.5 Provenance is traced m f act(g)
Unknown/empty values 0 Empty values are not indicated mNoVal(g)

Relevancy Section 2.3.1
Ranking of statements 0 Ranking is not useful in this context mRanking(g)

Ease of Understanding Section 2.4.1
Description of resources 1 Resources have label and comment mDescr

Labels in multiple lang 0 Labels are only available in English mLang(g)
RDF serialization 1 Serialization in Turtle muS er(hg)

Self-describing URIs 0.5 Partial use of self-describing URIs muURI(g)

Interlinking Section 2.5.3
Interlinking via owl:sameAs 1 Use of owl:sameAs for linking the InterpretME KG to the input KG mInst(g)

Components French Lung
Royalty KG Cancer KG

SHACL Validation 1.46 67.19
Data Curation 0.30 0.47
Model Training 3.14 4.22
Decision Trees 1.39 1.92
Constraint Visualization 0.01 0.01
LIME 58.09 20.18
Semantification 42.87 15.87

(a) Average execution time (secs.) for KGs per pipeline stage

Interpretations Avg. Response
LIME 6.23 / 10

InterpretME 8.17 / 10
ML knowledge 3.35 / 5
Interpretability Familiar (9/17)

(b) User study results (score values are high is better)

Fig. 9. Evaluation Figure 9a presents the impact of execution time in seconds at each stage of InterpretME pipeline. Figure 9b reports on a user
study conducted with 17 participants ages ranging from 20 to 45, on average the participants were familiar with the concept of Interpretability,
and the experience level of machine learning is 3.35 and the participants rated LIME interpretation 6.23, while InterpretME was rated with 8.17.

4.3. The Quality of the InterpretME Knowledge Graph in Numbers

This section answers RQ3) and reports the results of the evaluation of the InterpretME KG in terms of the quality
metrics proposed by Färber et al. [28]; four data quality categories are considered: i) Intrinsic category is indepen-
dent of the use case context; ii) Contextual category depends on the application context of a data consumer; iii) Rep-
resentational category quantities the form how information is available; and iv) Accessibility category determines
how data can be accessed. Table 3 depicts all the metrics by category from Färber et al. [28] to check the quality
of the InterpretME KG. They help the user to better estimate the pros and cons of InterpretME. Färber et al. [28]
propose extended quality parameters and categories (i.e, trustworthiness and interlinking). The scores for quality
metrics (Table 3) are assigned manually, following the scores’ definition by Färber et al. [28]. Since, the InterpretME
KG covers a new domain of structured data, the eloquence of several suggested criteria is still relatively low. How-
ever, we are optimistic that these values will be increased once real-world applications begin to use InterpretME.

4.4. Execution Time

This section describes Figure 9a and aims at answering RQ4), i.e., the overhead caused by each of the components
of InterpretME. The analysis of the execution time reveals the impact of different parameters on the performance of
the InterpretME steps. We have calculated the average execution time based on the two use cases, French Royalty
and Lung Cancer KGs by taking the average of five runs per use case. The French Royalty KG comprises RDF
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triples 31,599, while the Lung Cancer KG comprises 77,466,343 RDF triples (Table 1), i.e., the Lung Cancer KG
is 3.8 orders of magnitude larger than the French Royalty KG. The average execution time of the first component,
i.e., the SHACL validation, is 1.46 and 67.19 seconds, respectively. The second component – data curation – where
data is extracted and preprocessed to be given to the machine learning model, takes on average 0.30 and 0.47
seconds in the two use cases, respectively. The next component is training the model; the average execution time
is 3.14 and 4.22 seconds for the French Royalty KG and the Lung Cancer KG, respectively. Further, the decision
tree component, where the decision trees for the model are generated, takes an average 1.39 and 1.92 seconds,
respectively. For French Royalty, the number of target entities is slightly higher compared to the Lung Cancer KG.
Thus, using an interpretable tool (e.g., LIME), generating the interpretable results requires 58.09 and 20.18 seconds
in the use cases, respectively. Lastly, the semantic enrichment of the traced metadata takes 42.87 and 15.87 seconds
for the French Royalty KG and the Lung Cancer KG, respectively. The reported results are consistent with the fact
stated by Figuera et al. [20] that the SHACL validation is mainly impacted by the KG size and number of SHACL
constraints. The validation of the Lung Cancer constraints takes much longer than for the French Royalty, since
the Lung Cancer KG is much larger and the constraints used are more complex, e.g., we are using the concept of
linked shapes for the Lung Cancer KG. As a result, the ML pipeline execution time is also impacted, as well as the
generation of the InterpretME KG instances.

4.5. User Study

We report the results of a user study19 about interpretability in InterpretME. We aim to assess how each par-
ticipant understands the term interpretability. Further, we conduct a user experience evaluation of the framework
based on usability criteria. The goal is to answer the following questions: 1) Is it beneficial to integrate knowledge
graphs for interpretability? The possible answers are: i) the impact of knowledge graphs in interpretability; ii) with-
out knowledge graph is enough; iii) Maybe. 2) How clear is the notion of the interpretation from InterpretME on
an increasing scale from 1 − 10? This question aims to assess the conceptual and practical understanding of the
InterpretME KG. 3) Do we have a positive or negative attitude towards the tool? This question reveals the attitude
of participants towards InterpretME in terms of usability, reliability, and trustability. During a lecture of data man-
agement, we shared the overall 12 questions to 17 participants with the education ranging from the biomedical and
computer science students to professors. The vast majority of our participants had prior knowledge of ML. In the
first question, most participants believed that KGs play a significant role in the interpretability of ML models and
comply with the fact mentioned in [13]. The second question focuses on the benefit of the interpretation given by
the InterpretME KG. Almost all the participants (16/17) struggled in finding the interpretation belonging to which
target entity from LIME; the interpretability of LIME output was rated with an average of 6.23. In contrast, the
interpretability of InterpretME is placed with an average of 8.17. The third question focuses on assessing the usabil-
ity and effectiveness of InterpretME. We observed that participants did not understand the interpretations of LIME.
They rated InterpetME with a positive attitude, suggesting that the InterpretME KG may provide more insights
into a particular prediction. The participants familiar with machine learning and interpretability, better understand
LIME and InterpretME interpretations. These findings suggest that the interpretations generated from InterpretME
are machine-readable and understandable by humans.

5. InterpretME as a Tool

InterpretME is publicly available as a Python library on PyPI20. While the core of the pipeline is entirely new,
InterpretME reuses available tools from the community. InterpretME pipeline() receives a JSON file as a configura-
tion input from the user to extract all the features’ definition, SPARQL endpoints or Datasets, SHACL constraints,
target classes, and sampling strategies. Features are defined in the form of independent and dependent variables,
provided to the InterpretME pipeline to perform the prediction tasks. For the SHACL validation, InterpretME relies

19https://docs.google.com/spreadsheets/d/1UIwwmmOEbNtx-_IN8_5sPg_QzU5WwUXLRgZCowefLtI/edit?resourcekey#gid=836713689
20https://pypi.org/project/InterpretME/

https://docs.google.com/spreadsheets/d/1UIwwmmOEbNtx-_IN8_5sPg_QzU5WwUXLRgZCowefLtI/edit?resourcekey#gid=836713689
https://pypi.org/project/InterpretME/
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on Trav-SHACL [20] since it is capable of validating the shape schema against a SPARQL endpoint and scales
better compared to other approaches with the same capability. InterpretME provides pre-processing component for
data curation, optimize hyperparameters, and sampling strategy. Model building of InterpretME can provide binary
and multi-class classification with ensemble learning techniques. In model building, cross-validation and classifi-
cation report are obtained for a particular predictive model. Currently, InterpretME uses LIME [5] to create model
interpretations. The Mapping Language (RML) [22] defines the process of integrating the traced metadata into the
InterpretME KG; it is semantified using SDM-RDFizer [23] (version 4.5.5 [29]), an efficient RML-compliant engine
for KG creation. The RDF data is uploaded into an instance of Virtuoso 7.20.3233 representing the InterpretME
KG. The following pipeline() command executes the whole pipeline; including extracting data and metadata from
the input KGs, validating SHACL constraints, preprocessing the data, running predictive models, semantifying the
results, and populating the InterpretME KG:

from InterpretME import pipeline
results = pipeline(path_config=’./example.json’, lime_results=’./LIME’,

server_url=’endpoint of InterpretME KG’, username=’username to upload to InterpretME KG’,
password=’password to upload to InterpretME KG’)

The InterpretME ontology extends ML Schema [30]. ML Schema is considered a core vocabulary to deal with
machine learning algorithms; it can be used to address different algorithms, implementation, model evaluation, and
the input and output considered by the algorithms. The ontology represents relationships between machine learning
algorithms and their executions. ML Schema also deals with interoperability issues and allows reproducibility. In-
terpretME reuses 12 concepts in the mappings from ML Schema as shown in the Figure 2a. For instance, the classes
mls:Run, mls:Implementation, mls:ModelEvaluation, mls:HyperParameterSetting,
etc and the relations mls:hasInput, mls:hasOutput, mls:hasHyperParameter, etc demon-
strates the benefit to link machine learning algorithm results into linked data. InterpretME incorporates ad-
ditional functionality like validating SHACL constraints over the input KG intr:SHACLValidation,
intr:hasSHACLConstraint, intr:hasSHACLResult, etc, and interpreting the predictions of the
ML models intr:PredictionInterpretability, intr:hasPredictionProbability, etc
and many more demanded an extension to the ML Schema as shown in Figure 2b and Figure 2c. Following the FAIR
principles [31], the InterpretME ontology is publicly available on an instance of VoCoL21; it enables the publication,
management, and exploration of the ontology.

from InterpretME.federated_query_engine import configuration, federated
interpretme_endpoint = ’SPARQL endpoint of InterpretME KG’
input_endpoint = ’SPARQL endpoint of input KG’
config = configuration(interpretme_endpoint, input_endpoint)
query_answer = federated(input_query, config)

The data from the original KGs, as well as the InterpretME KG, can be queried using the federated query engine
DeTrusty (version 0.11.1 [27]). DeTrusty is based on MULDER [32], i.e., it uses semantic source descriptions dur-
ing decomposition and planning. Rohde [33] describes the vision of incorporating the SHACL validation result
into SPARQL query answers by executing the validation during query processing. While we are not providing an
engine fulfilling this vision, a similar outcome can be achieved when querying the original KG together with the
InterpretME KG since the SHACL validation result is part of it. InterpretME is a stand-alone framework that works
locally on individual systems, with multiple runs that can be combined into a single InterpretME KG to compare
interpretations. InterpretME comprises the following resources: i) the InterpretME pipeline enhancing interpretabil-
ity of machine learning models; ii) the InterpretME KG describing the predictive model characteristics; and iii) the
InterpretME ontology specifying the vocabulary for describing the main characteristics of trained predictive models.

InterpretME is utilized on top of the RDF KGs of the following projects: 1) CLARIFY22 to define machine
learning models to predict biomarkers of a lung cancer patient based on demographic features (e.g., age and gender),

21http://ontology.tib.eu/InterpretME/
22EU H2020 Funded project https://www.clarify2020.eu/

http://ontology.tib.eu/InterpretME/
https://www.clarify2020.eu/
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smoking habits, and relatives with cancer; 2) ImProVIT23 to develop models to predict the impact of the immune
system and demographic features into the response of Hepatitis B and Influenza vaccines; and 3) P4-LUCAT24 to
implement predictive models to forecast the relapse after surgery or the disease progression in advanced stages.

6. Related Work

Tools for Supporting Interpretability. Artificial intelligence and machine learning have become global in many
domains. The necessity of automated machine learning frameworks with assistance has gained popularity in the
research field, in every sector. De Bie et al. [3] discuss the challenges to achieve automated machine learning and
highlight that existing tools contribute to mechanization and composition automatization, lacking support in as-
sistance. InterpretME also aims at bridging this gap, and resorts to Semantic Web technologies to enhance users’
assistance. Lundberg et al. [4] propose an interpretation framework called SHAP based on coalition game theory
(Shapely values). SHAP provides feature contributions for each individual instance, global explanations, and feature
importance. Ribeiro et al. [5] present LIME, an approach for local surrogate models, which are used to explain indi-
vidual predictions of a pipeline. Local surrogate models are trained to approximate the predictions of models locally,
instead of training a surrogate model globally. As a result, LIME generates human-friendly explanations for target
entities. However, these explanations are not machine-readable and cannot be translated into the domain application.
InterpretME overcomes these limitations, and provides fine-grained representations of local interpretations which
are linked to the target entities in the domain application KGs.

Semantic Web Technologies in Machine Learning. Semantic Web technologies like ontologies are used to improve
the accuracy of predictive models. Ristoski et al. [34] provide a comprehensive survey of the use of Semantic
Web Technologies in data mining and knowledge discovery and highlights the potential benefits and challenges of
the need for more efficient algorithms and tools in practice. Kulmanov et al. [35] study the role of ontologies in
semantic similarity and machine learning, and present ontology embeddings as background knowledge. Further,
ontologies can constrain the output of a machine learning model, i.e., making the model consistent with the axioms
of the ontology. Min et al. [36] improve the performance of predictive models by using ontological adjustments,
i.e., using the hierarchy of an ontology to move samples of rare classes into the next broader concept. On average,
Min et al. [36] reduce the area under the receiver operating curve (AROC) by 9.0% in predicting the effectiveness
of antidepressants in patients with rare conditions. Haug et al. [37] propose the combination of a large enterprise
data warehouse with medical knowledge from a disease-oriented ontology. This combination allows for automating
the generation of computable diagnostic models, which aim at supporting researchers in generating and evaluating
tools for real-time clinical diagnosis. Similarly, InterpretME resorts to Semantic Web technologies to enhance not
only accuracy but interpretability as well.

7. Conclusions and Future Work

InterpretME empowers predictive models with metadata traced along a predictive modeling pipeline. The Inter-
pretME KG reuses concepts defined in the ML Schema and resorts to a state-of-the-art SHACL engine for efficient
constraint validation. Empirically, we have observed that InterpretME empowers the description of a predictive
model’s insights using factual statements and links to the application domain KGs. As a result, InterpretME broad-
ens the portfolio of Semantic Web tools to enhance domain understating by bridging the gap between data mean-
ing and predictive modeling [38]. The current version of InterpretME considers random forests, decision trees, and
the LIME interpretable model. Nevertheless, we plan to integrate other models and tools. Furthermore, connecting
InterpretME with automated machine learning systems and causal knowledge graphs [39] is part of our future work.

23German Funded project https://www.tib.eu/en/research-development/project-overview/project-summary/improvit
24EraMed project https://p4-lucat.eu/

https://www.tib.eu/en/research-development/project-overview/project-summary/improvit
https://p4-lucat.eu/
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Appendix A. SPARQL Queries to represent Statistical Queries over the InterpretME KG

These queries can be executed over the SPARQL endpoint of the InterpretME KG25 to gain some insights into
the behavior of the trained predictive model. Listing 1 presents a SPARQL query that collects the information
about the entities that define the class intr:TargetEntity. The projected attributes include the entity from
the input KG that is classified into a specific target class and the interpretations provided by LIME which include
interpreted features and their feature contributions. Based on a particular interpreted feature we can analyze the
feature contribution from the highest to lowest value.

PREFIX intr: <http://interpretme.org/vocab/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?entity ?value
WHERE {

?entity rdf:type intr:TargetEntity .
?entity owl:sameAs ?sourceEntity .
?entity intr:hasEntity ?LIMEentity .
?entity intr:hasInterpretedFeature ?interpretedFeature .
?interpretedFeature intr:hasFeatureWeight ?featureWeight .
?interpretedFeature prov:hasGeneratedBy ?InterpretableTool .
?entity intr:hasEntityClassProbability ?classProb .
?classProb intr:hasPredictionProbability ?probability .
?classProb intr:hasClass ?targetClass .
?featureWeight intr:hasFeature ?feature .
?featureWeight intr:hasWeight ?value .

FILTER (?feature = <http://interpretme.org/entity/preds_1%20%3C%3D%200.00>)
} ORDER BY DESC(?value)

Listing 1 SPARQL Query to Retrieve target entity and the associated feature contributions generated by LIME

Listing 2 depicts a SPARQL query that retrieves the count of the target entities with respect to the target class that
entity is classified into and the prediction probability generated by LIME.

Listing 3 performs a SPARQL query that performs the statistical analysis of probability, i.e., MAX, MIN, AVG
about the classification of target entities in a specific target class.

25https://labs.tib.eu/sdm/InterpretME-wog/sparql

http://ceur-ws.org/Vol-2971/paper05.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419766/pdf/1859946.pdf
https://labs.tib.eu/sdm/InterpretME-wog/sparql
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40 40

41 41
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45 45

46 46

47 47

48 48

49 49

50 50

51 51

PREFIX intr: <http://interpretme.org/vocab/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX prov: <http://www.w3.org/ns/prov#>

SELECT DISTINCT ?targetClass ?probability (count(distinct ?entity) as ?num)
WHERE {

?entity rdf:type intr:TargetEntity .
?entity owl:sameAs ?sourceEntity .
?entity intr:hasEntity ?LIMEentity .
?entity intr:hasInterpretedFeature ?interpretedFeature .
?interpretedFeature intr:hasFeatureWeight ?featureWeight .
?interpretedFeature prov:hasGeneratedBy ?InterpretableTool .
?entity intr:hasEntityClassProbability ?classProb .
?classProb intr:hasPredictionProbability ?probability .
?classProb intr:hasClass ?targetClass .
?featureWeight intr:hasFeature ?feature .
?featureWeight intr:hasWeight ?value .

} GROUP BY ?targetClass ?probability
ORDER BY DESC(?num)

Listing 2 SPARQL Query to retrieve target class and the probability ordered in decreasing order

PREFIX intr: <http://interpretme.org/vocab/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX prov: <http://www.w3.org/ns/prov#>

SELECT DISTINCT ?targetClass (MAX(?probability) as ?max) (MIN(?probability)
as ?min) (AVG(?probability) as?avg) (count(distinct ?entity) as ?num)
WHERE {

?entity rdf:type intr:TargetEntity .
?entity owl:sameAs ?sourceEntity .
?entity intr:hasEntity ?LIMEentity .
?entity intr:hasInterpretedFeature ?interpretedFeature .
?interpretedFeature intr:hasFeatureWeight ?featureWeight .
?interpretedFeature prov:hasGeneratedBy ?InterpretableTool .
?entity intr:hasEntityClassProbability ?classProb .
?classProb intr:hasPredictionProbability ?probability .
?classProb intr:hasClass ?targetClass .
?featureWeight intr:hasFeature ?feature .
?featureWeight intr:hasWeight ?value .

} GROUP BY ?targetClass
ORDER BY DESC(?num)

Listing 3 SPARQL Query to retrieve the MAX and MIN and AVG of the prediction probability generated by LIME for the target entity
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