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Abstract. The diffusion of Human-Robot Collaborative cells is prevented by several barriers. Classical control approaches seem
not yet fully suitable for facing the variability conveyed by the presence of human operators beside robots. The capabilities of
representing heterogeneous knowledge representation and performing abstract reasoning are crucial to enhance the flexibility of
control solutions. To this aim, the ontology SOHO (Sharework Ontology for Human-Robot Collaboration) has been specifically
designed for representing Human-Robot Collaboration scenarios, following a context-based approach. This work brings several
contributions. This paper proposes an extension of SOHO to better characterize behavioral constraints of collaborative tasks.
Furthermore, this work shows a knowledge extraction procedure designed to automatize the synthesis of Artificial Intelligence
plan-based controllers for realizing flexible coordination of human and robot behaviors in collaborative tasks. The generality of
the ontological model and the developed representation capabilities as well as the validity of the synthesized planning domains
are evaluated on a number of realistic industrial scenarios where collaborative robots are actually deployed.

Keywords: Ontology, Knowledge Representation and Reasoning, Human-Robot Collaboration, Automated Planning and
Scheduling, Artificial Intelligence

1. Introduction

Nowadays, robots are successfully deployed in a large spectrum of real-world applications. Nevertheless, robots
require an increased level of autonomy and additional features to operate in “open environments” guaranteeing reli-
able and safe interactions. These constitute major scientific challenges and many research activities are ongoing to
address them. In manufacturing, open research challenges concern in particular the design of control systems capa-
ble of robustly anticipating changes in production requirements and goals [1]. Higher levels of flexibility and adapt-
ability of industrial robots are crucial to face the challenges of Industry 4.0 [2, 3]. Industry 4.0 [4] is indeed push-
ing manufacturing systems towards customer-oriented and personalized production while trying to guarantee the
advantages of mass production systems in terms of both productivity and costs [5]. Future manufacturing systems
should in other words evolve towards flexible production embracing changes to the needs, requirements, and ob-
jectives of the factory [6]. Research in Human-Robot Collaboration (HRC) pursues these challenging objectives by
investigating the tight and symbiotic collaboration between human workers and autonomous (or semi-autonomous)
robots. Novel production paradigms that see humans and robots working side-by-side as interchangeable resources,
thus combining the precision and tirelessness of the former with the problem-solving skills of the latter [7, 8].

Classical control approaches usually rely on static models of robot skills and a static (or hard-coded) description of
production requirements and objectives. Such technology is not fully able to support the level of (flexible) autonomy
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that future production environments need. This is especially true in HRC where robots and humans share the working
space and physically interact together to achieve common objectives. Human actors introduce a significant source
of uncertainty that robot controllers should properly take into account in order to safely cooperate with them while
supporting production [9]. It is crucial to investigate novel control approaches implementing advanced cognitive
capabilities and allow robots to achieve a higher level of awareness about themselves, their “peer companions” as
well as the production context and related dynamics e.g., production procedures, task requirements, needed skills
and capabilities of actors taking part to production processes.

Research in Artificial Intelligence (AI) designs and develops technologies that are suitable to realize the desired
cognitive capabilities. The integration of AI and Robotics in particular [10, 11] would allow (collaborative) robots to:
(i) perceive the environment by correctly interpreting events and situations; (ii) build and maintain knowledge about
the production context; (iii) reason about their own capabilities/skills and dynamically contextualize possible actions
to the perceived state of a production scenario; (iv) autonomously decide how to act/interact with the environment
and other “actors” (i.e., human operators but also other robots if necessary) to support production and; (v) adapt
behaviors over time according to the “learned experience” and evolving production needs.

Our long-term research objective is to enrich robot controllers with an AI-based “perceive-reason-act” paradigm
implementing advanced cognitive features. The envisaged cognitive control approach would allow a collaborative
robot to be aware of the production context and autonomously decide which tasks are needed and how to execute
them in order to collaborate with human workers and support production in the best way possible. For example,
the way a procedure is executed may depend on several factors. The tool a worker needs for implementing the
tasks could be damaged or not available. The needed resources e.g., bolts or other pieces could not be available or
insufficient. The worker joining the production today could not know well the procedure because of low experience.
In all these cases (and others), a robot with enhanced awareness of the production context would autonomously
adapt its behavior and the execution of collaborative processes to different situations. Suppose for example that the
worker cannot execute some tasks because the needed screwdriver is not available, the robot, knowing this fact and
knowing that it can perform the same tasks using its own screwdriver (i.e., the robot knows its capabilities), it would
autonomously synthesize a collaborative plan by assigning the tasks requiring the screwdriver to itself. This level of
autonomy and flexibility could not be achieved by classic control approaches without interrupting production and
manually fixing the control procedure of the robot.

To pursue this level of awareness and cognitive control, we investigate the integration of AI-based Knowledge
Representation & Reasoning with Automated Planning and Execution. The combination of these AI technologies
with Robotics has shown promising results in heterogeneous scenarios ranging from service and assistive robotics
[12–15] to Reconfigurable Manufacturing Systems [16–19], improving flexibility of robot behaviors. Semantic tech-
nologies are crucial to endow robot controllers with the theoretical context necessary to represent (heterogeneous)
information coming from different sources (e.g., deployed sensing devices or domain expert knowledge about pro-
duction processes) and reason about the resulting knowledge in order to understand the state of a production envi-
ronment and make contextualized decisions.

This paper advances a recent work by refining an ontological model for Human-Robot Collaboration in manu-
facturing [20] and investigating the integration between Knowledge Representation & Reasoning and Automated
Planning in order to enhance awareness, adaptability and flexibility of collaborative robots. In particular, the work
better explain the human factor ontological context and the use of ontology design patterns [21] as a means to fa-
cilitate the description of collaborative dynamics. The human factor context describes the concepts and properties
that characterize skills and qualities of human workers. This knowledge is useful to adapt collaborative processes to
the different features of human workers. Ontology patterns are defined according to consolidated schemes of inter-
action between humans and robots in HRC [22, 23]. Similarly to software design patterns, ontology design patterns
are used to narrow knowledge design choices and define sufficiently general and reusable concepts characterizing
behavior constraints between a human and a robot when performing collaborative tasks [22, 23]. Robot awareness
is achieved through designed knowledge extraction procedures that automatically synthesize (and online adapt)
plan-based control models. Here ontological patterns are translated into sets of causal and temporal constraints that
comply with the desired “shape” of the collaboration between the human and the robot.

The conjunction of AI-based planning and semantic technologies realizes cognitive skills suitable to enhance au-
tonomy and context awareness of industrial (collaborative) robots as well as robustly deal with evolving production
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needs (e.g., changing production requirements, changing capabilities of a robotic platform or changing skills of
human operators, etc.). The validity and generality of the proposed approach are evaluated on a number of realistic
HRC scenarios, pilots of the EU H2020 research project Sharework 1. These scenarios concern different types of
production, involving different production entities, tools, objects, and procedures. The assessment shows that the
ontology-based control approach effectively supports the definition of valid and complete production knowledge.
The automatically synthesized task planning models have been concretely and effectively used to coordinate human
and robot operations.

The paper is structured as follows. Section 2 discusses related works concerning the integration of knowledge
reasoning and automated planning with robotics. It highlights how other researchers are investigating the integration
of the mentioned technologies to enhance the flexibility, adaptability, and (social) context awareness of robot behav-
iors. Section 3 discusses the Sharework Ontology for Human-Robot Collaboration (SOHO) initially introduced in
[20]. SOHO defines the representational space of the proposed approach and this section provides a complete and
refined definition of its concepts and properties. Section 4 briefly introduces the timeline-based planning formal-
ism and then describes the developed knowledge extraction procedure. This procedure is the central point linking
knowledge to task planning. It supports the automatic update and adaptation of the plan-based control model to the
contextualized knowledge of a (collaborative) production scenario. Section 5 evaluates the proposed approach on a
number of realistic scenarios taken from the pilot cases of the EU H2020 research project Sharework. On the one
hand, the evaluation shows the capability of capturing all relevant aspects of collaborative scenarios. On the other
hand, it shows the feasibility and correctness of the knowledge extraction procedure. Finally, Section 6 summarizes
the contribution of the paper pointing out possible directions for future developments.

2. Knowledge Representation and Reasoning in Robotics

Robotics and Artificial Intelligence (AI) are two research areas that historically addressed the challenge (among
others) of building embedded intelligent systems capable of acting in a real-world environment [10]. Recent ad-
vancements in Robotics and AI are pushing the design and deployment of autonomous robots in increasingly com-
plex/unstructured environments. On the one hand, technological advancements concerning the increased reliability
and efficiency of sensing devices, manipulation and navigation skills of robots as well as solving and predictive ca-
pabilities of AI technologies open new opportunities for the effective deployment of Robotics and AI solutions. On
the other hand, the increased complexity of application scenarios raises new technical/methodological challenges.

A tight integration of Robotics and AI is crucial to enhance the autonomy and control capabilities of robots and al-
low them to safely and reliably act in the real-world [11, 24]. In particular, robots acting in the real world should take
into account a number of “non-functional” qualities that are crucial to realize behaviors that are safe and acceptable
with respect to humans [25–27]. Robot controllers should therefore evolve towards an advanced “Perception, Rea-
son, Act” paradigm implementing the cognitive capabilities needed to synthesize and execute flexible behaviors that
are valid from both a technical and social point of view. To implement the envisaged cognitive control paradigm, we
found particularly promising the integration of ontology-based reasoning with AI-based planning and robot control.
The integration of semantic technologies with robot controllers has been widely studied in the literature [28].

Ontologies have been recognized as true enablers of adaptable and flexible systems compared to classic ap-
proaches [29, 30]. Robot-integrated ontology-based reasoning has in particular shown effective results in the en-
hancement of robot flexibility and awareness [12, 16, 18]. This section discusses some relevant works in the liter-
ature concerning the integration of ontology-based knowledge reasoning, planning, and robotics. It shows the en-
hanced flexibility and awareness of robots acting in different domains, thanks to the integration of the mentioned
technologies.

1https://sharework-project.eu

https://sharework-project.eu
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2.1. Ontology in Robotics and Human-Robot Interaction Scenarios

KnowRob [31, 32] is a well-known framework supporting advanced Perception, Reasoning, and Control. The
framework provides robots with a logical representation of a number of entities ranging from robotic parts and
objects (with their composition and functionalities) to tasks, actions, and behaviors. This framework in particular
focuses on manipulation tasks and allows robots to perceive objects of the environment, reason about their function-
alities (e.g., formal description of affordances of objects [33]), and decide how to use them within planning actions
[18, 34]. Although general, KnowRob is mainly suitable to deal with scenarios where a single robot manipulates
objects and interacts with an environment. The dyadic nature of HRC scenarios requires reasoning on simultaneous
executions of actions and the synergetic combination of robotic and human actors.

An ontological model characterizing object manipulation tasks of robots has been also considered within the
PMK framework [17]. Similar to KnowRob [31], PMK supports a standardized representation of the environment
defining a common language to exchange information between a human and a robot. It characterizes causal infor-
mation and constraints about manipulation tasks well and defines knowledge that is useful at both task and motion
planning levels. The work [35] exploits a robot knowledge framework (OMRKF) consisting of a series of ontology
layers, including a robot-centered and human-centered ontology. The system in particular relies on an object layer,
a context layer, and an activity layer to abstract gathered sensor data. However, this framework lacks a foundational
background which limits the reliability of inferred knowledge. Furthermore, it does not distinguish between activity
and functionality resulting in a rigid characterization of robot capabilities and behaviors. For example avoid obstacle
is not a behavior but a function that can be implemented in different ways like, e.g., moving away or turning around.

An interesting framework concerning the ontological description and integration of robotic skills is SkiROS [36].
Less general than KnowRob, this framework is designed on ROS with the objective of proposing an ontological
model of robot skills. On top of this knowledge, action-based planning supports a dynamic combination of skills to
realize complex behaviors. Similar to KnowRob [32], SkiROS focuses on the description/control of a single robot
acting in the environment. Concerning HRC scenarios, this framework does not support an explicit representation
of the skills of multiple agents, concurrency, time, and controllability issues.

The ORO framework [37] develops a knowledge reasoning framework endowing robots with common sense rea-
soning capabilities to autonomously operate in semantically-rich human environments. With respect to KnowRob,
the ORO framework addresses the control problem from a cognitive perspective and realizes a general cognitive ar-
chitecture deployed on different robotic platforms and assessed on different cognitive scenarios [37]. This architec-
ture has been specifically developed to support advanced cognitive skills (e.g., theory of mind capabilities) and thus
support increasingly flexible and adaptive human-robot interactions [12]. Considering an HRC perspective, ORO
pursues a turn-based interaction approach where the human and the robot are supposed to perform one action at a
time with the robot reacting to the observed behavior and inferred state of the human. This interaction mechanism is
not fully effective in production scenarios that require cooperation and simultaneous action execution of the human
and a robot to achieve shared objectives.

Concerning human-robot social interactions, knowledge representation, and reasoning have been used to realize
socially compliant behaviors. Non-functional requirements like those regarding social norms are crucial to realize
acceptable behaviors [26]. For example, the work [13] uses knowledge reasoning to represent social norms and al-
low a social robot to implement socially acceptable behaviors for social tasks. More specifically, the work proposes
a formal description of the functional affordances of objects to reason about their possible use and thus infer those
that are suitable to accomplish the requested social task (i.e., serving coffee to guests using the right object). The
work [27] proposes the use of knowledge reasoning to adapt human-robot interactions to the cultural knowledge of
different contexts and people. This is another example of how ontology-based reasoning can enhance context aware-
ness of robots. In this case, reasoning capabilities evaluate non-functional qualities of human-robot interactions and
synthesize socially compliant behaviors. Another interesting work is [15]. Similar to other works e.g., KnowRob
[32], it proposes an ontological model characterizing users, the interacting environment, capabilities (not necessarily
correlated to the robot only), and tasks. On top of this model, the work instantiates a cognitive architecture realizing
a perceive, reason, act control loop. The resulting “cognitive agent” incrementally decides which social task to per-
form according to the perceived state of the interaction context. An added value of [15] is the explicit representation
of interacting users through user profiles that support personalized services.
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Ontology-based reasoning has been used also in medical scenarios. The work [38] proposes the use of ontology
in orthopedic surgery. The ontological model OROSU integrates and shows domain knowledge to different types of
users uniformly e.g., surgeons, nurses, or technicians, during surgery. It relies on KnowRob [32] to describe surgical
procedures concerning hip surgery. Finally, ontology-based reasoning has been used also to formally represent
normative standards and evaluate compliance with them. An example is the work [39] where normative standards
for indoor environmental qualities have been encoded into an ontological model. A social robot has been endowed
with cognitive capabilities to ground detected quality conditions of an environment and automatically evaluate the
compliance of a perceived environment to the normative standards.

2.2. Ontology in Manufacturing

In manufacturing, ontologies have mainly focused on the manufacturing system as a whole or rather on specific
production aspects e.g., [40–42]. Modeling procedures, capabilities of working entities, and possible interactions
connected to production objectives are challenging. The description of so-called Cyber-Physical Systems (CPSs)
(e.g., HRC Systems) requires modeling the dynamics of the involved agents from both a local perspective (i.e., the
point of view of a specific agent) and global perspective (i.e., the point of view of the production) [43]. In this
context, ontologies have been mainly applied with the aim of increasing flexibility in modeling and planning of,
e.g., mechatronic devices [44], resources in collaborative environments, and the whole enterprise [45], collaborative
robots [46] and navigation robots [47].

The work [44] uses an ontology to collect static and dynamic information relative to robots. The basic actions
of a robot are hard-coded but the ontological system adds some flexibility like the possibility to learn articulated
actions and to act with partial information, e.g., information about the location of the object to move. Besides the
lack of functionality/activity distinction, the robot has very limited knowledge of the environment. The work [18]
uses a well-structured ontological model to characterize product assembly tasks. Specifically, the work extends
the KnowRob framework [32] by integrating inference rules necessary to reason about incomplete assemblies of
different products. Based on the outcome of the implemented perception and reasoning processes they automatically
plan the next action to be executed and incrementally assemble the desired products. The work [48] uses ontology to
represent kit-building parts for assembly operations. Kit building parts are presented by means of XML descriptions
whose schema (XSDL) is mapped to an ontological model providing a uniform logic-based representational space.
The ontological model and the automatic generation of OWL descriptions from XML schema are then used within
an agility framework to evaluate the agility performance of robotic systems.

Concerning collaborative manufacturing, the work [49] proposes an ontological model called OCRA which takes
into account uncertainty and safety constraints. Interestingly, it characterizes reliable human-robot collaborations
providing robots with a well-structured formalization suitable to reason on the execution perspective of their plans.
The work [19] realizes an ontology-based multi-agent system integrated with a Business Rule Management System
to define a language for the coordination of human and robotic agents. The ontological model does not rely on a
structured theoretical background and the knowledge about tasks and agents’ capabilities is hard-coded. Further-
more, it proposes a limited, and schematic description of a collaborative environment. For example, workers and
cobots are represented with a simple schema describing just their location within the environment, no additional
information about their capabilities, composition, or behavioral features is provided.

Works within the ROSETTA project [50] have also investigated the use of ontology-based reasoning to simplify
the programming of industrial robots and interactions with humans. The work [51] uses and extends the SIARAS
ontology to characterize knowledge about robot skills focusing in particular on manipulation skills and devices
that may compose a manufacturing environment (e.g., gripper, fixture, the robot itself). The framework aggregates
several ontological models that are relevant also from a human-robot collaboration perspective e.g., the injury.owl
which characterizes the expected risk level of injury when a robot cooperates with a human or shares the same
environment.
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3. An Ontology for Human-Robot Collaboration

Considering the discussed literature, it is still missing an ontological model capable of capturing the capabilities
of different types of resources, actors with different interacting features, and production requirements. Enriching
manufacturing systems with such a semantically rich model would: (i) increase their level of awareness about the
state and needs of a production environment; (ii) autonomously interpret production events and properly coordinate
acting resources e.g., collaborative robots and workers and; (iii) dynamically adapt production processes to the skills
and working and/or health conditions of collaborating workers. The work [20] made a first step toward the definition
of an ontological model specifically designed for Human-Robot Collaboration (HRC). SOHO (Sharework Ontology
for Human-Robot Collaboration) is a domain ontology [52] aiming at characterizing HRC scenarios from different
but synergetic levels of abstraction (contexts). The objective is to define a well-structured model of production
environments, human, machine, and robot structures, capabilities, and functional operations.

SOHO pursues a flexible interpretation of these concepts in order to interpret production states/situations accord-
ing to the specific needs of processes and features of the environment. For example, operational capabilities (or
simply capabilities) of robots and workers intrinsically depend respectively on their structures (e.g., actuators and
end-effector that are part of the robotic device - embodiment) and their skills or abilities (e.g., a worker can perform
specific welding operations). These capabilities, combined with the specific needs and requirements of a production
environment, would enable the execution of different (instances of) functions [53]. This section provides a complete
and refined description of SOHO 2, defined using Protégé 3 and the OWL language [54].

3.1. Foundations and Contexts

Foundational ontologies aim at describing reality from a high-level perspective in order to define concepts that are
general enough to be valid across many domains. Their use is generally recommended and represents a good design
choice in order to base new (more specific) ontological models on well-structured semantics. These ontological
models constitute a stable theoretical background of more specific ontologies and thus foster a clear structuring and
disambiguation of domain concepts [55, 56]. Several foundational ontologies have been introduced in the literature
e.g., BFO [57], DOLCE [58] or SUMO [59]. Among these, SOHO relies on DOLCE [58] in order to support a
flexible interpretation of temporally evolving entities and, also, to rely on a recognized standard representation
framework (ISO 213838-3). DOLCE, therefore, represents a flexible model, well suited to support the interpretation
of domain entities whose state depends on the context and may change/evolve over time.

In addition to DOLCE, SOHO is built on top of two other ontologies: (i) the CORA ontology [60] and; (ii)
the SSN ontology [61]. CORA is an IEEE standard ontology for robotics and automation aiming at promoting
a common language in the robotics and automation domain. It characterizes knowledge about robots and robot
parts, robot positions and configurations, and groups of robots. This standard relies on SUMO [59] as a theoretical
foundation and integrates the framework ALFUS [62] to define possible autonomy levels and related operative
modes of a robot. SSN is a W3C standard ontology for IoT devices and sensor networks. It defines basic concepts
and properties characterizing the capabilities of sensing devices, their deployment into a physical environment, and
the outcome of sensing processes. SSN relies on DOLCE and defines a sufficiently general model to represent the
physical properties of an environment and physical entities that can be observed or monitored over time.

Both CORA and SSN define concepts and properties relevant to HRC but they are not sufficient to describe
production procedures and possible collaborations needed between human and robot agents. The scope of SSN is
limited to the characterization of a physical environment in terms of properties that can be observed and sensing
devices that carry out sensing processes. This ontology is quite “self-contained” and can be easily integrated with
CORA to represent also robot interfaces and sensing parts. CORA instead has a broader scope. It focuses on robot
parts, robot configurations, and levels of autonomy. However, CORA does not support the contextualization and
interpretation of behaviors of robots and other autonomous agents (e.g., human operators) with respect to global
production objectives and processes.

2The ontology is publicly available at the following GitHub repository - https://github.com/pstlab/SOHO.git.
3https://protege.stanford.edu

https://github.com/pstlab/SOHO.git
https://protege.stanford.edu
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3.1.1. Qualities, Norms, and Events
Human-Robot Collaboration scenarios are a combination of technical, physical, and social contexts since the

acting entities should physically interact while complying with a number of rules that guarantee correct and safe
execution of production processes. Indeed, an HRC scenario is composed of a number of physical entities each
characterized by different features and qualities that cooperate to achieve common (production) objectives. SOHO,
therefore, interprets HRC scenarios as social contexts where the behavior of each acting entity affects the behavior
of others, and coordination is necessary to correctly and safely carry out production processes. As such, any HRC
scenario is subject to social structures known as norms [63] either implicit or explicit rules, that constrain the
behavior of involved actors. To model concepts and properties that suitably capture such dynamics SOHO relies on
the DOLCE+DnS Ultralite ontology (DUL) 4 which is a lightweight version of DOLCE suitable to model either
physical or social contexts. DUL uses simplified constructs to represent temporal and spatial relations and supports
modular, pattern-based, structures (content ontology design pattern).

The concept DUL:Object models any physical, social, or mental object or a substance of the domain. SOHO
in particular considers the sub-concept DUL:Agent and DUL:PhysicalObject to characterize respectively
acting entities of the domain (i.e., collaborative robots and human workers) and passive physical elements that
are part of a production environment (e.g., tools, robot parts, sensing devices, production resources, etc.). The
concept DUL:Agent characterizes any agentive object either physical (e.g., a robot) or social (e.g., an institu-
tion) that behaves according to some logic/algorithm. The concept of DUL:Agent is equivalent to the concept
DUL:PhysicalAgent that is a particular type of DUL:PhysicalObject which is in turn any object associ-
ated with a space region. The concept DUL:PhysicalObject is thus useful to characterize the structure of a pro-
duction environment and the types of objects that could compose it. Each DUL:PhysicalObject is described
by a set of attributes that characterize its specific features. DUL supports a flexible representation of such attributes
and the way they can be measured and expressed through the distinction of DUL:Quality and DUL:Region.

According to the documentation, a DUL:Quality is any aspect of an entity (e.g., a DUL:PhysicalObject)
that cannot exist without that entity. However, quality is not part of an entity. Rather it represents a particular
attribute/aspect that is relevant to be expressed in the considered domain. The physical location, shape, or color of
the surface of a DUL:PhysicalObject are examples of possible DUL:Quality. For each DUL:Quality
there can be one or more DUL:Region expressing the value of the associated quality. Namely, a DUL:Region is
any dimensional space which can be used as a value for a quality. Examples of (general) regions available within
DUL are DUL:TimeInterval and DUL:SpaceRegion that are used to represent respectively time and object
location, with respect to a particular dimensional space. Next sub-sections will show with further details how SOHO
uses these classes (i.e., DUL:PhysicalObject, DUL:Quality and DUL:Region) to characterize different
types of physical entities.

Another relevant concept used by SOHO is DUL:Description and its sub-concepts DUL:Method,
DUL:Goal, and DUL:Norm. A DUL:Description is defined as a DUL:SocialObject representing a con-
ceptualization. According to the documentation, it can be thought also as a descriptive context that creates a view of
a relational context out of a set of data or observations. SOHO uses this concept to conceptualize production goals,
procedures, and related constraints. In this regard, a DUL:Method is a DUL:Description that defines concepts
to guide carrying out actions aimed at a solution with respect to a problem. It is worth noticing that a DUL:Method
is different from a DUL:Plan since plans could be carried out in order to follow a method while a method can be
followed by executing different plans. This concept is therefore well suited to characterize production procedures
that can be instantiated into different collaborative plans entailing the execution of human and robot actions. A
DUL:Goal is the description of a DUL:Situation that is desired by an DUL:Agent and usually associated
with a DUL:Plan describing how to actually achieve it. SOHO extends this concept to model social goals and thus
describes (production-related) situations that would be jointly achieved by more than one agent (i.e., a human and a
robot in the specific case of an HRC production scenario).

As mentioned at the beginning of the section, SOHO interprets an HRC scenario as a social context where
two or more agents should cooperate to achieve a common objective (SocialGoal). Involved agents should

4http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite

http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite
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Figure 1. Overview of SOHO: (a) general structure and defined contexts; (b) excerpt of concepts and properties

therefore comply with a number of rules in order to satisfy requirements concerning for example safety, procedure
consistency, production quality, etc. To describe such rules SOHO relies on the concept DUL:Normwhich generally
represents social norms. In particular, SOHO distinguishes between two types of norms: (i) norms determining
how human and robot agents should behave while carrying out joint tasks (i.e., collaborative tasks) and; (ii) norms
determining how tasks should be executed to satisfy production requirements. The next sub-sections describe with
further detail how the concept DUL:Norm is specialized within SOHO.

Finally, the concept DUL:Event represents any physical, social, or mental process that can occur in a domain.
SOHO uses the concept DUL:Event to characterize situations that can occur and be observed within the environ-
ment, and that can affect production. Namely, this concept is used to define exogenous events that should be taken
into account during the life-cycle of a collaborative production cell and that may require the adaptation of imple-
mented production procedures and collaborative plans. The concept DUL:Action represents a particular type of
DUL:Event with at least one participating DUL:Agent. SOHO specifically uses this concept to represent actions
physically executed either by a human, by a robot, or jointly by both of them. An action is thus seen as a temporal
occurrence (i.e., implementation) of a DUL:Description about a task/function of a production procedure.

3.1.2. Integrating Synergetic Perspectives
Ontologies should be adequate to their domains, and domains come along on different granularity levels [55].

An ontology should account for all perspectives and levels of abstraction that are relevant to a domain. SOHO
follows a context-based approach and organizes knowledge in a number of synergetic contexts, each describing the
domain from a particular perspective. Contexts support a modular and multi-perspective representation of domain
knowledge. Figure 1 shows the general structure of SOHO: (i) the Environment Context; (ii) the Behavior Context
and; (iii) the Production Context. The safety and human factor contexts do not represent actual ontological contexts.
Rather they define two “meta-perspectives" that must be uniformly considered at different levels of abstraction by
all ontological contexts.

Environment Context. The environment context defines physical elements and general properties of an environ-
ment that can be observed. This context strongly relies on SSN which is crucial to characterize the sensing capabili-
ties of available devices and the physical properties of domain entities they can observe. First, SOHO defines a con-
cept to model objects that are part of a production environment by extending the concept DUL:PhysicalObject.

ProductionObject v DUL:PhysicalObject u
∃ DUL:hasQuality.ObjectQuality (1)
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where ObjectQuality is a subclass of ProductionPropertywhich in turn is a subclass of DUL:Quality.
The concept of ObjectQuality thus describes the attributes of any DUL:PhysicalObject that specifically
compose a production environment (i.e., a ProductionObject).

Some properties of the objects that constitute a production environment can change over time and it could be nec-
essary to observe/monitor them in order to correctly carry out tasks. Examples are the position in space of objects
necessary to perform a task, the position and occupancy state of an area where to place objects, or the state of a
bolt, etc. SOHO relies on SSN to model sensing devices and the information they can gather through (implemented)
sensing processes. SSN defines the concept SSN:FeatureOfInterest which generally describes aspects of an
environment (e.g., properties of objects of a production environment) that are interesting to be observed through
some sensing device. Observable properties may change according to the specific features (i.e., DUL:Quality)
of the objects that compose the environment but also according to the sensing capabilities of deployed devices.
The “observability” of one or more qualities of an object actually depends on the sensing capabilities of available
devices and their deployment in the production environment. To characterize the observable properties of a pro-
duction environment SOHO extends SSN by leveraging the concept DUL:Role. A DUL:Role is a concept used
to classify an object of the domain and is thus useful to support a flexible classification of ProductionObject
that can be actually observed in a production environment. SOHO defines the concept ObservableFeature as
a DUL:Role that objects can play according to the available sensing devices.

ObservableFeature v DUL:Role u SSN:FeatureOfInterest u
∃ DUL:isRoleOf.ProductionObject u
∃ hasObservableProperty.ProductionProperty u
∃ isObservableThrough.SSN:Sensor

(2)

Behavior Context. The behavior context characterizes the behaviors of the acting entities of a production environ-
ment. The central concept is DUL:Agent representing the physical entities that actually act in the environment
and carry out production processes. Given the focus on Human-Robot Collaboration, SOHO distinguishes two par-
ticular types of DUL:Agent that are: (i) Cobot and; (ii) Worker. SOHO interprets both agents as two physical
autonomous agents that are associated with an embodiment which is in turn associated with a number of physical
and behavioral qualities. The two concepts differ in terms of the specific types of physical objects that compose
their embodiment, associated qualities that can be observed/monitored, and related capabilities. More specifically, a
Cobot is defined as follows:

Cobot v DUL:Agent u
∃ DUL:hasPart.RobotInterface u
∃ DUL:hasQuality.Autonomy u
∃ DUL:hasQuality.Capability u
∃ DUL:hasQuality.RobotProperty

(3)

The role DUL:hasPart associates a robot with a set of RobotInterface representing its embodiment i.e.,
the set of PhysicalObject composing the physical device. Being physical objects, each RobotInterface
is associated with a number of DUL:Quality representing relevant attributes that can be measured and/or
monitored (RobotProperty). Let us consider for example a wheeled base wb1 as a possible individual of
RobotInterface being part of a collaborative robotic agent cob (individual of Cobot). The individual wb
would then be associated with the qualities SpatialLocation and RobotSpeed describing respectively the
known geometric position and speed.

A particular type of DUL:Quality is Capability. This concept characterizes the types of operations a
DUL:Agent can support through its “functional parts”. Namely, such qualities characterize general operations e.g.,
GraspingObject, UseTool or MoveObject that an acting entity can intrinsically perform according to its
physical/technical composition. A Cobot inherits the set of Capability supported by its parts. Let us consider
for example a robot gripper grip as a possible individual of RobotInterface being part of cob. The description
of grip associates the individual with the capability GraspObject. Consequently, the robot cob itself would
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inherit the same capability given its internal composition. In other words, a robot would be capable of grasping
objects if and only if the agent is endowed with a physical interface capable of grasping objects (i.e., a gripper).

Another particular type of DUL:Quality is Autonomy which represents a specific behavioral quality.
SOHO defines behavioral qualities of DUL:Agent introducing the concept AgentBehavior as subclass of
DUL:Quality. This concept is then specialized into Autonomy and WorkerLevel to characterize knowledge
about the expected behavior of the acting agent, respectively robots and workers. In the case of the robot, the quality
Autonomy is expressed in a number of AutonomyLevel (subclass of DUL:Region) structured according to
the ALFUS framework [62]. Different levels of autonomy determine different operation modalities and different
safety constraints that should be considered when performing production tasks. It could be the case, for example,
that some tasks can be performed only if a robot can operate in FullyAutonomy. Also, the production procedure
implemented when a robot works in Teleoperation could be different from the procedure implemented when
a robot works in SemiAutonomy of FullyAutonomy. This information is useful to parametrize production
procedures and model conditions under which different procedures and/or tasks can be executed.

Similar to Cobot a human agent Worker is defined as follows:

Worker v DUL:Agent u
∃ DUL:hasPart.HumanBodyPart u
∃ DUL:hasQuality.WorkerLevel u
∃ DUL:hasQuality.Capability u
∃ DUL:hasQuality.HumanBodyProperty

(4)

The general assumptions and structure described for Cobot hold also in the case of Worker. SOHO distinguishes
these two concepts with respect to the specific types of DUL:Quality associated through their embodiment.

Behavioral knowledge is determined according to the specific features and internal composition (i.e., the embod-
iment) of the specific agents. The set of operations that can be actually implemented in a particular scenario (and
“who” can implement them) can be dynamically inferred according to the known capabilities of an agent. To support
this reasoning SOHO should generally characterize manufacturing operations and correlate them to the types of
capabilities necessary for their execution. To this aim, SOHO integrates the Taxonomy of Functions defined in [53].
Low-level manufacturing operations are defined as Function that are classified according to the effects they have
on the DUL:Quality of target objects. A Function represents a “primitive” ProductionTask that cannot
be further decomposed in simpler operations. Each function is associated with the needed Capability and the
affected DUL:Quality of the target ProductionObject.

Function v ProductionTask u
∃ canBePerformedBy.DUL:Agent u
∃ hasEffectOn.DUL:Quality u
∃ requires.Capability u
∃ hasTarget.ProductionObject

(5)

ProductionObject(o) ∧ Function(f) ∧
DUL:Agent(a) ∧ Capability(c) ∧

DUL:hasQuality(o, q) ∧ hasEffectOn(f, q) ∧
hasCapability(a, c) ∧

requiresCapability(f, c)→ hasTarget(f, o) ∧
canBePerformedBy(f, a)

(6)

Production Context. Considering the production perspective, SOHO defines concepts and properties that charac-
terize production procedures in terms of objectives and operations necessary to successfully achieve them. A proper
representation of this knowledge is crucial to establish human and robot commitment to production goals [64, 65]
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and a level of agreement about the way the human and the robot together achieve these goals [66, 67]. Furthermore,
it is necessary to characterize events that may occur in a production environment and that are relevant with respect
to the execution of production procedures. This perspective relies on the foundational concepts DUL:Event and
DUL:Description. The former supports the description of temporal occurrences requiring the implementation
of some production procedure. The latter supports the description of such procedures and the collaborative rules
constraining the behaviors of the human and the robot.

SOHO defines the concept ProductionGoal as a particular type of DUL:Goal to characterize situations that
agents should achieve to fulfill production requirements. Each ProductionGoal is associated with (at least) one
ProductionMethod which is a particular type of DUL:Method describing valid procedures.

ProductionGoal v DUL:Goal u
∃ DUL:hasConstituent.ProductionMethod (7)

Goals are achieved through plans each composed of a number of actions implementing a particular produc-
tion method. SOHO defines the concept ProductionPlan to describe the way a certain ProductionGoal
is achieved. A ProductionPlan describes a particular ProductionProcess which implements a particular
ProductionMethod through the actual execution of a number of ProductionAction.

ProductionPlan v DUL:Plan u
∃ DUL:hasComponent.ProductionGoal u
∃ DUL:isDescribedBy.ProductionMethod u
∃ DUL:describes.ProductionProcess

(8)

A ProductionProcess is the description of a dynamic (physical) event involving the execution of a num-
ber of ProductionAction by participating agents. SOHO interprets this concept as a particular type of
DUL:Process which is in turn a particular type of DUL:Event.

ProductionProcess v DUL:Process u
∃ DUL:hasPart.(ProductionAction t

ProductionRelatedEvent) u
∃ DUL:hasParticipant.DUL:Agent u
∃ DUL:isDescribedBy.ProductionPlan

(9)

A CollaborativeProcess then is a particular ProductionProcess where exactly one autonomous
robot (Cobot) and one human worker (WorkOperator) jointly contribute to its execution.

The temporal and physical occurrence of production processes entails the execution of ProductionAction
and the occurrence of a number of ProductionRelatedEvent. SOHO defines a ProductionAction as a
particular type of DUL:Action describing the actual execution in time and space of production operations (i.e.,
instances of Function).

ProductionAction v DUL:Action u
∃ DUL:hasParticipant.DUL:Agent u
∃ DUL:isDescribedBy.(InteractionModality t

ProductionTask)

(10)

SOHO defines the concept ProductionRelatedEvent and EnvironmentRelatedEvent as general
DUL:Event describing respectively facts correlated to the execution of actions (e.g., execution failures or results)
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and exogenous facts concerning the state of monitored features of the environment (e.g., the physiological state of
the human worker).

The concept ProductionMethod is central to the description of procedures. It is a particular type of
DUL:Method resulting from the composition of ProductionTask describing simple/primitive or complex op-
erations to be performed by some agent.

ProductionTask v ProductionMethod u
∃ DUL:isDescribedBy.ProductionNorm (11)

It is worth noticing that our definition of SOHO:ProductionTask falls under DUL:Description with
the aim of defining a descriptive context of production procedures. Namely, the defined concepts would spec-
ify the general requirements of the tasks that could be performed within a collaborative environment. Thus,
the defined SOHO:ProcutionTask represents a descriptive context for the concrete actions performed within
the environment. A DUL:Action instead represents a temporal instantiation of SOHO:ProductionTask in
the environment (for this reason we specialize the concept SOHO:ProductionAction as a specialization of
DUL:Action). The concept SOHO:ProductionTask describes procedures that generally guide the execution
of actions that aim at solving a specific production need that is modeled as a SOHO:ProductionGoal. Our inter-
pretation of task is more general than DUL:Taskwhich is classified as a type of event characterizing DUL:Action
to be executed. In this regard, our interpretation of SOHO:ProductionTask is close to DUL:Method that we
choose as theoretical foundation.

A ProductionNorm is a particular type of ExecutionNormwhich is a sub-class of DUL:Norm. It describes
general rules determining the way tasks (and resulting actions) should be executed by the participating agents.

ProductionNorm v ExecutionNorm u
∃ DUL:describes.ProductionTask u
∃ constrains.ProductionTask

(12)

3.2. Human Factor and Worker Profiles

A novel aspect of SOHO is the support to the explicit representation of the human factor. SOHO interprets the
human factor as the set of physical or abstract features that characterize the expected behavior and skills of a worker
and that can directly (or indirectly) affect the interactions with a robot and the whole production. The human factor
is defined through a set of DUL:Quality that characterize the physical and behavioral qualities of workers and
correlate them with production needs. Figure 2(a) shows the taxonomic structure defined for the behavioral features
of workers, while Figure 2(b) shows the taxonomical structure defined for the physical features of workers.

Concepts like WorkerTaskAccuracy, WorkerTaskPerformance, or WorkerLevel describe expected
performance or expertise levels of human workers. Such concepts are useful for example to estimate the efficiency,
and accuracy of tasks performed by workers. The concept WorkerLevel represents a measure of the level of
knowledge of a worker about a specific production scenario and the reliability of her performance. On the one
hand, the expertise level determines the (sub)set of production tasks a human worker can carry out. For example,
some tasks may require a certain minimum level of experience to be performed by a worker. On the other hand, the
expertise level characterizes the expected uncertainty about the performance of a worker. Low experience determines
a higher variance in the performance and thus a higher amount of uncertainty in terms of execution time and
accuracy. Higher experience instead determines performance with lower variance in terms of “expected" execution
time and achieved accuracy. Given the behavioral model of a worker, it would be possible then to automatically
adapt collaborative processes, tailoring the level of assistance/support provided by a robot [68].

Concepts like BodyPosition, MentalStatus, or PhysiologicalStatus describe human body fea-
tures that may affect the safety, performance, and quality of the resulting collaborative processes. These concepts
define an interpretation space for specific perception data that can be integrated into collaborative control systems. A
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(a) (b)

Figure 2. Excerpt of SOHO concerning physical and behavioral qualities of human workers

proper representation and monitoring of physical/health information could be useful to automatically detect hazards
or particular situations that may require a quick and proactive adaptation of the behavior of a robot. For example,
physiological data about heart rate or blood pressure could be processed to evaluate the stress level of a worker.
Depending on the defined thresholds, results may determine a high level of stress for the worker. SOHO allows a
collaborative control system to be aware of such a situation and proactively change collaborative dynamics by for
example slowing down operations or assigning less cognitively demanding tasks to the humans.

3.3. Production Procedures and Interaction Modalities

The definition of a ProductionMethod through a number of ProductionTask follows a hierarchical task-
oriented approach [69, 70]. The top-level element is the ProductionGoal that is associated with a number of
ProductionMethod defining the rules that must be considered to successfully achieve a production goal. SOHO
specifies the associations between goals, methods, and tasks using the property DUL:hasConstituent as non-
transitive relation supporting a layered description of the procedure.
Following this layering of a procedure, SOHO defines three types of ProductionTask: (i) ComplexTask that
can be either disjunctive or conjunctive; (ii) SimpleTask and; (iii) Function. Figure 3 shows an excerpt of
the resulting taxonomical structure. In particular, the structure shows the integration of the Taxonomy of Functions
introduced in [53] with the concept Function interpreted as a particular type of ProductionTask.

A ComplexTask is a ProductionTask (i.e., an instance of DUL:Method) representing a compound logi-
cal operation. Complex tasks are generally interpreted as ConjunctiveComplexTask meaning that associated
tasks (i.e., production tasks associated through DUL:hasConstitutent) should all be part of a plan implement-
ing it. Complex tasks could be also interpreted as DisjunctiveComplexTask meaning that associated tasks
represent alternative ways of implementing it. Plans should consider only one of the modeled alternatives (i.e., only
one of the production tasks associated through DUL:hasConstituent).

ComplexTask v ProductionTask u
∃ DUL:hasConstituent.(ComplexTask t SimpleTask) u
∃ DUL:isDescribedBy.OperativeConstraint

(13)
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Figure 3. Taxonomical structure of production tasks with the integrated Taxonomy of Function [53]. Please note that the concept Action is
a particular type of Function and falls under the namespace of SOHO. This concept is therefore different from the concept DUL:Action
defined within DUL.

A SimpleTask represents a leaf of the hierarchical structure of a ProductionMethod. This concept de-
scribes simple operations agents can directly implement through their functional capabilities. A SimpleTask
requires thus the execution of a number of Function by one or more participating agents.

SimpleTask v ProductionTask u
∃ DUL:hasConstituent.(Function t ProductionObject) u
∃ DUL:isDescribedBy.(InteractionModality t

OperativeConstraint)

(14)

The concepts OperativeConstraint and InteractionModality are two types of ExecutionNorm
(specialization of DUL:Norm) constraining the behaviors of acting entities when participating in some production
process. The former describes rules that constrain the execution of two or more ProductionTask and can be fur-
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Figure 4. General structure of an HRC cell and types of collaboration modalities as defined in [22]: (i) Coexistence/Independent; (ii) Synchro-
nised/Sequential; (iii) Cooperation/Simultaneous; (iv) Collaboration/Supportive.

ther classified into PrecedenceConstraint and ParallelExecutionConstraint. The latter describes
more rules constraining the behavior of a human and a robot when realizing collaborative tasks.

Although the “boundaries” of the representation space are well delimited within a domain ontology [52], there
is a multitude of behaviors that can be described with a production scenario and a multitude of design choices to
take into account. The correct definition of all necessary information and constraints is not always straightforward.
Ontology design patterns [21] can play a role in supporting knowledge definition. Patterns can indeed specialize an
ontological model without losing generality but defining useful structures that guide knowledge definition.

Ontological patterns in this case characterize typical and/or recurrent associations between tasks and functions.
Namely, they define structures describing typical collaborative behaviors of human workers and robots in produc-
tion scenarios. SOHO introduces HRC ontological patterns by taking into account interaction schema known in
the literature [23]. First, SOHO defines the concept HRCTask as a particular type of SimpleTask requiring the
tight interaction of a human worker (i.e., a WorkOperator) and a collaborative robot (i.e., a Cobot). The basic
assumption is that a HRCTask entails the execution of a maximum of two Function. Each required Function
should be performed by a WorkOperator or by a Cobot. If only one function is necessary then it can be per-
formed either by a human worker or a robot. If two functions are necessary then one function should be performed
by the human and the other by the robot.

Each HRCTask is associated with a InteractionModality specifying behavioral norms that constrain the
way underlying Function are executed.

InteractionModality v ProductionNorm u
∃ DUL:describes.ProductionTask u
6 2 constrains.Function

(15)

According to [23], the execution of a collaborative task (i.e., an individual of HRCTask) follows one of four dif-
ferent collaboration modalities: (i) Independent, humans and robots perform their tasks on different workpieces
without collaboration; (ii) Simultaneous, human and robot perform distinct tasks on the same workpiece at the same
time, still without physical interaction; (iii) Supportive, human and robot perform the same task on the same work-
piece and they work simultaneously and cooperatively on the same task. (iv) Sequential, human and robot should
complete sequential tasks on the same workpiece. Figure 4 shows a graphical representation of these four types of
collaborative tasks.

SOHO thus defines four types of InteractionModality as four patterns characterizing specific knowl-
edge structures in terms of associated concepts and cardinality restrictions. An interaction modality of type
Independent requires a human or a robot working on a particular target object independently from each
other but in a shared space. It describes one HRCTask and constrains one Function which can be either a



16 A. Umbrico et al. / Enhancing Awareness of Industrial Robots in Collaborative Manufacturing

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

HumanFunction (i.e., a Function that can be performed by a WorkOperator) or a RobotFunction (i.e.,
a Function that can be performed by a Cobot).

Independent v InteractionModality u
∃! DUL:describes.HRCTask u
∃! constrains.(HumanFunction t

RobotFunction)

(16)

An interaction modality of type Simultaneous requires a human and a robot to perform two different opera-
tions on the same target object at the same time. It describes a HRCTask requiring exactly one RobotFunction
and one HumanFunction to be executed at the same time. Namely, the execution of the two operations may
overlap in time and should not follow a specific ordering (e.g., precedence constraint).

Simultaneous v InteractionModality u
∃! DUL:describes.HRCTask u
∃! constrains.HumanFunction u
∃! constrains.RobotFunction u

(17)

An interaction modality of type Sequential requires a human and a robot to perform operations on the
same object according to a strict order. The pattern in this case forces the necessary RobotFunction and the
HumanFunction to be executed according to a specified precedence constraint. It is therefore associated with one
PrecedenceConstraint which specifies the desired ordering of the functions.

Sequential v InteractionModality u
∃! DUL:describes.HRCTask u
∃! constrains.HumanFunction u
∃! constrains.RobotFunction u
∃! DUL:isDescribedBy.PrecedenceConstraint

(18)

An interaction modality of type Supportive requires a human and a robot to perform the same operation
on the same object at the same time. The pattern in this case forces the execution of a RobotFunction and a
HumanFunction to start and end at the same time. Although the operation is the same, it is necessary to model
two distinct instances of human and robot Function. Namely, a human and a robot execute two distinct operations
of the same type (i.e., two instances of the same type of Function) and they are executed in strict parallelism. The
required temporal constraint is described by the ParallelExecutionContraint.

Supportive v InteractionModality u
∃! DUL:describes.HRCTask u
∃! constrains.HumanFunction u
∃! constrains.RobotFunction u
∃! DUL:isDescribedBy.ParallelExecutionConstraint

(19)

According to these four interaction modalities, SOHO defines four types of HRCTask each associated
with a specific InteractionModality: (i) IndependentHRCTask; (ii) SimultaneousHRCTask; (iii)
SequentialHRCTask and; (iv) SequentialHRCTask. These tasks provide designers with generic and
reusable concepts suitable to characterize collaborative dynamics in manufacturing scenarios.
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4. Knowledge Definition and Automated Synthesis of Plan-based Control Models

A SOHO-compliant knowledge base (ABox) characterizes an HRC scenario from different perspectives. The use
of semantic technologies based on RDFS [71], OWL [54] and SPARQL [72] supports accessibility and interop-
erability between knowledge and production-related processes. We are especially interested in showing how the
proposed semantics and related knowledge bases would contribute to the enhancement of awareness, flexibility, and
autonomy of collaborative robots. This section shows in detail how knowledge is used to automatize the synthesis of
task planning models and coordinate human and robot operations through deliberative plan-based control [11, 24].
A knowledge extraction procedure bridges the gap between knowledge representation and task planning for robot
control, supporting the realization of a cognitive “perceive, reason, act” loop. It is worth noticing that SOHO is
planning agnostic. The defined knowledge bases thus describe therefore HRC scenario in general terms without
considering the particular task planning formalism used for the actual coordination. This is a key point to “standard-
ize” production knowledge and thus realize general services that can be used and combined with different control
technologies (at different levels of abstraction).

Task planning generally relies on AI Planning and Scheduling technologies [73–76] allowing robots (or more in
general artificial agents) to autonomously synthesize and execute plans that achieve some desired goal. Such plans
are generally seen as sequences of actions to be executed starting from an initial state. Several planning formalisms
exist in literature each supporting different reasoning capabilities e.g., causal reasoning [73, 74, 77], numeric and
temporal reasoning [76, 78] or hierarchical reasoning [79, 80]. HRC requires reasoning on the simultaneous execu-
tion of human and robot actions, taking into account different qualities of the resulting collaborative processes e.g.,
cycle time, safety, and idle time of the robot. Furthermore, the human introduces a significant source of uncertainty
from a control perspective. A plan-based controller should properly deal with this level of uncertainty in order to
synthesize plans that are sufficiently robust at execution time [81, 82].

For these reasons, this work specifically considers the timeline-based planning formalism and proposes a knowl-
edge extraction procedure mapping production knowledge to timeline-based specifications. The formalism has been
successfully applied in many real-world scenarios e.g., [83–86] and is quite expressive supporting concurrency, du-
rative actions, (flexible) time as well as numeric and temporal constraints. The work [87] formalizes timeline-based
planning by introducing the notions of temporal uncertainty and controllability issues [88]. Timelines have been
applied to HRC thanks to the capabilities of dealing with human behavioral uncertainty [89, 90]. Before entering
into the details of the developed knowledge extraction procedure, the next sub-section briefly introduces the main
concepts regarding timelines, as introduced in [87].

4.1. Plan-based Control through Timeline-based Planning and Execution

A timeline-based planning specification describes valid temporal behaviors of a number of domain features to be
controlled. The planning process consists in synthesizing valid flexible behaviors (i.e., timelines) describing how
these features should evolve over time to achieve some given objectives (i.e., which states/actions assumes/executes
and when). According to [87], state variables model domain features by specifying valid temporal behaviors in
terms of allowed timed sequences of states/actions (generally denoted as state variable values).

Definition 1. A State Variable is a tuple S V = 〈V,T,D, γ〉 describing valid behaviors of a domain feature:

– V is a set of values vi ∈ V representing states of actions the feature can perform or assume over time.
– T : V → 2V is a state transition function describing for each value vi ∈ V possible successors on a timeline

and thus valid transitions.
– D : V → T × T is a duration function specifying for each value vi ∈ V its expected duration bounds,

expressed in some temporal domain T (typically N+).
– γ : V → {c, pc, u} is a controllability tagging function specifying the controllability property of a value.

Controllability properties characterize the execution of SVs’ values with respect to the dynamics of the environment.

Definition 2. A value vi ∈ V of a state variable S V = 〈V,T,D, γ〉 is:

– Controllable (γ(vi) = c) if the control system can decide both the start and end times for its execution.
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– Partially-controllable (γ(vi) = pc) if it can only be started by the control system, while its end time and, i.e.,
its actual duration, can be only observed.

– Uncontrollable (γ(vi) = u) the control system can neither decide its start nor its end times.

Information about controllability and temporal flexibility are crucial to solve planning problems while dealing with
temporal uncertainty to support robust plan execution [81, 91, 92].

A flexible timeline for a state variable S Vi is a sequence of (flexible) temporal intervals called tokens that describe
an envelope of valid temporal behaviors.

Definition 3. If S Vi = (V,T, γ,D) is a state variable, a token x j for the variable has the form:

x j = (vk, [e j, e
′

j], [d j, d
′

j], γ(vk))

where vk ∈ V is the value assumed by the token x j, [e j, e
′

j] is the end-time interval of x j (with e j 6 e
′

j) and [d j, d
′

j]

is the minimum and maximum duration of x j (with d j 6 d
′

J).

A token x j represents a specific allocation of a value vk ∈ V over a certain (flexible) temporal interval. The duration
of a token must be consistent with the duration bounds of the associated value vk. A timeline is a continuous sequence
of tokens xi describing the behavior of a domain feature from a temporal origin to (at least) a planning horizon
H ∈ T. The start-time interval of a token is not explicitly represented since it coincides with the end-time interval
of the previous token in the timeline (the first token of a timeline starts at the temporal origin [0, 0]).

Definition 4. A timeline FTLi for a state variable S Vi = (V,T,D, γ) is a continuous and finite sequence of tokens
of the form:

x1 = (v1, [e1, e
′

1], [d1, d
′

1], γ(v1)), ..., xm = (vm, [em, e
′

m], [dm, d
′

m], γ(vm)),

where v1, ..., vm ∈ V and for all j = 1, ...,m − 1, v j+1 ∈ T (v j). Denoting with start(x j) the computed start time
interval of a token x j then, for all j = 1, ...,m − 1, [e j, e

′

j] = start(x j+1) (i.e., a timeline is a continuous sequence
of non-overlapping tokens).

Synchronization rules specify additional constraints that are necessary to synthesize timelines that achieve desired
objectives (e.g., planning goals).

Definition 5. A synchronization rule has the form

a0[S V0 = v0]→ a1[S V1 = v1], ..., an[S Vn = vn].C

where every ai[S Vi = vi] is a token variable denoting a temporal interval in which a state variable S Vi assumes the
value vi. The left-hand part of the synchronization rule (a0[S V0 = v0]) is called the trigger of the rule. The set C
specifies temporal relations between token variables.

Synchronization rules with the same trigger are treated as disjunctions and represent alternative constraints that
should hold between different sets of token variables.

A planning problem then consists of a set of partially instantiated timelines that specify known facts about the
initial state of domain features (i.e., tokens specifying the values assumed by each state variable at plan origin)
and goals constraining their temporal evolution (i.e.,. tokens specifying the desired values that one or more state
variables should assume during certain temporal intervals). A planning process should synthesize valid and complete
temporal behaviors of all (controllable) state variables (i.e., timelines) such that all duration constraints, value
transition constraints and temporal constraints of applied synchronization rules are satisfied.
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Figure 5. Knowledge extraction pipeline for the automatic generation of timeline-based planning models.

4.2. Model Generation through Knowledge Extraction

The objective of the knowledge extraction procedure is to synthesize a valid timeline-based specification to coor-
dinate human and robot agents through task planning. The procedure relies on SOHO to extract information from
the knowledge base and instantiate timeline-based structures. Two types of structures compose a timeline-based
model: (i) state variables and; (ii) synchronization rules. State variables describe possible behaviors of modeled
domain features singularly (local perspective). Synchronization rules constrain such behaviors to coordinate state
variables and carry out complex tasks.

Given these structures, it is necessary to reason about how to organize the task planning model in order to coor-
dinate domain entities correctly (e.g., the human and the robot in HRC scenarios). A number of modeling decisions
are necessary concerning the number of state variables (i.e., which and how many domain features must be mod-
eled), and the number of decomposition and temporal constraints (i.e., which and how many synchronization rules
must be modeled to effectively coordinate state variables).

The modeling of an effective task-planning domain is not trivial and should follow a number of well-defined
steps. Broadly speaking we define a timeline-based model of an HRC scenario following a hierarchical decomposi-
tion methodology [89, 90]. We define a number of logical state variables modeling production goals and production
tasks that could be performed over time. A number of state variables model the low-level operations that agents
could perform over time. A number of synchronization rules describe how production goals are decomposed into
increasingly simpler tasks and how simple (or primitive) tasks are correlated with the low-level operations that mod-
eled agents can perform over time. This methodology has been implemented in a knowledge extraction procedure
capable of generating timeline-based models from SOHO-compliant production knowledge. Figure 5 shows the
general structure of the developed procedure.

4.2.1. Knowledge Extraction Procedure
The procedure takes as input a production knowledge defined according to SOHO and generates as output a

complete timeline-based model for task planning. It consists of a number of knowledge extraction steps that can
be divided into two macro-steps of the procedure. The first macro-step comprises the steps needed to generate the
state variables of the timeline-based model. The second macro-step comprises the steps needed to generate the
synchronization rules.

State variables model at different levels of abstraction the tasks or low-level operations that could be executed in
an HRC scenario to support production. The step Goal-level Behavior extracts knowledge useful to define the goal-
level state variable S VG = 〈 VG,TG,DG, γG〉. This state variable describes the high-level production goals that could
be performed in an HRC cell and thus require the execution of some collaborative procedure. It is not difficult to
imagine that this state variable is generated by taking into account the individuals of ProductionGoal extracted
from the knowledge base. Specifically, each state variable value of vG,i ∈ VG of S VG is associated with a distinct
individual i of ProductionGoal found in the knowledge base.

The step Agent-level Behavior extracts knowledge useful to generate the state variable defining the low-level op-
erations that agents can execute. The procedure would generate a state variable for each individual of DUL:Agent
found in the knowledge base. In the specific case of the HRC scenario, two state variables are generated. A hu-
man state variable S VH = 〈 VH ,TH ,DH , γH〉 associated with the individual of WorkOperator. A robot state
variable S VR = 〈 VR,TR,DR, γR〉 associated with the individual of Cobot. Each value of these state variables is
associated with the individuals of Function the related agent can perform. For example, the values vH,i ∈ VH are
associated with the individuals of Function that canBePerformedBy the individual of WorkOperator, as
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inferred through Equation 6. Similarly, the values vR,i ∈ VR are associated with the individuals of Function that
canBePerformedBy the individual of Cobot as inferred through Equation 6.

It is worth noticing that values of the human state variable vH,i ∈ VH are all modeled as uncontrollable (i.e.,
γ (vH,i) = u). The task planner can only assume that the execution of these functions would follow a certain (ex-
pected) schedule but cannot actually control their duration. The values of the robot state variable vR,i ∈ VR are in-
stead modeled as partially controllable (i.e., γ (vR,i) = pc). The task planner can decide when to start the execution
of these operations but cannot control the end because of the co-existence with the human (e.g., the human can slow
down or stop robot motions while executing an operation).

The step Task-level Behavior then extracts knowledge useful to generate the state variables defining the tasks mod-
eling the production procedures. This step first analyzes the knowledge by “navigating” the described production
procedures through the property DUL:hasConstituent which associates individuals of ProductionGoal
with individuals of ProductionMehtod and in turn with individuals of ProductionTask. Considering pro-
duction procedures modeled in L hierarchical levels, this step generates a task-level state variable S V j

T for each
hierarchical level j = {0, ..., L−1}. For example, the highest level of abstraction j = 0 generates the task-level state
variable S V0

T = 〈 V0
T ,T

0
T ,D

0
T , γ

0
T 〉. Each value v0T,i ∈ V0

T of the state variable S V0
T is associated with an individual

of ProductionTask at the hierarchical level j = 0.
When all the state variables have been generated, the procedure generates the synchronization rules that constrain

their values. The step Procedural Decomposition analyzes the property DUL:hasConstituent to define decom-
position constraints correlating goals or high-level tasks to lower-level tasks. For example, a synchronization rule
with a value vG,i of the goal state variable S VG as the head would correlate it with a (sub)set of values v0T,k ∈ V0

T of
the task-level state variable S V0

T at hierarchy level j = 0. The rule thus specifies that the head value vG,i should be
decomposed into the associated values v0T,k. Similarly, a synchronization rule with a value v j

T,i of the task-level state
variable S V j

T as the head would correlate it with a (sub)set of values v j+1
T,k (with j < L−1) of the task-level state vari-

able S V j+1
T . In all cases, decomposition relationships established through the property DUL:hasConstituent

are encoded using the temporal constraint CONTAINS [93].
The (last) step Task Implementation extracts information about collaborative patterns in order to generate syn-

chronization rules correlating values vL−1
T,i ∈ VL−1

T of the state variable S VL−1
T (i.e., the leaves of the production

procedures) to the values vH, j ∈ VH and vR,k ∈ VR of the state variables S VH and S VR respectively.
This set of synchronization rules constrains possible task allocations and possible interactions between the worker

and the robot. It is at this level that ontological patterns about known collaboration modalities (i.e., Equation 16,
Equation 17, Equation 18 and Equation 19) are used to define temporal constraints determining specific human-robot
collaborative behaviors.

4.2.2. Generation of Timeline-based Structures in Detail
This section describes in detail the implementation of the knowledge extraction steps of the methodology encoded

with the pipeline of Figure 5. Following the procedure, we show the auxiliary data structures created to support the
methodology with the pieces of the generated timeline-based model. The knowledge base and the extraction proce-
dure have been developed in Java using the open-source library Apache Jena 5. The knowledge base is specifically
stored and manipulated as an RDF Knowledge Graph (KG). Triples of the graph are accessed/filtered through RDF
pattern matching using the API of Apache Jena.

Algorithm 1 shows the implementation of the knowledge extraction pipeline of Figure 5. Specifically, it takes as
input a knowledge base KB in the shape of a knowledge graph. It implements a number of knowledge extraction
steps based on the Apache Jena API. It then generates and returns a timeline-based modelM = 〈SV ,R〉. The block
of rows 1-12 concerns the steps necessary to generate the set of state variables SV while the block of rows 13-23
concerns the steps necessary to generate the set of synchronization rulesR.

Define State Variables. The procedure starts by generating the state variables modeling the temporal behaviors
of domain features. The first state variable generated is the goal state variable S VG (row 2) which describes the
high-level goals that can be achieved within the considered HRC cell (i.e., the high-level collaborative tasks that can

5https://jena.apache.org

https://jena.apache.org
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Algorithm 1 Procedure for the generation of a timeline-based modelM from the Knowledge Base (KB).
Require: KB . Production knowledge
Ensure: M : 〈SV ,R〉 . Timeline-based model
1: SV ,R← {}
2: S VG ← createGoalSV (KB) . Step “Goal-level Behavior” of Figure 5
3: {S VH , S VR} ← createAgentSV (KB) . Step “Agent-level Behavior” of Figure 5
4: SV ← {S VG , S VH , S VR}
5: G = 〈NT , ET 〉 ← createDecompositionGraph (KB) . Extract decomposition dependencies among ProductionTask
6: T = {{t01 , ..., t0n }, ..., {t

|T |−1
1 , ..., t|T |−1

m }} ← hierarchy (G) . Extract hierarchy through topological sorting
7: l← 1 . Set starting hierarchy level to generate task-level state variables
8: while l < |T | do . Step “Task-level Behavior” of Figure 5
9: T l ← {tl0, ..., tlk} ∈ T . Individuals of ProductionTask at hierarchical level l

10: S V l
T ← createTaskSV

(
KB, T l

)
11: SV ← SV ∪ {S V l

T}
12: l← l + 1

13: l← 0 . Set starting hierarchy level to generate synchronization rules
14: while l < |T | do
15: T l ← {tl0, ..., tlk} ∈ T . Individuals of ProductionTask at hierarchical level l
16: for tli ∈ T l do
17: if tli ∈ ComplexTask ∨ tli ∈ ProductionGoal then . Step “Procedural Decomposition” of Figure 5
18: Rl

i ← createDecompositionRules
(
KB, tli

)
19: R← R∪ {Rl

i}
20: if tli ∈ SimpleTask then . Step “Task Implementation” of Figure 5
21: Rl

i ← createImplementationRules
(
KB, tli

)
22: R← R∪ {Rl

i}
23: l← l + 1

24: returnM : 〈SV ,R〉

be executed). The sub-procedure createGoalSV (KB) generates the state variables by retrieving individuals of
ProductionGoal from the input knowledge base KB. Algorithm 2 shows the implementation of the procedure
which extracts the set IG of individuals of ProductionGoal from input KB (row 2). It specifically retrieves all
the triples matching the pattern 〈 ?g rdf:type ProductionGoal〉. Such triples contain the RDF ID of the individuals of
ProductionGoal in place of the variable ?g. Each individual gi ∈ IG represents a high-level planning request to
the task planner for implementing a collaborative process. These individuals IG are then used to generate the state
variable S VG (rows 4-8).

There is a default state vG,0 of the state variable (e.g., an idle state denoting the fact that no production goal is
being performed at a given interval of time) that is explicitly added to VG (row 3). For each individual gi (i.e., goal)
then the procedure retrieves a label lgi used to uniquely identify the individual in the knowledge base KB (row 4).
The label lgi is used to define the state variable value vG,i associated with the goal gi and added to the set of values
VG (row 5). The procedure then set the transition constraints TG of the state variables. The goal state variable S VG

allows transitions from a value vG,i associated with the goal gi ∈ IG to the default value vG,0 only (row 7). While it
allows transitions from the default value vG,0 to all other values vG,i ∈ VG (row 8). The duration function DG and
the controllability tagging function γG of S VG are then defined using default values. Each value vG,i is associated
with a default duration bound (1,+∞) and tagged as controllable, γG (vG,i) = c.

Going back to Algorithm 1, the procedure continues with the generation of the state variables of the agents of the
scenario (rows 3). In the specific case of HRC, two state variables are generated. One state variable describes the low-
level operations the human can perform over time S VH . Another state variable describes the low-level operations
the robot can perform over time S VR. These state variables are generated by retrieving individuals of Function
that are associated with agents (i.e., individuals of DUL:Agent). Algorithm 3 further describes how agent state
variables are generated. The procedure extracts the set of individuals IA of DUL:Agent matching the pattern
〈 ?a rdf:type DUL:Agent〉 (row 1). For each individual of agent ai ∈ IA, the procedure retrieves the set of indi-
viduals IF of Function that can be performed by the agent ai (row 4), as inferred by Equation 6. The procedure re-
trieves only the (sub)set of individuals fa,i of Function that match the pattern 〈 ? fa, j canBePerformedBy ?ai〉.
These individuals are then used to generate the state variable S VA,i of the agent ai (rows 6-14).
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Algorithm 2 createGoalSV: Procedure for the generation of the goal state variable.
Require: KB . Production knowledge
Ensure: S VG : 〈 VG , TG ,DG , γG〉 . Goal State Variable
1: VG , TG ,DG , γG ← {}
2: IG ← {g : g ∈ ProductionGoal} . Retrieve individuals ProductionGoal from KB
3: VG ← {vG,0} . Set the default Idle state of SVG
4: for gi ∈ IG do
5: vG,i ← {lgi : 〈 gi, lgi 〉 ∈ DUL:hasLabel} . Retrieve a label identifying the individual gi ∈ ProductionGoal within KB.
6: VG ← VG ∪ {vG,i}
7: TG (vG,i)← {vG,0}
8: TG (vG,0)← TG (vG,0) ∪ {vG,i}
9: return S VG : 〈 VG , TG ,DG , γG〉

Specifically, the set of values VA,i of the state variable is set according to the names of the functions fi, j ∈ IF

the agent ai can perform (rows 7-8). Transition constraints are set following the same simple structure described for
the goal state variable i.e, transitions are allowed from a default idle state v0A,i to all other values v j

A,i, and from a
“function” value f j

A,i to the default idle value v0A,i (rows 9-10). Each state variable value associated with a concrete
function is associated with a flexible duration bound (rows 11-13). Lower and upper bounds are set by retrieving
data about the nominal duration (row 11) and the expected uncertainty of the execution of the functions (row 12).
Finally, the procedure sets the controllability information of the generated state variable values (row 14). In the case
of HRC, the values of the human state variable S VH are tagged as uncontrollable (u), while the values of the robot
state variable S VR are tagged as partially controllable (pc).

Algorithm 3 createAgentSV: Procedure for the generation of the agent state variables.
Require: KB . Production knowledge
Ensure: SVA . List of Agent State Variables
1: IA ← {ai : ai ∈ DUL:Agent} . Retrieve individuals of DUL:Agent from KB
2: for ai ∈ IA do
3: S VA,i ← 〈 VA,i, TA,i,DA,i, γA,i〉 . Initialize state variable S VA,i for agent ai
4: IF ← { fi, j : 〈 fi, j, ai〉 ∈ canBePerformedBy ∧ fi, j ∈ Function} . Retrieve individuals of Function
5: VA,i ← {v0A,i}
6: for fi, j ∈ IF do
7: v j

A,i ← {li, j : 〈 fi, j, li, j〉 ∈ hasProcedureName} . Retrieve the name of fi, j through data property hasProcedureName

8: VA,i ← VA,i ∪ {v j
A,i}

9: TA,i

(
v j

A,i

)
← {v0A,i}

10: TA,i

(
v0A,i

)
← TA,i

(
v0A,i

)
∪ {v j

A,i}

11: d j
A,i ← {di, j : 〈 fi, j, di, j〉 ∈ hasDuration} . Retrieve nominal duration of fi, j through data property hasDuration

12: δ
j
A,i ← {δi, j : 〈 fi, j, δi, j〉 ∈ hasUncertainty} . Retrieve uncertainty of fi, j through data property hasUncertainty

13: DA,i

(
v j

A,i

)
←

(
d j

A,i − δ
j
A,i, d

j
A,i + δ

j
A,i

)
14: γA,i

(
v j

A,i

)
← pc ∨ u . Set the function fi, j as partially controllable (pc) or uncontrollable (u)

15: SVA ← SVA ∪ {S VA,i} . Add agent state variable S VA,i

16: return SVA

Define Task-level State Variables. The last set of state variables created by Algorithm 1 concerns the set of
ProductionTask (rows 5-12) defining production operations at different levels of abstraction and supporting
decomposition of high-level goals (i.e., ProductionGoal) into low-level operations performed by the human and the
robot (i.e., Function). Production procedures are generally encoded in a hierarchical way into the knowledge base
through the property DUL:hasConstituent. To generate the set of task state variable S V l

T the procedure extracts
a decomposition graph G = 〈 NT , ET 〉 (row 5) to capture the hierarchical relationships among ProductionTask
T (row 6).
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The graph G is an AND/OR graph composed of three types of nodes: (i) task nodes; (ii) AND nodes and; (iii)
OR nodes. A task node is connected to a AND node, to a OR node, or to no nodes (leaves). Edges represent de-
composition relationships between nodes. If a node ni is connected to an AND node nAND

i then all connected task
nodes nk (i.e., the task nodes nk reachable from ni through the AND node nAND

i ) represent a conjunctive decomposi-
tion of ni. Namely, all ProductionTask tk associated with the task node nk must be executed to implement the
parentProductionTask ti or ProductionGoal gi correctly. If a node ni is connected to a OR node nOR

i, j all
connected task nodes nk (i.e., the task nodes nk reachable from ni through the OR node nOR

i, j ) represent the alternative
decomposition (i.e., procedural disjunctions).

Algorithm 4 createDecompositionGraph: Procedure building an AND/OR graph encapsulating task de-
composition of ProductionTask.
Require: KB . Production knowledge
Ensure: G : 〈NT , ET 〉 . Directed graph representing modeled production procedures
1: NT , ET ← {}
2: IG ← {gi : gi ∈ ProductionGoal} . Retrieve individuals of ProductionGoal
3: for gi ∈ IG do
4: ni ← createTaskNode (gi) . Create a root node of the graph associated with the ProductionGoal gi
5: NT ← NT ∪ {ni}
6: IM,i ← {mi, j : 〈 gi,mi, j〉 ∈ DUL:hasConstituent} . Retrieve individuals of ProductionMethod associated with gi
7: if |IM,i| > 1 then . Disjunctive decomposition of gi through multiple methods mi, j ∈ IM,i
8: nOR

i ← createORNode ()

9: NT ← NT ∪ {nOR
i }

10: ET ← ET ∪ {〈 ni, nOR
i 〉}

11: for mi, j ∈ IM,i do
12: mAND

i, j ← createANDNode ()

13: NT ← NT ∪ {nAND
i, j }

14: ET ← ET ∪ {〈 nOR
i , nAND

i, j 〉}
15: IT, j ← {tk : 〈 mi, j, tk〉 ∈ DUL:hasConstituent} . Retrieve ProductionTask tk that are constituent of gi through mi, j
16: for tk ∈ IT, j do
17: nk ← createTaskNode (tk)
18: NT ← NT ∪ {nk}
19: ET ← ET ∪ {〈 nAND

i, j , nk〉}
20: graphRefinement (KB,G, tk) . Recursive refinement of the graph, see Algorithm 5
21: else . Direct decomposition of gi through a single method mi, j ∈ IM,i i.e., |IM,i| == 1

22: nAND
i ← createANDNode ()

23: NT ← NT ∪ {nAND
i }

24: ET ← ET ∪ {〈 ni, nAND
i 〉}

25: IT, j ← {tk : 〈 mi, j, tk〉 ∈ DUL:hasConstituent} . Retrieve ProductionTask tk that are constituent of gi through mi, j
26: for tk ∈ IT. j do
27: nk ← createTaskNode (tk)
28: NT ← NT ∪ {nk}
29: ET ← ET ∪ {〈 nAND

i , nk〉}
30: graphRefinement (KB,G, tk) . Recursive refinement of the graph, see Algorithm 5
31: return G : 〈NT , ET 〉

Algorithm 4 shows how the graph G = 〈NT , ET 〉 is actually built extracting information from the knowl-
edge base KB. The procedure first extracts the individuals of ProductionGoal IG from KB (row 2). Starting
from these goals, the graph G is incrementally refined by exploring possible decomposition through the property
DUL:hasConstituent (rows 3-30).

For each individual gi ∈ IG, the procedure creates and adds to the graph a task node ni (rows 4-5). For each
goal gi ∈ IG, the procedure retrieves the set of individuals of ProductionMethod IM,i finding triples that match
the pattern 〈 ?gi dul:hasConstituent ?mi, j〉 (row 6). If more than one method is found (i.e., |IM,i| > 1) then each
method mi, j ∈ IM,i describes an alternative procedure associated with ProductionGoal gi (rows 7-20). If only
one method is found (|IM,i| == 1) then a single decomposition is associated with ProductionGoal gi (rows
21-30).
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– In the first case, the procedure creates an OR node nOR
i and associates it to the task node nt through the di-

rected edge 〈 ni, nOR
i 〉 (rows 8-10). The OR node nOR

i should in turn be connected to the alternative decompo-
sition associated with the individual of ProductionMethod found IM,i. For each method mi, j ∈ IM,i the
procedure creates a AND node nAND

i, j connected to nOR
i through the edge 〈 nOR

i , nAND
i, j 〉 (rows 11-14). Given a

particular individual mi, j ∈ IM, j of ProductionMethod the procedure retrieves all associated individuals
of ProductionTask IT, j matching the triple pattern 〈 ?mi, j dul:hasConstituent ?tk〉 (row 15). For each task
tk ∈ TT, j the procedure creates a new task node nk and connected to the AND node nAND

i, j through the edge
〈 nAND

i, j , nk〉 (rows 16-19). At this point, the graph G is refined by going deeper into the procedural decomposi-
tion of ProductionTask tk calling the recursive procedure graphRefinement (KB,G, tk) described by
Algorithm 5 (row 20).

– In the second case, only one method mi, j ∈ IM, j is found and there is no need to encode a disjunctive de-
composition of ProductionGoal gi into the graph G. The procedure first creates a AND node nAND

i asso-
ciated with the task node ni of the ProductionGoal gi through the edge 〈 ni, nAND

i 〉 (rows 22-24). It then
extracts all the triples matching the pattern 〈 ?mi, j dul:hasConstituent ?t∠ to find the set of individuals IT, j of
ProdcutionTask decomposing ProductionGoal gi (row 25). For each task tk ∈ IT, j, the procedure
creates a task node nk and associates it with the AND node nAND

i through the edge 〈 nAND
i , nk (rows 26-29). At

this point, the graph G is refined by going deeper into the procedural decomposition of ProductionTask tk
calling the recursive procedure graphRefinement (KB,G, tk) described by Algorithm 5 (row 30).

Algorithm 5 graphRefinement: Recursive refinement of the decomposition graph navigating the task procedu-
ral implementation into the knowledge base.
Require: 〈KB,G, ti〉 . Production knowledge, decomposition graph and the ProductionTask ti to decompose
1: IT,i ← {ti, j : 〈 ti, ti, j〉 ∈ DUL:hasConstituent} . Retrieve individual of ProductionTask decomposing input task ti
2: if ti ∈ DisjunctiveTask then . Interpret the decomposition as disjunction
3: nOR

i ← createORNode ()

4: NT ← NT ∪ {nOR
i }

5: ET ← ET ∪ {〈 ni, nOR
i 〉}

6: for ti, j ∈ It,i do
7: ni, j ← createTaskNode (ti, j)
8: NT ← NT ∪ {ni, j}
9: ET ← ET ∪ {〈 nOR

i , ni, j〉}
10: graphRefinement (KB,G, ti, j) . Recursive call to navigate the decomposition deeper

11: else if ti ∈ ConjunctiveTask then . Interpret the decomposition as conjunction
12: nAND

i ← createANDNode ()
13: NT ← NT ∪ {nAND

i }
14: ET ← ET ∪ {〈 ni, nAND

i 〉}
15: for ti, j ∈ IT,i do
16: ni, j ← createTaskNode (ti, j)
17: NT ← NT ∪ {ni, j}
18: ET ← ET ∪ {〈 nAND

i , ni, j〉}
19: graphRefinement (KB,G, ti, j) . Recursive call to navigate the decomposition deeper

20: else
21: . individual of SimpleTask are leaves of the graph and no further decomposition is necessary

Algorithm 5 recursively refines the graph G by exploring the hierarchical structure of ProductionTask
through the property DUL:hasConstituent. Individuals match triple pattern 〈?ti dul:hasConstituent ti, j〉. The
resulting set of individuals of ProductionTask IT, j represent the decomposition of ti (row 1). The decomposition
is interpreted according to the type of the input ProductionTask ti.

– If ti is a DisjunctiveTask (row 2) then the graph G is refined interpreting sub-tasks ti, j ∈ IT,i as disjunctive
decomposition of ti (rows 2-10). The procedure creates a OR node nOR

i connected to the task node ni of the
input task ti through the edge 〈 ni, nOR

i, j 〉 (rows 3-5). For each sub-task ti, j ∈ IT, j a new task node ni, j for task the
ti, j is created and connected to the OR node nOR

i through the edge 〈 nOR
i , ni, j〉 (rows 6-9). A recursive call then

refines the graph G by deeper navigating the procedural description through the sub-task ti, j (row 10).
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– If ti is a ConjunctiveTask (row 11) then the graph G is refined interpreting sub-tasks of ti, j ∈ IT,i as
conjunctive decomposition of ti (rows 12-19). The procedure creates a AND node nAND

i connected to the task
node ni of the input task ti through the edge 〈 ni, nAND

i, j 〉 (rows 12-14). For each sub-task ti, j ∈ IT, j a task node
ni, j for the task ti, j is created and connected to the AND node nt

AND through the edge 〈 nAND
i , ni, j〉 (rows 16-18).

A recursive call then refines the graph G by deeper navigating the procedural description through the sub-task
ti, j (row 19).

– If the task ti is a SimpleTask (rows 20) no further refinement of the graph G is necessary. This is the base
case stopping the recursion.

Going back to Algorithm 1, the graph G generated by Algorithm 4 characterizes the decomposition of
ProductionGoal into ComplexTask and SimpleTask through associated ProductionMehtod (row 5).
The sub-procedure hierarchy (G) extracts the hierarchical layering of ProductionTask T by running a topo-
logical sort algorithm on G (row 6). These two auxiliary data structures then support the definition of the remaining
task state variables and synchronization rules of the timeline-based model (respectively rows 7-12 and rows 13-23).

The hierarchical layering of ProductionTask T partitions the set of tasks in |T | sets each containing
ProductionTask at the same level of abstraction. The higher hierarchical level of the layering (i.e., the sub-set
at l = 0) corresponds to the root nodes of G and the individuals of ProductionGoal extracted from theKB. This
set of goals is already encoded into S VG and therefore the construction of task-level state variables starts from the
next layering level l← 1 (row 7). For each layer l 6 |T |, the procedure creates a dedicated task-level state variable
S V l

T (rows 9-12). Specifically, the set of individuals of ProductionTask T l = {tl
0, ..., t

l
k} ∈ T used to create

the task-level state variable S V l
T through the procedure createTaskSV working in a similar way to Algorithm 2.

Define Synchronization Rules. The definition of the synchronization rules starts with defining the rules that con-
strain the decomposition of goals (i.e., values of S VG) into production tasks (i.e., values of S VL, with growing values
of L). The procedure iterates over the hierarchical layering of T extracted from G (rows 13-23). At each hierarchical
level, l < |T | the procedure retrieves the set of individuals of production tasks or goals T l = {tl

0, ..., t
l
k} that charac-

terize the production procedure at the hierarchical level l (row 15). For each task of the level tl
i ∈ T l the procedure

generates the needed synchronization rules with tl
i as a trigger (rows 17-22). If the task tl

i is a ComplexTask or a
ProductionGoal a number of rules constraining possible decomposition of the task tl

i are generated through Al-
gorithm 6. If the task tl

i is a SimpleTask a number of rules constraining possible (collaborative) implementations
of the task tl

i are generated through Algorithm 7.

Algorithm 6 createDecompositionRule: Definition of synchronization rules decomposing an input task.
Require: 〈KB, ti〉 . Production knowledge, production task to be decomposed
Ensure: R . Set of synchronization rules modeling possible decomposition
1: Ii ← {ti, j : 〈 ti, ti, j〉 ∈ DUL:hasConstituent} . Individuals representing decomposition of ti
2: if ti ∈ ConjunctiveTask then . The input task ti is conjunctive
3: RH ← createRuleHead (ti)
4: for ti, j ∈ Ii do . Create a rule body with all tasks ti, j ∈ Ii
5: ai, j ← createTokeVariable (ti, j)
6: RB ← RB ∪ {ai, j}
7: Ic ← {ci : 〈 ti, ci〉 ∈ ProductionNorm ∧ ci ∈ OperativeConstraint}
8: for ci ∈ Ic do
9: ri, j ← createTemporalRelation (ci)

10: RC ← RC ∪ {ri, j}
11: R← {〈RH ,RB,RC〉}
12: else . The input task ti is disjunctive
13: for ti, j ∈ Ii do . Create a distinct rule for each task ti, j ∈ Ii
14: RH ← createRuleHead (ti)
15: ai, j ← createTokenVariable (ti, j)
16: RB ← {ai, j}
17: R← R∪ {〈 RH ,RB, ∅〉}
18: returnR
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Algorithm 6 shows the procedure generating synchronization rules for the decomposition of a ProductionTask
ti into simpler ProductionTask ti, j. The procedure retrieves the set of individuals of ProductionTask Ii

associated with the input task ti through property DUL:hasConstituent (row 1). The generation of the decom-
position rules then depends on the type of the input task ti.

– In the case of a ConjunctiveTask ti ∈ ConjunctiveTask (row 2), the procedure creates a single
synchronization rule constraining all the associated sub-tasks ti, j ∈ Ii (rows 4-11). Specifically, the head of the
rule is associated with input task ti (row 3). For each sub-task ti, j ∈ Ii, the procedure creates a token variable ai, j

associated with the task (row 5) and adds it to the body of the rule RB (row 6). The set of temporal relations RC

of the rule is then generated by retrieving information about individuals of ProductionNorm Ic associated
with the input task ti (rows 7-10). Temporal relations are generally of type CONTAINS constraining the input
task ti and the sub-tasks ti, j, and of type BEFORE possibly specifying ordering between sub-tasks ti, j, tik ∈ Ii

– In the case of a DisjunctiveTask ti ∈ DisjunctiveTask (row 12), the procedure creates a distinct
synchronization rule for each sub-task ti, j ∈ Ii (rows 13-17). For each sub-task ti, j ∈ Ii, the procedure creates a
rule with head ti (row 14), a token variable ai, j associated with the sub-task ti, j as body (rows 15-16) and empty
constraints (row 17).

Algorithm 7 createImplementationRules: Definition of synchronization rules implementing an input task
in (patterns of) functions.
Require: 〈KB, ti〉 . Production knowledge, production task to be implemented
Ensure: R : 〈 RH ,RB,RC〉 . A synchronization rule implementing the input task
1: Ii ← {ti, j : 〈 ti, ti, j〉 ∈ DUL:hasConstituent} . Individuals representing decomposition of ti
2: RH ← createRuleHead (ti)
3: for ti, j ∈ Ii do
4: ai, j ← createTokenVariable (ti, j)
5: RB ← RB ∪ {ai, j}
6: Ic ← {ci : 〈 ti, ci〉 ∈ ProductionNorm ∧ ci ∈ InteractionModality}
7: for ci ∈ Ic do
8: ri, j ← createTemporalRelation (ci)

9: RC ← RC ∪ {ri, j}
10: returnR : 〈 RH ,RB,RC〉

Algorithm 7 generally describes the procedure that creates the synchronization rules constraining the implemen-
tation of SimpleTask into Function performed by DUL:Agent. Constraints are set according to the set of
InteractionModality Ic associated with the task ti (row 6). In the case of collaborative tasks, ontological
patterns define different types of tasks HRCTask determining different combinations of temporal relations between
the associated Function (i.e., the sub-tasks ti, j ∈ Ii).

– A task ti of type IndependentHRCTask, according to Equation 16, is associated with one individual of
Function only (i.e., |Ii| == 1). The set of constraints of the rule RC contains only one CONTAINS relation
constraining the trigger of the rule (i.e, the state variable value associated with ti) and the value of the human
or robot state variable associated with ti, j ∈ Ii.

– A task ti of type SimultaneousHRCTask, according to Equation 17, is associated with one individual of
Function that can be performed by the WorkOperator , and one individual of Function that can be
performed by the Cobot (i.e., |Ii| == 2). The set of constraints RC contains in this case two CONTAINS
relations constraining the trigger of the rule (i.e., the state variable value associated with the task ti) and both
values of the human and the robot state variables associated with ti, j ∈ Ii. No additional constraints between
the two functions are needed.

– A task ti of type SequentialHRCTask, according to Equation 18, is associated with one individual of
Function that can be performed by the WorkOperator , and one individual of Function that can be
performed by the Cobot (i.e., |Ii| == 2). Furthermore, the task ti is associated with an interaction modality
ci ∈ Ic of type PrecedenceConstraint which specifies an execution order between the two functions
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ti, j ∈ Ii. In addition to the CONTAINS relations, the set of constraints RC contains a BEFORE relations con-
straining one function to be executed as first (through the property isFirstTask) and the other function to
be executed as second (through the property isSecondTask).

– A task ti of type SupportiveHRCTask, according to Equation 19, is associated with one individual of
Function that can be performed by the WorkOperator , and one individual of Function that can be
performed by the Cobot (i.e., |Ii| == 2). The two functions are in this case forced to be executed at the very
same time and thus with strong parallelism. The task ti is indeed associated with a InteractionModality
of type ParallelExecutionConstraint requiring the human and robot functions to start and end at
the same time. In addition to the CONTAINS relations, the set RC contains two EQUALS relations, constraining
the state variable value associated with the trigger ti and the state variable values associated with the human
and robot functions ti, j ∈ Ii. Such constraints enforce the human and robot functions to be executed during the
same (flexible) temporal interval.

5. Assessment on Real-World Scenarios

We assess SOHO and the developed timeline-based model generation procedure on a number of real HRC sce-
narios from the pilot use cases of the EU H2020 Sharework project 6. The ontology has been defined in OWL [54],
using Protégé 7, and is publicly available on a GitHub repository 8 For each use case, a dedicated knowledge base
has been defined by gathering information from production engineers and domain experts. Specifically designed
forms have been designed and administrated to domain experts in order to collect information about production
procedures and desired collaborative dynamics. Collected information has been used by a knowledge engineer to
concretely build the knowledge bases (ABoxes) of the different scenarios, using Protégé 9.

The reasoning mechanisms and the knowledge extraction procedure of Algorithm 1 have been developed in Java
using Apache Jena 10. Representation and reasoning functionalities have been integrated into ROS 11 through ROS-
Java 12 to support deployment on (industrial) robots and implement the envisaged cognitive control loop. ROS mod-
ules and services developed within Sharework are publicly available on GitHub 13. The evaluation considers differ-
ent collaborative scenarios representing realistic production situations, needs, and constraints. Such scenarios are
well suited to assess the generality of the proposed ontological model as well as its efficacy in capturing the re-
quirements of real-world applications and synthesizing valid task-planning models. The scenarios are the following:
(i) AUTOMOTIVE; (ii) METAL; (iii) CAPITAL-GOODS; (iv) RAILWAYS; (v) MOSAIC. These four scenarios consti-
tute realistic benchmarks, suitable to assess the representation and reasoning capabilities of the developed AI-based
technologies.

5.1. Industrial Scenarios in Detail

5.1.1. The AUTOMOTIVE Scenario
This scenario concerns a specific station of an assembly line of vehicles. The collaborative process specifically

focuses on a door assembly task of chassis. The collaborative robot is in charge of moving and holding the heavy
parts of the vehicle (i.e., pick-and-place of front and rear doors to be assembled on the chassis) while the human
carries out assembly tasks in the same working area of the robot (i.e., fix the doors to the body of the vehicle). Figure
6 shows some pictures of the layout of the working area with the mount point of the front door on the chassis.

6https://sharework-project.eu
7https://protege.stanford.edu
8https://github.com/pstlab/SOHO.git
9The knowledge bases can be found on the GitHub repository of SOHO under the folder “instances”.
10https://jena.apache.org
11Distribution ROS Melodic - http://wiki.ros.org/melodic
12http://wiki.ros.org/rosjava
13https://github.com/pstlab/sharework_knowledge.git

https://sharework-project.eu
https://protege.stanford.edu
https://github.com/pstlab/SOHO.git
https://jena.apache.org
http://wiki.ros.org/melodic
http://wiki.ros.org/rosjava
https://github.com/pstlab/sharework_knowledge.git
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(a) (b)

Figure 6. Design of the collaborative cell for the AUTOMOTIVE scenario (a) and the production line for the assembly of the chassis (b).

This scenario is characterized by a flat production process where the human and the robot play different roles and
carry out tasks autonomously but following a strict order. Door assembly is correctly performed only if the robot
and the human execute their task at the correct time (e.g., the human cannot start her task if the robot does not place
the door in the expected position). Roles are not interchangeable therefore it would not be possible to carry out a
collaborative process without the correct coordination of the two actors. More specifically, the robot (a robotic arm)
can perform only PickPlace functions on the rear and front doors of the vehicles (i.e., the front and rear
doors are two WorkPiece of the environment). The robot (individual of Cobot) can perform two instances of
PickPlace, one function on the target door front and the other one on the target door rear. The human instead
carry out the actual assembly operations and should therefore perform functions of different type e.g., Assemble,
ManualGuidance, ChangeOver and Screw on the vehicle body (WorkPiece).

All SimpleTask entailing the direct involvement of human and robot operations are modeled as individuals of
IndependentHRCTask since both agents can carry out their functions autonomously. For example, the robotic
task of moving a door to the front assembly area of the layout is modeled as an independent collaborative task (i.e.,
individuals of IndependentHRCTask) and implemented by a pick-place operation of the robot (i.e., an instance
of PickPlace function). However, ProductionNorm constraining some ProductionTask are necessary to
correctly coordinate robot and human operations. The Assemble functions of the human that physically mount
the doors on the chassis can be performed only if the robot has correctly placed the door in the expected position.
Individuals of PrecedenceConstraint are thus necessary to constrain the execution of PickPlace functions
of the robot to occur before the execution of Assemble functions of the human.

The production process of this scenario is simple from a control perspective since the possible behaviors of
the human and the robot are fixed and there is no need for optimization. It just requires the unfolding of a single
ComplexTask into a number of IndependentHRCTask the human and the robot perform sequentially. How-
ever, the integration of developed representation and planning capabilities contributes to facilitating human-robot
interactions. The designed cognitive control approach would provide the human worker with detailed information
about requested tasks when dispatched by the task planner. The system would inform the worker about tasks as-
signed to the robot and when they are going to be executed. This information allows the worker to know his/her
plan and the current (and planned) behavior of the robot. For example, workers with low expertise may benefit
from receiving frequent and detailed information about tasks and the collaborative plan. Expert workers instead may
find an excessively frequent and detailed level of information annoying. Information about tasks and the requested
feedback can thus change according to the qualities of participating workers [68, 94].

5.1.2. The METAL Industrial Scenario
This scenario concerns the logistic station of a manufacturing system for electrical connectors. The workshop for

the assembly of pallets and fixtures in load/unload stations is divided into two main areas: (i) a transporter panel
buffer, where pallets are stored and moved, and; (ii) some CNC (Computerized Numerical Control) machines, where
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Figure 7. Structure of the shop-floor of the METAL industrial scenario (a) and the fixturing system where collaboration takes place (b).

the pallets are moved to perform the machining operations. In this scenario, operators are generally responsible
for transporting pallets and components to be mounted in a tombstone that goes inside the Flexible Manufacturing
System where each part is machined. The scenario is characterized by high variability of parts to be produced.
Operators therefore should be highly trained in order to correctly perform the suitable assembly procedure for each
different product as well as perform the quality inspection on the pallets before/after machining. The collaborative
robot is in charge of assisting operators when moving across the station, understanding operator’s behavior, and
anticipating tasks in order to facilitate their work and speed up the production, i.e., increasing the throughput.

Figure 7 shows some pictures of the layout of the logistic station. The working area is characterized by a cen-
tral/shared conveyor where different types of products are loaded and processed in order to be machined. The worker
and the robot (a UR10 robotic arm) are placed on two distinct sides of the conveyor and work simultaneously on
the products. Products are placed and moved on the central conveyor which represents the shared working area
where operations take place and where the human and the robot physically interact. The production process is char-
acterized by different types of operations depending on the specific types of workpieces entering the collaborative
cell. From a task planning perspective, the structure of the assembly/disassembly process is similar in all the cases,
since the human and the robot can have the same capabilities (e.g., screw, unscrew, pick, place, etc.). Unlike the
AUTOMOTIVE scenario, here the worker and the robot are two interchangeable agents capable of performing the
same tasks. The human and the robot represent therefore two autonomous peer actors that work simultaneously on
the workpieces performing assembly/disassembly tasks. The synthesis of collaborative processes thus concerns the
correct allocation of tasks to these two resource (i.e., autonomous agents).

The process consists in picking and placing workpieces transported by a pallet running over a conveyor. Each
workpiece is placed over a pallet entering the conveyor from an initial position (position0). Broadly speaking,
the procedure consists in replacing the workpiece transported by the pallet. There are then two working positions
where the pallet can be moved (position1 and position2). The human moves the pallet to one of the two
working positions. Here the pallet is first unmounted in order to release the worked workpiece which is then placed
into a dedicated box. Then, a new raw workpiece is picked from another box and mounted into the pallet. At this
point, the human moves the pallet to the last position of the conveyor (position3) where it can be sent to other
stations on the shop floor to be machined. Although the general procedure is the same for all types of workpieces,
the geometry and the pallets themselves are different. For this reason, each type of workpiece is associated with a
dedicated ProductionGoal and thus different individuals of ProductionTask and Function.

The replacement of a workpiece on a pallet is realized through pick & place operations that can be performed by
both the human and the robot. The human or the robot Pick the current WorkPiece from the base and Place
it into available containers e.g., Box-A, Box-B that are modeled as CapacityResource (i.e., they can store
a limited number of WorkPiece). Functions of type Pick and Place are represented separately (i.e., not as
atomic instances of PickPlace) to capture operational requirements and properly characterize possible planning
choices (e.g., which box to use to place a workpiece). The knowledge base and the associated decomposition graph
contain several DisjunctiveTask (OR nodes) representing alternative decomposition choices. Each task can be
performed either by the worker or by the robot. Such tasks are represented as DisjunctiveTask and decom-
posed into human and robotic pick & place ComplexTask through OR nodes. Such tasks are further decomposed
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Figure 8. Working area of the CAPITAL-GOODS scenario (a) and structure of the workpiece (b) where a collaborative robot is deployed to support
workers in repetitive screwing/unscrewing tasks.

into ProductionTask characterizing the specific Pick and Place functions the worker or the robot should
perform. Tasks that concern pick operations are generally represented as IndependentHRCTask implemented
by instances of Pick. Tasks that concern place operations are represented as DisjunctiveTask. Each decom-
position represents an alternative choice of assigning the task of placing a WorkPiece into one of the available
boxes (i.e., Box-A and Box-B). Such tasks are represented as IndependentHRCTask and implemented by
individuals of Place that can be performed by the human or by the robot.

The integration of developed representation and planning capabilities contributes to the optimization and safe
coordination of human and robot behaviors. The designed cognitive control approach would automatically opti-
mize human and robot behaviors through the generated (timeline-based) task planning model. Similar to AUTO-
MOTIVE, the cognitive control loop would provide workers with customized information about the tasks he/she
should perform. This is especially relevant in this scenario involving a high variety of workpieces and pallets, each
with different geometries and low-level operations. For example, the way Assemble or Disassemble functions
are actually implemented by the worker (or by the robot) may significantly change according to the specific shape
of the workpiece/pallet. Detailed information enriching dispatched tasks and showing for example contextualized
instructions about required manipulation operations would help the human in doing her/his jobs.

5.1.3. The CAPITAL-GOODS Industrial Scenario
This scenario takes into account the shop floor of a company offering differential and global solutions in power

transmission and spraying components. This scenario considers a servo rotary table that is assembled in seven fixed
assembly stations. In each station, there is an operator performing a specific task in the assembly process. All tasks
are carried out manually, just using cranes and lifters to transport the heavy components from one station to another.
The collaboration between the human and the robot concerns three out of seven tasks of the rotary table assembly
process. In the current assessment, we specifically consider the task bolt tightening and torque measuring. Figure
8 shows the designed physical environment with the rotary table equipped with the collaborative robot (a UR10
robotic arm). The operator applies adhesives on the bolts of the rotary table to allow the robot to simultaneously
determine its position and dimension through perception modules developed with the project. Information about
detected bolts is then used by the robot to automatically screw them.

The developed cognitive approach supports a reactive behavior where the robot relies on perception capabilities
[95] to autonomously recognize human tasks (i.e., “bolt placing” tasks) and act accordingly. The developed knowl-
edge representation capabilities indeed allow the robot to recognize new events concerning the placement of bolts by
the human and interpret these events as signals triggering the execution of robot tasks (i.e., ProductionGoal).
On the one hand, knowledge reasoning supports the continuous adaptation of robot behaviors by triggering plan-
ning requests based on the observed task performed by humans. On the other hand, knowledge reasoning validates
perception outcomes by checking the validity of a detected human task. It could be the case for example that a per-
ception module (wrongly) detects a placing task of a bolt already placed. In such a case the knowledge base would
detect this inconsistency when interpreting the observation and no ProductionGoal would be triggered to the
task planner.
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Figure 9. Design of the collaborative cell of the RAILWAYS scenario to support workers in the assembly of door frames.

The described reactive behavior represents the actual way the developed knowledge representation and reasoning
modules have been deployed into this pilot case [96]. To evaluate the representation capabilities of the ontological
model and the task planning model, we here model the whole production process assuming a deliberative approach
similar to other use cases. Namely, we do not consider perception outcomes and assume the planner should synthe-
size screwing tasks of all bolts of the workpiece. The process thus consists of screwing a number N = 8 of bolts
distributed over a rotary table. We keep the joint collaboration implemented in the real scenario and thus assume
that a worker places the bolts on the holes of the rotary table and a robot screws them simultaneously. Although
simple, an interesting aspect of this scenario is the synchronization required between the human and the robot. The
robot can start screwing a bolt only after the worker has placed the bolt on one of the holes of the rotary table. This
means that the task of “screwing a bolt” is modeled as a SequentialHRCTask requiring: (i) human and robotic
functions to have the same target i.e., a particular hole that can be seen as a SimpleWorkPiece composing the
CompoundWorkPiece (the rotary table); (ii) robot and human operations to follow a strict temporal ordering. In this
case, the Screw function of the robot must always be performed after the complete execution of thePickPlace
function of the human.

A high-level production goal rotary-table-assembly is decomposed into a number of (complex)
ConjunctiveTask, one for each hole of the rotary table to be screwed. Each simple task (i.e., screwing tasks)
is represented as SequentialHRCTask and thus decomposed into two functions. A PickPlace function like
e.g., pick-place-H3 requiring the operator to pick and place a bolt on a particular hole (e.g., H3 represented as
SimpleWorkPiece). A Screw function e.g., screw-H3 requires the operator to screw the bolt placed by the
worker.

5.1.4. The RAILWAYS Industrial Scenario
This scenario takes into account the shop floor of a railways transportation company supplying rolling stocks,

services, and system infrastructure. The workshop is composed of six main stations each one dedicated to a specific
set of operations concerning the assembly of trains. The project specifically focuses on the pre-assembly process
of tramways windows and door frames. Among the tasks involved in the considered processes, riveting represents
a repetitive and demanding task for human workers. It consists of the insertion of rivets in drilled holes along the
metal pieces of window frames. This task is especially critical from safety perspective since it may cause significant
injuries after a prolonged utilization of the riveting tool which weighs up to 5 kg.

Figure 9 shows the physical layout of the shop floor and the structure of the window frames that are the target of
the considered production process. The introduction of collaborative robots into the production line is designed to
relieve human workers from physically demanding tasks like e.g., the riveting task in order to improve their working
conditions and reduce the risk of injuries. A collaborative robot is thus supposed to work close to the window frame
of Figure 9(b) and tightly collaborate with the human worker to carry out the pre-assembly tasks. The collaboration
takes place within the riveting task. The human operator is in charge of spreading the silicone over the corners of the
frame structure then, the robot inserts the rivets using a riveting tool. It can be observed that the riveting task entails
a synchronous behavior of the two actors since the robot can insert the rivets only after the worker has correctly
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Figure 10. Configuration of the MOSAIC use case: (a) Structure of the ROS-based simulation of the collaborative cell; (b) Layout of the mosaic
collaboratively assembled by the human and the robot

applied the silicone. Similar to the screwing tasks of CAPITAL-GOODS, these tasks are represented as instances of
SequentialHRCTask.

Also in this case there are no disjunctive tasks to be considered in the decomposition since the roles and responsi-
bilities of the worker and the robot are quite fixed. The key aspect is the use of SequentialHRCTask to represent
riveting tasks. Such tasks are indeed associated with a Join function of the worker, representing the application of
the silicone over a particular corner of the frame structure, and, to a Join function of the robot, representing the
use of the rivet Tool to insert the rivets. Given the needed synchronization the execution of these two functions
constrains the robot to wait for the complete execution of the function of the worker.

5.1.5. The MOSAIC Collaborative Scenario
This scenario considers a general collaborative assembly of a compound workpiece. The layout of the work

cell is characterized by a shared central space where the workpiece is placed and where the human and the robot
simultaneously carry out assembly operations. Figure 10 shows the layout of the designed collaborative environment
and the layout of the mosaic. The mosaic is modeled as a CompoundWorkPiece since it can be seen as composed
of simpler parts like e.g., rows (still CompoundWorkPiece) and cells (SimpleWorkPiece).

The collaborative process consists of the execution of a set of pick & place operations. Each pick & place is
performed by a single agent autonomously but their execution (and assignment) should satisfy some physical con-
straints. Pick & place operations whose targets are colored objects placed in different areas: blue objects can be han-
dled by both the human and the robot; orange objects for short) can be performed by the robot only; white area (i.e.,
white objects for short) can be performed by the human only. Although this scenario does not correspond to a con-
crete production process of Sharework, it describes a highly flexible collaborative process representing alternative
behaviors of the robot and the human into the knowledge and the task planning model [90].

The human and the robot play the same role and carry out tasks autonomously without a specific order. The
process can be seen as the problem of moving some WorkPiece from an initial location to a desired one in
order to form a desired shape. The structure of the process is given by the structure of the desired shape. The
shape can be seen as a mosaic composed of a certain number of rows (e.g., 5 rows) and a certain number of
columns (e.g., 10 columns). Each specific location of the mosaic (i.e., cell(1,1), ..., cell(5,10)) represents a spe-
cific destination of a PickPlace function, moving a specific WorkPiece. The human and the robot can thus
perform the same type of Function i.e., PickPlace. Each PickPlace moves a particular instance wp1,
..., wpN of WorkPiece to a specific location of the mosaic like e.g., pickplace-wp1-cell(1,1)-human
and pickplace-wp1-cell(1,1)-robot. Each SimpleTask of the production process is defined as an in-
stance of IndependentHRCTask which should be associated with a PickPlace function of the human or a
PickPlace function of the robot.
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Table 1
Data about the knowledge quality, size of knowledge bases and planning models, and performance of Algorithm 1. Coherence and Consistency
of the knowledge bases have been evaluated using the Protégé Debug Tool- https://protegewiki.stanford.edu/wiki/OntoDebug

.

Domain Knowledge Base Planning Model Model Synthesis
Coherent Consistent #Classes #Properties #Individuals #SVs #Values #Rules #Constraints Time

AUTOMOTIVE X X 284 186 61 5 34 15 28 ≈ 4 seconds
METAL X X 284 186 45 8 38 57 68 ≈ 8 seconds

CAPITAL-GOODS X X 284 186 42 5 31 9 16 ≈ 4 seconds
RAILWAYS X X 284 186 75 6 64 29 48 ≈ 9 seconds

MOSAIC X X 284 186 215 7 195 137 186 ≈ 20 seconds

5.2. Generation of Planning Specification from Knowledge

Given the knowledge bases of the different scenarios, this section assesses the technical feasibility of the imple-
mented representation and reasoning processes. This section in particular evaluates the validity of the semantic mod-
els and the resulting timeline-based specifications. For each scenario, it shows the time needed for the synthesis of
the task planning models in order to measure the introduced production latency. Table 1 summarizes and compares
data about the defined knowledge bases, the characteristics of the synthesized planning models, and the reasoning
time of Algorithm 1. As a general comment, the obtained knowledge bases have the same number of defined classes
and properties since they share the same ontological framework but for each of them, it can be observed a differ-
ent number of individuals and a different number of synchronization rules, temporal constraints, and state variable
values in the resulting timeline-based planning models.

The structure and the size of the obtained planning models indeed differ significantly from each other (see “Plan-
ning Model” columns in Table 1) leading to different model generation times. For example, The planning model
generated for AUTOMOTIVE is characterized by a lower number of predicates and synchronization rules/constraints.
The planning model generated for MOSAIC instead, given its structural complexity entails a higher number of pred-
icates (195) as well as synchronization rules and constraints (respectively 137 and 186). In all cases, the ontology
was capable of capturing all the needed information and the obtained planning models were valid and feasible for
a correct deployment of the task planning module in the associated scenario. The performances of the generation
process are reasonable (e.g., 4 seconds for AUTOMOTIVE and 20 seconds for MOSAIC) demonstrating the feasibility
of the proposed approach. The model generation time should be seen as a “constant" setup time of the task planner.
Although it may vary significantly according to the size of the knowledge base, this cost is negligible with respect
to the online functioning of a task planner since it is compatible with the usual control latency and it does not affect
the overall efficiency of the system.

The results have been obtained by configuring the Apache Jena framework with an ontological model compliant
with OWL-DL semantics 14. This semantics supports many OWL features and represents a good trade-off between
the expressiveness and efficiency of the resulting functionalities. Examples are disjoint classes and all different ax-
ioms that allow the reasoner to correctly interpret individuals of the same class (siblings) as unique knowledge en-
tities. Generated planning models have been validated with PLATINUm 15, a timeline-based planning and schedul-
ing framework [97]. Figure 11 shows the hierarchical structures of the different planning models, automatically
synthesized through Algorithm 1.

Each level represents a specific abstraction level of the defined hierarchical production procedures. The highest
level of the hierarchy characterizes the high-level production goals that are incrementally decomposed into lower-
level tasks (i.e., production operations). The lowest level of the hierarchy characterizes the tasks the worker and the
robot can perform to support the associated production procedures. Following this hierarchy, as shown in Section
4.2.2, each hierarchy level is associated with a dedicated state variable. Values of such state variables describe tasks
that should be performed at the associated abstraction level of the production procedure. State variables of the last

14More specifically, we have defined a basic ontological model with OWL-DL-MEM specification combined with a rule-based inference
model based on OWL-MEM-MICRO-RULE-INF which encapsulates optimized rule-based reasoner with OWL rules. See the official Apache
Jena documentation for further details - https://jena.apache.org/documentation

15https://github.com/pstlab/PLATINUm.git

https://protegewiki.stanford.edu/wiki/OntoDebug
https://jena.apache.org/documentation
https://github.com/pstlab/PLATINUm.git
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Figure 11. Hierarchical structure of the generated planning models. The two graphs show the inferred hierarchical relationships between the state
variables generated for: (a) AUTOMOTIVE; (b) METAL; (c) CAPITAL-GOODS; (d) RAILWAYS; (e) MOSAIC



A. Umbrico et al. / Enhancing Awareness of Industrial Robots in Collaborative Manufacturing 35

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
Aspects concerning the design and deployment of collaborative robots that are supported by the proposed ontology-based approach, and their
impact on the considered HRC scenarios

AUTOMOTIVE METAL CAPITAL-GOODS RAILWAYS MOSAIC

Knowledge Engineering M H M H H

Personalization and Human Factor L H M L H

Multi-objective Optimization L M L M H

Awareness and Proactive Support L H H M H

Modular Robot Programming M H M M M

H = high relevance, M = medium relevance, L = low relevance

hierarchical layer describe the concrete operations (i.e., functions) the worker and the human can perform over time
and thus define their possible behaviors within a specific production scenario.

Given a timeline-based model, plans specify for each state variable of the model sequences of tokens determining
the production tasks performed and the low-level production operations carried out by the worker and the operator.
Such sequences of tokens (i.e., timelines), as shown in other works [89, 90], describe the planned decomposition
of modeled production procedures and planned temporal behaviors of collaborating actors (i.e., the worker and the
robot). Following [87, 88] then, each token instantiates a value of a state variable to a flexible execution interval
(the intervals associated with each token represent respectively the end-time interval and the duration interval of the
execution). Timelines, therefore, are said to encapsulate envelopes of temporal behaviors. One interesting aspect to
point out is how the defined ontological patterns that formally characterize the representation structure of collabo-
rative tasks, entail a clear and well-defined structure of the defined synchronization constraints that implement that
collaborative behavior.

5.3. Discussion of Results and Impact

The developed representation and reasoning capabilities impact different aspects concerning the design and de-
ployment of collaborative robots. The proposed approach would facilitate modeling, maintenance, and adaptation of
control dynamics to the different (evolving) requirements of industrial scenarios. Table 2 lists the aspects concerning
HRC production systems that are supported by the proposed approach. The table in particular shows the relevance
of each aspect taking into account the production and interaction features of each pilot. In this way, it points out the
flexibility of the approach according to the requirements of different scenarios.

The ontology proposes a kind of standardization of production knowledge and describes collaborative scenarios
based on a clear and well-structured formalism. Defined concepts and properties characterize production require-
ments, interacting features, and skills of robotic and human actors according to clear semantics. The assessment
shows that SOHO is suitable to describe both scenarios requiring simple and strict interactions between e.g., AUTO-
MOTIVE or capital-goods, and scenarios requiring more complex constraints and decomposition procedures
e.g., METAL, RAILWAYS and MOSAIC.

The integrated representation of the human factor allows SOHO and the developed ontology-based control ap-
proach to contextualize production dynamics to the known features and skills of human workers. This knowledge
combined with task planning supports the synthesis of personalized collaborative plans adapted to the expected per-
formance (e.g., expected average time of task execution) and expertise (e.g., worker experience) [68]. This knowl-
edge and related reasoning capabilities are especially important in scenarios characterized by a high variety of work-
pieces and operations e.g., METAL or MOSAIC. The automatically configured task planner would thus assign tasks
and dispatch instructions that are suitable and contextualized to the known profile of a worker. For example, the
task planner would provide workers with a low level of experience with a higher number of instructions in order
to better support the execution of assigned tasks. Furthermore, the tight integration with task planning technologies
supports the automatic synthesis of optimized collaborative plans. Timeline-based planning capabilities in particular
support multi-objective optimization by simultaneously reasoning on different metrics concerning, for example, the
cycle time of a collaborative process, the risk of collisions, and the workload distribution between the human and
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the robot [89]. In this regard, the automatic synthesis of (valid) task planning models supports a direct encoding
of domain expert knowledge into the robot controller, reducing modeling effort and the risk of inconsistencies. An
optimization approach to the synthesis of collaborative plans is crucial to effectively combine human and robot
skills in scenarios characterized by a high number of task allocation choices (e.g., MOSAIC) as well as multiple sets
of operations and workpiece (e.g., METAL).

Another important aspect is the enhanced awareness of robot controllers. Developed knowledge representation
and reasoning capabilities allow robot controllers to build and maintain an updated description of the production
dynamics and observed state of the production environment. The semantics of SOHO in particular supports the
abstraction and contextualization of sensing data that would be useful to recognize relevant production situations
and proactively trigger robot actions. Considering for example the scenario capital-goods these capabilities
allow the developed controller to properly interpret perception outcome and contextualize human activities (i.e.,
bolt positioning) with respect to the known production procedures and autonomously trigger suitable task planning
goals. These events are indeed automatically translated into robot tasks necessary to proactively support the human
worker in the collaborative task of screwing bolts on the rotary table.

More in general the developed approach supports a modular description of robot capabilities and production
requirements that can be easily extended and refined over time. For example, the knowledge base can be enriched
with additional robot capabilities, human skills, production goals, and procedures. This new knowledge would
automatically be contextualized with respect to production requirements and thus integrated into the reasoning and
task-planning processes. From the robot perspective, the ontology-based approach supports modular programming
allowing roboticists to focus on the definition of new capabilities/skills (i.e., Function) without considering more
general production aspects or defining complex (and static) behaviors. The synthesis of such behaviors would be
indeed the responsibility of the integrated task planner that would automatically evaluate new skills/capabilities and
dynamically synthesize (optimized) collaborative plans.

6. Conclusions and Future Works

SOHO (Sharework Ontology for Human-Robot Collaboration) is a novel domain ontology for Human-Robot
Collaboration defined within the Sharework H2020 research project. It formally characterizes HRC manufacturing
scenarios by considering different perspectives. Indeed, its main original feature relies on the use of a context-based
approach to ontology design, supporting the flexible representation of collaborative production processes.

This paper proposes an extension of SOHO by defining ontology design patterns that formally characterize collab-
oration dynamics that are typical in many Human-Robot Collaboration manufacturing scenarios. Furthermore, we
have defined a general knowledge extraction procedure that relies on the semantics proposed by SOHO to analyze
production knowledge and automatically synthesize timeline-based plan-based controllers that are suitable to effec-
tively coordinate human and robot behaviors [89, 90]. An experimental evaluation of the developed representation
and reasoning technology shows the efficacy of properly capturing the complexity of real industrial collaborative
scenarios and the capability of automatically “compiling" such knowledge into suitable planning domains.

Future research directions will focus on further extensions of SOHO to better characterize the human factors and
support the representation of preferences, expertise levels, and physical and cognitive conditions of human workers
that are crucial to serving advanced personalization and finer adaptation features in collaborative processes. In
addition, we plan to integrate developed ontology-based representation and reasoning into a knowledge engineering
tools to facilitate domain experts in the design of collaborative process as well as in the deployment of AI-based
task planning technologies for the coordination of collaborative cells [98].
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