
Semantic Web 0 (2022) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ConSolid: a Federated Ecosystem for
Heterogeneous Multi-Stakeholder Projects
Jeroen Werbrouck a,c,d,*, Pieter Pauwels a,b, Jakob Beetz c and Erik Mannens d

a Department of Architecture and Urban Planning, Ghent University, Belgium
E-mail: jeroen.werbrouck@ugent.be
b Department of the Built Environment, TU Eindhoven, The Netherlands
c Chair of Design Computation, RWTH Aachen, Germany
d IDLab - Internet Technology and Data Science Lab, Ghent University, Belgium

Abstract. In many industries, multiple parties collaborate on a larger project. At the same time, each of those stakeholders par-
ticipates in multiple independent projects simultaneously. A double patchwork can thus be identified, with a many-to-many rela-
tionship between actors and collaborative projects. One key example is the construction industry, where every project is unique,
involving specialists for every subdomain, ranging from the architectural design over technical installations to geospatial infor-
mation, governmental regulation and sometimes even historical research. A digital representation of this process and its outcomes
requires semantic interoperability between these subdomains, which however often work with heterogeneous and unstructured
data. In this paper we propose to address this double patchwork via a decentral ecosystem for multi-stakeholder, multi-industry
collaborations dealing with heterogeneous information snippets. At its core, this ecosystem, called ConSolid, builds upon the
Solid specifications for Web decentralisation, but extends these both on a (meta)data pattern level and on microservice level. To
increase the robustness of data allocation and filtering, we identify the need to go beyond Solid’s current LDP-based interfaces to
a Solid Pod and hence introduce the concept of metadata-generated ‘virtual views’, to be generated using a SPARQL interface to
a Pod. Building on top of these generic interfaces, domain-specific (higher-level) interfaces can be set up. A recursive, scalable
way to discover multi-Pod aggregations is proposed, along with data patterns for connecting and aligning heterogeneous (RDF
and non-RDF) resources across Pods in a mediatype-agnostic fashion. We demonstrate the use and benefits of the ecosystem
using minimal running examples, concluding with the setup of an example use case from the Architecture, Engineering and
Construction (AEC) industry.

Keywords: Solid, Federated Data Catalogs, Collaboration Platforms, Metadata, Semantic Enrichment

1. Introduction

1.1. A Double Patchwork of Stakeholders and Projects

Interdisciplinary collaborations often involve intensive information exchange between domain experts with var-
ious backgrounds. In many cases, a ‘real world’ product will be involved, which will interact with its environment
for its entire lifecycle. When these interactions are to be captured digitally, e.g. to make predictions or invoke active
interactions with physical surroundings, the concept of ‘digital twins’ comes into sight: an as-complete-as-possible
digital representation of a physical object - a core concept of Industry 4.0 [1]. The example industry used in this
paper is the Architecture, Engineering and Construction (AEC) industry, one of the most decentralised industries

*Corresponding author. E-mail: jeroen.werbrouck@ugent.be.

1570-0844/$35.00 © 2022 – IOS Press. All rights reserved.

mailto:jeroen.werbrouck@ugent.be
mailto:jeroen.werbrouck@ugent.be

2 J.W. Werbrouck et al. / ConSolid

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[2]. In the AEC industry people from many professions interact with the asset in all of its life cycle phases, ranging
from direct stakeholders such as architects and engineers, commissioners, contractors, workers, facility managers,
and inhabitants to indirect partners such as governmental agencies and product manufacturers. Because most stake-
holders will be involved in multiple projects at the same time, we can generally speak of a ‘double patchwork’, a
many-to-many relation between stakeholders and collaborative projects (Figure 1).

Fig. 1. A double patchwork of stakeholders and collaborative projects

Since every activity in the process requires input from different disciplines, and every discipline has its own work-
flows and data formats, it is impossible to determine a ‘complete’ data model for describing a product’s digital twin
at the start of the project. As a matter of fact, every model is by definition incomplete. Instead, a modular approach
allows to gradually build the project model whenever input from a new discipline is required. Often, Semantic Web
and Linked Data technologies are identified as apt technologies to achieve interdisciplinary data mapping, logical in-
ferencing [3] and query-based discovery of federated data. At the same time, expressing knowledge in RDF (hosted
in triple (or quad) stores) often increases its complexity and processing time, and sometimes adds little value to the
overall data. This is, for example, the case with non-structured (or semi-structured) datasets, such as imagery, point
clouds, sensor streams and geometry [4]. This heterogeneity, which is inherent to large industries such as the AEC
industry, is acknowledged by both academia and industry, but efficient solutions for dynamic management of such
resources are currently lacking, especially given their decentral production.

The fact that the amount and nature of the disciplines involved is dynamic and depending on the use case, also
implies that it is very impractical to try to centralise all this information in a single ‘Common Data Environment’
(CDE): especially contextual information (geospatial, governmental, historical) should not be duplicated every time,
but just referenced semantically, as such information will be relevant for many projects at the same time. In essence,
a ‘central CDE’ can thus be considered federated from the moment it refers to external contextual information -
although they are mostly not created with data federation at their core, making it difficult to work with external
information in an integrated way. However, also for project-specific information, uploading everything to a cen-
tralised, commercial cloud hub causes issues regarding data ownership (intellectual property) and data sovereignty
(‘how can this data be used legally’) [5].

The technologies for a federated collaboration ecosystem are available, though. In such an environment, Linked
Data technologies allow stakeholders to self-host all their contributions to all the projects they participate in, and
fine-grainedly control who may access certain project information (e.g., other stakeholders, the public, product

J.W. Werbrouck et al. / ConSolid 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

manufacturers, etc.) [6]. Upcoming open Web specifications such as WebID-OIDC1 allow the creation of a decentral,
potentially self-hosted Web identity - in other words, a username for the entire Web, to be used to prove access rights
to specific data on the Web. This is one of the core enabling technologies for the specifications of the Solid2 project
[7], where WebIDs are used to control access to resources on a ‘Personal Online Data storage’ or, shortened, ‘Pod’.
In the case of multi-stakeholder, multi-resource collaborative projects, this means that a company can authenticate
to the Pods of other project participants to access their (filtered) interdisciplinary project information, but also that
online services with correct access rights can combine private project information from various stakeholders with
open datasets on the Web and present end-users with powerful ways to interact with this data - without mediation of
a central, project-external cloud provider or the need for its permissions to use their API. Up to this point, the main
focus of Solid has been on single-Pod environments. However, multi-Pod environments require a different approach
in many cases.

1.2. Research Questions

We identify the need for a federated, multi-purpose, cross-domain ecosystem for heterogeneous digital twins.
The ecosystem should be domain-agnostic at its core, but extendable to address the needs of and interoperability
between specific industry domains. Hence, we can formulate the main research question of this paper as following:

RQ: Is it possible to devise domain-agnostic data patterns for a federated, multi-purpose, cross-domain ecosystem
for heterogeneous digital twins based on the Solid specifications? What (meta)data patterns and service architecture
could empower this ecosystem?

In devising our approach to answer this research question, we will take the following hypotheses and resulting
objectives:

1. The ecosystem starts from the Solid specifications at its core but it will be necessary to extend the current
specifications, regarding interfaces to a Solid Pod, service infrastructure and data patterns. Contrasting with
known existing work on Solid, the ecosystem will treat a Solid Pod as a hybrid knowedge graph instead of
as a heterogeneous file system. This is needed to address multi-purpose use of resources and aggregations of
datasets living on different Pods in a secure way.

2. Security (authorization and authentication) is considered to be managed by the Solid specifications, unless a
custom deviation or extension of the specifications is made. The use of federated authentication is considered
an important requirement for addressing the double patchwork, to avoid the frequently occurring practice of
creating a new account on different project management platforms each time a new consortium is formed with
a different setup of collaborative platforms.

3. Although the resources in the project may be heterogeneous (i.e. RDF and non-RDF), the metadata that con-
nects them into a larger project needs to be RDF-based in order to allow maximal semantic freedom. This way,
every domain can enrich the metadata with discipline-specific information, to enhance discovery and filtering
of data, according to the use case at hand.

4. Membership of one or more larger projects does not directly impact a resource, i.e. the resource should be
functional in a standalone case as well as in different multi-resource aggregations. To make the ecosystem
more than a collection of datasets, the ability to establish sub-document links between non-RDF datasets will
be a prerequisite.

5. The ecosystem should be non-exclusive, i.e. it should be possible to integrate any dataset on the Web in the
project without duplicating them, also when they are regular Web resources not originally embedded in the
ecosystem.

In the following sections we will investigate the current challenges for such layered ecosystem to work. Although
we will take the use case of the AEC industry to identify the requirements of the ecosystem, we aim for a solution

1https://github.com/solid/webid-oidc-spec
2https://solidproject.org/

https://github.com/solid/webid-oidc-spec
https://solidproject.org/

4 J.W. Werbrouck et al. / ConSolid

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

that is generally applicable. To guarantee the general applicability of the framework, we will describe and address
every sub-challenge in a domain-agnostic fashion, and give examples related to the AEC industry. In the remainder
of the paper, the ecosystem will be called ConSolid.

1.3. Relationship to earlier work

This paper is the continuation of previous research on enabling technologies for a federated CDE. It was proposed
in Werbrouck et al. [6] to use the Solid infrastructure as a means to create a federated Common Data Environment,
and to map the specific ‘decentral’ nature of the AEC industry to the available technologies offered by the Solid
specifications. This research was extended in Werbrouck et al. [8], which describes a methodology for pattern-
based access control to AEC datasets. In contrast with username- or group-based approaches, this experimental
approach allows to specify the properties someone should have to access data (e.g., ‘the architect of the project
as approved by the project owner’), based on the SHApes Constraint Language (SHACL)3 standard. An initial
proposal for patterns to connect heterogeneous datasets in a federated ecosystem was described in Werbrouck et al.
[9], based on data conversion patterns described in Malcolm et al. [10]. However, the proposed data patterns still
featured multiple avoidable complexities. Furthermore, it mainly deals with file-based storage of datasets. While
such file-based ‘dumps’ can be downloaded, parsed and queried client-side, this comes at a performance cost, which
will rapidly rise when the project grows larger. Moreover, in earlier research the sub-document linking patterns
focus on linking geometry, but do not provide a generic way to link heterogeneous information. The concepts of
‘virtual containers’ and ‘virtual views’, which create discipline-specific interfaces on top of a Solid Pod or multi-Pod
configuration, were introduced in Werbrouck et al. [11] and will largely contribute in simplifying the early versions
of the ecosystem and make it more robust, scalable and domain-agnostic. This paper organises and improves the
insights and data patterns from this previous work. It introduces novel concepts with respect to this earlier research,
such as considering the Pod a hybrid, metadata-based knowledge graph instead of a folder system of more or less
independent researchers, scalable aggregation mechanisms and sub-document, references that are independent of
mediatype and data owner.

1.4. Paper overview

In the next section (Section 2), background technologies and related work will be discussed. In Section 3, we
will motivate the extensions that we need to make to the current Solid infrastructure in order to achieve the goals
of the envisaged ecosystem, regarding interfaces, microservices and metadata patterns. Section 4 then builds upon
those extensions to propose aggregation structures for single- and multi-Pod configurations, and Section 5 devises
the patterns for asynchronous sub-document linking. A minimal proof-of-concept from the AEC industry is then
described in Section 6. The paper concludes with a discussion and overview of future work (Section 7). Definitions
related to the data patterns used in the ecosystem are published as the ConSolid vocabulary4. The different software
prototypes discussed in this paper are aggregated at https://github.com/ConSolidProject/ infrastructure.

2. Related Work

This section will cover key technologies for data aggregation and containerisation, as well as the fundamentals
of the Solid ecosystem. Finally we review some related initiatives, from the perspective of the AEC industry and
perspective of the decentralised Web.

3https://www.w3.org/TR/shacl/
4https://w3id.org/consolid#

https://github.com/ConSolidProject/infrastructure
https://www.w3.org/TR/shacl/
https://w3id.org/consolid#

J.W. Werbrouck et al. / ConSolid 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2.1. Containerisation of Federated, Heterogeneous Datasets

In a digital construction project, many resources may actually refer to one and the same object. A window in
the building may find itself semantically described in graphs produced by different stakeholders in the project,
and be represented in multiple images, point clouds and geometries (2D and 3D). The overall set of resources
representing a digital building model is often denoted as a ‘multi-model’ [12]. A multi-model can be organised in
(nested) containers or catalogs, which, together with metadata descriptions, aid in discovering the right datasets
for the right task. Two approaches are hereby considered relevant: the Linked Data Platform (LDP)5, and the Data
Catalog Vocabulary (DCAT)6 specification.

The Linked Data Platform specification (LDP) presents guidelines for storing of and interaction with heteroge-
neous Web resources, and presents a basis for a read-write Web of data using HTTP. Based on the type of container,
membership of resources and containers can be either predefined (ldp:BasicContainer) or left to the imple-
menter (ldp:DirectContainer and ldp:IndirectContainer) to offer more (domain-specific) flexibil-
ity in defining custom relationships. LDP can be compared with a graph-based file system, where folders contain
pointers to where the datasets are stored rather than containing the datasets themselves. LDP is currently the main
interface to discover and retrieve information on a Solid Pod (Section 2.2.1).

The Data Catalog Vocabulary (DCAT) is an RDF vocabulary designed to facilitate interoperability between
data catalogs published on the Web [13]. DCAT defines a domain-agnostic way of aggregating federated datasets
in a dcat:Catalog. A catalog aggregates ‘datasets’ (dcat:Dataset); a dcat:Dataset instance defines
the metadata about a dataset and may in turn either contain other datasets as well (a dcat:Catalog is an
rdfs:subClassOf dcat:Dataset) or point to one or more ‘distributions’ (dcat:Distribution). Distri-
butions essentially represent the actual information of the dataset, differing from one another, e.g., concerning their
data type or version. Once a dcat:Distribution is identified, the actual data may be retrieved by dereferencing
either the dcat:downloadURL (retrieve a dump of the dataset) or the dcat:accessURL (access the dataset
via a database endpoint, e.g., SPARQL, timeseries etc.) (Figure 2). Such endpoints can be further described via
dcat:Service instances, e.g., to indicate whether the service conforms to a specific standard such as SPARQL
(dct:conformsTo) or list the datasets provided by the service (dcat:servesDataset). Ontological exten-
sions for using the DCAT vocabulary to describe metadata of AEC project resources have been proposed in [14],
such as the Construction Dataset Context (CDC) ontology7.

2.2. Web Decentralisation Ecosystems

Over the last years, the concept of ‘data sovereignty’ of actors in the digital economy has known growing interest
[5]. Data sovereignty is closely related to data security and protection. It is a concept to make data usage and storage
subject to national privacy laws and regulations of the country where it was collected (not where the data is stored),
so organisations cannot use it for whichever purpose that suits their interests. One of the core ideas is that the owner
of the data remains in control [15]. The most well-known regulation for data sovereignty is the EU’s General Data
Protection Regulation (GDPR), which defines how personal data should be processed and moved between agents.
However, the majority of web services still rely on centralised data storage, which means that it is still up to the
service providers to comply to these regulations. Numerous recent initiatives therefore focus on decentralised or
federated data storage, where the owner of the data ultimately gets to decide on which server their data resides and
who is allowed to interact with the data. In the below paragraphs, we will briefly discuss some of these projects.

2.2.1. The Solid Ecosystem
When datasets are not openly accessible on the web, but only available to selected agents, an authentication mech-

anism needs to be in place. For example, Web-based construction projects typically consist of restricted project-
specific data and open contextual datasets. Most common implementations rely on authentication mechanisms that

5https://www.w3.org/TR/ldp/
6https://w3c.github.io/dxwg/dcat/
7https://mathib.github.io/cdc-ontology/

https://www.w3.org/TR/ldp/
https://w3c.github.io/dxwg/dcat/
https://mathib.github.io/cdc-ontology/

6 J.W. Werbrouck et al. / ConSolid

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 2. Core DCAT concepts, figure from [14]

are added to the middleware and/or backend of a web service implementation. These authentication mechanisms
shield and secure the databases (SQL, NoSQL, triple stores, document stores, etc.) from random access, while only
allowing authenticated users through, for example, tokens (2-way handshake). Different is the Solid project for Web
decentralisation [7], which adds a decentralised authentication layer on top of a heterogeneous resource server, with
LDP as the primary interface. This authentication layer is based upon the concept of a WebID; an URL that uniquely
identifies an agent on the Web. Consequently, this WebID can be used as a decentral ‘username’. Most commonly, a
WebID dereferences to a self-descriptive, public RDF document (the ‘card’), which enriches the WebID with basic
information about the represented agent (Listing 1).

1 <https://jeroen.werbrouck.me/pod/profile/card#me>
2 foaf:name "Jeroen Werbrouck" ;
3 rdf:type schema:Person, foaf:Person ;
4 solid:oidcIssuer <https://broker.pod.inrupt.com/> .
5

6 <https://jeroen.werbrouck.me/pod/profile/card>
7 foaf:primaryTopic <https://jeroen.werbrouck.me/pod/profile/card#me> ;
8 foaf:maker <https://jeroen.werbrouck.me/pod/profile/card#me> ;
9 rdf:type foaf:PersonalProfileDocument .

Listing 1: Example solid "card" (Turtle syntax). The WebID is a specific resource in the card that can be semantically
enriched with RDF. Prefixes are included in Appendix A.

Building upon this WebID concept, the WebID-OIDC protocol, which is developed in the context of Solid, com-
bines the decentral flexibility of the WebID with the well-established standard OpenID Connect8 (OIDC). Standard
OIDC allows to outsource authentication to an external ‘identity provider’ (IDP) (e.g., Google, Facebook, Github,
Autodesk, etc.), so one may authenticate to multiple services with only one account hosted by an identity provider.
The Solid specifications and protocols expand on this, and allow to set up a personal identity provider and authen-

8https://openid.net/connect/

https://openid.net/connect/

J.W. Werbrouck et al. / ConSolid 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ticate to any Solid-enabled service - hence identity verification can happen without third-party companies acting as
a middle-man.

As Solid relies on the LDP specification, a Solid server may host both RDF and non-RDF data. Access
control rules are expressed in ‘Access Control Lists’ (‘.acl’), which relate specific ldp:Resources and
ldp:Containers to specific (groups of) actors via their WebID, using the Web Access Control9 (WAC) speci-
fication and ontology. In the default ACL vocabularies, four access modes are defined: acl:Read, acl:Write,
acl:Append, and acl:Control, where acl:Control means the ACL resource itself may be manipulated.
An example ACL document is given in Listing 2. An upcoming replacement technology for ACL is the Access
Control Policy10 (ACP) specification, which will allow more semantic freedom to express access control rules.

1 # This folder and its resources are readable by the public
2 <#public>
3 a acl:Authorization ;
4 acl:agentClass foaf:Agent ;
5 acl:accessTo <./> ;
6 acl:default <./> ;
7 acl:mode acl:Read .
8

9 # The owner has full access to every resource in their pod.
10 # unless specifically authorized in other .acl resources.
11 <#owner>
12 a acl:Authorization ;
13 acl:agent <https://jeroen.werbrouck.me/pod/profile/card#me> ;
14 acl:accessTo <./> ; # Set the access to the root storage folder itself
15 acl:default <./> ; # All resources will inherit this authorization, by default
16 acl:mode acl:Read, acl:Write, acl:Control . # The owner has all of the access modes

Listing 2: Example ACL document, regulating access to a specific LDP container and its resources.

The general use of Solid as an enabler of decentralised digital ecosystems is described in Verstraete et al. [15],
from a techno-economic perspective. Furthermore, in earlier work (Section 1.3), we have identified the Solid speci-
fications as a suitable basis for the needs of a digital AEC industry. This has multiple reasons:

1. It allows a stakeholder-centric approach to manage collaborative projects in a federated way.
2. It supports storage and linking of heterogeneous datasets.
3. It supports the ‘Single source of truth’ (SSoT) principle by design, as services do not locally duplicate infor-

mation but all interact with the same data.

A comparison between the original goals of Solid and an interpretation for the AEC industry is given in Fig-
ure 3. The Solid specifications and their implementation in the Community Solid Server11 will provide the main
infrastructure for the ecosystem in this paper.

2.2.2. International Data Spaces
The International Data Spaces (IDS)12 initiative is a recent, multi-disciplinary initiative oriented towards data

sovereignty in the digital economy [18]. The IDS ecosystem is based on the so-called IDS-RAM (Reference Archi-
tecture Model), which defines ways to let agents such as Data Providers and Consumers, Brokers, Identity Providers,
App Store and Service Providers and Vocabulary Providers interact with one another to facilitate trust between ac-
tors that the data they exchange is going to be used only for specific use cases and intentions (‘Usage policy enforce-
ment’). IDS is a core component of the ongoing European GAIA-X project13 (2019), which may complement the

9https://github.com/solid/web-access-control-spec
10https://solidproject.org/TR/acp
11https://github.com/CommunitySolidServer/CommunitySolidServer
12https://internationaldataspaces.org/
13https://gaia-x.eu/

https://github.com/solid/web-access-control-spec
https://solidproject.org/TR/acp
https://github.com/CommunitySolidServer/CommunitySolidServer
https://internationaldataspaces.org/
https://gaia-x.eu/

8 J.W. Werbrouck et al. / ConSolid

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 3. Web applications in the solid ecosystem [16] and applied to the AEC industry [17]

IDS architecture with technologies for data storage, data compliance and cloud infrastructure [19]. GAIA-X will be
applicable as an additional layer on top of existing cloud platforms. A comparative analysis between IDSA, Gaia-X
and Solid is given in [15].

2.2.3. Interplanetary File System
The Interplanetary File System (IPFS)14 is a peer-to-peer protocol for resilient, distributed storage of hypermedia

[20]. Instead of HTTP URIs, IPFS ‘content’ is identified by its cryptographic hash (its ‘Content Identifier’ or CI).
Many nodes in the IPFS network can serve (snippets of) this content upon request, making it much more resilient
than resource storage on a single server. When content changes, the CI changes as well, so it has build-in protection
against data tampering. Version management for a given resource is possible, however, using the ‘Interplanetary
Naming System’ (IPNS), which provides a dereferenceable key to find the most recent version of the resource.
Ongoing (early) research investigates the use of IPFS as a backend for Solid Pods [21].

3. Interfaces to a Discovery-oriented Solid Pod

3.1. Stripping implicit semantics from URLs

As mentioned in Section 2.2.1, a Solid Pod can be seen as a resource server with a decentralised authentication
layer on top. The authentication layer communicates with the IDP of the visiting agent to see if they are allowed to
interact with resources on the Pod. The spine of a Pod is currently formed by the LDP specification, which defines
patterns for reading and writing RDF data, based upon RESTful HTTP, and allows a containerisation of resources.
The result resembles a classic folder-based file system. Every resource is retrievable via a URL by concatenating the
origin with the respective containment branches separated by slashes - much like a Web-based file system indeed.

While LDP can essentially be seen as just one of the many possible APIs on top of the Pod, its current applica-
tion hard-wires ‘implicit’ (i.e. non RDF-based) semantics in the URLs of resources and imposes a tree-like folder
structure on what essentially is a (hybrid) knowledge graph (KG). I.e., every URL contains the URLs of their parent
directories up until the ‘root’ of the Pod. This is a design choice embedded in the Solid specifications, which enables
quick inference of a resource’s parent containers (a feature called ‘slash semantics’) and its governing access control
rules. However, at the same time it also imposes a quite rigid structuring of resources, because it implies that there
is only one possible (direct) parent folder, and resource URLs inherit the (often arbitrary) tags of all their (recursive)
parent folders. This while these parent directories may change over time, thereby invalidating the resource URL.

14https://ipfs.io/

https://ipfs.io/

J.W. Werbrouck et al. / ConSolid 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

We consider the following example, related to the stages of publication (Work-in-progress, Shared, Published,
Archved) as defined in ISO 19650 [22], the authoritative standard in the AEC industry which defines the ba-
sic concepts for information management in a Common Data Environment. Moving a resource from the folder
‘/work-in-progress’ to ‘/shared’ will change its URL on the Pod from ‘https://jeroen.werbrouck.me/pod/work-in-
progress/file1’ to ‘https://jeroen.werbrouck.me/pod/shared/file1’, thereby breaking any reference pointing to the
original URL. Moreover, in a multi-purpose collaboration platform, the containment of a resource in this specific
parent LDP container might only be relevant in a specific situation but totally illogical in others: maybe someone
would like to aggregate their resources in a different container structure when addressing a different use case. Hence,
it makes sense to strip these implicit containment semantics from the URL as much as possible, so the URL can be
reduced to a string of the form ‘root + GUID’. Note that this ‘form’ still follows the LDP specification, as it allows
to interact with LDP resources via HTTP - there are just no slash semantics beyond the root of the Pod, which
remains essentially a (very large) ldp:Container (Figure 4).

Fig. 4. A flat list of resources in a Pod. Containment triples and metadata are mentioned using RDF instead of slash semantics, allowing resources
to be grouped flexibly.

The ‘meaning’ that allows semantic containerisation and filtering on higher-level (domain-specific) layers must
now come from a metadata record that ‘enriches’ the heterogeneous resource using RDF ontologies, instead of
from the parent container. Metadata records, which are still very much under discussion in the Solid ecosystem,
can be updated without changing the resource or its URL itself: for example, the URL of the resource remains the
same, but changing a metadata tag from ‘work-in-progress’ to ‘shared’ allows the original URL of the resource
to remain intact, while a use-case specific ‘virtual’ folder structure can be created using a query-based discovery
pattern [11]. In other words, query-based resource discovery allows to get rid of implicit semantics in a URL, as
resource discovery does not depend anymore on URL destructuring. Multiple ‘views’ can be constructed on the same
resource, and different containment configurations can be created depending on the use case, on a higher interface
level in the ecosystem. However, to be able to perform these virtual views, which are essentially just filters on Pod
data, the Pod must be accessible as an (access-controlled) knowledge graph which is the union of its resources,
parallel to the resource-oriented interface of the Linked Data Platform that is currently implemented. We consider a
SPARQL endpoint an apt interface to query this knowledge graph. Obviously, the same URLs that are used to serve
resources via HTTP (LDP) can also be used as URIs for named graphs in a SPARQL endpoint, in order to facilitate
the access control protocols as specified in Solid. Considering that a typical SPARQL endpoint does not implement
these protocols, all requests to the SPARQL endpoint then need to pass via a proxy service, which may perform
access control on each triple pattern in the query by querying for the named graph they reside in. An example query
and its internal modification are given in Listing 3. In the remainder of this text, we will consider the proxy service
and database service as one, calling it a ‘satellite’ to the Pod.

10 J.W. Werbrouck et al. / ConSolid

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1 # The original SPARQL query
2 SELECT ?element ?dam ?cause WHERE {
3 ?element a beo:Wall ;
4 dot:hasDamage ?dam .
5 ?dam dot:hasCausation ?cause .
6 }
7

8 # The modified SPARQL query.
9 # Query parameters g1, g2 and g3 are used to check access to the results.

10 # Only if someone has access to all graphs, the result can be included in the final set.
11 SELECT ?element ?dam ?cause WHERE {
12 graph ?g1 { ?element a beo:Wall .}
13 graph ?g2 { ?element dot:hasDamage ?dam .}
14 graph ?g3 { ?dam dot:hasCausation ?cause .}
15 }

Listing 3: The SPARQL satellite service needs to check the resource a triple pattern occurs in, in order to check
access control before passing the query result to the client. An example query is used to query for registered damages
of an element.

The SPARQL satellite should be easily discoverable, which can be done by registering the triple pattern in Listing
4 in the WebID of the owner of the Pod15.

1 <https://jeroen.werbrouck.me/pod/profile/card#me>
2 consolid:hasSparqlSatellite <https://satellite.example.org/bob/sparql> .

Listing 4: Triple pattern to find the SPARQL satellite to a Pod, via the WebID of the Pod’s owner.

3.2. Discovery and Storage of Heterogeneous Datasets

File-based resources on the Web are inherently heterogeneous. In industries such as the AEC industry, a plethora
of file formats is used for different use cases: although RDF-based knowledge description is becoming more popular,
non-RDF datasets (e.g. imagery, point clouds and geometry) will continue to play a big role in many situations.
However, using RDF on a metadata level can offer a lot of benefits without changing the nature of the resources
themselves - RDF then acts as the ‘semantic glue’, flexibly connecting heterogeneous, federated resources on the
Web in a ‘hybrid’ knowledge graph. Because the approach discussed in Section 3.1 eliminated implicit URL-based
semantics, every resource needs at least one RDF-based metadata record to allow discovery of resources based on
filtering queries. This is particularly of value to non-RDF resources, since e.g. binary resources cannot be directly
queried with SPARQL - but a metadata record allows registration of queryable semantic descriptions. The SPARQL
interface mentioned in Section 3.1 must expose a union of all metadata records, allowing rapid discovery of specific
resources - given the requesting agent has the necessary reading rights (which we consider to be the case for the
example requests given in this paper). As a vocubulary to structure this metadata network, we will opt for the DCAT
vocabulary (Section 2.1), contrasting with Solid’s default usage of LDP for containerisation of resources. This has
the following reasons:

1. Addressing ‘containerisation’ and expressive metadata descriptions with a single, integrated vocabulary .
2. Semantic decoupling of metadata records and actual resource, which allows RDF-based discovery of hetero-

geneous datasets and semantic indication of a distribution’s versions and content-type.
3. Avoiding conflicts with the default Solid’s usage of LDP.
4. The flexibility to let metadata records semantically indicate versions of distributions, which is currently not an

option in Solid.

15We consider the WebID to be located on the Pod, although this is not strictly enforced by the Solid specifications

J.W. Werbrouck et al. / ConSolid 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Listing 5 gives an example of an RDF-based metadata record in the ecosystem, aggregated in a larger catalog,
using DCAT.

1 @prefix pod: <https://jeroen.werbrouck.me/pod/> .
2

3 # The catalog resource, with URL pod:0d1ffe69-6d69-4b76-ae79-87aacbfc2ca3
4 pod:0d1ffe69-6d69-4b76-ae79-87aacbfc2ca3 a dcat:Catalog ;
5 dcat:dataset pod:1e19ed7c-2809-408b-a619-f27e601d7423 .
6

7 # The dataset resource, with URL pod:1e19ed7c-2809-408b-a619-f27e601d7423
8 pod:1e19ed7c-2809-408b-a619-f27e601d7423 a dcat:Dataset ;
9 ex:publicationStatus ex:workInProgress ;

10 dcterms:created "2022-07-29T14:13:28.167000"^^xsd:dateTime ;
11 dcat:distribution pod:90329a28-6663-44c0-8e40-deb50a9e24b1 .
12

13 pod:90329a28-6663-44c0-8e40-deb50a9e24b1 a dcat:Distribution ;
14 dcat:downloadURL pod:90329a28-6663-44c0-8e40-deb50a9e24b1 . # Where to find the file.

Listing 5: Catalog and metadata record of a resource, using the DCAT vocabulary. Both the catalog and the dataset
are accessible as an HTTP resource, or as a named graph in the SPARQL satellite. An example vocabulary is used
to denote the publication statuses.

The example of changing a resource’s publication status (ISO 19650) while maintaining its URL (Section 3.1)
now boils down to the following steps, considering we only know the URL of the actual resource. First, we need to
discover the metadata graph of this resource via the SPARQL satellite (Listing 6). Now a SPARQL INSERT query
to this resource may change the content of this metadata graph, allowing it to be included in a new virtual container
for shared resources, and excluded from the one for resources tagged ‘work in progress’ (Listin 7).

1 SELECT ?mdGraph WHERE {
2 GRAPH ?mdGraph {
3 ?md dcat:distribution/dcat:downloadURL <{the-url-of-the resource}> .
4 }}

Listing 6: Discovery of a distribution’s metadata resource via the SPARQL interface to the Solid Pod.

1 CONSTRUCT {?virtualContainer ldp:contains ?downloadURL }
2 WHERE {
3 ?ds ex:publicationStatus "shared" ;
4 dcat:distribution/dcat:downloadURL ?downloadURL.
5

6 BIND(UUID() as ?virtualContainer)
7 }

Listing 7: SPARQL query to filter project datasets that are ‘shared’ and return their distributions as LDP containers

Moreover, when a resource’s containment structure is no longer reflected in its URL, it can be embedded in
multiple semantic containment structures at the same time. I.e., multiple resources can indicate containment of
a certain resource, and multiple discovery paths become possible. Some of these discovery paths may be made
explicit, while others could be generated dynamically by executing queries over the explicit knowledge. This means
that a one-on-one mapping of a Pod’s DCAT catalogs is not the only option: as documented in Werbrouck et al.
[11], ‘virtual’ LDP containers (or DCAT catalogs) may be created based on (CONSTRUCT) queries, e.g. to group
datasets according parameters such as media type, publication status or creation date.

12 J.W. Werbrouck et al. / ConSolid

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

3.3. Access control in a SPARQL-interfaced Pod

As indicated in Section 2.2.1, resources on a Pod are protected by ACL resources. In an exclusively LDP-based
environment, the applying ACL document is found by searching for the ‘closest’ ACL resource: a feature allowed
by the slash semantics feature. This means that either the ACL is linked directly to the resource to be found (as
‘{URL-of the-resource}.acl’) or a stepwise approach is taken to find a general ACL document in one of the parent
containers (the closest one is the one that counts). In a Pod environment that is primarily SPARQL-based, this is
no option, as a resource can be ‘contained’ in multiple parent containers, which may impose conflicting ACL rules
to their child resources or subcontainers. One option is to enforce that every resource has its dedicated ACL file.
This option is fully allowed by the current Solid specifications, but might quickly result in an overload of ACL
resources. Alternative possibilities, such as to allow a resource (via its metadata record) to semantically indicate its
governing ACL resource, enable re-use of ACL resources, but most certainly break overall compatibility with the
Solid specifications. This topic is not further explored in this paper and is considered in future research.

3.4. Domain-specific Interfaces

SPARQL interfaces to project Pods might be used to find containment information, but also allow other query-
based views to be established. They can be used as a generic way to present a (set of) resource(s) on the Pod via
industry-specific APIs, on a higher level. In the AEC industry, many subdisciplines are involved, all having specific
internal information representation standards and agreements, but eventually they need to access the same data.
Reading and discovering data could then happen via dedicated APIs on top of the Pod or of the entire federated
project. Such APIs create virtual views on the knowledge graph of the project, filtering relevant information for a
particular domain or use case. Since many industry standards are not RDF-based, the APIs also serve a mapping pur-
pose: graph-based knowledge can be re-organised to fit particular industry standards, as is illustrated in Werbrouck
et al.[11]. For example, Listing 7 can be part of an API-based, domain-specific interface that organises the project
conforming to the ISO 19650 specification and its defined stages of publication (see Section 3.1). Other examples,
such as a mapping to the Information Container for Linked Document Delivery (ICDD) (ISO 21597) [23] or the
BIM Collaboration Format (BCF) API16 are documented in Werbrouck et al. [11].

Domain-specific interfaces also include domain-specific access control regulators. For example, to implement
a dynamic, pattern-based approach to check if the visitor has the necessary properties to do a specific action or
allow them to see only data snippets that adhere to a specific shape (e.g. based on the use of SHACL). Retaking
the example of the publication statuses, we can imagine a service that grants a given visitor access depending on a
resource’s publication status. I.e. when a resource still has the status ‘work-in-progress’, only in-office employees
can access and modify it. From the moment it changes to shared, other stakeholders can view it as well, and when
the document is ‘published’ or ‘archived’ even in-office employees cannot modify it anymore.

As soon as the SPARQL satellite is known, it can be used to discover other, higher-level interfaces of the Pod. An
interface can be documented on the Pod just like any other resource, i.e., with a metadata record. In this framework,
we choose to document satellites as dcat:Services. By indicating to which standard the service conforms
(dct:conformsTo), a client which expects a certain API or form can quickly check whether there is a satellite
that offers this particular view on the Pod. An example RDF description is given in Listing 8, indicating an interface
that offers a view which is compliant to the BCF API, an industry specification for issue management in AEC
projects.

1 <> a dcat:DataService ;
2 # The BCF API is a standardised API to communicate issues related with BIM models
3 dcterms:conformsTo <https://github.com/BuildingSMART/BCF-API> ;
4 dcat:endpointURL <https://example.org/bcf-satellite> ;

16https://github.com/BuildingSMART/BCF-API

https://github.com/BuildingSMART/BCF-API

J.W. Werbrouck et al. / ConSolid 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

5 dcterms:description "Service for mapping ConSolid projects to the BCF (BIM Collaboration
Format) API" .

Listing 8: RDF description of a BCF-compliant interface to the Pod, registered as a dcat:Service.

3.5. Implementation

As a prototypical implementation of the setup described in this Section, we modified a Community Solid Server
instance to forward any RDF-based information to a SPARQL store, next to offering HTTP access to all resources
via LDP. The prototype setup contains the following components:

1. A SPARQL store (Apache Jena Fuseki) with the option tdb:unionDefaultGraph set to true. This allows
to query the Pod as the union of its resources.17

2. A Solid server based on the Community Solid Server which forwards all RDF-related events (resource cre-
ation/update) to the SPARQL store (Apache Jena Fuseki 4.5.0).18

3. A NodeJS (ExpressJS) proxy server to the SPARQL store, implementing WebID-based authentication and
authorization. Any external agent should only be able to query the SPARQL endpoint through this proxy.
Unauthorized SPARQL results are filtered out by this proxy service.19

Higher-level interfaces, such as a satellite for sensor data or domain-specific interfaces, can be easily added using
dcat:Service-s.

4. Discovery and Aggregation of Project Datasets

In Section 3, we set the basic infrastructure for a Pod to allow Pod-wide queries and the application of virtual
views. Using the DCAT standard, metadata records and the resources they represent were linked semantically as
dcat:Dataset-s, dcat:Distribution-s and their dcat:downloadURL-s, all available in a union graph
exposed via a SPARQL endpoint. However, these resources were not yet aggregated into a larger whole, a ‘multi-
model’ in AEC terms [12]. In this section, we will again use the DCAT specification to provide a scalable approach
for describing and aggregating information in both single- and multi-Pod aggregations.

4.1. Dataset Aggregators

We define a ‘Dataset Aggregator’ as a collection of pointers to relevant datasets on the Web. This collection may
be automatically generated, based on specific parameters or queries (i.e. it may take the form of a virtual view [11]),
or manually curated. Dataset Aggregators will form the core to maintain federated multi-models in a scalable way
in the ConSolid project.

The initial level of aggregation occurs when an actor bundles resources on a single Pod, for example, when
grouping all resources on the Pod that belong to the same project. As shown in Listing 9, this boils down to creating
a dcat:Catalog instance and aggregating its constituent datasets via dcat:dataset, alongside indicating
metadata for the project to be easily queryable. This is a local, Pod-specific project definition which follows the
DCAT specification exactly.

1 @prefix pod: <https://architects.example.org/pod/> .
2 @prefix otherPod1: <https://engineers.example.org/pod/> .
3 @prefix otherPod2: <https://hvac.example.org/pod/> .
4

17https://dlcdn.apache.org/jena/source/jena-4.5.0-source-release.zip
18https://github.com/LBD-Hackers/SolidCommunity_Fuseki
19https://github.com/LBD-Hackers/lbdserver-sparql-satellite

https://dlcdn.apache.org/jena/source/jena-4.5.0-source-release.zip
https://github.com/LBD-Hackers/SolidCommunity_Fuseki
https://github.com/LBD-Hackers/lbdserver-sparql-satellite

14 J.W. Werbrouck et al. / ConSolid

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

5 # the Dataset Aggregator resource, at URL pod:d07af06a-4a94-48fd-99d1-f164f7e3a04c
6 <> a dcat:Catalog, consolid:DatasetAggregator ;
7 rdfs:label "myFirstProject" ;
8

9 # first level aggregation, locally on the Pod
10 dcat:dataset pod:1e19ed7c-2809-408b-a619-f27e601d7423 , # see Listing 5
11 pod:32ad4402-51ed-4c74-9ffb-bde2e5fa1540 ;
12

13 # second level aggregation, including access points from two other stakeholders
14 dcat:dataset otherPod1:aa3c09de-7e86-4bf8-bbe0-08eb01dbbbfe ,
15 otherPod2:bd503663-3583-4d3e-a350-b0478fbe09f4 .

Listing 9: An aggregation which is only one level away from aggregating dcat:Dataset instances on a Pod.

All stakeholders can thus create their own local aggregator for a collaborative project, independently from the
others, forming the main ‘access point’ on the Pod to find project data. This project can perfectly be called a multi-
model of its own, but by referencing the catalogs of other stakeholders (on their Pods), it becomes straightforward
for a client to discover and query also the contributions of these stakeholders. This effectively makes it an aggregator
of second level. This situation is illustrated in Figure 5.

Fig. 5. Starting from one Dataset Aggregator in a Pod, it is possible to recursively find all datasets in the federated project.

Higher-level aggregations will work in exactly the same way. For example, an external actor (e.g. a govern-
mental instance) may wish to create indexing aggregators for buildings of the same typology (‘all public schools
in Flanders’, ‘all bridges in Germany’). Potentially, these aggregators make use of sub-aggregators which group
them according to geospatial location or creation year. No matter the ‘depth level’ of a catalog, it should eventually
lead to discovery of all resources in the aggregator. As all aggregations are indicated with the dcat:dataset
relationship, the depth of aggregation has no impact on discovery. This ‘matryoshka’ principle, possible because
dcat:Catalog is a subclass of dcat:Dataset, gives us a simple yet powerful way to discover collections of
information in a scalable and recursive way, using the query listed in Listing 10 and starting from one single Dataset
Aggregator. One way of implementing such recursive discovery is to make use of ‘link traversal’-enabled query
engines [24], such as the Comunica [25] Link Traversal Engine20. Higher-level aggregations will make use of this
recursive pattern to scale up the level of aggregation without increasing the complexity of the queries.

20https://github.com/comunica/comunica-feature-link-traversal

https://github.com/comunica/comunica-feature-link-traversal

J.W. Werbrouck et al. / ConSolid 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1 SELECT ?dataset
2 WHERE {
3 <{url-of-the-catalog}> dcat:dataset+ ?dataset .
4 }

Listing 10: Recursive query to discover the metadata records of all datasets in an aggregator. Query engines that use
link traversal can in this way quickly find all federated datasets in a project.

4.2. Integrating information created by subcontractors or individual employees

A stakeholder office might be the legal entity responsible for some tasks in the project, but it is the human
employees who divide the workload and do the eventual work. An office might decide to have a central office Pod,
where all employees contribute, but it might also be the case that every employee maintains their own Pod, or
alternatively that the office creates a dedicated Pod for its specific roles in the project. The above described catalog
breakdown structure allows both situations to be easily integrated without changing the basic infrastructure. In that
case, the office’s project access point just aggregates the catalogs created in the employee Pods (Figure 5).

Similarly, an office might appoint a subcontractor for specific tasks in the project. These subcontractors will not
work on the stakeholder’s main Pod, but will have their own Pods to store their contributions. Often, a project counts
a few ‘main contractors’ (e.g. an architect, structural engineer, HVAC engineer, owner). From an organisational per-
spective, not everyone should include all subcontractors of all other stakeholders. The breakdown structure simply
allows any of the stakeholders to aggregate their subcontractor access points, making them discoverable to the other
stakeholders as well, provided they have the correct access rights.

4.3. Implementation

A prototypical API to interact with the basic setup described in Section 3.5 using the above mentioned patterns
for storage and discovery of data, was created in context of this paper. The API is available on Github21 and npm22

as the Dataset Aggregation API (‘daapi’).

5. Aligning and enriching heterogeneous, federated data

The recursive catalogs described in Section 4 offer a way to allocate datasets and their content in a distributed
catalog. Other mechanisms are needed, however, to align and reference information from different, potentially
federated datasets on a sub-document level. Sub-document identifiers of project resources will, in most cases, not
be natively expressed using RDF. For example, the 3D element will probably have a sub-document GUID, and a
particular pixel zone of the image will need to be described externally, as it is not an intrinsic part of the image.
However, a semantic indication that an element corresponds with a wall can be expressed using domain-specific
RDF statements. To relate all these sub-document identifiers as manifestations of the same ‘thing X’ is not only
relevant from a data management perspective, but also to facilitate user-friendly interaction with project data: any
identifier in any project resource can then be used to access all available information about ‘thing X’ in the project,
independent of the mediatype of the resource that describes this information.

Apart from the federated access control and the heterogeneity of resources, information creation and information
alignment can happen asynchronously amongst stakeholders. For example, indicating that a pixel zone on a picture
identifies the same element modelled in the 3D model, and that, moreover, this element identifies a wall instance
(stored in an RDF resource), can happen either (semi)instantly when uploading the picture (i.e. when the 3D object
is used as a proxy to create and immediately align a local concept, used to ‘enrich’ the actual element) or later in the

21https://github.com/LBD-Hackers/daapi
22https://www.npmjs.com/package/consolid-daapi

https://github.com/LBD-Hackers/daapi
https://www.npmjs.com/package/consolid-daapi

16 J.W. Werbrouck et al. / ConSolid

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

project, when someone (person or digital service) recognises that the 3D object and the image actually represent the
same element. Also, a scalable infrastructure as proposed in this paper should allow a local project (see Section 4)
to function independently from other potential partial projects - as an office cannot oversee all external aggregations
of their datasets. One should therefore acknowledge that there will always exist different, federated aliases of the
same concept, rather than having one unique identifier for a concept that is potentially managed other actors.

Lastly, for a digital twin platform to function properly, it should be possible to differentiate between digital
knowledge about the ‘real world asset’ and knowledge about the digital representations themselves. For example, if
someone identifies a pixel zone on an image, which represents a damaged area, it should be possible to use this pixel
zone as an interface to further enrich the damaged area (“caused by erosion”), but also to comment on the pixel zone
itself (“The damage is actually larger than the zone you identified - please extend”). The data patterns that address
these challenges will be introduced in the following section, using the concept of ‘Reference Aggregators’, based
upon the same aggregation principles as the Dataset Aggregators described in Section 4.

5.1. Reference Aggregators and Sub-document Linking

We can generally define a Reference Aggregator as a way to group references according to a specific parameter.
In the most high-level interpretation, a Reference Aggregator can group elements that represent the same concept
(consolid:ReferenceAggregator). Because a recursive pattern will be used similar to the Dataset Aggre-
gators, lower-level differentiation is possible when dictated by the project requirements. For example, to group rep-
resentations which were valid during a specific time frame or for representations that situate the real-world element
within a well-defined spatial boundary. However, to avoid overly complicated examples, we will continue in this
paper with one-step aggregations that directly relate a reference to a concept aggregation, thus independent from
temporal and spatial subfilters.

We can use a minimal pattern to ‘lift’ identifiers from a heterogeneous dataset and make it available for aggre-
gation within a Reference Aggregator. This pattern breaks down references into three parts, and is inspired by the
destructuring mechanisms in the Information Container for Linked Document Delivery (ICDD) (ISO 21597) [23]:

– A Concept Aggregation at the highest level, used for identifying the concept but not for directly enriching
it. It aggregates references (consolid:Reference) to the same concept (consolid:aggregates). A
Concept Aggregation can also recursively aggregate other Concept Aggregations, to allow discovery of alias
aggregators of a ‘thing’ on other Pods.

– A Reference level, used to determine that a given identifier in a given file is referenced and relate metadata
(e.g. creation date) to the reference (consolid:hasIdentifier).

– An identifier level; a higher-level URI used to ‘even the field’ between RDF and non RDF resources. This
higher-level URI relates the value (schema:value) of the identifier (a Literal, to allow divergent identifier
syntaxes beyond URIs) to the source that mentions it (consolid:inDocument). The standard to which the
identifier and its parent document conform should also be indicated (dct:conformsTo).

The three-level pattern is visualised in Figure 6. These patterns are demonstrated with a real-world example in
Section 6, Listings 14 and 15 (Turtle syntax).

Different Concept Aggregations can be aggregated themselves in a single named graph on the Pod, called a
Reference Registry, which helps in discovery of the references present in a local project. Using the storage patterns
devised in Section 3, this means that besides the RDF resource that semantically defines the aggregators, a metadata
record is created describing a dcat:Dataset that is also an instance of consolid:ReferenceRegistry.
This way, it is possible to quickly find and query the Reference Registry in a specific project.

We indicate that higher-level identifiers (consolid:Identifier) in Reference Aggregators evens the field
between RDF and non-RDF resources, because they indicate a value which is by assumption only valid in a certain
document. In other words, identification of sub-document objects and their allocation are expressed in separate
triples. An identifier, whether RDF or not, is assumed valid only within the document that mentions it, as registered
in the Reference Registry. This is a core aspect of the asynchronous enrichment, allowed by the combination of the
higher-level (metadata-level) Reference Aggregations and their ‘lower level’ occurrences in actual resources - as
registering references or removing them does not impact the documents themselves, and aliases can be created and

J.W. Werbrouck et al. / ConSolid 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 6. RDF patterns from Reference Aggregator to sub-document identifier.

registered freely. Consequently, changing the URL of a document (e.g. at a data handover phase) does not impact
its sub-document identifiers, and it is possible to asynchronously register the new location of the resource in the
network. A detailed discussion on data handover is considered out of scope for this paper.

As illustrated in Figure 6 (and Listing 14), the recursive property consolid:aggregates allows a Reference
Aggregator to aggregate equivalent Reference Aggregators on other stakeholder Pods, i.e. its aliases. In the example,
a bi-directional aggregation exists between the Reference Aggregator in the architecture firm’s Pod and the one
on the Pod of the engineering company. Using this pattern, a client can select a representation of interest (e.g.
using a visual interface showing a 3D representation of a wall in the building) and then find the distributions,
datasets and sub-document identifiers of its other (local and remote) representations with a federated query. As these
representations are meant to be generally applicable, they may lead to references in heterogeneous resources, from
geometry and imagery over spreadsheets to textual descriptions. The queries given in Listing 11 and Listing 12 allow
to find the references aggregated by the same Reference Aggregator. The first query should be executed over the
SPARQL endpoints of the project consortium, to retrieve the aliases of interest and local references of the intended
Reference Aggregator. Although most of them will return an empty result set, querying only the owner of the main
document would be insufficient, as people can theoretically make sub-document references to resources that are not
on their Pod. In the second query, the found aliases are used to find remote references. As these aliases are based
on the URL of the Reference Registry that contains them, targeted queries can now be send to the corresponding
SPARQL satellites. Additional metadata filters may be applied to only find specific references, e.g. only yielding
geometric resources as referenced documents. This can be done by attaching a metadata triple pattern to the query,
commented out in Listings 11 and 12.

1 SELECT ?value ?doc ?alias
2 WHERE {
3 ?concept consolid:aggregates ?selectedReference, ?reference .
4 ?selectedReference consolid:hasIdentifier ?selectedId .
5 # Example: inject ?doc query result from validation in Section 6.3, Listing 15.
6 ?selectedId consolid:inDocument <{the document containing the identifier}> ;
7 # Example: inject ?el query result from validation in Section 6.3, Listing 15.
8 schema:value "{the selected identifier}" .
9

10 # find other references of this concept in the same reference registry
11 ?reference consolid:hasIdentifier ?id .
12 ?id consolid:inDocument ?doc ;

18 J.W. Werbrouck et al. / ConSolid

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

13 schema:value ?value .
14

15 # e.g. additional filter for the document media type
16 # ?meta dcat:distribution ?dist .
17 # ?dist dcat:mediaType <{media type of interest}> ;
18 # dcat:downloadURL ?doc .
19

20

21 # find remote aliases of the concept
22 OPTIONAL {
23 ?concept consolid:aggregates ?alias .
24 FILTER(?selectedReference != ?alias && ?selectedReference != ?reference)
25 }
26 }

Listing 11: Query pattern to find the local references of a specific concept aggregator given a known reference, and
the potential remote aliases of this concept.

1 SELECT ?value ?doc
2 WHERE {
3 # Inject the ?alias query result from the query in Listing 10.
4 <{alias}> consolid:aggregates ?reference .
5 ?reference consolid:hasIdentifier ?id .
6 ?id consolid:hasDocument ?doc ;
7 schema:value ?value .
8

9 # e.g. additional filter for the document media type
10 # ?meta dcat:distribution ?dist .
11 # ?dist dcat:mediaType <{media type of interest}> ;
12 # dcat:downloadURL ?doc .
13 }

Listing 12: Recursive query to find all representations, identifiers and datasets for a given selected identifier.

5.2. The Action of Linking

The activity of linking references to an alias of the same concept will largely depend on the project, and is not
directly handled by the ecosystem, which only provides the patterns to do so. Depending on the goal and size of
the project, alignment can either be done manually or (semi-)automatically. A manual alignment makes sense if a
dedicated GUI is available, and documentation happens on-the-go - while enriching existing project resources or
while setting up a project in the ecosystem from its start. For example, a case of damage enrichment as documented
in Section 6 can happen step-by-step by linking pictures to geometry, during the operational phase. When large-scale
projects are imported, however, a manual concept alignment is not possible, given the volume of existing concepts.
For diagnosing many aliases of the same concept, mapping algorithms such as proposed in Malcolm et al. [10] can
be used in certain situations. With the advances made in the fields of Machine Learning and image recognition,
third-party services are expected to provide opportunities here as well. However, as semantic relationships between
elements do not happen at the level of references, but at the level of documents and resources, this is considered
within the realm of domain-specific applications, and therefore outside the scope of this paper.

5.3. Enriching sub-document Identifiers

References can not only be used to for aggregation of heterogeneous information related to the physical coun-
terpart of the digital twin. They should also be usable to reference (comment, enrich, ...) datasets, documents and

J.W. Werbrouck et al. / ConSolid 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

sub-document references as well, in their capacity of being digital documents. This is, for instance, of use to create
issues concerning modelling practice, to allow comments on due project deliverables, etc. Because the references
themselves are URLs, a new (‘higher level’) reference can be made elsewhere that has the first reference’s URL
as a schema:value. The comment is then registered via another reference, pointing to the document where the
comment is made.

5.4. Implementation

A prototypical API to create and interact with Reference Aggregators and Reference Registries was created in
context of this paper. As it makes use of the data patterns described in Section 4, this API depends on the lower-level
implementation discussed in Section 4.3, daapi. The API is available on Github23 and NPM24 as the Reference
Aggregation API (‘raapi’).

6. Demonstration

While the above sections explain the proposed ecosystem, this section explains the Proof of Concept that was
created to evaluate the validity, feasibility, and overall qualitative performance of the proposed system. Firstly, we
present the actual building case and stakeholder constellation, then we explain which datasets and distributions have
been created, and how access was created and generated to all the diverse parts of the ecosystem. A demonstration
is given for the semantic enrichment of the datasets. The demo concerns the documentation of a damage case,
involving linking of the following heterogeneous datasets: federated semantics (a building graph at and a damage
graph) with a 3D element and an image zone. The involved resources are managed by different stakeholders. The
demonstration is reproduceable with the software prototypes mentioned in earlier sections, executing the scripts
at https://github.com/LBD-Hackers/consolid-demo consecutively. However, the model used for reproducing the
experiment bases on conversions of the (hypothetical) benchmark dataset Duplex25, an IP-free model dataset.

6.1. Case description and Setup

To illustrate the data patterns discussed in this paper, we consider the following example setup, featuring federated
datasets of the iGent tower in Ghent, Belgium (EVR Architecten). We consider the operational phase of the building.
As a preparation step, the original Autodesk Revit partial BIM (Building Information Modelling) [26] models26 for
Architecture (modelled by Bureau Bouwtechniek (BE)), Engineering, Electricity, and HVAC (Heating, Ventilation
and Air-Conditioning) (all three modelled by Arcadis (BE)) were converted to IFC (Industry Foundation Classes,
ISO 16739)27 [27] and then to a semantic model for RDF (Turtle) and a geometric model (glTF)28.

In this simulation, we assume that every stakeholder maintains their own Pod and associated WebID and a
SPARQL satellite. We consider three stakeholders: Bureau Bouwtechniek, Arcadis, and the Facility Management
office of Ghent University, since it concerns a University Building. Each of them maintains their own contribu-
tions to the project in their Pod. Corresponding with their IPR, Bureau Bouwtechniek hosts the architectural model,
Arcadis the three others. At this starting point of the operational phase, the FM office does not host anything yet.

Each converted semantic RDF model and geometric glTF model is stored as a distribution with attached metadata
(dataset) on the creator’s Pod. Metadata records for all project resources are mirrored as named graphs on the
SPARQL satellite, as are the RDF-based semantics, derived from the partial models and structured using the Linked

23https://github.com/LBD-Hackers/raapi
24https://www.npmjs.com/package/consolid-raapi
25https://github.com/LBD-Hackers/consolid-demo/tree/4e1aaa982b5eb3bc63980fe9e5e6d041d3d54a6d/src/resources
26Partial models are sub-models for an AEC project related to a particular discipline and created by specialist stakeholders.
27The Industry Foundation Classes are the international open standard for digital description of built assets, developed by buildingSMART

International.
28https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html

https://github.com/LBD-Hackers/consolid-demo
https://github.com/LBD-Hackers/raapi
https://www.npmjs.com/package/consolid-raapi
https://github.com/LBD-Hackers/consolid-demo/tree/4e1aaa982b5eb3bc63980fe9e5e6d041d3d54a6d/src/resources

20 J.W. Werbrouck et al. / ConSolid

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 7. Use case setup and model IPR

Building Data (LBD) ontologies implemented in the existing IFCtoLBD converter [28]: the Building Topology
Ontology (BOT)29 [29] and the BuildingElement Ontology (BEO)30.

Access control to project data is regulated by giving the office that created and owns a certain model full access
control rights (acl:Read, acl:Write, acl:Control). Other project partners get reading rights (acl:Read).
Only reading rights are needed, as every contribution or comment they make will be stored on their own servers,
even when referring to data on other servers in the project.

Upon project participation, a Reference Registry can be created for each of the four stakeholders. When data is
uploaded, this registry can be populated with abstract concepts that link corresponding entities in the semantic and
geometric models. We use the conversion methodology described in Malcolm et al. [10] to automatically link RDF
concepts with their GUID-based counterpart in the 3D model. However, in current industry practice, partial BIM
models are created as separate models within the same coordinate system, but cross-document links are generally
lacking. The elements in one partial BIM model are thus not yet connected with those in another one, but such
semantic relationships can now be created by project stakeholders whenever necessary, using the 3D models as
interfaces to heterogeneous project data.

6.2. Semantic Enrichment for a Damage Case

This compact demonstration includes the discovery and documentation of damage on an element in the feder-
ated model. We consider this an exemplary scenario, as it covers both the use of heterogeneous data sources (RDF,
imagery, geometry) and sources from multiple stakeholders are involved in the process. Damage assessment is a
frequently occurring activity in the operational phase of a building or heritage object. As an illustration, Monu-
mentenwacht Vlaanderen, an initiative to monitor the state of heritage in Flanders, performs more than 1000 in-
spections per year, resulting in a multitude of reported damages [30]. However, it is a cumbersome activity which is
carried out in a largely manual fashion [31], and, if digitised at all, the resulting reports are most often spreadsheets
or form results [30], detached from other digital information about the asset. Indeed, the use of BIM models in
this regard is scarce [32, 33], also because BIM models are often not updated or documented to reflect the as-built
state [34]. Semantic Web-based documentation of damages, which allows a more interdisciplinary approach, is the
idea behind the Damage Topology Ontology (DOT)31 [31]. For this demonstration, we will use the DOT ontol-
ogy for semantic documentation, in combination with the ConSolid ecosystem for documentation and linking of
heterogeneous sources, such as imagery and 3D geometry.

We will discuss a situation where the Facility Manager localises damages on a regular building element and
documents it in one’s Pod, thereby referencing the external federated models of other stakeholders (in this case,
Arcadis as creator of the structural model) and semantically enriching the overall project. Below, we describe the raw

29https://w3id.org/bot#
30http://pi.pauwel.be/voc/buildingelement#
31https://w3id.org/dot#

https://w3id.org/bot#
http://pi.pauwel.be/voc/buildingelement#
https://w3id.org/dot#

J.W. Werbrouck et al. / ConSolid 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

data structures created by these steps. However, it should be clear that an agent will never initiate these interactions
directly but use a dedicated UI instead (e.g., Figure 8).

Fig. 8. Example UI to navigate and enrich resources in the ConSolid ecosystem. Included modules in the depicted setup are a 3D Viewer (based
on the Xeokit SDK), a Query Module for finding and activating federated project datasets and a Damage Enrichment Module. Since data and
applications are fundamentally separated, specialised UI modules can be created and combined depending on the use case.

6.2.1. Creation of Damage Graph by the FM
The first step for the Facility Manager to undertake in the process of documenting the damages, is to create a

dataset on one’s Pod, referencing an RDF-based distribution, which is to be created as well. During the assessment
activity, the publication status (see Section 3.1) is set to ‘work-in-progress’. When the assessment is ready, this can
be changed to ‘shared’ using the pattern described in Section 3.4. In our example, we will create the semantics in
the distribution using the DOT ontology and one of its extensions, the Concrete Damage Ontology (CDO) [31].

At first, two graph-specific identifiers are created, namely one for the damaged element
(damageDistFM:instance_a003d5d4-c410-42fe-a132-83ff5b69435c) and one for the damage
area (damageDistFM:instance_8aa5bc1b-7bc5-4555-90d7-81a2bb9e57bc) (Listing 13). They
only exist in this specific document and have not yet been linked to any other existing project information. To be
able to reference them in other resources later on, both the damage and the damaged element need to be aggregated
by a local ‘Reference Aggregator’ in the project’s Reference Registry on the Pod of the Facility Manager. In this
example, this is done with respectively <#ra_bdb4526d> and <#ra_c2427dd9> (Listing 14). These (relative)
URIs represent the real objects and form the primary points for enrichment via a federated ‘digital twin’. Using the
patterns described in Section 5, these abstract concepts are mapped to the local identifiers created for documenting
the damage, as mentioned above.

1 # The RDF resource on the Facility Manager’s Pod that documents the damage
2 @prefix damageDistFM: <https://fm.ugent.be/cac6d088-00b3-4433-8d68-e3d22ade072a#> .
3

4 damageDistFM:instance_a003d5d4-c410-42fe-a132-83ff5b69435c
5 dot:hasDamageArea damageDistFM:instance_8aa5bc1b-7bc5-4555-90d7-81a2bb9e57bc ;
6 a dot:ClassifiedDamage, cdo:SurfaceCrack ;
7 cdo:crackWidth "35" .
8

9 [...] # further domain-specific damage enrichment triples

Listing 13: Triples in the distribution of the Damage dataset, maintained by the FM. The metadata graph will be
similar to the one listed in Listing 5.

22 J.W. Werbrouck et al. / ConSolid

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1 # The Reference Registries of the Facility Manager and the Architecture Office
2 @prefix refFM: <https://fm.ugent.be/b677ce97-3191-4583-96cb-93c7f895b102#> .
3 @prefix refArch: <https://pod.b-b.be/f0c8cb37-5a91-43fc-846f-15cb3c28c4d5#> .
4

5 # The RDF resource on the Facility Manager’s Pod that documents the damage
6 @prefix damageDistFM: <https://fm.ugent.be/cac6d088-00b3-4433-8d68-e3d22ade072a#> .
7

8 # a reference aggregator is created for all references to the (damaged) element
9 refFM:ra_bdb4526d consolid:aggregates refFM:ref_a80854ae , # local aggregation

10 refArch:ra_3de17fbe . # 2nd level aggregation of remote concept, related to the 3D
element

11

12 # the damaged element as identified in the damage semantics graph
13 refFM:ref_a80854ae consolid:hasIdentifier refFM:id_c69531c5 .
14 refFM:id_c69531c5 consolid:inDocument damageDistFM: ;
15 dct:conformsTo <http://www.w3.org/1999/02/22-rdf-syntax-ns#> ;
16 schema:value "https://fm.ugent.be/cac6d088-00b3-4433-8d68-e3d22ade072a#instance_a003d5d4-

c410-42fe-a132-83ff5b69435c"^^xsd:anyURI .
17

18 # a concept is created for all references to the damage area
19 # the newly created reference is the only reference to the damage area so far
20 refFM:ra_c2427dd9 consolid:aggregates refFM:ref_f1f2704e .
21 refFM:ref_f1f2704e consolid:hasIdentifier refFM:id_27801276 .
22

23 # the damage area as identified in the damage semantics graph
24 refFM:id_27801276 consolid:inDocument damageDistFM: ;
25 dct:conformsTo <http://www.w3.org/1999/02/22-rdf-syntax-ns#> ;
26 schema:value "https://fm.ugent.be/cac6d088-00b3-4433-8d68-e3d22ade072a#instance_8aa5bc1b

-7bc5-4555-90d7-81a2bb9e57bc"^^xsd:anyURI .

Listing 14: Linking the local identifiers in the damage documentation graph to a ‘Reference Aggregator’, i.e. a
neutral concept in the Reference Registry of the stakeholder.

6.2.2. Lifting local identifiers to project level
After defining the damages, the Facility Manager can start mapping the digital references needed to enrich the

original project with the newly asserted damage data. A local concept (refFM:ra_bdb4526d) is created for the
damaged element, which was selected in a 3D viewer. Therefore, the concept located at Bureau Bouwtechniek’s Pod
(the owners of the 3D architectural model) is also known. Hence, it can be immediately aggregated as an alias of the
new concept on the FM’s Reference Registry (Listing 14). A notification must now be sent to Bureau Bouwtechniek
to automatically (e.g. via a satellite) or manually aggregate this new concept as well, so a bi-directional, recursive
discovery is made possible.

6.2.3. Enrichment of sub-document identifiers: pixel region
The FM office will now further document the damage with an image, and does so by creating a new metadata

description for this photograph (dcat:Dataset), with the image (image/jpeg) as a distribution (Figure 8). As
only part of the image shows the damage, the location of the damage on the image is indicated with a pixel zone,
as a sub-document identifier. We can do so using the relationships listed in Listing 15, which uses the International
Image Interoperability Framework (IIIF) specification’s image API32 for pixel identification. A similar enrichment
can be made for a pixel zone that represents the damaged object. These relationships are expressed in the FM’s local
Reference Registry.

1 # The Reference Registry of the Facility Manager
2 # The Reference Registries of the Facility Manager and the Architecture Office
3 @prefix refFM: <https://fm.ugent.be/b677ce97-3191-4583-96cb-93c7f895b102#> .

32https://iiif.io/api/image/3.0/

https://iiif.io/api/image/3.0/

J.W. Werbrouck et al. / ConSolid 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 9. An image region annotator helps in interacting with the ecosystem, implementing domain-specific views on top of it.

4 @prefix refArch: <https://pod.b-b.be/f0c8cb37-5a91-43fc-846f-15cb3c28c4d5#> .
5

6 # The image resource on the Facility Manager’s Pod that shows the damage
7 @prefix pictureDistFM: <https://fm.ugent.be/9f9b1794-3ef7-4d16-87ff-2bb5e2602639> .
8

9 # this abstract concept is the same as the one mapped to the damage area,
10 # effectively linking the image zone with the damage area.
11 refFM:ra_c2427dd9 consolid:aggregates refFM:ref_ba0fe231 .
12

13 refFM:ref_ba0fe231 consolid:hasIdentifier refFM:id_1d2eee0e .
14 refFM:id_1d2eee0e consolid:inDocument pictureDistFM: ;
15 # The identifier notation conforms to the IIIF specification
16 dct:conformsTo <https://iiif.io/api/image/3.0/> ;
17 schema:value "https://fm.ugent.be/9f9b1794-3ef7-4d16-87ff-2bb5e2602639/pct:20,10,25,55/

max/0/default"^^xsd:string .

Listing 15: Defining an image’s pixel zone as a specific representation of an abstract concept, identified by a
Reference Aggregator.

Again, this can be easily done with a dedicated user interface: if a 3D element is selected in the viewer, the pixel
zone can be immediately linked to the concept related to the 3D element (i.e. the 3D element acts as an interface to
select the abstract concept), even if it is originally registered elsewhere.

6.3. Validation: Querying the project graph

Once this mapping is done, a client can query the set of federated project resources to search for product infor-
mation of damaged elements. The semantic graphs are used for querying; the reference registry delivers the cor-
responding abstract concepts and their identifiers, and the non-semantic resources (e.g., 3D models, imagery) can
be used to visualise the results and access knowledge about an object documented in other resources. In the above
described case, a GUI that looks to the project from a perspective of damage management would allow an agent to
perform the following steps:

– Authenticate with a Solid WebID.
– Select the project of interest and discover the SPARQL satellites of its aggregated catalogs.
– Query the SPARQL satellites in the project for damage assessments (Listing 16) and find the damaged element.

In Listing 16, this corresponds with the variables ‘?el’ ad ‘?doc’.

24 J.W. Werbrouck et al. / ConSolid

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– Inject the query results for ‘?el’ and ‘?doc’ in the query templates given in Listing 11. This will identify the
concept that aggregates the identifier of the damaged element in this specific resource.

– Inject the query results for ‘?alias’ (query in Listing 11) in the query in Listing 12. The alias is a URL which
includes the URL of its Reference Registry and the root of the Pod it resides in, so targeted queries can be
executed on the corresponding SPARQL satellites. In the example developed in this section, this will yield all
references of this concept and the references aggregated by its remote aliases, including the pixel zone in the
image and the identifier in the 3D model.

– Display the found sources and the sub-document references they contain in an appropriate GUI. E.g., if refer-
ences in a geometric resource are found, display in a 3D viewer. If the damages are only documented through
pictures or textually, use an image annotation GUI or a text editor component.

1 SELECT ?el ?doc WHERE {
2 GRAPH ?doc {
3 {?el dot:hasDamage ?dam .}
4 UNION
5 {?el dot:hasDamageArea ?dam .}
6 }
7 }

Listing 16: SPARQL Query to find the elements that have been damaged. Other references and aliases of this element
can then be found by querying the Reference Registries of the project.

These steps are generally applicable for retrieving heterogeneous sub-document identifiers in aggregated projects,
based on a combination of domain-specific queries (Listing 16) and ConSolid data patterns (Listings 11 and 12). It is
clear that the templates for domain-specific queries must be provided by third-party tools that offer a domain-specific
interface to the federated project data (see Section 3.4 for APIs and Section 7 for GUIs).

7. Evaluation and Conclusion

In this paper, we proposed an architecture for organising federated datasets for the AEC sector. The Solid infras-
tructure forms the core of the project, but we extended this infrastructure both in terms of microservice architec-
ture and (meta)data patterns (using DCAT instead of LDP). For the microservices, we discussed the benefits of a
SPARQL interface to the Pod, mainly aiding in resource discovery. Based on this SPARQL endpoint, virtual views
can be constructed to group similar resources in ‘virtual containers’ or present Pod data according to a specific
industry standard, using domain-specific interfaces. Concerning the (metadata) patterns, we proposed to avoid im-
plicit semantics in resource URLs and only indicate relationships between resources using semantic links in meta-
data records. Using recursive DCAT catalogs, which we called ‘Dataset Aggregators’, we have shown that project
data hosted by different stakeholders is discoverable with a single triple pattern. This introduces a flexibility to fine-
grainedly include relevant datasets at the level of individual project partners (e.g., subcontractor datasets, visitor
datasets, etc.). In the same move, a scalable approach towards the data integration of multiple projects becomes
possible: for example, public aggregators can be created and aggregate large sets of projects according to parameters
like typology (public bridges, libraries, . . .) or building phase (construction, demolition, . . .).

In such a federated context, where every stakeholder can define the convenient extents of the project(s) from their
point of view, sub-document identifiers should be kept decentrally as well. We argued that every stakeholder should
be able to construct links between identifiers in heterogeneous datasets, independent from other participants in the
project. Using recursive Reference Aggregators, clients that have access to a project access point can easily combine
those aliases into a set of links, all referring to the same abstract ‘thing’. Since both Dataset Aggregators and Refer-
ence Aggregators function on metadata level, the content of project resources remains untouched, so compatibility
with their original authoring tools remains. This combination of federated data organisation and heterogeneous en-
richment of abstract things was illustrated with a use case building in Ghent. As a proof of concept, we listed some
typical interactions between actors in this project, using the scenario of damage enrichment.

J.W. Werbrouck et al. / ConSolid 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Considering a Solid Pod as a hybrid knowledge graph instead of as a set of nested LDP folders brings the benefits
of flexible aggregation, but also introduces new challenges that can only be partly addressed by the existing Solid
specifications. For example, when a resource can be aggregated in multiple catalogs, access control requirements
will change, as inheritance would become very chaotic and prone to errors. In this paper, this was solved by allowing
each resource to have its own ACL file, although this is not an ideal solution. Future research includes testing the
validity and security of referencing ACL rules semantically in metadata files, thus allowing to apply one ACL rule
to multiple resources.

Over the course of the text, we described concepts such as virtual views and aggregation patterns as domain-
agnostic as possible, using small examples from the AEC industry as illustrations. Future research should make the
concepts put forward in this paper more tangible, showing use cases for different tasks during the life cycle of a
project. Furthermore, the interaction of domain-specific third party services with the ecosystem remained largely
untouched. The layering of domain-specific interfaces to the project(s) should be further investigated, so specialised
services can be set up, and GUIs can be configured. As different standards exist for any type of heterogeneous
resource, a flexible way for configuring GUIs needs to be set up to match the many combinations that may exist for
source documents representing a certain concept. Future research will need to focus on how this can be achieved, e.g.
using technologies such as Webpack Module Federation33 to aggregate UI modules that can interact with specific
resource types, in a container UI that is able to interact with the ecosystem.

When flexible aggregations are to be made, e.g. to combine information at larger scale, taking a decentral approach
from the beginning offers benefits not only regarding IP and data sovereignty but also regarding scalability and data
integration on the Web. With the concepts outlined in this paper, we hope to show how an environment that has data
federation as its core principle can facilitate this, both regarding project-specific information, managed on Solid
Pods, and contextual information, leveraging the enormous amount of knowledge on the Web.

8. Acknowledgements

This research is funded by the Research Foundation Flanders (FWO), as a Strategic Basic Research grant (grant
no. 1S99020N). We thank Bureau Bouwtechniek and Arcadis for granting permission to use their models in the use
case of this paper.

References

[1] M. Singh, E. Fuenmayor, E.P. Hinchy, Y. Qiao, N. Murray and D. Devine, Digital twin: Origin to future, Applied System Innovation 4(2)
(2021), 36.

[2] I. Box, The Information Economy: A Study of Five Industries, Technical Report, 2014, Box, Inc..
[3] P. Pauwels, S. Zhang and Y.-C. Lee, Semantic Web Technologies in AEC industry: A Literature Overview, Automation in Construction 73

(2017), 145––165. doi:10.1016/j.autcon.2016.10.003.
[4] J. Werbrouck, P. Pauwels, M. Bonduel, J. Beetz and W. Bekers, Scan-to-graph: Semantic enrichment of existing building geometry, Au-

tomation in Construction 119 (2020), 103286.
[5] P. Hummel, M. Braun, M. Tretter and P. Dabrock, Data sovereignty: A review, Big Data & Society 8(1) (2021), 2053951720982012.
[6] J. Werbrouck, P. Pauwels, J. Beetz and L. van Berlo, Towards a decentralised common data environment using linked building data and the

solid ecosystem, in: 36th CIB W78 2019 Conference, 2019, pp. 113–123. https://biblio.ugent.be/publication/8633673.
[7] E. Mansour, A.V. Sambra, S. Hawke, M. Zereba, S. Capadisli, A. Ghanem, A. Aboulnaga and T. Berners-Lee, A demonstration of the

solid platform for social web applications, in: Proceedings of the 25th International Conference Companion on World Wide Web, 2016,
pp. 223–226. doi:10.1145/2872518.2890529.

[8] J. Werbrouck, R. Taelman, R. Verborgh, P. Pauwels, J. Beetz and E. Mannens, Pattern-based access control in a decentralised collaboration
environment, in: Proceedings of the 8th Linked Data in Architecture and Construction Workshop, CEUR-WS. org, 2020.

[9] J. Werbrouck, P. Pauwels, J. Beetz and E. Mannens, Data patterns for the organisation of federated linked building data, in: LDAC2021, the
9th Linked Data in Architecture and Construction Workshop, 2021, pp. 1–12.

[10] A. Malcolm, J. Werbrouck and P. Pauwels, LBD server: Visualising Building Graphs in web-based environments using semantic graphs
and glTF-models, in: 5th Symposium Formal Methods in Architecture, Springer, 2020.

33https://webpack.js.org/concepts/module-federation/

https://biblio.ugent.be/publication/8633673
https://webpack.js.org/concepts/module-federation/

26 J.W. Werbrouck et al. / ConSolid

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[11] J. Werbrouck, P. Pauwels, J. Beetz and E. Mannens, Mapping Federated AEC projects to Industry Standards using dynamic Views, in: 10th
Linked Data in Architecture and Construction Workshop, CEUR-WS. org, 2022.

[12] M. Gürtler, K. Baumgärtel and R.J. Scherer, Towards a workflow-driven multi-model bim collaboration platform, in: Working Conference
on Virtual Enterprises, Springer, 2015, pp. 235–242.

[13] P. Winstanley, A. Perego, R. Albertoni, A.G. Beltran, S. Cox and D. Browning, Data Catalog Vocabulary (DCAT) - Version 2, W3C
Recommendation, W3C, 2020, https://www.w3.org/TR/2020/REC-vocab-dcat-2-20200204/.

[14] M. Bonduel, A Framework for a Linked Data-based Heritage BIM, 2021. https://lirias.kuleuven.be/retrieve/618662.
[15] M. Verstraete, S. Verbrugge and D. Colle, Solid: Enabler of decentralized, digital platforms ecosystems, in: 31st ITS European Conference,

2022, pp. 1–19.
[16] R. Verborgh, Solid: innovation through personal data control, 2021. https://rubenverborgh.github.io/ECA-2021/#title.
[17] M.H. Rasmussen, Solid: innovation through personal data control, 2021. https://rubenverborgh.github.io/ECA-2021/#title.
[18] B. Otto, M.t. Hompel and S. Wrobel, International data spaces, in: Digital Transformation, Springer, 2019, pp. 109–128.
[19] P.D.B. Otto, GAIA-X and IDS, Zenodo, 2021. doi:10.5281/zenodo.5675897.
[20] E. Daniel and F. Tschorsch, IPFS and friends: A qualitative comparison of next generation peer-to-peer data networks, IEEE Communica-

tions Surveys & Tutorials 24(1) (2022), 31–52.
[21] F. Parrillo and C. Tschudin, Solid over the Interplanetary File System, in: 2021 IFIP Networking Conference (IFIP Networking), IEEE,

2021, pp. 1–6.
[22] Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM)

— Information management using building information modelling — Part 1: Concepts and principles, Standard, International Organization
for Standardization, 2018.

[23] Information container for linked document delivery , Standard, International Organization for Standardization, 2020.
[24] O. Hartig, An overview on execution strategies for Linked Data queries, Datenbank-Spektrum 13(2) (2013), 89–99.
[25] R. Taelman, J. Van Herwegen, M. Vander Sande and R. Verborgh, Comunica: a modular SPARQL query engine for the web, in: International

Semantic Web Conference, Springer, 2018, pp. 239–255.
[26] C. Eastman, P. Teicholz, R. Sacks and K. Liston, BIM handbook: A Guide to Building Information Modeling for Owners, Managers,

Designers, Engineers and Contractors, 2nd edn, John Wiley & Sons, Hoboken, New York, United States, 2011, p. 650, ISBN 978-0-470-
54137-1. ISBN 978-0-470-54137-1.

[27] Industry Foundation Classes (IFC) for data sharing in the construction and facility management industries, Standard, International Organi-
zation for Standardization, 2018.

[28] M. Bonduel, J. Oraskari, P. Pauwels, M. Vergauwen and R. Klein, The IFC to Linked Building Data Converter - Current Status, in: 6th
Linked Data in Architecture and Construction Workshop (LDAC), CEUR Workshop Proceedings, Vol. 2159, London, United Kingdom,
2018, pp. 34–43. http://ceur-ws.org/Vol-2159/04paper.pdf.

[29] M.H. Rasmussen, P. Pauwels, M. Lefrançois, G.F. Schneider, C.A. Hviid and J. Karlshøj, Recent changes in the Building Topology On-
tology, in: 5th Linked Data in Architecture and Construction Workshop (LDAC), Dijon, France, 2017. doi:10.13140/RG.2.2.32365.28647.
https://hal-emse.ccsd.cnrs.fr/emse-01638305.

[30] B. van Laar, Vernieuwde inspectieverslagen van Monumentenwacht helpen eigenaars om hun gebouwd erfgoed beter te onderhouden en
te beheren, in: Preventieve Conservatie van Klimaat- en Schademonitoring naar een Geïntegreerde Systeembenadering, Vol. 35, E. Verst-
rynge, B. van Bommel, N. Vernimme and R. van Hees, eds, WTA-NL-VL, Leuven, Belgium, 2019, pp. 1–9. https://www.wta-international.
org/fileadmin/user_upload/Nederland-Vlaanderen/syllabi/2019-04-05_Preventieve_Conservatie.pdf.

[31] A.-H. Hamdan, M. Bonduel and R.J. Scherer, An ontological model for the representation of damage to constructions, in: 7th Linked Data
in Architecture and Construction Workshop (LDAC), CEUR Workshop Proceedings, 2019, pp. 64–77. http://ceur-ws.org/Vol-2389/05paper.
pdf.

[32] M.K. Seeaed and A. Hamdan, BIMification of stone walls for maintenance management by utilizing Linked Data, in: 31st Forum Bauin-
formatik, 2019.

[33] K. Luig, D. Mustedanagic, D. Jansen, S. Fuchs, R. Schülbe, P. Katranuschkov, A.-H. Hamdan, C. Franzen, K. Hiemann and R. Scherer,
Towards a Building Information Modeling System for Identification and Retrofit Planning of Stone Damages, in: Euro-Mediterranean
Conference, Springer, 2020, pp. 254–261.

[34] R. Volk, J. Stengel and F. Schultmann, Building Information Modeling (BIM) for Existing Buildings - Literature Review and Future Needs,
Automation in Construction 38 (2014), 109––127. doi:10.1016/j.autcon.2013.10.023.

https://lirias.kuleuven.be/retrieve/618662
https://rubenverborgh.github.io/ECA-2021/#title
https://rubenverborgh.github.io/ECA-2021/#title
http://ceur-ws.org/Vol-2159/04paper.pdf
https://hal-emse.ccsd.cnrs.fr/emse-01638305
https://www.wta-international.org/fileadmin/user_upload/Nederland-Vlaanderen/syllabi/2019-04-05_Preventieve_Conservatie.pdf
https://www.wta-international.org/fileadmin/user_upload/Nederland-Vlaanderen/syllabi/2019-04-05_Preventieve_Conservatie.pdf
http://ceur-ws.org/Vol-2389/05paper.pdf
http://ceur-ws.org/Vol-2389/05paper.pdf

J.W. Werbrouck et al. / ConSolid 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Appendix A. Prefixes used in this paper

This appendix contains a list of prefixes used throughout this paper, which refer to ontologies. Prefixes related to
a Solid Pod or a specific resource on a Solid Pod are included in the individual listings that mention them.

1 @prefix consolid: <https://w3id.org/consolid#>.
2

3 @prefix acl: <http://www.w3.org/ns/auth/acl#> .
4 @prefix beo: <http://pi.pauwel.be/voc/buildingelement#> .
5 @prefix cdo: <https://w3id.org/cdo#> .
6 @prefix dcat: <http://www.w3.org/ns/dcat#> .
7 @prefix dcterms: <http://purl.org/dc/terms/> .
8 @prefix dot: <https://w3id.org/dot#> .
9 @prefix ex: <http://example.org/> .

10 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
11 @prefix ldp: <http://www.w3.org/ns/ldp#> .
12 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
13 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
14 @prefix schema: <https://schema.org/> .
15 @prefix solid: <http://www.w3.org/ns/solid/terms#> .
16 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

Listing 17: Prefixes used in this paper.

	Introduction
	A Double Patchwork of Stakeholders and Projects
	Research Questions
	Relationship to earlier work
	Paper overview

	Related Work
	Containerisation of Federated, Heterogeneous Datasets
	Web Decentralisation Ecosystems
	The Solid Ecosystem
	International Data Spaces
	Interplanetary File System

	Interfaces to a Discovery-oriented Solid Pod
	Stripping implicit semantics from URLs
	Discovery and Storage of Heterogeneous Datasets
	Access control in a SPARQL-interfaced Pod
	Domain-specific Interfaces
	Implementation

	Discovery and Aggregation of Project Datasets
	Dataset Aggregators
	Integrating information created by subcontractors or individual employees
	Implementation

	Aligning and enriching heterogeneous, federated data
	Reference Aggregators and Sub-document Linking
	The Action of Linking
	Enriching sub-document Identifiers
	Implementation

	Demonstration
	Case description and Setup
	Semantic Enrichment for a Damage Case
	Creation of Damage Graph by the FM
	Lifting local identifiers to project level
	Enrichment of sub-document identifiers: pixel region

	Validation: Querying the project graph

	Evaluation and Conclusion
	Acknowledgements
	References
	Appendix A. Prefixes used in this paper

