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Abstract. The tourism and hospitality sectors have become increasingly important in the last few years and the companies
operating in this field are constantly challenged with providing new innovative services. At the same time, (big-) data has become
the “new oil” of this century and Knowledge Graphs are emerging as the most natural way to collect, refine, and structure
this heterogeneous information. In this paper, we present a methodology for semi-automatic generating a Tourism Knowledge
Graph (TKG), which can be used for supporting a variety of intelligent services in this space, and a new ontology for modelling
this domain, the Tourism Analytics Ontology (TAO). Our approach processes and integrates data from Booking.com, AirBnB,
DBpedia, and GeoNames. Due to its modular structure, it can be easily extended to include new data sources or to apply new
enrichment and refinement functions. We report a comprehensive evaluation of the functional, logical, and structural dimensions
of TKG and TAO.

Keywords: Knowledge Graphs, Ontology Design, Tourism Ontology, Web Science, Web Mining, Tourism, Hospitality

1. Introduction

We are currently living in the age of big data, and the sheer volume of new data being generated is making the
World Wide Web shifting from a web of content to a web of data. This gives all practitioners the opportunity to
build more innovative and functional web services.

Semantic Web and Linked Data technologies aim to represent the web itself through a large global graph that can
be queried using standard protocols and languages [39]. The World Wide Web Consortium (W3C) has developed
and promoted different standards, like RDF/S, OWL and SPARQL, that are now widely adopted to create knowledge
bases that represent data as knowledge graphs (KGs). A knowledge graph is a graph of data whose nodes represent
entities of interest and whose edges represent relations between these entities [23]. A few examples of knowledge
graphs publicly available are DBpedia [39], YAGO (Yet Another Great Ontology) [55] or WikiData [22]. Knowledge
graphs can store data and metadata using a common structure and are often used in application scenarios that involve
extracting and integrating information from multiple, and possibly heterogeneous, sources. Typically the data in the
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knowledge graph are modelled according to a domain ontology, which gives meaning to the represented information
and supports inferring new knowledge.

The field of tourism is a natural domain of application of these technologies since stakeholders in this space need
to integrate data from several heterogeneous sources in order to generate a multifaceted characterisation of tourist
destinations and all relevant actors [7, 26, 58].

A tourist destination can be thought of as the place or area which is central in the decision of a tourist to take
the trip1 and is usually characterised according to two aspects: supply and demand. The supply side is based on the
willingness and ability of producers to create goods and services to take them to market. Understanding the supply
side of tourism includes all aspects related to tourism offerings and attractions (e.g., accommodations, events, points
of interest, restaurants, and so forth). On the other hand, demand refers to how much (quantity) of a product or
service is desired by buyers. Understanding which factors influence the demand side of tourism includes all aspects
related to tourists’ choices and opinions or their characteristics (e.g., socio-demographic, classification, provenance).

This information is crucial for informing business and marketing decisions as well as supporting a variety of
software and services in this space, such as search engines and recommendation systems [37, 57].

The creation of KGs in this domain is a time-consuming and costly process, even with the help of mapping
languages such as RML [1, 14, 64]. Indeed, it is still a challenge to automatically generate KGs from multiple semi-
structured and textual sources (e.g., descriptions of specific accommodations, reviews, etc.) in order to describe the
many facets of this domain, such as the different kinds of accommodations and amenities. Therefore, many KGs in
this space are no longer maintained [7, 26] or cannot be easily extended to other tourist destinations [1]. In addition,
the relevant ontologies, such as Accommodation Ontology2, Schema.org3, and Hontology [9] are to some degree
incompatible with each other (as discussed in section 3.3.1) and do not offer a fine-grained representation of some
crucial entities (e.g., amenities).

In this paper, we illustrate a general, reproducible, and easily extendable methodology for KG generation and the
resulting framework for semi-automatically creating a Tourism Knowledge Graph (TKG), which integrates informa-
tion from Booking.com, Airbnb.com, DBpedia, and GeoNames. This advanced characterisation of tourism can be
used to enable the quantitative analyses of a tourist destination and support several intelligent services. In order to
model this data, we developed the Tourism Analytics Ontology (TAO), which offers a more granular characterisa-
tion of tourist locations, lodging facilities, and amenities than previous solutions and can be easily reused by similar
initiatives.

We showcase our solution by applying it to touristic locations in Sardinia and London, producing over 10M triples
describing almost 36K lodging facilities and 898K reviews. The resulting knowledge graph is available online via a
SPARQL end-point4. The TAO ontology is also available online5. Finally, for the sake of reproducibility, we share
the code base for our knowledge graph generation pipeline, for engineering TAO, and the evaluation tests6.

To summarise, the contributions of this manuscript are the following:

– a general data-driven methodology for the semi-automatically generation of knowledge graph that we applied
to the tourism domain;

– an open-source pipeline for generating a tourism knowledge graph from (semi-) structured and unstructured
data;

– the new Tourism Analytics Ontology (TAO);
– an open-source program to produce the Tourism Analytics Ontology (TAO) using code and data;
– an instance of the tourism knowledge graph (TKG) with data relative to two Tourist Destinations (Greater

London and Sardinia island in Italy);
– an evaluation assessing functional, logical, and structural dimensions of TAO and TKG.

1The World Tourism Organization (UNWTO) defines in its glossary a destination as “the place visited that is central to the decision to take
the trip”. See https://www.unwto.org/glossary-tourism-terms.

2http://ontologies.sti-innsbruck.at/acco/ns.html
3https://schema.org/docs/hotels.html
4http://tourism.sparql.linkalab-cloud.com/sparql access with login: paper password: journal_p4p3r2022!!
5See http://purl.org/tao/ns
6See https://github.com/linkalab/tkg

https://www.unwto.org/glossary-tourism-terms
http://ontologies.sti-innsbruck.at/acco/ns.html
https://schema.org/docs/hotels.html
http://tourism.sparql.linkalab-cloud.com/sparql
http://purl.org/tao/ns
https://github.com/linkalab/tkg


A. C. Chessa et al. / Tourism Knowledge Graph 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

The remainder of this paper is organised as follows. Section 2 describes related works about different knowledge
graphs within the tourism domain and methodologies for their creation. Section 3 explains the methodology adopted
to guide the knowledge graph creation, detailing the first three iterative phases related to the use cases refinement
and ontology design. Section 4 describes the other three phases of the adopted methodology related to the creation
of the proposed knowledge graph. Section 5 presents the evaluation, and finally, Section 6 ends the paper with
conclusions and future directions of work.

2. Related Work

In this section, we will review the literature on the two main themes concerning this work: i) methodologies for
ontology and knowledge graph creation and ii) knowledge graphs within the tourism domains.

2.1. Ontology and Knowledge Graph creation

Creating, maintaining, and further developing knowledge graphs requires the adoption of a number of ontology
engineering methodologies (OEMs). Kotis et al. [36] classified such methodologies into three categories: collab-
orative, non-collaborative, and custom. A collaborative OEM is clearly and systematically defined and involves
knowledge engineers, knowledge workers as well as domain experts in all the phases of ontology creation. A non-
collaborative OEM does not focus on the collaboration of stakeholders although it still clearly defines phases, tasks,
and workflows in a systematic and formal way. A custom OEM does not necessarily define phases, tasks, and work-
flows in a formal and systematic way; however, it looks for the involvement of communities of practice and the use
of tools for the development of ontologies in an agile, decentralized, and most of the time collaborative manner.

There are plenty of works in literature dealing with the creation of knowledge graphs and their methodologies
within different domains and constraints [17, 18, 51, 56]. The challenges to be faced depend on such constraints
that need to be satisfied by the developers. For example, when knowledge graphs need to be built starting from a
complex database schema, there are difficulties (especially related to its dimension) that must be addressed (i.e.,
how to efficiently read tables, which columns to consider, how to map linked tables, and so on). In this direction,
Sequeda et al. [51] presented a novel and unique pay-as-you-go approach to overcome the difficulties of under-
standing complex database schemas, providing also a use case from a large company. Tamašauskaitė and Groth [56]
presented a systematic review of the process for knowledge graph creation. The review methodology aimed at col-
lecting the various steps describing such a process and these include: identification of the data, construction of the
knowledge graph ontology, extraction of knowledge, analysis of the extracted knowledge, creation of the knowledge
graph and maintenance. The last step is the one that tends to provide periodical updates and edits to the current
knowledge graph. In this review, the authors provide suggestions, best practices, and tools supporting the creation
and maintenance of knowledge graphs.

In this paper, we present a data-driven methodology that encompasses the semi-automatic generation of the
knowledge graph exploiting several off-the-shelf tools and the engineering of a supporting domain ontology using
a collaborative OEM (as defined in [36]). The methodology is applied to generate a Knowledge Graph within the
tourism domain.

2.2. Knowledge Graphs within the Tourism Domain

In previous years, various attempts have been made to build knowledge bases in several domains, including
tourism, using information extracted from websites and social media.

For instance, the 3cixty platform [58] was built during Expo Milano 2015 to create comprehensive knowledge
bases, containing descriptions of events and activities, places and sights, transportation facilities, and social activities
collected from numerous, local and global data providers, including hyper-local sources. Using the sample platform,
in 2016-2017 new knowledge bases have been created for the cities of London, Madeira, and Singapore, as well
as for the entire French Cote d’Azur area. The project now seems no longer maintained and no source code was
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released to recreate the infrastructure. Although a SPARQL endpoint remains active it only allows the user to export
data only in HTML and not as RDF.

The Tourpedia platform which was meant to be the DBpedia of tourism was developed within the OpeNER
Project [26]. OpeNER (Open Polarity Enhanced Name Entity Recognition) was a project funded under the 7th
Framework Program of the European Commission whose main objective was to implement a pipeline to process
natural language. The project is no longer maintained although anyone can run the proposed pipeline to view cat-
egories, places information, and create and manage events and tour plans for users. Also, on the main website, it
is still possible to run the web demo application, showing the sentiment about places through an interactive map.
Some datasets are still available for download although other tools, including the SPARQL endpoint, are no longer
working.

DBtravel [7] is a tourism-oriented knowledge graph generated from the collaborative travel site Wikitravel that
takes advantage of the recommended guidelines for contributors provided by Wikitravel and extracts the named
entities available in Wikitravel Spanish version7 by using an NLP pipeline. As for the previous two projects, the
knowledge graph and the source code used to produce it are no longer maintained nor available online.

Other projects demonstrate that semantic technologies and knowledge graphs can be successfully applied to
tourism when information is extracted from curated proprietary data sources. In the case of La Rioja Turismo
Knowledge Graph, Alonso-Maturana et al. [1] retrieve and integrate information referring to attractions, accom-
modation, tourism routes, activities, events, restaurants, and wineries from heterogeneous and diverse management
systems. This approach is focused on the La Rioja Turismo ecosystem but cannot be easily extended to other tourist
destinations.

In the case of the Tyrolean Tourism Knowledge Graph [35], data based on Schema.org annotations are collected
from destination management organisations (DMOs) and their IT service providers. In this case, the knowledge
graph creation is based on the availability of coherent Schema.org annotations in the source websites, which was
possible thanks to the cooperation of Tyrolean DMOs. Once again, this scenario is not always applicable because it
requires a central organisation to coordinate the different stakeholders.

Another proposed approach was to collect, enrich, and publish Linked Open Data for the Municipality of Cata-
nia, a city in Southern Italy, in the context of the project PRISMA, “PlatfoRms Interoperable cloud for SMArt-
Government”8 [11–14]. In this case, Consoli and his colleagues presented the collected city data, described the pro-
cess and issues to create a semantic data model for emergency vehicle routing and geo-linked data, and discussed
a developed prototype. In particular, they described the employed procedures, ontology design patterns, and tools
used for ensuring semantic interoperability during the transformation process. Although the project is flexible and
can be generalized, the authors did not maintain the resulting knowledge graph.

Other state-of-the-art solutions include the generation of a knowledge graph of tourism in the Chinese lan-
guage [62, 64]. The authors constructed such knowledge graphs by extracting knowledge from the existing ency-
clopedia knowledge graph and unstructured web pages in the Chinese language. Besides the fact that this knowl-
edge graph is focused on the Chinese language, the authors focused on semi-structured knowledge extraction and
deep learning algorithms to extract high-level entities and relations from unstructured travel notes. The project is no
longer maintained and did not provide a SPARQL endpoint.

It is still a big challenge to automatically generate a knowledge graph about tourism that integrates the most
important data sources in this field and can be easily extended to other touristic locations. We also lack a single
ontology9 that would offer a fine-grained description of touristic lodging (e.g., Hotel), accommodations (e.g., family
room ), amenities (e.g., swimming pool), locations (e.g., amusement park), and destinations (e.g., London). The
work presented in this paper proposes to address this gap by introducing the Tourism Analytics Ontology (TAO)10,
which offers a granular characterisation of accommodations, tourist locations and destinations11, and a general,
reproducible, and easily extendable pipeline to integrate relevant data sources and generate a knowledge graph

7https://wikitravel.org/es/Portada
8http://www.ponsmartcities-prisma.it/
9We analyse other ontologies in Section 3.3.1.
10We describe TAO in detail in Section 3.3 and Appendix B
11We evaluate in detail how TAO compares to other ontologies regarding the modelisation of relevant tourist entities in Section 5.3.

https://wikitravel.org/es/Portada
http://www.ponsmartcities-prisma.it/
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for the tourism domain. Last but not least, we provide a SPARQL endpoint and plan to periodically update our
knowledge graph by using the proposed pipeline. Differently from the approaches discussed above, our proposal
can be easily reused and extended to different tourist destinations since we release the full source code, allowing
other users to generate new KGs from several data sources that offer worldwide coverage.

3. Methodology for Ontology Design

Our approach for KG construction is aligned with the general methodology analysed in [56] and is organised into
six macro phases that can be iteratively repeated to refine the resulting KG. Specifically, the first three phases are the
core of a data-driven design process that leverages the knowledge embedded in the data sources for guiding the use
case refinement and ontology engineering. The last three phases drive the actual implementation of the knowledge
graph and its publishing. Figure 1 describes the different phases.

Fig. 1. Tourism Knowledge Graph creation phases

The first phase is focused on the definition of the use cases that the knowledge graph should support, that is to
say, what are the desired outcomes a user or an application should be able to produce from it. Because our process
is driven by what we can find in the data, this is a preliminary definition that is subject to further refinements and
that should be revised multiple times until all use cases are positively supported by the KG.

The second phase is about understanding how the data at our disposal can support the use cases, but it is also
about extracting knowledge from the data to support the ontology definition. On the one hand, the data is used to
adapt the use cases to the actual information we have access to, thus extending the scope for some use cases or
reducing it for others. For example, if we do not find in the data any information about the total number of rooms for
a hotel, we cannot support any use case about the available accommodation capacity for a tourist destination unless
we find new data sources. On the other hand, the data is analysed to guide the ontology design. As an example,
the accommodations offered on AirBnB have specific types, like shared rooms, which are peculiar to a sharing
economy approach. They may also include amenities we seldom find in other forms of hospitality like hotel rooms.
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This information incorporates knowledge about the hospitality services for tourism that we can use in the process
of ontology design and engineering together with the building of the knowledge graph itself.

The third phase focuses on the creation of an ontology to model lodging, tourist destinations, and locations that
support all the use cases defined in the first phase and incorporate the domain knowledge distilled in the second
phase.

The fourth phase is about transforming the data extracted from the data sources in order to prepare it to be used
for triple creation in the following phase. During this process, various data wrangling techniques are applied to
semi-structured data, whereas natural language processing is applied to unstructured texts (e.g., language detection,
named entity extraction, and entity linking).

The fifth phase is concerned with triple creation using the data prepared in the previous phase. The triple creation is
performed using RDF Mapping Language (RML) in order to include in the knowledge graph also the transformation
process metadata.

Finally, the sixth phase focuses on the publication of the knowledge graph in a triple store.
The proposed methodology is general and it can be applied whenever it is deemed necessary to design a KG and

its supporting ontology with a bottom-up approach. It is well suited to address the need to model a KG to support
applications that are based on existing data sources that pose practical constraints to the design and implementation
process.

In the following subsections, we describe in detail the first three phases related to use case refinement and ontology
creation. In Section 4 we will then describe the final three phases, related to the creation of the knowledge graph.

3.1. Define the use cases

We start with a first general definition of some use cases that we want to cover when building the KG, also
considering what data sources could be used to support them. We should also define which kind of applications we
would need to implement on top of the KG to support the use cases. This analysis can give us a more general scenario
of how the KG would be used. This, in turn, is useful to understand to what extent the data sources can support
the scenario and guide the design process on how the KG should be structured. In fact, this phase is intertwined
with the second phase (i.e., Find and study information sources), discussed in Section 3.2, because we need to
consider the information we can extract from the web to support the selected use cases. It is also related to the
third phase (i.e., Define the ontology) in Section 3.3, because we can have different design approaches regarding the
KG depending on what kind of methods and applications it should support (e.g., whether or not we want to apply
reasoning techniques on the KG).

In order to generate a KG that can be used to support the analysis of tourist destinations with respect to the supply
and demand side, we have identified, together with the domain experts and stakeholders, the following use cases:

(UC1) Support the identification of the topics of interest discussed by tourists in their reviews;
(UC2) Support the identification of the topics of interest presented in the descriptions of lodging facilities12 and

accommodation13 offers;
(UC3) Support the recognition and linking of tourism entities in the KG for different applications revolving in the

domain of social media, news, and blogs;
(UC4) Support sentiment analysis [2, 21] applications about tourists toward lodging facilities and destinations;
(UC5) Support the classification of tourist destinations on the basis of what they offer and on the basis of tourist

opinions.

We also identified a number of applications that can leverage the KG to produce better results (see [41] for a
comprehensive overview of applications based on knowledge graphs). In turn, each one of the following applications
can be used to better support one or more use cases:

12Lodging facilities mean any hotel, motel, motor inn, lodge, and inn or other quarters that provide temporary sleeping facilities open to the
public. See https://www.lawinsider.com/dictionary/lodging-facilities)

13An accommodation is a place that can accommodate human beings, e.g., a hotel room, a camping pitch, or a meeting room. An accommo-
dation is always part of a lodging facility (e.g., a hotel room is part of a Hotel.)

https://www.lawinsider.com/dictionary/lodging-facilities)
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1. automatic reasoning14 and graph learning15 on the KG allows for the entailment of new triples thus enrich-
ing the explicit knowledge other applications can work on; for this reason, it is indirectly related to all use
cases;

2. named entity recognition (NER) and entity linking (EL) of tourist locations and lodging facilities using
the KG have an immediate positive impact on use cases 3 and 5.

3. relation extraction (RE) in a closed setting for the tourism industry can be used to support a better under-
standing of the relations between users and touristic entities thus improving use cases 4 and 5.

4. tourism-related Topic Modelling (cluster words/phrases frequently co-occurring together in the tourism
context) for texts and documents are written in natural language can be used to support use cases 1 and 2.

5. tourism-related Topic Labelling (for clusters of words identified as abstract topics, extract a single term or
phrase that best characterises the topic) can also be used to support use cases 1 and 2.

6. Text Classification of documents concerning tourism topics can support use cases 1, 2, and 5.
7. Semantic Annotation of documents about tourism with entities, classes, and topics based on the KG can be

used to support all the use cases by improving user interfaces and user interactions with the textual data.

It is important to note that, the actual feasibility of a use case can be confirmed only when the knowledge graph
is built and one or more of the supporting applications are implemented. This validation phase is out of the scope of
the present work, which focuses on the design and construction of the knowledge graph.

3.2. Find and study information sources

To support the use cases described in Section 3.1 we need to identify a minimum set of information sources we
need throughout the construction of a core version of the Tourist Knowledge Graph. After this core Knowledge
Graph is created, new information sources could be added by applying the same process described in this work.
This is because knowledge graphs have a flexible schema which makes them easily extendable.

Observing the use cases, we can see that we need information sources about:

– lodging facilities and the accommodation they offer;
– user reviews and opinions;
– tourist locations (i.e., points of interest for a tourist such as a train station or a beach);
– tourist destinations such as London or the Costa Smeralda (i.e., the place visited that is central to the decision

to take the trip);

The first set of information sources adequately covering the listed items consists of:

– Booking.com, a digital travel company specialised in hotels, B&Bs, and other types of hospitality; from
its website we can collect information about accommodations and related offers but also users’ opinions
expressed as reviews.

– AirBnB, an American company that connects hosts, offering their accommodation spaces (e.g., apartments,
rooms, etc.), and travelers, looking for a place to stay; it adopts a peer-to-peer model that originates from
sharing economy and represents a new emerging reality in the tourism and accommodation market; its website
is a source of information about accommodations and related offers but also users’ opinions expressed as
reviews.

– DBpedia16, an open knowledge graph built with structured content extracted from the information created in
various Wikimedia projects (e.g., Wikipedia). Specifically, we link entities in TKG to the DBpedia entities of
selected classes (e.g., DBpedia:Places or DBpedia:Food).

– GeoNames17, a geographical database exposed through APIs and as RDFs documents. We connect entities in
TKG with GeoNames entities representing places.

14Leveraging Description Logic and OWL.
15Using Graph Neural Networks or similar techniques.
16https://www.dbpedia.org/
17http://www.geonames.org/

https://www.dbpedia.org/
http://www.geonames.org/
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It is worth noticing that, although there are many other websites and applications for tourism and hospitality,
Booking.com and AirBnB are market leaders and together cover both the traditional accommodation industry and
the emerging sharing economy. A similar consideration could be made for DBpedia and GeoNames when we con-
sider places (DBpedia and GeoNames) or general topics related to tourism (DBpedia).

For the present work, we build upon the results of an industrial project about Tourism 4.0 called Data Lake
Turismo developed by Linkalab s.r.l.18, which was the evolution of a previous research project promoted by the
Digital Innovation Hub of Sardinia19 and Fondazione Banco di Sardegna20. The project aimed at creating a digital
platform for tourism data analysis. One of the main components of this platform was a data lake for collecting,
transforming, and analysing data in this sector. However, the project lacked a semantic layer that could support and
enhance the data analysis, which is the starting point and motivation of the present work.

Through this infrastructure, we have access to data assets related to lodging facilities, user reviews, and opinions;
and we enrich them with DBPedia and Geonames.

The data source selection influences both the use case and the ontology definition phases. Although it could be
possible to add new data sources to the mix from the beginning, it has a cost and should be postponed wherever
possible, because our objective is to complete the construction of a core version of the knowledge graph before
expanding its coverage. On the other hand, we should always select data sources that incorporate a rich and well-
established model of the business sector (tourism in our case) in the data itself. This is important to support the
ontology design with a data-driven analysis process.

3.2.1. Source data exploration
The first step of this phase is to understand what kind of data we can use. We should examine the documentation

but we also need to perform an exploratory data analysis on the files and tables accessible in the source data lake in
order to have a complete grasp of its contents. This analysis is focused on the following resources available in the
data lake:

– data about hospitality:

* information related to lodging facilities (e.g., hotels, b&bs, resorts) and their characteristics (e.g., name,
address, type, hospitality features);

* information related to accommodations offered by a lodging facility (e.g., hotel room, b&b room, apart-
ment).

* rent offers for accommodation (e.g., price, number of people, etc.).

– data about user reviews (e.g., user, date, rating, text).

Data is extracted from the data lake in tables with nested structures and needs to be “flattened” to be used by the
downstream tasks. This is due to the way the data lake stores information in a redundant and not normalised way.

The result of the exploratory analysis has shown:

– how data is organised in fields and sub-structures;
– that structured and unstructured data (i.e., texts) is available;
– that texts can be in many different languages and it is not always specified in which one;
– that structured data fields can contain numbers, Boolean values, time/date values, or categorical values;
– that data is not always typed and can be represented internally as strings;
– that categorical data is not related to a lookup table or taxonomy;
– that in some cases there are no unique IDs that can be used to identify a resource.

This analysis led us to define some fundamental data pre-processing steps to be executed before building the
knowledge graph and the ontology:

18Linkalab s.r.l. is an Italian small enterprise specialised in data science and data engineering. Home page https://www.linkalab.it/
19https://www.dihsardegna.eu/
20https://www.fondazionedisardegna.it/

https://www.linkalab.it/
https://www.dihsardegna.eu/
https://www.fondazionedisardegna.it/
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– data preparation: in this step, we extracted the data from the source data lake via SQL queries; next, we
stored it on a local file system to be prepared (cleaned, flattened, combined) so that it can be used for down-
stream tasks.

– data enrichment: in this step, we augmented the data using various techniques; specifically, we applied NLP
techniques to identify the language of the text (e.g., English, Italian, French, and so on), because downstream
tasks depend on it to work properly.

We also found that the data lake source should be integrated with data about attractions and points of interest
from other sources. To support this need we identified DBpedia and GeoNames as the most appropriate data sources
for the following reasons: i) both sources are stable and constantly maintained, with a vast supporting community;
ii) both sources cover the identified destinations (and many others) in depth; iii) both sources are exposed as linked
open data and APIs.

3.3. Define the domain ontology

To support the identified use cases and the related applications we want to generate a KG that includes all the
relevant entities and their relations. We thus need to define a domain ontology that can model them. To guide
the ontology design, we defined a set of functional and non-functional requirements in collaboration with domain
experts from Linkalab. We also expressed the same requirements in a more operational form using competency
questions, i.e., queries expressed in natural language [27, 47]. In Appendix A, we describe in detail the resulting
competency questions as well as both functional and non-functional requirements.

Competency Questions (CQ) are useful as they: i) can be easily understood by non-technical people; ii) can guide
the ontology engineering process working as a practical reference of what should be implemented; iii) can be easily
tested during the validation process.

We adopted a data-driven design process and followed two complementary approaches when defining the com-
petency questions: i) top-down, by developing new questions with a domain expert and then checking whether they
could be answered with our data; and ii) bottom-up, by deriving them from the information available in the source
data. Because CQs express all functional requirements in other terms, at the end of this process we could verify
that the ontology would successfully model the data in the knowledge graph, which in turn would satisfy the use
cases and support the related applications. At the end of this process, we identified the main aspects to model within
our domain ontology: i) lodging facilities (buildings), ii) accommodations within lodging facilities, iii) amenities
offered to tourists, iv) tourist destinations and locations, and v) user reviews. Next, we analysed several state-of-the-
art ontologies covering the tourism domain (detailed in Section 3.3.1), but none of them fully satisfy our require-
ments. Therefore, we designed and implemented a new ontology, the Tourism Analytics Ontology (TAO), leveraging
existing ontologies (e.g., Schema.org, Hontology).

We devote the following subsections to describing: i) the ontologies which we used as a starting point; and ii) the
final version of TAO and our design choices.

3.3.1. Reuse of existing ontologies
We analysed several tourism ontologies to assess if they could be reused to support our use cases. We identified

three main families of ontologies:

1. ontologies based on Open-Travel or other heavyweight industrial standards, typically focused on information
exchange among tourism organisations (e.g., the Harmonise Ontology [24]).

2. ontologies produced by researchers to support specific tasks, such as question answering (e.g., QALL-ME
Ontology [49]) and information retrieval (e.g., GETESS [54]) as well as ontologies that combine or build on
them (e.g., cDOTT [3], Hontology [9]).

3. ontologies based on Schema.org [28] and GoodRelations [31], such as the Accommodation Ontology.

Based on the functional and non-functional requirements, we then selected three of them: (i) Accommodation
Ontology, (ii) the Schema.org markup for hotels, and (iii) Hontology. The latter is currently not available as OWL
serialisation at any specific URI and does not seem to be maintained anymore. TAO also reuses other two ontologies:
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(iv) GeoNames21, which is used to specify the geographic locations, and (v) the DBpedia ontology22, which is used
for further characterising locations and food types (e.g., pizza, sushi).

Next, we will describe the selected ontologies and vocabularies and how they have been reused in TAO.
Accommodation Ontology (prefix acco:) is an extension of GoodRelations (prefix gr:) focused on describing

accommodation offers from an e-commerce perspective. It provides additional vocabulary elements for describing
hotel rooms, hotels, camping sites, and other forms of accommodations as well as their features. However, it does
not make a distinction between the lodging facility (e.g., a hotel as a whole), and the individual accommodations
on a lease (e.g., the hotel rooms), because all lodging facility types and accommodation types are sub-classes of the
same class (acco:Accommodation).

The Accommodation Ontology does not define specific types of amenities (called accommodation features) but
“provides a consolidated conceptual model for encoding proprietary feature information”. So instead of defining
classes for room and hotel features, the ontology provides the generic class acco:AccommodationFeature
that can hold feature information in varying degrees of formality. A leasing offer is modelled using the
GoodRelations relation gr:Offering specifying that the offering is a gr:LeaseOut using the property
gr:hasBusinessFunction. Unfortunately, the Accommodation ontology does not cover several concepts that
are required for our use cases, including 1) tourist destinations (e.g., London), 2) tourist locations (e.g., beach,
church, subway station), 3) tourist reviews.

Schema.org markup for hotels (prefix schema:), incorporates and extends many Accommodation Ontol-
ogy [34] concepts. Schema.org models hospitality according to three main classes23:

1. A lodging business, (e.g., a hotel, hostel, resort, or a camping site): essentially it represents both the lodging
facility, which is the place that houses the actual units of the establishment (e.g., hotel rooms) and the business
organisation governing it. The lodging business can encompass multiple buildings but is in most cases a
coherent place.

2. An accommodation, i.e., the relevant units of the establishment (e.g., hotel rooms, suites, apartments, meeting
rooms, camping pitches, etc.). These are the actual objects that are offered for rental.

3. An offer to let a hotel room, or other forms of accommodations, for a particular price and a given type of usage
(e.g., occupancy), typically further constrained by booking requirements and other terms and conditions.

In this case, we have a clear distinction between lodging business and accommodation because we have two dis-
tinct classes: schema:Accommodation and schema:LodgingBusiness. Unfortunately, Schema.org is not
intended to be used as an OWL ontology because its data model is very generic and derived from RDF Schema24.
The main purpose of Schema.org is to enable sharing of structured data on the Internet whereas OWL is based on
formal semantics that enables reasoning on the knowledge graph. In addition, the schema:LodgingBusiness
class cannot be used in conjunction with GoodRelations ontology without introducing logical contradictions. Specif-
ically, Schema.org defines schema:LodgingBusiness as a subclass of schema:LocalBusiness which is
a subclass of both schema:Organisation and schema:Place. On the other hand, GoodRelations states that
schema:Organization and schema:Place are disjoint.

We reused Schema.org in TAO by importing and extending a few classes and properties, including
schema:PostalAddress, schema:UserReview,schema:address, schema:subjectOf. We also
selected appropriate Schema.org types that describe places to enrich TAO tourism location classes using
rdfs:seeAlso to establish a mapping with them25.

Hontology (prefix ho:) is a multilingual ontology for the accommodation sector (H stands for hotel, hostal,
and hostel). It is a freely available domain-specific ontology in four languages: English, Portuguese, Spanish, and
French [9, 10]. It was partially aligned with QALL-ME and Schema.org and described several useful concepts in this

21https://www.geonames.org/ontology/documentation.html
22https://www.dbpedia.org/resources/ontology/
23Usually called types in Schema.org.
24See https://schema.org/docs/datamodel.html
25In this respect we can consider TAO ontology an external extension of Schema.org as described in the page https://schema.org/docs/

extension.html

https://www.geonames.org/ontology/documentation.html
https://www.dbpedia.org/resources/ontology/
https://schema.org/docs/datamodel.html
https://schema.org/docs/extension.html
https://schema.org/docs/extension.html
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domain such as Facilities (a.k.a. amenities), Services, Staff, and Points Of Interest. The ontology is not published as
linked data but can be downloaded and used in a local environment. Its latest version dates back to 2012 and therefore
it is not aligned with the most recent extensions of Schema.org. In addition, since it is not based on GoodRelations,
it does not fulfill our non-functional requirements. We re-implemented within TAO some of its classes describing
location amenities, such as ho:Balance, ho:AirConditioning, ho:Ballroom, and ho:BeautySalon.

DBpedia Ontology26 (prefix dbpedia:) is a shallow, cross-domain ontology, which has been manually cre-
ated based on the most commonly used infoboxes within Wikipedia27. The ontology currently covers 685 classes
which form a subsumption hierarchy and are described by 2,795 different properties. We used some of the classes
from this ontology to enrich TAO tourist location types (subclasses of tao:TouristLocation) also mapped to
GeoNames geographic features.

GeoNames Ontology28 (prefix gn:) provides elements of description for geographical features, in particular
those defined in the geonames.org database. It has three key ontology classes: Feature (a set of all geospatial in-
stances in GeoNames like cities and countries), Class (a set of all feature schemes defined in GeoNames), and
Code (a set of abbreviation feature codes in different feature schemes). GeoNames Feature is used for describing
concrete geospatial entities (UK, Washington, Colosseum, etc.), whereas GeoNames Class and Code are used for
representing meta-information about features. All feature instances are uniquely identified by URI in GeoNames.

We used GeoNames gn:Feature class to model classes that are also places (e.g., lodging facilities, tourist
locations) and to express their geographic relations using gn:parentFeature. We also used GeoNames to
enrich TAO tourist location types with specific codes, for example, tao:Park was associated to the gn:L.PRK
code.

3.3.2. The Tourism Analytics Ontology
In this section, we describe the new Tourism Analytics Ontology (TAO) and discuss our design choices. We

aimed at developing an ontology i) for which all the requirements listed in Appendix A are fulfilled, ii) that would
be able to integrate all relevant information from the data sources, and iii) that would be fully compatible with the
Accommodation Ontology, GoodRelations, and Schema.org. Specifically, the Accommodation Ontology is explic-
itly imported using owl:imports, GoodRelations is imported indirectly through Accommodation Ontology and
Schema.org is partially included by reusing specific classes and properties or making explicit mappings to it.

The new ontology has the following characteristics:

1. introduces the LodgingFacility class which represents any hotel, motel, inn, or other quarters that provide
temporary sleeping facilities open to the public29;

2. distinguishes between lodging facilities and specific accommodations within lodging facilities;
3. includes an extended hierarchy30 of lodging facilities types (e.g., hotel, house, resort) ;
4. includes an extended hierarchy of the amenities (e.g., oven, parking garage, baby monitor ) offered by lodging

facilities;
5. includes an extended hierarchy of geographic features relevant to tourism (based on Schema.org) and enriched

with GeoNames feature taxonomy (leveraging the GeoNames mapping31 data-set);
6. uses Schema.org to model tourist reviews;
7. uses Schema.org to model Tourist Destinations and Tourist Locations;
8. can be easily extended to model other kinds of entities relevant to tourism in the future (e.g., events or restau-

rants).

26https://www.dbpedia.org/resources/ontology/
27As defined in the DBpedia ontology page http://web.archive.org/web/20210416134559/http://wikidata.dbpedia.org/services-resources/

ontology
28https://www.geonames.org/ontology/documentation.html
29Definition from Law Insider, see https://www.lawinsider.com/dictionary/lodging-facilities
30We use the term “hierarchy” to define a subsumption hierarchy of concepts such as the one used by DBpedia, that is a hierarchy of classes

connected with rdfs:subClassOf property.
31https://www.geonames.org/ontology/mappings_v3.01.rdf

https://www.dbpedia.org/resources/ontology/
http://web.archive.org/web/20210416134559/http://wikidata.dbpedia.org/services-resources/ontology
http://web.archive.org/web/20210416134559/http://wikidata.dbpedia.org/services-resources/ontology
https://www.geonames.org/ontology/documentation.html
https://www.lawinsider.com/dictionary/lodging-facilities
https://www.geonames.org/ontology/mappings_v3.01.rdf
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Fig. 2. TAO ontology schema. In this schema, each arrow represents a semantic relationship, starting from its domain and ending in its range.

Figure 2 illustrates the schema of the TAO ontology where the reader can identify the reused classes of the ex-
isting ontologies, mentioned above. We will refer to TAO using the tao: prefix from now onward. The central
classes are tao:LodgingFacility and tao:Accommodation which are respectively used to model lodg-
ing facilities and their accommodations. The tao:LodgingFacility class is related to the lodging business
concept used in Schema.org, but only refers to the physical place where the accommodations within the facil-
ity are located (e.g., a hotel is considered as the building that contains rooms). In this way, there is a clear dis-
tinction with the business organisation that governs or owns the lodging facility and no inconsistencies are gen-
erated by GoodRelations disjunction between schema:Place and schema:Organization classes, as dis-
cussed in Section 3.3.1. A facility location is described according to its latitude and longitude literal properties
and also using the schema:PostalAddress class, which favors very detailed specification of the address. To
complete the facility description we have literal properties for its name (schema:name) and a relevant web page
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(schema:mainEntityOfPage). We can use the object property tao:aggregateRating32 to associate a
lodging facility to an overall rating, modelled with a node of type tao:NormAggregateRating33 annotated
using the data property tao:normRatingValue to specify a float value between 0 and 1. A lodging facility
can also be associated, through the property schema:subjectOf, with a textual description modelled using the
tao:LodgingDescription class34. Finally, lodging facilities can be connected, using the schema:review
property, to one or more user reviews, modelled using the schema:UserReview class. Each review is charac-
terised by the date of creation and associated, using the schema:reviewRating property, with a rating (vote)
modelled with a tao:NormRating class35, that can be used to specify the normalised rating in a specific review.
The facility description and the reviews can mention every kind of entity, including those defined in other knowl-
edge graphs (DBpedia and GeoNames) using the schema:mentions property. This information will be typically
extracted from the text of descriptions and reviews with various entity linking techniques, such as DBpedia Spot-
light [43] (the solution we have chosen for DBpedia), Mordecai [30] (the solution we have chosen for GeoNames),
OpenTapioca [16], or Falcon [50]. Entity linking is the task of linking a portion of texts with their corresponding
entities in a knowledge graph [45]. These approaches can be used to identify a variety of entities defined in the
external knowledge graphs, such as "Eiffel Tower" or "Paris".

The tao:Accommodation class, analogously to schema:Accommodation, represents the actual relevant
units of the lodging facility that are offered for rental. It is formally distinct36 from the physical place where the
accommodations are located, which is modelled with the tao:LodgingFacility class instead. TAO uses the
tao:includes object property to define the relation between a lodging facility and one of its accommodations.
In order for the TAO ontology to maintain a certain degree of compatibility with the Accommodation Ontology, and
potentially reuse semantic entities and annotations expressed using it, we defined the tao:Accommodation class
as a subclass of acco:Accommodation. In this way, if a node in the KG is a member of tao:Accommodation
it is also a member of acco:Accommodation, and all the properties defined in the Accomodation ontology for
accommodations are still valid. On the contrary, not all the nodes that are members of acco:Accommodation
are also members of tao:Accommodation.

Following GoodRelations best practices, a lease out offering a tao:Accommodation individual is modelled
using a combination of GoodRelations classes to define the offering price, type, and quantity:

– the individual is also defined by type gr:SomeItem37;
– the offering itself is modelled with a node of type gr:Offering, which has an end of validity expressed

with the gr:validThrough data property and which is characterised with a specific business function
using gr:hasBusinessFunction to specify that is a gr:LeaseOut38;

– the offering includes the accommodation indirectly through a gr:TypeAndQuantityNode node using the
gr:includesObject property and can define its price through a gr:UnitPriceSpecification
node;

– a gr:TypeAndQuantityNode node is used to specify which tao:Accommodation node
is offered (through the gr:typeOfGood relation), the amount of the good included (using
gr:amountOfThisGood data property) and the unit of measure for the amount included (using
gr:hasUnitOfMeasurement data property);

– a gr:UnitPriceSpecification node is used to specify the price (using gr:hasCurrencyValue
data property), the currency (using gr:hasCurrency data property), and what you are getting for the price
(using gr:hasUnitOfMeasurement) i.e., a DAY in the accommodation.

The occupancy accommodation is modelled by using the acco:occupancy property whose value is a
gr:QuantitativeValue object, which uses the gr:hasUnitOfMeasurement to specify “C62” lit-

32tao:aggregateRating is defined as a subproperty of schema:aggregateRating (relation not shown in Figure 2).
33tao:NormAggregateRating is defined as a subclass of schema:AggregateRating (relation not shown in in Figure 2).
34tao:LodgingDescription is a subclass of schema:CreativeWork. (relation not shown in Figure 2).
35tao:NormRating is defined as a subclass of schema:Rating (relation not shown in Figure 2).
36Using owl:disjointWith property
37Besides being of type tao:Accommodation
38An individual of type gr:BusinessFunction defined in the GoodRelations ontology



14 A. C. Chessa et al. / Tourism Knowledge Graph

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

eral (used by GoodRelations to indicate “one piece” of something, in this case, a person39) as well as the
gr:hasMinValue and gr:hasMaxvalue relations to define the minimum and maximum number of al-
lowed persons. To model an amenity offered by a lodging facility as a whole or as part of a specific ac-
commodation TAO uses the tao:LocationAmenity class, which is defined as an equivalent class of
acco:AccommodationFeature for compatibility with the Accommodation Ontology. It also uses the
tao:feature property to associate a lodging facility or an accommodation with one or more amenities.

A tourist location (e.g., London’s Big Ben or the city of Alghero) is a point or area of interest from a tourist point
of view and is modelled with a tao:TouristLocation class, which is a subclass of both schema:Place and
gn:Feature. A tourist destination (e.g., Sardinia) is defined as a place that is central to the decision to take the trip
and is modelled with a tao:TouristDestination class, which is declared as owl:equivalentClass of
schema:TouristDestination and as a subclass of gn:Feature. Tourist locations and lodging facilities
can be included in a tourist destination using the property tao:isContainedInGeo.

For instance, if a tourist destination includes the City of London, all tao:LodgingFacility individuals
in the City of London (according to gn:parentFeature property) are also considered within the same des-
tination. This is because the TAO ontology includes an axiom that defines a chain of properties that state that if
X gn:parentFeature Y and Y tao:isContainedInGeo Z, then X tao:isContainedInGeo Z,
which can be expressed in functional-style syntax as: SubObjectPropertyOf( ObjectPropertyChain(
gn:parentFeature tao:isContainedInGeo ) tao:isContainedInGeo ).

TAO includes also several subsumption hierarchies describing the relationships of relevant classes, including:

1. the lodging hierarchy with 35 types of lodging facilities (e.g., tao:Hotel, tao:Apartment,
tao:House) across 4 levels;

2. the accommodation hierarchy with 17 types of accommodations (e.g., Room, EntireApartment, Suite)
across 4 levels;

3. the location amenity hierarchy with 343 types of amenities (e.g., Wifi, Minigolf, Dryer) across 5 levels;
4. the tourist location hierarchy with 146 types of tourist locations (e.g., City, Museum, Mountain) across

5 levels;

Appendix B describes these four hierarchies in more detail.

3.3.3. TAO enrichment
The TAO ontology was produced using a programmatic approach instead of manual editing. Specifically, we

developed a building process in Python using the owlready2 [38] library. Compared with other approaches based
on templates (OPPL [33], OTTR [53]) or on other languages (like Tawny-OWL [40] which is based on Clojure) we
preferred the use of a full programming language like Python which is also very well suited to data manipulation
and data transformation. This choice also allowed us to apply well-known software engineering tools and practices
and automate some aspects of the ontology building process (e.g., creation of axioms), to version the code instead
of just the final ontology, to reduce human errors, and to easily produce inline documentation about the ontology
creation process. We also release an open-source version of the Python code that builds the TAO ontology as a
Jupyter Notebook40.

The TAO ontology has to be able to model information derived from typical data sources in the tourism domain,
such as Booking.com and AirBnB, which provide (semi)structured data as key/value properties and unstructured
data as text regarding lodging facilities, accommodations, amenities, and user reviews. Therefore, we developed a
human-in-the-loop strategy, reported in Figure 3, to produce new versions of TAO by continuously enriching the on-
tology with new types of tao:LodgingFacility, tao:Accommodation and tao:LocationAmenity
or new labels for existing types which are derived from the source data. This solution allows us to keep the ontology
updated and well-aligned with the actual data.

We start with the basic version of the ontology (orange bullet 1 in the figure), set up external imports, and define
classes, properties, and axioms (bullet 2). To further enrich TAO, our ontology engineers in collaboration with

39http://www.heppnetz.de/ontologies/goodrelations/v1#UnitPriceSpecification
40See https://github.com/linkalab/tkg/tree/main/tao_modelling

http://www.heppnetz.de/ontologies/goodrelations/v1#UnitPriceSpecification
https://github.com/linkalab/tkg/tree/main/tao_modelling
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Fig. 3. Ontology enrichment workflow

domain experts, analyse several analytics about the most frequent terms associated with facilities, accommodations,
and amenities. Then, they use them to create new relevant classes in the ontology (bullet 5) or add additional labels
to an existing class (bullet 6). For example, the mini-golf amenity class was identified in the amenities list extracted
from Booking.com, while the holiday home lodging facility alternative label “holiday house” was extracted from
AirBnB texts.

The analytics are produced by two automatic pipelines (3 and 4). The first one processes the unstructured text,
extracting and ranking frequent uni-grams and bi-grams from the text descriptions of lodging facilities or user re-
views. To achieve this, we relied on Spacy Python library41 to perform the following sub-tasks: 1) identify language
to filter English text only (bullet A), 2) clean the text from special characters (bullet B), 3) perform text frequency
analysis (bullet C), and 4) perform TF-IDF analysis (bullet D). The second processes structured data, extracting a
list of all possible values for categorical fields that refer to accommodation types, accommodation features, or types
of lodging facilities.

Finally, the ontology engineers produce a mapping file that is used (bullet 7) to create new classes, and sub-class
relations (using the rdfs:subClassOf property) or add labels to existing classes (using the skos:altLabel
property). We also track the provenance of these changes using the dc:source property for classes and the
rdfs:comment property for labels. The final process (bullet 8) produces a new version of the TAO ontology.

In Appendix E, we report the code snippets for the iterative extension of the TAO ontology.

41https://spacy.io/

https://spacy.io/
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Fig. 4. High level data transformation workflow diagram

4. Methodology for Knowledge Graph Generation

In the following, we will describe the last three phases for the construction of the Knowledge Graph (depicted in
Figure 1).

4.1. Transform the data

The transformation of data is the fourth phase in our approach to building our Tourism Knowledge Graph. Specif-
ically, this phase consists of transforming the information extracted from the data sources into a set of tables, which
will be used in the next phase (described in Section 4.2) to produce the actual knowledge graph triples. We de-
vote this section to describing the data transformation process and the technologies for implementing it. Depending
on the source data structure and the desired output, we can apply different transformation steps organised as data
pipelines. A data pipeline is a series of computational steps organised as a direct acyclic graph where the output of
one step becomes the input of one or more downstream steps.

Figure 4 depicts the complete data transformation workflow. Each step can materialise its output (henceforth
referred to as asset), saving it as a file or storing it in a database application. From the diagram, we can observe four
types of components:

1. external resources that are used during the pipeline execution (yellow boxes) representing

(a) tables in the data lake,
(b) files mapping text strings to TAO ontology classes,
(c) DBpedia Spotlight public web service,
(d) GeoNames gazetteer exposed as an Elasticsearch end-point;

2. pipeline execution steps (green boxes);
3. collections of data assets (files) produced by the execution steps (orange boxes);
4. a distributed file system that stores all the data assets produced and consumed by one or more processing steps

(pink box).

At a high level, the workflow consists of 7 steps. The first 3 steps are executed on both structured (key/values)
and unstructured (text) data:
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1. Data extraction: acquires the source data and produces the Source data assets collection;
2. Data break down and filter: rearranges the data structure and filters out unnecessary data; works in combi-

nation with the Data cleaning step and materialises the Unpacked data assets collection;
3. Data cleaning: reads from the Unpacked data assets collection; corrects or removes corrupt, duplicated or

inaccurate data; produces the Cleaned data assets collection;

The cleaned data is processed differently depending on if it is structured or unstructured. For structured data, the
final step is:

4. Ontology mapping: uses heuristic rules to identify what ontology class should be used to model each entity
described in the data; it produces the Ontology mapped data assets collection;

For unstructured data, our objective is to enrich TKG with links from lodging descriptions and user reviews to
semantic entities in DBpedia and GeoNames. In this way, TKG would be connected to external knowledge graphs
revealing what tourists and business owners are considering important and worth noting. To perform this enrichment
we perform entity linking, in three more steps:

5. Language detection: identifies the language used in texts to process only English text; produces the Language
enriched data assets collection;

6. DBpedia entity linking: descriptions and reviews texts are processed to recognise and link DBpedia entities;
produces the DBpedia linked entities data assets collection;

7. GeoNames entity linking: descriptions and reviews texts are processed to recognise and link GeoNames
entities; produces the GeoNames linked entities data assets collection.

In Appendix C, we describe each processing step as well as the employed technological architecture.

4.2. Triples creation

This section presents the fifth phase for the creation of the Tourism Knowledge Graph, shown in Fig. 1, which
deals with the creation of the RDF triples. For this, we leveraged the RDF Mapping Language (RML) [19], to build
data pipelines for producing RDF triples42 from text files, and subsequently save them in a serialised format. The
RML language is a declarative language used to define how Linked Data is generated from corresponding data
sources, using annotations provided through vocabulary terms. RML can use also files as data sources, which is very
useful for our scenario. An RML transformation requires the following elements43:

1. an RML processor that performs the actual transformation;
2. an input to the RML mapping which is called input data source;
3. an RML mapping, that defines the rules of conversion from any input (structured) data to RDF.

These rules define how to convert an input record (row, XML element, or JSON object) to one or more RDF
triples. They are independent of the process of executing the conversion, thus decoupling the implementation from
the rules themselves.

In our implementation, we used RMLMapper [20] which is an open-source RML processor developed in Java44.
We designed different mappings to handle the different sources, i.e., Booking.com and AirBnB.

The output of the RML processor is a set of files containing the RDF triples serialisation in n-quads45.
To improve the development, debugging and maintenance of RML triple maps we adopted YARRRML [32], a

human-readable text-based representation for declarative generation rules46. In the following paragraphs, we will
examine an example of how a Lodging Facility and all the other related entities can be expressed in TKG by a
set of triples created through the process described above. We will represent triples in a graphical form to better
understand the knowledge graph structure.

42https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-rdf-triple
43See https://rml.io/specs/rml/
44https://github.com/RMLio/rmlmapper-java
45https://www.w3.org/TR/n-quads/
46https://rml.io/yarrrml/

https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-rdf-triple
https://rml.io/specs/rml/
https://github.com/RMLio/rmlmapper-java
https://www.w3.org/TR/n-quads/
https://rml.io/yarrrml/
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Fig. 5. A high-level example of the main entities used in TKG

4.2.1. High-level Tourism Knowledge Graph triples structure
The triples creation process for describing accommodation offers follows the Accommodation Ontology pre-

scriptions and is compliant with GoodRelations and Schema.org best practices. Figure 5 shows an example
of TKG structure at a high level. We can observe a lodging facility (:lodging_1) that is the subject of
a descriptive text (:lodging_description_1), that has one review (:review_1), and contains one ac-
commodation (:accommodation_1). A description is a special kind of creative work (modelled using the
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tao:LodgingDescription class) that can mention one or more real entities like places or food. In the example,
the description mentions the Big Ben tower (through the schema:mentions property). Also, reviews are con-
sidered creative works in Schema.org47 and are thus related to other real-world entities using schema:mentions
property. There is an offer (:offer_1) to lease out an accommodation that is contained in the lodging facility;
:offer_1 is related to the offered accommodation (:accommodation_1) utilizing (:quantity_1) node
whose properties define what is offered using the property gr:hasUnitOfMeasurement (e.g., DAY) and in
what quantity using the property gr:amountOfThisGood (e.g., 2).

In Appendix D we describe in more detail the structure of triples representing lodging facilities, accommodations,
offers, and user reviews in the Tourism Knowledge Graph.

4.3. Knowledge Graph publishing

In this section, we present the triple store publishing TKG, discuss how to identify the different resources in the
knowledge graph, and finally how we encoded the provenance. For publishing the knowledge graph we relied on
Ontotext GraphDB. The knowledge graph itself is a collection of multiple RDF graphs. Each RDF graph has an
associated URI which defines its graph name. For both Booking.com and AirBnB we created two kinds of named
graphs:

1. hospitality named graph that contains all the triples created using data assets produced at the and of the
ontology mapping step48 processing semi-structured data extracted from a specific source (e.g., AirBnB) for
a certain tourist destination (i.e., London or Sardinia);

2. linked entities named graph that contains all the triples created using data assets produced at the and of the
DBpedia or Geonames entity linking steps49 processing texts extracted from a specific source (e.g., AirBnB)
for a certain tourist destination (i.e., London or Sardinia).

A named graph has a custom URI with this structure:
base_url/tourist_destination/source/enrichment
Specifically:

1. base_url: http://tourism.kg.linkalab-cloud.com/ng/50

2. tourist_destination: is used to identify a tourist destination by name (e.g., London or Sardinia)
3. source:

(a) bkg: is used to identify the source Booking.com ;
(b) air: is used to identify the source AirBnB;

4. enrichment:

(a) internal: is used for all the RDF assets that are produced with no entity linking during the transformation
phase;

(b) dbpedia_el: on assets that are enriched with Entity Linking against DBpedia;
(c) geonames_el: on assets that are enriched with Entity Linking against GeoNames.

As an example, the named graph which is a collection of triples about London hospitality, pro-
duced from Booking.com (semi-)structured data (with no entity linking) would have the following URI:
http://tourism.kg.linkalab-cloud.com/ng/london/bkg/internal.

The use of named graphs implemented as described simplifies the distinction of resources related to a specific
tourist destination because we can use the named graphs in SPARQL queries and identify subsets of data through
Implicit Graphs using Triple Pattern Fragments51 (TPF) [60, 61]. This distinction is also useful to express prove-
nance metadata at the named graph level as described in Section 4.3.1.

47See https://schema.org/UserReview
48as described in Section C.
49as described in Section C.
50ng stands for named graph.
51http://linkeddatafragments.org/

https://schema.org/UserReview
http://linkeddatafragments.org/
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Concerning identifying a resource in the knowledge graph, we use URIs that explicitly contain the exter-
nal source (e.g., Booking, AirBnB), and the type of resource. The resource URI is structured as follows:
base_url/resource_type/source/unique_id

In particular:

1. base_url: http://tourism.kg.linkalab-cloud.com/
2. resource_type:

(a) lf: is used to identify Lodging Facility entities;
(b) ac: is used to identify Accommodation entities;
(c) of: is used to identify Offering entities;
(d) rv: is used to identify User Reviews entities.

3. source:

(a) bkg: the resource is derived from Booking.com;
(b) air: the resource is derived from AirBnB.

4. unique_id: is an identifier produced by the data transformation phase which is unique for the data source.

As an example, the following URI identifies a lodging facility derived from AirBnB:
http://tourism.kg.linkalab-cloud.com/lf/air/30840569.

The Tourism Analytics ontology is published as an RDF/XML file at the following URI:
http://purl.org/tao/ns52. To access a specific class or property the hash URI approach is adopted53 (e.g.,
http://purl.org/tao/ns#LodgingFacility is the URI for LodgingFacility class).

4.3.1. Provenance and dataset metadata
In a dedicated named graph, we loaded also the metadata triples describing the other named

graphs and their provenance: http://tourism.kg.linkalab-cloud.com/ng/meta/prov. A named
graph can be referenced using Quad Pattern Fragments54 with a URI with the following structure:
base_url?graph=graph_name where we have:

1. base_url: http://tourism.ldf.linkalab-cloud.com/graph
2. graph_name: is the URI associated with the named graph as its name

As an example, the named graph containing the triples about London hospitality produced from Booking.com
(semi-)structured data (with no entity linking) would be referenced as:
http://tourism.ldf.linkalab-cloud.com/graph?graph=http://tourism.kg.linkalab-

-cloud.com/ng/london/bkg/internal.
To express the provenance information we used the W3C PROV provenance model. This allows us to track

the lineage of data assets produced during the data transformation and triple creation phases following a similar
approach as that described in [20] and implemented in the RMLMapper tool. With respect to what is proposed in
[20], we applied the Implicit Graphs approach to capture metadata at the Named Graph detail level of granularity,
thus generating a minimum number of additional RDF triples for provenance. In this case, the metadata generation
time is negligible compared to the overall triple generation time similar to what can be experimented with using the
RMLMapper metadata generation feature with a similar configuration.

In PROV we have three main classes:

– prov:Entity - a physical, digital, conceptual, or other things with some fixed aspects; entities may be real
or imaginary;

– prov:Activity - something that occurs over a while and acts upon or with entities; it may include con-
suming, processing, transforming, modifying, relocating, using, or generating entities;

– prov:Agent - something that bears some form of responsibility for an activity taking place, for the exis-
tence of an entity, or for another agent’s activity.
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Fig. 6. A high-level schema of provenance metadata for a named graph in the Tourism Knowledge Graph.

Figure 6 shows a high-level provenance schema describing how provenance metadata for a specific named graph
is modelled. Specifically, we can recognise the following PROV entities:

1. source - represents the web source for our data (e.g., Booking.com);
2. dataLakeTablesFromSource - represents the tables exposed by the data lake containing the data ex-

tracted from the source;
3. assetsFromSource - represents all the assets created during the transformation phase which are used to

produce the RDF triples for a specific named graph;
4. rmlMapForSource - represents the RML map document used to produce the RDF triples for a specific

named graph;
5. rdfDatasetFromSource - represents the RDF graph (serialised as one or more files) that is produced

from the source using specific assetsFromSource and rmlMapForSource entities;
6. namedGraphForSource - represents the published named graph.

Moreover, in the same schema, we can identify the PROV Activities involved in the production of a specific
named graph:

1. transformationForSource - performed to prepare/enrich the data for the triple creation;
2. rdfGenerationForSource - performed to produce the triples;
3. rdfPublicationForSource - performed to load the triples in the triple store as named graphs.

Finally, we can identify in the schema the following PROV Agents:

1. transformerForSource - represents the entire transformation pipeline described in Section 4.1;

52This is a redirect to http://schema.linkalab-cloud.com/tao.rdf
53See https://www.w3.org/TR/cooluris/#hashuri for an in-depth explanation.
54https://linkeddatafragments.org/specification/quad-pattern-fragments/

http://schema.linkalab-cloud.com/tao.rdf
https://www.w3.org/TR/cooluris/#hashuri
https://linkeddatafragments.org/specification/quad-pattern-fragments/
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2. rdfGenerator - represents the RML processor software (RMLMapper in our case);
3. rdfLoader - represents the agent that loads the RDF graph in the triple store.

The proposed PROV schema can be easily adapted to specify a particular named graph provenance information
and can track: (i) when all triples in the named graph are created/updated, (ii) what assets are used to generate
the triples, (iii) what RML mapping document was used to generate them. The same can be specified for all the
assets produced by the transformation pipeline. The agent entities are also useful to track the software version
used to produce each named graph. It is worth noting that, although RMLMapper software is capable of producing
provenance metadata, we decided to use the described provenance schema and a custom metadata generator because
we wanted to cover all the pipelines (data transformation, RDF generation, and RDF publication) using a common
approach and leveraging our orchestration service (Dagster) as described in Appendix C.8.

5. Evaluation

We evaluated TKG and TAO55 according to functional, logical, and structural dimensions as suggested by pre-
vious works [8, 25]. The functional dimension refers to the capability of addressing the requirements and offering
a useful representation of the tourism domain while the logical dimension is about the ability to be successfully
processed by a reasoner and produce sound new knowledge. We evaluated both functional and logical dimensions
by defining and running a set of tests. We implemented the test cases as RDF files modelled with the TestCase
OWL meta-model (prefix test:), following Blomqvist et al. [4]. Each test case specifies its inputs, conditions
for the execution, the actual testing procedure, and the expected results. All the resulting RDF files are available at
https://github.com/linkalab/tkg/tree/main/validation. Finally, the analysis of the structural dimension aims at assess-
ing the topological properties of TKG and TAO, which is also compared with other ontologies (i.e., Hontology and
Acco). All these analyses provide useful insights on design choices and can be used to iterative refine the knowledge
graph. We detail them in the following three subsections.

5.1. Functional dimensions

To verify that the functional requirements are satisfied, we followed the CQ (Competency Question)56 verifi-
cation approach proposed by Carriero et al. [8]. Specifically, this approach aims at testing whether the competency
questions can be answered by running SPARQL queries on the KG. To this purpose, we defined 12 test cases by
translating the competency questions, defined in Appendix A.2, into SPARQL queries. The input data were selected
from the knowledge graph to test each specific functionality. We used this process to drive the creation and refining
of TAO, identifying missing classes or properties and adding them to the ontology. We also used it for verifying that
TKG can answer in a meaningful way to all competency questions.

The execution of each test case consists of performing the relative SPARQL query against TKG end point57.
Queries were manually executed and the results were checked against the expected values. Some CQs required the
execution of federated queries to access triples from DBpedia and GeoNames. To this end, we used the SERVICE
keyword to access Ontotext FactForge SPARQL endpoint58, which exposes both of them.

All the 12 competency question tests ran successfully. The following example (Listing 5.1) shows a federated
SPARQL query that aims to answer “What are the apartments with wi-fi near at least 2 parks?”59.

55It is worth noting that TAO has been also verified using OOPS! (https://oops.linkeddata.es/) to find and correct common pitfalls. We manually
inspected the results of the tool and, after excluding problems regarding other ontologies or related to incorrect results, we identified and fixed
47 missing annotations, 3 missing domain and range specifications in object properties, 1 wrong equivalent class definition, and 3 inverse
relationships not explicitly declared.

56A Competency Question is a query expressed in natural language as described in Section 3.3.
57To access the SPARQL endpoint use http://tourism.sparql.linkalab-cloud.com/ with username:paper and password:journal_p4p3r2022!!
58See http://factforge.net/
59In this case a park is considered near the apartment if it is within a distance of 1 km.

https://github.com/linkalab/tkg/tree/main/validation
https://oops.linkeddata.es/
http://tourism.sparql.linkalab-cloud.com/
http://factforge.net/
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PREFIX gdb −geo : < h t t p : / / www. o n t o t e x t . com / owlim / geo #>
PREFIX dbo : < h t t p : / / d b p e d i a . o rg / o n t o l o g y / >
PREFIX gn : < h t t p : / / www. geonames . o rg / o n t o l o g y #>
PREFIX t a o : < h t t p : / / p u r l . o rg / t a o / ns #>
PREFIX acco : < h t t p : / / p u r l . o rg / acco / ns #>
PREFIX schema : < h t t p : / / schema . o rg / >
PREFIX on to : < h t t p : / / www. o n t o t e x t . com/ >

SELECT ? l o d g e (SAMPLE( ? name ) AS ? a p a r t m e n t ) (COUNT( ? pa rk ) AS ? num_parks_nearby )
FROM on to : e x p l i c i t ## use o n l y e x p l i c i t s t a t e m e n t w i t h o u t any i n f e r e n c e
WHERE {

{ SELECT DISTINCT ? l o d g e ?name ? l a t ? long WHERE {
? l o d g e a t a o : Apar tment ; schema : l a t i t u d e ? l a t ;
schema : l o n g i t u d e ? long ; schema : name ?name ; t a o : f e a t u r e ? b .
? b a t a o : Wi−FiZone . } }

SERVICE < h t t p : / / f a c t f o r g e . n e t / r e p o s i t o r i e s / f f −news > {
? pa rk gdb −geo : ne a r b y ( ? l a t ? long " 1km" ) ; gn : f e a t u r e C o d e gn : L . PRK .

}
}
GROUP BY ? l o d g e HAVING ( ? num_parks_nearby > 1)
ORDER BY DESC( ? num_parks_nearby )
LIMIT 3

The query returns the following results.

Lodge Apartment Num_parks_nearby

http://tourism.kg.linkalab-cloud.com/lf/bkg/9bd5bef8f50e0e03 "1 Bedroom Luxury Apartment
Chancery Lane"

"3"ˆˆxsd:integer

http://tourism.kg.linkalab-cloud.com/lf/air/42701380 "2 bedroom basement apart-
ment with 50 inch TV"

"3"ˆˆxsd:integer

http://tourism.kg.linkalab-cloud.com/lf/bkg/
51e2e2d011d57200

"3 Bedroom Palatial Apartment
Chancery Lane"

"3"ˆˆxsd:integer

All competency question test cases are available at https://github.com/linkalab/tkg/tree/main/validation/
competency_questions60

5.2. Logical dimensions

To assess the logical dimension, we first ran a reasoner on TAO and checked for any inconsistency. We then
assessed the full TKG according to two strategies suggested in Carriero et al. [8]:

1. inference verification, which checks if the inference over the KG produces the expected results (as an ex-
ample, if a tao:HotelRoom accommodation is part of a generic tao:LodgingFacility we can infer
that the latter is a Hotel);

2. error provocation, which aims to provoke an inconsistency error by injecting data that violates the re-
quirements (as an example, an instance of a lodging facility can not be defined of type tao:Hotel and
tao:BedAndBreakfast at the same time).

We thus formulate the relevant test cases to assess what inferences can be performed and what types of errors may be
produced by the reasoner. In this case, we can no longer rely on CQs but we have to examine the ontology structure
and consider how classes and properties are defined by axioms.

In the following subsection, we will describe more in detail how we conducted these two tests.

60We suggest using Protégé for opening the competency questions test cases files.

http://tourism.kg.linkalab-cloud.com/lf/bkg/9bd5bef8f50e0e03
http://tourism.kg.linkalab-cloud.com/lf/air/42701380
http://tourism.kg.linkalab-cloud.com/lf/bkg/51e2e2d011d57200
http://tourism.kg.linkalab-cloud.com/lf/bkg/51e2e2d011d57200
https://github.com/linkalab/tkg/tree/main/validation/competency_questions
https://github.com/linkalab/tkg/tree/main/validation/competency_questions
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5.2.1. Inference verification
For evaluating this dimension, we modelled 15 test cases as OWL files using the TestCase OWL meta-model.

These files are identified by a unique IRI and contain only the ABox, relying61 on the TBox of the TAO ontology
and the TestCase metamodel62. The ABox contains a set of individuals necessary to execute the test and obtain the
expected results. All inference verification test cases and the related data sets are available at https://github.com/
linkalab/tkg/tree/main/validation/inference_verification.

These tests are useful to understand if the ontology can be successfully used to extend the knowledge graph
with reasoning e.g., using inverse properties definitions to materialize backlinks63, using a chain of object prop-
erties to infer new relationships64, inferring the type of an entity from its properties65. For example, let us con-
sider a LodgingFacility individual (named Hotel Splendor) which is related to Greater London, a
second-level administrative division defined in GeoNames66, through the ObjectProperty gn:parentADM2. Let us
also suppose that there exists a TouristDestination individual called GreatLondonDestinationwhich
includes (via the tao:containsGeo property) Greater London. Then, the reasoner should infer that Hotel
Splendor is also part of GreatLondonDestination. It is worth noting that the creation of inference verifi-
cation tests has been used also during the ontology engineering process for guiding the introduction and refinement
of new axioms in TAO.

We performed the final evaluation by loading the test files in Protégé and running the Pellet reasoner67.
All 15 test cases yielded the expected results.

5.2.2. Error provocation
This test aims at understanding how the knowledge graph (TKG) reacts to the injection of inconsistent data. As

an example, since an entity cannot be at the same time a tao:Hotel and a tao:BedAndBreakfast, we can
validate the ontology with regards to this requirement by injecting an individual which is defined as belonging to
both classes. The test is successful if the reasoner finds an inconsistency because the appropriate disjointedness
axiom is defined in the ontology.

We followed the same strategy used in the inference verification tests described above. In addition, for some tests,
we developed also a SHACL file defining further constraints68.

We implemented 12 test cases for error provocation, testing the identification of wrong patterns in the knowledge
graph such as the inclusion of hotel rooms as accommodations in a lodging facility that is not a hotel, the inclusion
of accommodation to multiple disjoint lodging facilities, the presence of isolated nodes like a location amenity not
connected to any accommodation or lodging facility69. We loaded each test file within Protégé, and then we ran
both reasoner and the SHACL rules engine70. A test is successful if the injected inconsistencies are detected by the
reasoner and/or the SHACL validator.

We used this same error provocation technique to test the correct creation of triples during the triple creation
process (see section 4.2) and to refine axioms and constraints in TAO.

All error provocation test cases and the related data sets are available at https://github.com/linkalab/tkg/tree/main/
validation/error_provocation.

61Using owl:imports.
62http://www.ontologydesignpatterns.org/schemas/testannotationschema.owl
63As an example if an Accommodation is tao:partOf a lodging facility the inverse relation tao:includes can be added to the knowl-

edge graph.
64A TouristDestination can be expressed as the composition of other geographic features (using gn:parentFeature) so that all lodging

facilities contained in those features become also part of the TouristDestination itself.
65A lodging facility can be inferred to be of type LowRatedFacility if its normalised rating value is less or equal to a certain value.
66See Greater London http://www.geonames.org/2648110/greater-london.html
67We used the Pellet reasoner, see the Protégé plug-in https://github.com/stardog-union/pellet/tree/master/protege/plugin
68In some tests we use SHACL language to test for integrity constraints that are not limited by the Open World Assumption (OWA)
69This case requires the use of SHACL rules because of the open world assumption in OWL.
70Using SHACL4Protege Constraint Validator, see https://github.com/fekaputra/shacl-plugin

https://github.com/linkalab/tkg/tree/main/validation/inference_verification
https://github.com/linkalab/tkg/tree/main/validation/inference_verification
https://github.com/linkalab/tkg/tree/main/validation/error_provocation
https://github.com/linkalab/tkg/tree/main/validation/error_provocation
http://www.ontologydesignpatterns.org/schemas/testannotationschema.owl
http://www.geonames.org/2648110/greater-london.html
https://github.com/stardog-union/pellet/tree/master/protege/plugin
https://github.com/fekaputra/shacl-plugin
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5.3. Structural dimension

We assessed the structural dimension of TAO and TKG by computing different metrics for assessing ontologies
and KG that have been defined and used in the literature [8, 25]. In particular, we followed a similar approach to
Carriero et al. [8], which considered both base and topological metrics. Base metrics are used to assess the following
quantitative aspects:

– number of axioms - the total number of axioms defined for classes, properties, datatype definitions, assertions,
and annotations;

– number of logical axioms - the number of axioms that affect the logical meaning of an ontology;
– number of classes - the total number of classes defined in the ontology;
– number of object properties - the total number of object properties defined in the ontology;
– number of datatype properties - the total number of datatype properties defined in the ontology;
– number of annotation assertions - the total number of annotations in the ontology;
– DL expressivity - the description logic expressivity of the ontology.

On the other hand, topological metrics are useful to understand ontology richness, width/depth, inheritance struc-
ture, cohesion, and multi-hierarchical degree.

In particular, we adopted the following metrics:

– Inheritance Richness (IR) - measures the average number of sub-classes per class71. Low values indicate a
vertical (deep) ontology whereas high values indicate a horizontal (shallow) ontology.

– Relationship Richness - measures the ratio of the number of non-inheritance relationships divided by the
number of relationships of all kinds72. Values are normalised to one, where 0 indicates that only inheritance
relations exist in the ontology and 1 that no inheritance relations are present.

– Axiom Class Ratio - measures the ratio of the number of axioms divided by the number of classes73. A scarcely
axiomatised ontology has a low value of this metric (near zero); higher values are an indication of a better
axiomatisation, but very high values can state an excessive axiomatisation.

– Class/property ratio - measures the ratio of the number of classes divided by the number of relations74. Low
values (i.e., ∼ 0) are found in ontologies with many properties connecting a few concepts. On the contrary,
high values indicate that the ontology has many classes connected by few properties.

– NoR - number of root classes (a class which is not a subclass of other classes)75. The interpretation of NoR
depends on the total number of classes. We expose (i) the ordinal values of NoR and (ii) the ratios between
NoR and the number of classes between parenthesis.

– NoL - number of leaf classes (all classes that have no sub-classes)76. The interpretation of NoL depends on
the total number of classes. We expose (i) the ordinal values of NoL and (ii) the ratios between NoL and the
number of classes between parenthesis.

– NoC - number of external classes77 defined by [48]. A low value of NoC can indicate that the ontology is
semantically independent; a high value can indicate that the ontology depends on concepts defined in other
ontologies. The interpretation of NoC depends also on the number of classes in ontology. We expose (i) the
ordinal values of NoC and (ii) the ratios between NoC and the number of classes between parenthesis.

– ADIT-LN (Average depth of inheritance tree of leaf nodes) - is the average depth of the graph constructed
considering classes as nodes and subClassOf properties as arcs 78.

71See https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Schema_Metrics#Inheritance_Richness
72See https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Schema_Metrics#Relationship_Richness
73https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Schema_Metrics#Axiom_Class_Ratio
74See https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Schema_Metrics#Class_Relation_Ratio
75See https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Knowledgebase_Metrics#Number_of_root_classes_.28NoR.29
76See https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Knowledgebase_Metrics#Number_of_leaf_classes_.28NoL.29
77A class is considered external when it is defined in a different ontology. This metric has been calculated using Protégé.
78See https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Knowledgebase_Metrics#Average_depth_of_inheritance_tree_of_leaf_

nodes_.28ADIT-LN.29

https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Schema_Metrics#Inheritance_Richness
https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Schema_Metrics#Relationship_Richness
https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Schema_Metrics#Axiom_Class_Ratio
https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Schema_Metrics#Class_Relation_Ratio
https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Knowledgebase_Metrics#Number_of_root_classes_.28NoR.29
https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Knowledgebase_Metrics#Number_of_leaf_classes_.28NoL.29
https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Knowledgebase_Metrics#Average_depth_of_inheritance_tree_of_leaf_nodes_.28ADIT-LN.29
https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Knowledgebase_Metrics#Average_depth_of_inheritance_tree_of_leaf_nodes_.28ADIT-LN.29
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– Max breadth - the maximal value of breadth computed on the graph constructed as for the ADIT-LN metric79.
The value of Max breadth should be considered concerning the number of classes in ontology.

– Average breadth - the average breadth computed on the graph constructed as for the ADIT-LN metric80.
– Max depth - the maximal depth obtained by traversing the graph constructed as for the ADIT-LN metric.81

The value of Max depth should be considered concerning the number of classes in ontology.
– Tangledness - is the degree of multi-hierarchical classes (which are classes with more than one super-class).

It is related to the multi-hierarchical nodes of the graph constructed for the ADIT-LN metric82. A value of 0
indicates no tangledness; a value of 1 indicates that each class has multiple super-classes.

Tables 1, 2, and 3 report the base and topological metrics measured on TAO, Hontology, and the Accommo-
dation Ontology (Acco). It should be noted that when analysing TAO we considered only the classes and proper-
ties defined in this ontology and not the ones imported from other ontologies (i.e., the Accommodation Ontology,
GoodRelations). This was done to allow a fair comparison with the Accommodation Ontology, which we import.

All metrics were calculated using OntoMetrics83 web tool.

Table 1
Base metrics.

Metric name TAO Hontology Acco

# axioms 3960 1453 344
# logical axioms 1237 448 111
# classes 588 284 31
# object properties 19 8 21
# datatype properties 3 31 14
# annotation asser-
tions

2074 682 161

DL expressivity SROIQ(D) ALCHQ(D) ALUH(D)

Table 2
Number of classes by tourism aspect.

Metric name TAO Hontology Acco

Lodging facility types 35 191 55

Accommodation
types

17 542 46

Amenities types 343 933 notprovided7

Tourist location types 146 224 notprovided8

1. ho:Accommodation sub classes
2. ho:Room sub-classes
3. ho:Facility sub-classes types
4. union of ho:PointOfInterest and ho:Location sub-classes
5. Only selected sub-classes of acco:Accommodation
6. Only selected sub-classes of acco:Accommodation
7. Class acco:AccommodationFeature can hold feature information using acco:value

and gr:name data properties to create custom sub-classes.
8. Acco does not model tourist locations.

Table 1 shows that TAO is significantly larger than Hontology and Accommodation Ontology in terms of a num-
ber of classes, axioms, logical axioms84, and annotation assertions. The additional classes mostly describe different
types of lodging facilities (35 classes), accommodations (17 classes), amenities (343 classes), and tourist locations
(146 classes). Table 2 shows a comparison of the mentioned classes. TAO has more types of lodging facilities,
amenities, and tourist locations with respect to Hontology and Acco. Hontology has apparently more accommoda-
tion types, but this number may be due to the fact that these types actually combine room types with amenities (e.g.,
ho:FamilyRoomWithBalcony) or the number of beds (e.g., ho:SingleRoom, ho:10BedFemaleDorm).
In this case, we preferred to avoid the addition of specific sub-classes but instead, we used amenities (e.g.,
acco:Terrace) and bed details specifications (using acco:BedDetails) to better characterize accommoda-
tions.

In terms of properties, TAO introduces only a few new ones, since it reuses most of them from Acco (4),
GoodRelations (15), Schema.org (11), and GeoNames (1) as discussed in Section 3.3.2.

79See https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Graph_Metrics#Maximal_breadth
80See https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Graph_Metrics#Average_breadth
81See https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Graph_Metrics#Maximal_depth
82See https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Graph_Metrics#Tangledness
83See https://ontometrics.informatik.uni-rostock.de/ontologymetrics/index.jsp
84Logical axioms affect the logical meaning of an ontology. See https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Base_Metrics#

Logical_Axiom. On the other hand, non-logical axioms, like entity declarations or annotations, do not affect the consequences of an OWL 2
ontology. See https://www.w3.org/TR/owl2-syntax/#Entity_Declarations_and_Typing

https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Graph_Metrics#Maximal_breadth
https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Graph_Metrics#Average_breadth
https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Graph_Metrics#Maximal_depth
https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Graph_Metrics#Tangledness
https://ontometrics.informatik.uni-rostock.de/ontologymetrics/index.jsp
https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Base_Metrics#Logical_Axiom
https://ontometrics.informatik.uni-rostock.de/wiki/index.php/Base_Metrics#Logical_Axiom
https://www.w3.org/TR/owl2-syntax/#Entity_Declarations_and_Typing
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Table 3
Topological metrics.

Metric name TAO Hontology Acco

Inheritance Richness 1.177 0.961 0.742
Relationship Richness 0.413 0.321 0.477
Axiom Class Ratio 6.735 5.116 11.097
Class/propery ratio 0.499 0.706 0.705
NoR 14 (0.02) 17 (0.06) 13 (0.42)
NoL 494 (0.84) 247 (0.87) 23 (0.74)
NoC 19 (0.03) 0 (0.00) 2 (0.06)
ADIT-LN 3.612 2.725 2.439
Max depth 6 5 3
Average breadth 6.578 7.375 5.077
Max breadth 54 29 13
Tangledness 0.179 0.018 0.097

Finally, in terms of expressivity, TAO is similar to Hontology because they share ALCQU features and Acco
because they share ALCU features; TAO does not have the H feature because it does not express role hierarchies
(SubPropertyOf) as Hontology and Acco; however, TAO has the IS features, indicating the presence of inverse and
transitive roles (relations), that the other two ontologies do not have.

The indicators in Tables 1, 2 and 3 can be used to assess and compare TAO, Hontology, and the Accommoda-
tion Ontology according to their transparency, flexibility, and cognitive ergonomics [25]. Transparency has been
defined as “the property of an ontology to be analysed in detail, with a rich formalisation of conceptual choices
and motivation”. Flexibility is related to how easy is to change and evolve the ontology with limited side effects.
Finally, cognitive ergonomics is the ability of an ontology to be “easily understood, manipulated, and exploited by
final users”. In the following, we discuss the main indicators of these properties.

TAO performs well according several indicators of transparency [25] as it offers:

– a relative high number of axioms per class (6.578). This is higher than Hontology, but lower than Accommo-
dation Ontology, mostly due to the much lower number of classes in the latter;

– a small coupling with external ontologies (0.03), similar to Hontology (0) and the Accommodation Ontology
(0.06). This is computed as the number of external classes defined in other ontologies (NoC) normalized by
the total number of classes. Low coupling allows users to inspect and understand an ontology.

– a strong cohesion (i.e., relatedness among classes) due to the low depth of the class hierarchy (ADIT-LN =
3.612), the small number of root classes (NoR = 14), and the high number of leaf classes (NoL = 494);

– a high inheritance richness (1.177), which accounts for a more vertical structure, reflecting a more compre-
hensive coverage of the tourism domain. This is higher than both Hontology (0.961) and Accommodation
Ontology (0.742).

The combination of low coupling and strong cohesion are also indicators of flexibility [25].
Finally, TAO exhibits several indicators that are typically associated with a good cognitive ergonomics, such as:

– a relatively low class/property ratio (0.499), also smaller than Hontology (0.706) and Accommodation On-
tology (0.705);

– a sub-class tree with low depth and breadth as indicated by ADIT-LN (3.612), max depth (6), and average
breadth (6.578);

– a relatively low tangledness (0.179 in a range from 0 to 1) that suggests that the inheritance tree has low
complexity.

Table 4 reports some statistics about the current prototype of TKG, which includes over 10M triples describing
35K facilities and almost 898K reviews.
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Figure 7 shows the distribution of individuals in terms of classes. The most frequent classes
are (i) tao:NormRating and schema:UserReview which are used for reviews; (ii)
acco:AccommodationFeature85 that is used as a generic class for amenities together with a spe-
cific class from tao (e.g., tao:Kitchen, tao:Television); (iii) the classes used to model an offer
such as gr:Offering, gr:TypeAndQuantityNode, and gr:UnitPriceSpecification; (iv)
tao:Accommodation, gr:QuantitativeValue, gr:SomeItems, and acco:BedDetails are the
classes used to model an accommodation; (v) tao:LodgingDescription, tao:LodgingFacility
(and its subclasses), schema:PostalAdress, and tao:NormAggregateRating that are used to
model the lodging facilities. The other classes in the diagram are sub-classes of tao:LocationAmenity,
tao:Accommodation or tao:LodgingFacility, which are used to specify precisely their type.

Table 4
Knowledge graph metrics

Metric Value

Number of triples 10,917,081
Number of distinct relations 146
Number of links to DBPedia entities 210,245
Number of unique DBpedia enities linked 3,851
Number of links to GeoNames entities 142,043
Number of unique GeoNames enities linked 3,487
Number of AirBnB reviews entities 358,005
Number of Booking.com reviews entities 539,834
Number of AirBnB LodgingFacility entities 29,870
Number of Booking.com LodgingFacility entities 6,126

6. Conclusions

In this paper, we presented a framework for the semi-automatic construction of a Tourism Knowledge Graph
(TKG) and introduced a new ontology for modelling this domain: the Tourism Analytics Ontology (TAO). We have
evaluated TKG and TAO according to functional, logical, and structural dimensions.

The evaluation suggests that TAO is i) larger than the alternatives (Hontology and Accommodation Ontology)
in terms of the number of classes and axioms and ii) also offers higher transparency, flexibility, and cognitive
ergonomics.

In future work, we aim to pursue three main pathways. First, we are working on developing NLP solutions to
improve the extraction of entities from text, such as descriptions and reviews, so to further enrich the representation
of lodging facilities. This step includes the extraction of data from other sources related to several other touristic
destinations. Solutions such as Entity Fishing86 or Open Information Extraction87 can be leveraged for named entity
extraction, including entity detection, name resolution, and named entity recognition.

Second, we want to develop a more scalable solution for integrating data about millions of facilities and users.
To achieve such a goal, we will rely on big data frameworks such as Apache Spark and Elasticsearch running in
a cluster of machines on cloud computing facilities and we will implement a dedicated DBpedia Spotlight web
service to speedup the entity linking process. Third, we want to develop a range of intelligent services based on
TKG, including an entity-linking application for automatically annotating accommodations according to reviews
and a conversational agent able to answer questions regarding the tourism sector. Knowledge Graph completion will

85tao:LocationAmenity is defined as an equivalent class to acco:AccommodationFeature.
86https://github.com/kermitt2/entity-fishing
87https://openie.allenai.org/

https://github.com/kermitt2/entity-fishing
https://openie.allenai.org/
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Fig. 7. Top 30 classes by the number of individuals in the knowledge graph

provide a means to predict relations between entities of the knowledge graph and will be performed by leveraging
Knowledge Graph Embedding models (e.g., TransE [5], RotatE [46], ComplexE [59]) or methods based on Graph
Neural Networks [65], path-based features [6] and Few-Shot Learning [63].

Transversally to them, we want to extend TAO ontology in order to model other aspects related to tourism,
starting with events and restaurants. We also plan to explore other APIs relevant to tourism such as Google Hotel
API88, Google Places API 89 or TripAdvisor90 to reuse and extend TAO to model also their data in a unified way.
To conclude, we are working on automatising as much as possible the pipeline we have used intending to create
knowledge graphs with related ontologies in any domain and sources.

Appendix A. Requirements and competency questions

In this section we detail the functional and non-functional requirements identified during the definition of the
domain ontology (TAO), described in Section 3.3, as well as the relevant use cases. We also describe the Compe-
tency Questions and how they express functional requirements in a more operative form. Finally, we examine the
information available in the data sources that supported the formulation of the CQs.

A.1. Requirements

To successfully be used to model a knowledge graph that can support the use cases identified in 3.1, we envisaged
that the ontology would need to fulfill the following functional requirements (FR):

88See https://developers.google.com/hotels
89See https://developers.google.com/maps/documentation/places/web-service
90See https://www.tripadvisor.com/developers

https://developers.google.com/hotels
https://developers.google.com/maps/documentation/places/web-service
https://www.tripadvisor.com/developers
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Table 5
Mapping knowledge graph’s use cases with ontology’s functional requirements

Use Case FR1 FR2 FR3 FR4 FR5 FR6 FR7

UC1 - KG should support the identification of the topics
of interest discussed by tourists in their reviews

X X X X X

UC2 - KG should support the identification of the topics
of interest presented in the descriptions of lodging facili-
ties and accommodation offers

X X X X

UC3 - KG should support the recognition and linking of
tourism entities in the KG for different applications re-
volving in the domain of social media, news, and blogs

X X X X

UC4 - KG should support sentiment analysis applications
about tourists toward lodging businesses and destinations

X X X X X X

UC5 - KG should support the classification of tourist des-
tinations on the basis of what they offer and on the basis
of tourist opinions

X X X X X X X

FR 1 model lodging facilities and define a hierarchy91 of their types (e.g., hotels, hostels, apartments),
FR 2 model accommodations and define a hierarchy of their types (e.g., room, entire apartment, suite);
FR 3 model amenities offered to tourists and define a hierarchy of their types (e.g., disable access, parking garage,

baby monitor);
FR 4 model tourist locations (e.g., waterfall, beach, museum, park) and define a hierarchy of their types;
FR 5 model the relations among entities (e.g., geographic relations, mentions, composition/inclusion);
FR 6 model tourist reviews;
FR 7 model tourist destinations (e.g., Sardinia, London), which is the place that is central to the trip.

Functional requirements for the ontology are mapped to the knowledge graph’s use cases as described in Table
5. As an example, we can see that since "KG should support the identification of the topics of interest discussed
by tourists in their reviews" the ontology should model user reviews (FR6) and concepts typically related to what
tourists speak about as lodging facilities (FR1), accommodations (FR2), amenities (FR3), and tourist locations
(FR4).

When considering non-functional requirements (NFR), the ontology should support reasoning and be based on
widely adopted technical and market standards. In particular:

NFR 1 should be defined in OWL92;
NFR 2 should be based on two de-facto standards to model business data:

• Schema.org93, which is a set of vocabularies developed through a collaborative effort for structuring
data on the web. It was originally founded by Google, Microsoft, Yahoo, and Yandex.

• GoodRelations, which is a lightweight ontology for exchanging e-commerce information, namely
data about products, offers, points of sale, prices, terms, and conditions, on the Web.

NFR 3 should be easy to extend in order to cover other use cases in the tourism domain.

A.2. Competency questions

Based on the functional requirements we defined the following 12 competency questions:

CQ 1 Which are the first 10 hotels with more than 1,000 reviews and the lowest mean value of users’ review
scores?

91For a description of hierarchies and their implementation in the TAO ontology see Section B.
92More specifically it should be based on OWL DL dialect which is designed to provide the maximum expressiveness possible while retaining

computational completeness, decidability, and the availability of practical reasoning algorithms.
93See https://schema.org/

https://schema.org/
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Table 6
Mapping competency questions with functional requirements

FR1 FR2 FR3 FR4 FR5 FR6 FR7

CQ1 X X
CQ2 X X X X X
CQ3 X X X X
CQ4 X X X X X
CQ5 X X X X
CQ6 X X X
CQ7 X X X X
CQ8 X X X X
CQ9 X X X X
CQ10 X X
CQ11 X X X
CQ12 X X X

CQ 2 Find three apartments with Wi-Fi, distant at most 2Km from at least two Parks.
CQ 3 Which Tourist Destinations have the highest percentage of high-priced Lodging Facilities (at least one offer

for accommodation for two persons with a nightly price two times over the mean price)?
CQ 4 What are the 10 tourist locations cited most by hotel descriptions that also offer a day Spa in a specific

tourist destination?
CQ 5 What are the most cited Tourist Locations in all Lodging Facility descriptions within a certain tourist

destination?
CQ 6 What are the Tourist Locations cited most in positive user reviews?
CQ 7 What are the 10 cheapest apartments that offer at least two beds and secured parking and are within 10km

from an airport?
CQ 8 Which type of Lodging Facility is more reviewed by tourists in a specific Tourist Destination?
CQ 9 What are the top Tourist Destinations with respect to positive sentiment about food (i.e., percentage of

Lodging Facilities with positive reviews that cite food)?
CQ 10 In which months do we have the highest number of user reviews for Hotels?
CQ 11 What Tourist Locations can be found in a Tourist Destination?
CQ 12 How many beds are offered on lease in a certain Tourist Destination?

As we can see, CQs can be more generic or specific depending on which aspect of the ontology we want to
describe and eventually test, but all CQs are expressed in terms of questions that can be translated into SPARQL
queries against the KG. This is why in some CQs we can use concrete examples (i.e., Wi-Fi) instead of more generic
entity classes (i.e., “a location amenity”).

A given competency question usually includes information related to different functional requirements and vice-
versa, a certain functional requirement is covered by different competency questions. We can see the mapping
between CQs and functional requirements in Table 6.

A.3. Information in data sources

The formulation of the competency questions was also supported by the information available in the data sources.
Here, we report a list of the most relevant information available in the data sources (discussed in Section 3.2) that
drove the CQs formulation:

1. information about lodging facilities:

(a) name(s)
(b) position
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(c) geographic relations with administrative divisions
(d) geographic relations with tourist destinations
(e) type (e.g., Hotel, Resort, Motel, B&B, Holiday Accommodations)
(f) type of accommodation offered (e.g., room, apartment, villa, bungalow, etc.)
(g) amenities (e.g., sauna, parking, swimming pool, breakfast, air conditioning, etc.)
(h) accommodation prices exposed on the web
(i) user ratings
(j) textual descriptions (to perform Named Entity Recognition, Entity Linking and Relation Extraction,

etc.)

2. information about tourist locations:

(a) name (in multiple languages)
(b) position
(c) geographic relations with administrative divisions
(d) geographic relations with tourist destinations

3. information about tourist destinations:

(a) name (in multiple languages)
(b) position
(c) geographic relations with administrative divisions
(d) geographic relations with tourist locations

4. tourist reviews about lodging businesses and locations

(a) user votes
(b) tourist nationality and type of tourist (family, couple, etc.)
(c) textual review (to perform Named Entity Recognition, Entity Linking and Relation Extraction, etc.)

This list was employed during the process of ontology engineering, as it helps to define the set of entities and
properties that should be modelled by the TAO ontology.

Appendix B. Class hierarchies in TAO

TAO includes several hierarchies of classes connected with rdfs:subClassOf property. This approach was chosen
above others (e.g., model taxonomies using SKOS94) because we wanted to be compatible with the Accommoda-
tion Ontology (where accommodations and amenities types are represented as sub-classes) and simplify the use of
Schema.org where class hierarchies are also used. In particular, we have four hierarchies describing the relationships
of relevant classes, including:

1. the lodging hierarchy with 35 types of lodging facilities (e.g., tao:Hotel, tao:Apartment,
tao:House) across 4 levels;

2. the accommodation hierarchy with 17 types of accommodations (e.g., Room, EntireApartment, Suite)
across 4 levels;

3. the location amenity hierarchy with 343 types of amenities (e.g., Wifi, Minigolf, Dryer) across 5 levels;
4. the tourist location hierarchy with 146 types of tourist locations (e.g., City, Museum, Mountain) across

5 levels;

Figure 8 reports the first three levels of each hierarchy. For each sub-class in a hierarchy we can have one or more
of the following implementations:

– if a class is conceptually related to a similar class in other ontologies (e.g., DBpedia), this is modelled with
the annotation property rdfs:seeAlso;

94See https://www.w3.org/TR/2009/REC-skos-reference-20090818/

https://www.w3.org/TR/2009/REC-skos-reference-20090818/
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Fig. 8. A tree representation of the four hierarchies included in the TAO ontology expanded to the third level (some class removed in the location
amenity hierarchy for sake of clarity and space).

– if a class is derived from other ontologies, we track the provenance using the dc:source property to indicate
the original class 95;

– if a class extension96 is the same as the extension of a class in other ontologies we link them with the
owl:equivalentClass property 97, or the rdfs:subClassOf property if it is narrower98;

– for each class, we use rdfs:label to indicate the primary label and skos:altLabel to indicate alternate
labels;

– disjoint axioms are added when appropriate to better support the reasoning.

95Note that dc: stands for Dublin Core ;
96The set of individuals that are members of the class.
97It is the case of tao:TouristDestination which is declared to be owl:equivalentClass of

schema:TouristDestination
98It is the case of tao:EntireApartment which is declared to be rdfs:subClassOf of acco:Apartment because in the Accom-

modation ontology acco:Apartment can refer to an apartment as a lodging facility or as an actual accommodation offered on lease.
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B.1. Lodging taxonomy

The first hierarchy describes the different types of lodging facilities and their sub-types like in the case of Apartho-
tel, which is a special case of a hotel. We also introduce a special case with tao:RatedLF and its sub-classes which
are used to classify Lodging facilities according to their ratings (tao:NormAggregateRating). Specifically,
tao:NormAggregateRating has 3 sub-classes: tao:LowNormRating, tao:MediumNormRating
and tao:HighNormRating. These classes can be extended using a data property restriction99 on
tao:normRatingValue to implement an automatic classification of a Lodging facility.

A rated lodging facility is also part of tao:RatedLF (rated lodging facility) class100 and it can also be inferred
whether it is part of one of the following three sub-classes:

– is part of tao:HighRatedLF class if it is associated101 with a tao:HighNormRating node;
– is part of tao:MediumRatedLF class if it is associated with a tao:MediumNormRating node;
– is part of tao:LowRatedLF class if it is associated with a tao:LowNormRating node;

B.2. Accommodation hierarchy

When modelling accommodations, we distinguished two general offerings: (i) entire place (i.e., EntirePlace), and
(ii) room (i.e., Room). For these, we also defined sub-classes (e.g., EntireHouse for EntirePlace, HotelRoom for
Room). In addition, we modelled two special cases (i.e., CampingPitch and Suite), which are not covered by the
general cases. When appropriate, we used equivalence axioms to add useful constraints as in the case of HotelRoom
which must be part of one Hotel. Moreover, to support high compatibility between TAO and the Accommodation
Ontology, we defined the accommodation classes of TAO as subclasses of the Accommodation Ontology ones (e.g.,
tao:CampingPitch is a subclass of acco:CampingPitch).
tao:CampingPitch is a subclass of acco:CampingPitch) in order to support the best possible compati-

bility between the two ontologies.

B.3. Location amenity hierarchy

In the case of location amenities, we added equivalence axioms to support a certain degree of mapping with how
specific accommodation features could be more probably defined using the Accommodation ontology approach102.
To this end, each sub-class in this hierarchy is also declared as owl:equivalentClass to an anonymous class
defined in accordance to Accommodation Ontology prescriptions103. Thus we define each anonymous class as a
subclass of acco:AccommodationFeature and as an owl:intersectionOf of owl:Restriction
based on gr:name and acco:value data properties from GoodRelations. An example is given below in Turtle:

tao:AirportShuttle rdf:type owl:Class ;
owl:equivalentClass [

rdf:type owl:Class
owl:intersectionOf (

acco:AccommodationFeature
[
rdf:type owl:Restriction ;
owl:onProperty acco:value ;

99See OWL2 specifications https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Data_Property_Restrictions.
100Because this class is defined using an existential quantification on the object property tao:aggregateNormRating that has some

tao:NormAggregateRating.
101Using tao:aggregateNormRating object property
102Because there is not a defined taxonomy but a textual label is used to define a specific feature we can only try to guess the label most

probably used.
103It is defined as “a structured value representing the feature of an accommodation as a property-value pair of varying degrees of formality”;

see http://ontologies.sti-innsbruck.at/acco/ns.html#AccommodationFeature

https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Data_Property_Restrictions
http://ontologies.sti-innsbruck.at/acco/ns.html#AccommodationFeature
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owl:hasValue "yes"@en
]
[
rdf:type owl:Restriction ;
owl:onProperty gr:name ;
owl:hasValue "Airport Shuttle"@en

]
) ;

] .

In this way, a reasoner can map to the appropriate tao:LocationAmenity sub-class an accommodation feature
defined using acco:value and gr:name as prescribed in the Accommodation ontology specifications.

B.4. Tourist location hierarchy

Tourist locations are modelled, whenever possible, according to their respective GeoNames feature codes. This is
done by declaring them as owl:equivalentClass to an anonymous class which is a restriction on the property
gn:featureCode that must have an appropriate value from the GeoName feature codes list104. An example is
given below:

tao:Zoo rdf:type owl:Class ;
owl:equivalentClass [

rdf:type owl:Restriction ;
owl:onProperty <http://www.geonames.org/ontology#featureCode> ;
owl:hasValue <http://www.geonames.org/ontology#S.ZOO>

] ;
rdfs:subClassOf <http://www.geonames.org/ontology#Feature> ;
rdfs:label "Zoo"@en .

Appendix C. Transform the data

In this Appendix, we describe the processing steps for transforming the data shown in Figure 4.

C.1. Data extraction

As the first step, we extracted the relevant data from the source data lake. The extraction process is performed
using a SQL big data engine105. During this process, the data is also combined and arranged to be more easily
processed in the following steps (e.g., unique ids are calculated, and nested columns are exploded). This produces
the Source data assets collection which consists of:

1. hospitality_supply_assets: containing information about lodging facilities, accommodation, and offers.
2. hospitality_demand_assets: containing information about user reviews.

C.2. Data break down and filter

This second step organizes and structures the information produced in the previous step. Specifically, we need to:

1. break down the information so that we have a distinct asset for each semantic entity we want to model as
triples (e.g., lodging facility, accommodation, offer, review);

104See https://www.geonames.org/export/codes.html
105Amazon Athena, see https://aws.amazon.com/en/athena

https://www.geonames.org/export/codes.html
https://aws.amazon.com/en/athena
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2. apply a flat structure to the data, because some columns contain complex data structures as arrays or key/value
structures;

3. separate text blobs from the other data preserving their relation to the semantic entity they refer to (e.g., the
lodging facility description, the review content).

We can obtain the right structure using specific data pipelines that produce multiple assets out of a single one,
flattening the data and filtering out unnecessary columns. This produces an unpacked version of the assets for each
source:

1. hospitality_unpacked_supply_assets: containing unpacked information about lodging facilities, accommoda-
tion, and offers.

2. hospitality_unpacked_demand_assets: containing unpacked information about user reviews.

C.3. Data cleaning

Here we correct or remove corrupt or inaccurate records from the assets produced in the previous step. In particu-
lar, we need to drop duplicated records, remove special characters, normalize categorical fields, normalize date and
numeric fields.

From hospitality_unpacked_supply_assets, the Data Cleaning step produces:

1. lodging_assets - containing all structured data relative to lodging facility entities (i.e., entities of type
tao:LodgingFacility); for each lodging facility a unique ID is produced;

2. lodging_description_assets - containing all descriptions relative to a lodging facility (used to perform Named
Entity Extraction and Linking);

3. accommodation_assets - containing all structured data relative to accommodation entities (i.e., entities of type
tao:Accommodation) in a lodging facility; for each accommodation, a unique ID is produced;

4. offers_assets - containing all structured data relative to accommodation offers (i.e., entities of type
gr:Offering that will be modelled as prescribed by the Accommodation Ontology); for each offer, a
unique ID is produced;

5. amenities_assets - containing all accommodation features (a.k.a. amenities) that are related to a lodging facil-
ity and/or to accommodation.

Instead, from hospitality_unpacked_demand_assets, the Data Cleaning produces:

1. reviews_assets - containing all structured data relative to user reviews about a lodging facility; for each review,
a unique ID is produced;

2. reviews_content_assets - containing all text content for user reviews about a lodging facility (used to perform
Named Entity Extraction and Linking);

C.4. Ontology mappings

At this stage, we identify and map the classes of the structured data to transform them into triples.
For instance, if a lodging business is represented as a record like:

hotel_id name structure_type

9f40f613d308cf80 Chelsea BnB Bed and breakfast

after the ontology mapping step, a new field lf_class (lodging facility class) is added with the “BedAndBreakfast”
class name:

hotel_id name structure_type lf_class

9f40f613d308cf80 Chelsea BnB Bed and breakfast BedAndBreakfast
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Structured data include categorical columns that refer to concepts in the TAO ontology. In particular, there are
three hierarchies in the ontology (See Appendix B for details) that we have to reconcile with categorical columns in
the data:

1. lodging facility types: for each lodging table record we have a text field that contains the name of the lodg-
ing facility type; this field can be used to associate the correct tao:LodgingFacility subclass to the
individual lodging facility the record is about;

2. accommodation types: for each accommodation table record we have a text field that contains the name of the
accommodation facility type; this field can be used to associate the correct tao:Accommodation subclass
to the individual accommodation the record is about;

3. accommodation features (amenities) types: for each amenity table record we have an accommodation feature
associated with a specific lodging facility (via an external key ID that refers to the lodging table). This field
can be used to associate the correct tao:LocationAmenity subclass to the individual amenity the record
is about.

To perform the reconciliation we use a heuristic process based on rules that can identify the most appropriate
class to use to model an entity. The heuristic process uses lookup tables extracted from the ontology where we have
each class associated with each of its labels. In this way, we leverage the ontology enrichment we already described
in Section 3.3.3. The reconciliation is thus performed by adding the correct class name in a new column of the data
table so that it can be used during the triple-creation phase. The ontology mapping step produces new types of assets
that are part of the Ontology mapped data asset collection:

1. classified_lodging_assets;
2. classified_accommodation_assets;
3. classified_amenities_assets.

These assets will be fed into the triple creation process.

C.5. Language detection

This step applies a language detection algorithm [52] to the text contained in the lodging description and reviews
content tables. The detected language is used to enrich lodging_description_assets and reviews_content_assets with
a new language column so that subsequent steps can process only English texts. The enriched assets are part of the
Language enriched data asset collection.

C.6. DBpedia entity linking

To perform the Entity Linking task against DBpedia we have applied DBpedia Spotlight [15, 42] APIs106 to
the English text contained in the lodging description and reviews content tables. DBpedia Spotlight identifies and
annotates entities based on the following pipeline process:

– Spotting: identifies possible entity mentions (surface forms) from the original input text.
– Candidate selection: selects the DBpedia resources that are candidate meanings for each surface form.
– Disambiguation: determines which candidate is the most likely resource for each surface form.
– Filtering: adjusts the annotation task based on the user requirements.

For the filtering step, we restricted the annotation scope to the following type of entities: DBpedia:Activity,
DBpedia:Food, DBpedia:Holiday, DBpedia:MeanOfTransportation, DBpedia:Place,
Schema:Event, Schema:Place. The result of the DBpedia entity linking process produces two new types
of assets which are part of the DBpedia linked entities asset collection:

1. lodging_dbpedia_linked_assets - containing a record for each DBpedia entity linked to a lodging facility
identified by its unique ID;

106https://www.dbpedia.org/resources/spotlight/

https://www.dbpedia.org/resources/spotlight/
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2. review_dbpedia_linked_assets - containing a record for each DBpedia entity linked to a user review identified
by its unique ID.

We used these assets in the triple-creation process.

C.7. GeoNames entity linking

This step performs an Entity Linking task against GeoNames so that places named in the lodging descriptions or
the reviews are linked to the GeoNames corresponding entities.

To this end, we employed an open-source software called Mordecai107 [29], a full-text geoparsing system that
extracts place names from the text, resolves them to their correct entries in a gazetteer, and returns structured
geographic information for the resolved place name. Mordecai is based on a language-agnostic architecture that
uses word2vec [44] for inferring the correct country for a set of locations in a piece of text. As a gazetteer, it
uses a custom-built Elasticsearch database populated with GeoNames data. Mordecai is integrated within the Spacy
library108. Analogously to what is described in Section C.6 for DBpedia, we used Mordecai to process all English
text contained in the lodging description and review content tables. The result of the GeoNames entity linking
process produces two new types of assets which are part of the GeoNames linked entities asset collection:

1. lodging_geonames_linked_assets - containing a record for each GeoNames entity linked to a lodging facility
identified by its unique ID;

2. review_geonames_linked_assets - containing a record for each GeoNames entity linked to a user review
identified by its unique ID.

We used these assets in the triple-creation process.

C.8. Implementation strategy

To support the data transformation described in the previous sections, we identified the following requirements
for our technological architecture:

– Data-driven,
– Flexible and easily extensible,
– Scalable in a distributed computing environment,
– Easily manageable,
– Easily instrumented for lineage (a.k.a. provenance) metadata collection.

Following the requirements, the data computation is organised using the pipeline approach already described.
This approach is optimal to create a distributed computation if the intermediate and final materializations are stored
on a distributed file system. This is the same approach adopted by Apache Spark and other big data frameworks.

To manage the execution of a set of data pipelines, we used Dagster109, an open-source orchestrator service. Dag-
ster can be deployed on a single machine or a distributed environment like Kubernetes or AWS Elastic Container
Service clusters. Thanks to this flexibility we started using a single machine to simplify the deployment process,
without losing the opportunity to switch to a distributed architecture in the future. Dagster can also expose metadata
about the execution of each pipeline and the produced assets, enabling our system to generate provenance infor-
mation for the Knowledge Graph. The data transformation code is developed using Python Pandas110 library. We
released the pipelines built on Dagster as an open-source resource for the paper111.

107https://github.com/openeventdata/mordecai
108Only Spacy v2.x is supported at the moment
109https://dagster.io/
110https://pandas.pydata.org/
111See https://github.com/linkalab/tkg/tree/main/kg_pipelines

https://github.com/openeventdata/mordecai
https://dagster.io/
https://pandas.pydata.org/
https://github.com/linkalab/tkg/tree/main/kg_pipelines
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C.9. Performance on a single server

We used a single node with CPU AMD Ryzen™ 7 5800H, 32GB of RAM, 1TB SSD, and Ubuntu 20.04. With
this setup the data transformation over the booking.com and Airbnb data was about 8 hours and 45 minutes, where
the entity linking process took 7h 14m, language detection 1h and 26m, leaving all the other data extraction and
transformation steps only 14 minutes of execution time. This is because entity linking is performed invoking DBpe-
dia Spotlight public end-points so that we could only apply a limited concurrency on the requests to the external web
service to avoid server-side errors. This is the main limitation to scalability for the present implementation because
the other data processing steps are very fast being executed using a big data query engine for the extraction (Amazon
Athena) or using Python pandas with all data loaded in RAM. If a higher entity linking speed is needed it is possible
to create a self-managed setup for DBpedia Spotlight as described in their website112. Regarding language detection,
it can be optimised in a single-node setup using a multithreading approach similar to what has been implemented
for entity linking and can also scale horizontally on multiple nodes because it only requires local CPU time.

We reduced the used disk space using Parquet files for tabular data. The total storage space was 3GB which can
be reduced to 1.6GB if all triple files are compressed. To support storage scalability a distributed filesystem could
be used as suggested in Appendix C.8.

Appendix D. Triple structure details for TKG

In this Appendix, we describe the structure of triples representing lodging facilities, accommodations, offers, and
user reviews in the Tourism Knowledge Graph. We refer to Figure 5 in the following sections.

D.1. Lodging facility entities triple structure

In Figure 5, we can steer our focus to observe triples modelling a lodging facility, which includes:

1. an address entity (:address_1), modelled as a schema:PostalAddress class that gives us great flex-
ibility to define the facility position;

2. one or more accommodation features entities that are associated with the lodging facility using the
tao:feature property; in our example, we have the node :amenity_1 of type tao:Parking113.

3. an aggregated rating entity (:agg_rating_1 in our example) that is used to model the overall user rating
for the lodging facility (which is related to the ratings expressed by the single users’ reviews) that specifies
the vote in a normalised range from 0 to 1.

D.2. Accommodation entities triple structure

Accommodation is always related to a lodging facility, in compliance with the Accommodation ontology, and it
includes:

1. its maximum and minimum occupancy capacity, using a gr:QuantitativeValue node
(:capacity_1 in our example);

2. its provision of beds, using an acco:BedDatails node (:beds_1 in our example);
3. the type of accommodation114 (using one of the TAO ontology classes like tao:Room).

112See http://dev.dbpedia.org/Dbpedia_Spotlight
113In general the class of the amenity should be the most appropriate TAO ontology class among all the subclasses of

tao:LocationAmenity as detected during the Ontology mapping step described in Section C.4
114As detected during the Ontology mapping step described in C.4

http://dev.dbpedia.org/Dbpedia_Spotlight
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D.3. Offer entities triple structure

We describe a commercial offer for leasing out an accommodation leveraging GoodRelations. As shown in Figure
5 an offer can be expressed in terms of:

1. a node (:quantity_1) of type gr:TypeAndQuantityNode used to specify the number of days it is
offered using gr:amountOfThisGood and gr:hasUnitOfMeasurement properties;

2. a node (:price_spec_1) of type gr:UnitPriceSpecification used to specify the price
and currency for each day using the gr:hasUnitOfMeasurement, gr:hasCurrency and
gr:hasCurrencyValue properties.

D.4. User reviews triple structure

A user review of the lodging facility is represented in TKG by two entities:

1. a node (:review_1) of type schema:UserReview with a schema:dateCreated property used to
specify the review creation date;

2. a node (:review_rating_1) of type tao:NormRating that is used to specify the actual rating nor-
malised to 1 (using tao:normRatingValue) property.

Appendix E. TAO Extension

Here we report an example of the Python code we implemented on top of owlready2 for extending the TAO
ontology with new classes:

Listing 1: Python snippet to extend the TAO ontology with new classes.

from owl ready2 import *
wor ld = World ( )
t a o _ o n t o l o g y = wor ld . g e t _ o n t o l o g y ( " . / o n t o l o g i e s / t a o _ b a s e . r d f " ) . l o a d ( )
t a o = t a o _ o n t o l o g y . ge t_namespace ( " h t t p : / / p u r l . o rg / t a o / ns # " )
wi th t a o :

c l a s s T o u r i s t L o c a t i o n ( schema . P lace , gn . F e a t u r e ) :
l a b e l = [ l o c s t r ( " T o u r i s t l o c a t i o n " , l a n g = " en " ) ]
comment = " " " A l o c a t i o n i s a p o i n t or area o f i n t e r e s t from a t o u r i s t p o i n t o f view ,

which a p a r t i c u l a r p r o d u c t or s e r v i c e i s a v a i l a b l e , e . g . a museum , a beach , a bus
s top , a gas s t a t i o n , or a t i c k e t boo th . The d i f f e r e n c e t o gr : B u s i n e s s E n t i t y i s t h a t

t h e gr : B u s i n e s s E n t i t y i s t h e l e g a l e n t i t y ( e . g . a p er son or c o r p o r a t i o n ) making
t h e o f f e r , w h i l e t a o : L o c a t i o n i s t h e s t o r e , o f f i c e , or p l a c e . A c h a i n r e s t a u r a n t
w i l l e . g . have one l e g a l e n t i t y b u t m u l t i p l e r e s t a u r a n t l o c a t i o n s . L o c a t i o n s are
c h a r a c t e r i z e d by an a d d r e s s or g e o g r a p h i c a l p o s i t i o n and a s e t o f open ing hour
s p e c i f i c a t i o n s f o r v a r i o u s days o f t h e week . " " "

a l t L a b e l = [ l o c s t r ( " P o i n t o f i n t e r e s t " , l a n g = " en " ) , l o c s t r ( " Area o f i n t e r e s t " , l a n g =
" en " ) , l o c s t r ( " L o c a t i o n " , l a n g = " en " ) ]

s e e A l s o = gr . L o c a t i o n
c l a s s T o u r i s t D e s t i n a t i o n ( gn . F e a t u r e ) :

l a b e l = [ l o c s t r ( " T o u r i s t d e s t i n a t i o n " , l a n g = " en " ) ]
comment = " " " A t o u r i s t d e s t i n a t i o n . A T o u r i s t D e s t i n a t i o n i s d e f i n e d as a Place t h a t

c o n t a i n s , or i s c o l o c a t e d wi th , one or more T o u r i s t L o c a t i o n and L o d g i n g F a c i l i t y ,
o f t e n l i n k e d by a s i m i l a r theme or i n t e r e s t t o a p a r t i c u l a r t o u r i s t a u d i e n c e . The [

UNWTO] ( h t t p : / / www2 . unwto . org / ) d e f i n e s D e s t i n a t i o n ( main d e s t i n a t i o n o f a t o u r i s m
t r i p ) as t h e p l a c e v i s i t e d t h a t i s c e n t r a l t o t h e d e c i s i o n t o t a k e t h e t r i p . " " "

e q u i v a l e n t _ t o = [ schema . T o u r i s t D e s t i n a t i o n ]
t a o _ o n t o l o g y . s ave ( f i l e = " o u t p u t _ o n t o l o g y / tao_new . r d f " , format = " r d f xm l " )
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In the following code snippet we show an example of how we can process a CSV file that describes new classes
to be integrated into the ontology. All data from the CSV file are loaded in a pandas dataframe and processed by a
custom function (process_entity function) that uses owlready2 to handle OWL class creation or modification. For
more detail see the full source code.

Listing 2: Example of massive creation of classes and labels using Pandas library in Python.

from owl ready2 import *
import pandas as pd
wor ld = World ( )
t a o _ o n t o l o g y = wor ld . g e t _ o n t o l o g y ( " . / o n t o l o g i e s / t a o _ b a s e . r d f " ) . l o a d ( )
t a o = t a o _ o n t o l o g y . ge t_namespace ( " h t t p : / / p u r l . o rg / t a o / ns # " )
d f = pd . r e a d _ c s v ( " . / e n r i c h m e n t / b o o k i n g _ f a c i l i t i e s . c sv " )
d f . apply ( lambda r : p r o c e s s _ e n t i t y (

[ t a o _ s o l o , acco ] , r [ ’ e n t i t y ’ ] , r [ ’ p a r e n t _ c l a s s ’ ] , r [ ’ c l a s s ’ ] , r [ ’ t y p e ’ ] , r [ ’ i s _ a m e n i t y ’ ] ,
p r o v e n a n c e = " Booking . com f e a t u r e s l i s t s e x t r a c t i o n . " ,
comment_ tex t = " E n r i c h e d Booking . com f e a t u r e s l i s t s e x t r a c t i o n " ) , a x i s =1)

t a o _ o n t o l o g y . s ave ( f i l e = " o u t p u t _ o n t o l o g y / tao_new . r d f " , format = " r d f xm l " )
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