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Abstract. Neuro-Symbolic focuses on integrating symbolic and sub-symbolic systems. The aim is to provide a neural-symbolic
implementation of logic, a logical characterization of a neural system, or a hybrid learning system that contributes features of
symbolic and sub-symbolic systems. They differ fundamentally in how they represent data and information. Neuro-symbolic
systems have recently received significant attention in the scientific communities. However, despite efforts in neural-symbolic
integration, symbol processing currently has limited scope and applicability. This work leverages the symbolic system, indepen-
dent of the application domain, and improves the predictive capability of Knowledge Graph Embeddings (KGE). We tackle the
problem of Neuro-Symbolic Al integration, enabling expressive reasoning and robust learning to discover relationships over a
knowledge graph. We present a novel approach to integrating Neuro-Symbolic Al systems. Deductive databases implement the
symbolic system for an abstract target prediction over a knowledge graph. The symbolic system enhances the predictive capacity
of the subsymbolic systems implemented by KGE models. Our approach builds the ego networks of the head and tail of the
abstract target prediction, and the symbolic system deduces new relationships enhancing the ego networks. Thus, the subsym-
bolic systems increase the predictive capacity of the abstract target prediction. As a proof of concept, we have implemented our
neuro-symbolic system on top of a KG for lung cancer to predict treatment effectiveness. Our empirical results put the deduction
power of deductive databases into perspective; they suggest that enhancing the neighborhoods of the entities on the head or tail
of a target prediction can improve the predictive capacity of existing KGE models.

Keywords: Neuro-Symbolic Artificial Intelligence, Deductive Systems, Knowledge Graph Embeddings, Drug-Drug Interactions

1. Introduction

Neural-symbolic computing is an active research area that attempts to combine the division of symbolic and sub-
symbolic models. The symbolic models refer to representations of reasoning and explainability, while sub-symbolic
models are Artificial Intelligence systems. Complex problem-solving using Artificial Intelligence (AI) requires a
significantly enriched language. Symbolic and sub-symbolic systems differ fundamentally in how they represent
data and information. Symbolic systems typically use structured representation languages from formal logic, and
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sub-symbolic systems usually use representations based on vector space. Thus, neuro-symbolic integration aims to
bridge the gap between symbolic and sub-symbolic systems.

Integrating neural-symbolic into real-world applications is a challenging task. Even in controlled environments, e.g.,
training simulators, neural-symbolic integration may not be completed successfully [1]. For instance, Fernlund et
al. [2] describe systems that use machine learning to learn relations from expert observations. While these systems
are successful in learning, they lack the expressive power of symbolic systems. Another example of neural-symbolic
systems in bioinformatics is the Connectionist Inductive Learning and Logic Programming (CILP) [3]. Further-
more, Karpathy et al. [4] combine convolutional neural networks with bidirectional recurrent neural networks over
sentences to recognize and label image regions. Despite advances in neural-symbolic IA integration, symbol pro-
cessing currently has limited scope and applicability. Our work integrates a domain-agnostic symbolic system with
a Knowledge Graph Embeddings (KGE) model to reduce the KG sparsity towards improving the model’s predictive
capability. Thus, we broaden the scope and applicability in several domains of neural-symbolic integration.
Problem: We tackle the problem of Neuro-symbolic Al integration, enabling expressive reasoning and robust learn-
ing to discover relationships over knowledge graphs.

Proposed Solution: We present a novel approach based on the integration of Neuro-Symbolic Al systems. The
symbolic system is implemented by deductive databases, enhancing the predictive capacity of subsymbolic systems
implemented as KGE models. The deductive databases are defined for an abstract target prediction over a Knowl-
edge Graph (KG). Our proposed solution builds the ego networks of the entities that correspond the head and tail of
the abstract target prediction to deduce new relationships and enhance the ego networks. The KG is completed with
relations implicitly defined in the deductive systems. As a result, the subsymbolic system works over a larger set of
positives relations and is able to more precisely predict new links.

Results: We assess the performance of the proposed neuro-symbolic system on top of a KG of lung cancer treat-
ments; the predictive task is to predict treatment effectiveness. The experiments are executed following different
configurations and baselines. Results of a 5-fold cross-validation process demonstrate that our integrated system,
improves the prediction accuracy of eleven state-of-the-art KGE models. Thus, the outcomes of this experimental
study put the power of deductive databases into perspective, showing thus, how they can empower the predictive
capacity of KGE models.

Contributions: This paper relies on our previous work [5] where we propose a deductive system over knowledge
graphs to formalize the process of pharmacokinetic DDIs. Built on these results, we present a hybrid approach able
to combine symbolic reasoning expressed by deductive systems with the subsymbolic expressiveness of KG embed-
dings, to enhance prediction accuracy. As a proof of concept, we assess the power of our proposal on the problem
of predicting treatment effectiveness. In a nutshell, our contributions are:

1. An approach able to empower KGEs with symbolic deductive systems.

2. A domain-agnostic approach able to capture the knowledge represented in a knowledge graph and deduce
relationships and their properties.

3. The assessment of the proposed system to the problem of predicting the effectiveness of lung-cancer treatments
composed of multiple drugs (i.e., polypharmacy treatments).

4. An extensive evaluation of symbolic-subsymbolic system in state-of-art KGE models.

The rest of the paper is structured as follows: Section 2 illustrates a motivating example. Section 3 presents prelim-
inaries and details of our proposed approach. Section 4 illustrates how the proposed hybrid method can be applied
in the context of predicting the effectiveness of polypharmacy lung cancer treatments. Results of the empirical eval-
uation of our method are reported in Section 5. Section 6 analyses the state of the art. Finally, we close with the
conclusion and future work in Section 7.

2. Motivating Example
We motivate our work in the healthcare context, specifically, for predicting polypharmacy treatment response.

Polypharmacy is the concurrent use of multiple drugs in treatments, and it is a standard procedure to treat severe
diseases, e.g., lung cancer. Polypharmacy is a topic of concern due to the increasing number of unknown drug-drug
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(a) Oncological Treatment (b) Predicting Response of Oncological Treatment

N
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Fig. 1. Motivating Example. Figure 1a shows two polypharmacy oncological treatmért®nd T2, represented in RDF. The druB800193 24
DB00642 andDB00958are part ofT 1, and the drug-drug interactions are represented by the prdpéetactsWith The therapeutic response of g
T1lis annotated aew_effecty the propertypelong_towhile the therapeutic responseTdis unknown. Figure 1b depicts the ideal RDF graph,
where a symbolic system generates a new DDI betMaE&00193andDB00958 Ideally, a sub-symbolic system detects that both treatments are
similar and predicts the effectivenessi&as low effective.

28
interactions (DDIs) that may affect the response of a medical treatment. There are two types of DDIs, pharmﬁgo—
dynamics, i.e.the effect of a drug in the bodgnd pharmacokinetics, i.éhe course of a drug in the bodi?har-
macokinetics DDIs alter a drug's absorption, distribution, metabolism, or excretion. For example, an increase in alb
sorption will increase the object drug bioavailability, and vice versa. If a DDI affects the object drug distribution, the
drug transport by plasma proteins is altered. Moreover, a drug's therapeutic ef cacy and toxicity are affected When
a pharmacokinetics DDI alters the object drug metabolism. Lastly, if the excretion of an object drug is reduceéj
the drug's elimination half-life will be increased. Notice that the pharmacokinetic interactions can be encoded ina
symbolic system.

Figure 1a shows two polypharmacy oncological treatments encoded in RDF. We extract the known DDIs betwgen
the drugs of these treatments from DrugBharikowever, polypharmacy therapies produce unforeseen DDIs due
to drug interactions in the treatment. Since DDIs affect the effectiveness of a treatment, there is a great intere% in
uncovering these DDIs. Figure 1b depicts an ideal RDF graph, where all the true relations are explicitly represen}ed
Dotted red arrows represent DDI between the diD§90193 and DB00958 that are generated as the result of
DDIs among drugs in the treatment. Rules that specify how these DDIs are generated can be represents in a Da}ttoalog
program were the extensional database corresponds to facts representing explicit relationships. On the other and,
the implicit DDIs can be deduced via the intensional rules of the deductive system. The DDI bBiB@e@t93 and
DB00958 increases the description of treatmenisand T2, enabling both parts of the KG to share more relations 6
the information required to consider both treatments similar. Then, a subsymbolic system, e.g., implemented uging
a KGE model, can explore this enhanced make a more accurate prediction of the treatment response by emplgying

the deduced DDlIs. For example, the geometric mddehsH placesT1 and T2 nearby in the embedding space 4

50
Ihttps://go.drugbank.com 51
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after deducing DDIs and predicts the therapeutic respon$&.ofis a result, this neuro-symbolic system enhances 1
treatment information by identifying drug combinations whose interactions may affect treatment effectiveness. ¥We
propose an approach that resorts to symbolic reasoning implemented by a Datalog database and stage-of-the-art
KGE models; it deduces DDIs within a treatment. Then, the KGE model embeds all the knowledge in the graph and
predicts treatment responses. Although we depict the method in the context of treatment effectiveness, this appmach
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is domain-agnostic and could be applied to any other link prediction task.

3. Our Proposed Symbolic and Subsymbolic System

3.1. Preliminaries

6
7
8
9
10
11

12
Knowledge Graphs A knowledge graph (KG) is a data structure that represents factual knowledge with entitigg
and their relationships using a data graph [6]. KGs are used in countless domains because of their ability to mogdel

data in a machine-readable form. letKG = ( O; G) be a KG, wherdO is the set of classes and properties of a
uni ed ontology O = ( ClassesPropertieg. G= hV; E;Li is the data graph wherk, PropertiesClasses V;
and for eacte 2 V" e 2 Classesif (e;typeC) 2 E theneis of typeC.

Ego Networks in Knowledge Graphs An ego network of an ego entity is de ned asEgas(v) = fvij(v;r;v) 2

E_ (vi;r;v) 2 Eg. Figure 2(A) shows the ego network for the ego enti®iasEgaos(T2) = f D2; D3; D4; D5g.
Neighborhoods induced by Ego Networks The neighborhood of an ego networkEgas(Vv) is represented by
NG(Egas(V) = f(x;r;y)jx2 Egas(V) My 2 Egas(v) N (X;1;y) 2 Eg. Figure 2(B) shows the neighborhood of the
ego network€Egas(T1) andEgas(T2).

Abstract Target Prediction: An abstract target prediction oveifa KG is de ned in terms of a triple = h ;r; i:

— h t 2 Classes
— r 2 Properties and
—9v1 2 Ve 2 4j(viive) 2V

Figure 2(A) shows a running example for the abstract target predictiohiTreatment, belong_to, Responsdere
h = class Treatment and = class Response.

Projections in a Knowledge Graph based on an Abstract Target PredictionLet Gj be a projection off _KG

by an abstract target predictionde ned by Gj = f(w;rV)jva 2 h* vt 2 ¢ (vu;r; ) 2 Eg. Figure 2(B)

depicts an example dbj by the abstract target prediction= hTreatment, belong_to, Respoisk is the triple

hT1, belong_to, low_effect

15

32
33

Deductive DatabasesA deductive database is a system that can derive deductions, e.g., conclude new facts, frg)

inference rules and facts stored in the database [7]. Deductive systems maintain deductive qualities in the rules that
are stated in the system. The language commonly used to specify facts, rules and queries in deductive databa§6es is
Datalog. A Datalog program is a set of rules represented as Horn clauses [8]. Horn clauses are represented i,p] the

following shapeio ( Li;:::;Ls, where eachy; is a literal of the formp;(ty; :::;tki). P; is a predicate symbol artgl

are terms. A term is either a constant or a variable. The left-hand side of a Datalog clause is a head, and the rgght-

hand side is its body. Clauses with an empty body represent facts. A Datalog priegnaist satisfy the following
safety conditions; each fact &f is ground, and each variable which occurs in the head of a ruRerofist also

occur in the body of the same rule. A rule is safe if all its variables are limited, where any variable that appears as.an

argument in a predicate of the body is limited. Datalog considers two sets of clauses: a set of ground facts, called the

Extensional Database (EDB), and a Datalog progParalled the Intensional Database (IDB). An example of EDB
is the set of fact$nteractsWitliDB00193 DB00642) InteractsWitl{DB00642 DB00958)expressed in Figure 1a,
G1. The predicaténteractsWithrepresents interactions between two drugs.R.eé a Datalog program containing
the following clauses:

rl :inferred_interactiofA; X) (  InteractsWitl{A; X):
r2 :inferred_interactiofA; X) (  InteractsWitl{A; B); inferred_interactioiiB; X):
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Table 1 1
Scoring function and complexity of embedding modelsAdapted from [9] 2
Embedding model Scoring function Complexity 3
HolE h?2t) r O(jEjd + jRj d) 4
RESCAL hwit= &4, P 4w hit; O(jEjd + jRj d?) 2
RotatE ih rorjj O (jEjd + jRj d) ;
QuatE h r t O(jEjd + jRj d) 8
Transk kh+r tk O(jEjd + jRj d) 9
TransH kh, +1 tk O(jEjd+2]jRj d) 10
TransD kh, +1 thk O(2jEjd + 2Rj d) 1
TransR khe + 1tk O(jEjd + jRj d?) 1
UM kh tk O (jEjd) 13
SE KMr1ih  Mpatk O(jEjd + 2jRj d?) 14
ERMLP wTg(W[h; r; t]) O(jEjd+ jRjd+ k(3d+2)+1

=
(&)

e
~N O

18

Ruler2 states that exist ainferred_interactiorbetween drugh andX, if there is another dru@ which interacts 19
with A with the predicaténteractsWith and there is ainferred_interactiorfrom B to X. The evaluation results of 20
r2is finferred_interactioiDB00193 DB00958), which is observed in Figure 1b, G2. 21
Deductive Databases for Abstract Target PredictionsA deductive database for an abstract target prediction is 22
de ned by DSj ,(EDB;IDB) and DSj ,(EDB; IDB), whereDSj , (:;:) represents the Deductive System for the 23

class 1, in the abstract target predictidny; r; i andDSj ,(:; ) for the class . EDB is a subset ol g(Egas(V)), 24
i.,e., EDB N g(Egas(v)) and the IDB contains the IDB-predicates that allow to deduce new relationships angs
enhance the ego network, i.e., increadig Egaz (V). 26

Knowledge Graph Embeddings for Abstract Target Predictions KG embeddings is a machine learning task 27
that learn latent vector representations of entities V and relatione 2 E in a KG, preserving their semantic 28
meaning. In cases where KGs are incomplete, new facts have to be identi ed to add to the KGs. This taskois
known as Knowledge Graph Completion and can be done by inferring new facts from those already in the KG. This
approach called Link Prediction exploits the KG to learn high-dimensional representations named Knowledge Graph
Embeddings (KGE) and is used to infer new facts. The state of the art of KGE methods may be negatively impacted
by the data sparsity issue, i.e., true triples that can be used as positive samples to guide KGE training representanly
a minor portion. The proposed symbolic system implemented by a Deductive database for abstract target predietion
alleviates the data sparsity issue by enhancing links ilNtBEEgas(Vv)), which are managed as positive triples. 35
The positive triples are used as positive samples to guide the KGE model, improving the performance of the scoging
function, see Figure 2(C). 37
Knowledge Graph Embedding Models We implemented our symbolic-subsymbolic system in eleven embeddings
models from different families [9]. Holographic embedding®IE) [10] computes circular correlation, denotes by 39
? in Table 1, between the embeddings of head and tail entRESCAL[11] is an algorithm of relational learning 40
based on a tensor factorization where models entities as vectors and relations as malRESCAI_the relation 41
matricesW; contain weightsa;;; between the-th factor ofh and j-th factor oft. RotatE[12] represents each 42
relation as a rotation from the head entity to the tail entity in the complex latent space. The rotatiapplied 43
to h by operating a Hadamard product (denoted by Table 1).QuatE[13] operates on the quaternion space and 44

learns hypercomplex valued embeddings (quaternion embeddings) to represent entities and retatisREL 4] 45
proposes a geometric interpretation of the latent space and interprets relation vectors as translations in vector space,
h+ r t. TransEcan not naturally model 1-n, n-1 and n-m relationships. Suppose a refatiitin cardinality 1-n, 47
(h;r;ty); (h;r;t2) then the model ts the embeddings in order to endurer  t; andh+ r  t,ie.ty t. 48

TransH[15] is an extension ofransEthat aims to overcome the limitationsfansk Furthermore, iMransHeach 49
relation is represented by a normal vector of this hyperplane, where the vatiabtewit, denote a projectionto 50
the hyperplanev, of the labeled relation, andr is the vector of a relation-speci c translation in the hyperplane 51
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Fig. 2. Running example Figure 2 illustrates the proposed steps to enhance the predictive capacity by KGE r8tefel&. given a KG and
an abstract target prediction= hTreatment, belong_to, Responsiee ego networlegas (V) is de ned. Step B illustrates the neighborhood of 20
the ego networkEgas (T1) andEgas(T2) and a deductive system based on the head and taiblefluces new relationships to enhances the
neighborhooddl s (Egas (v)) . Step C depicts a KGE model in which predictive capability is enhanced by symbolic reasoning. The relatlonshlps

in Ng(Egasz(v)) improving the link prediction task ] .
23

TransR[16] represents entities and relations in distinct vector spaces and learns embeddings by translation betwéen
projected entitiesh, = h M, whereM, corresponds to a projection matii#, 2 R that projects entities from
the entity space to the relation space; furthet R*. TransD[17] employs separate projection vectors for each
entity and relation. In score function ®fansDthe variabled, andt, are de ned ash, = Mshandt, = Myt,
whereM,, M 2 R™ " are two mapping matrices de ned as followd;, = ryhp + 1™ "andMy = rpt, + [™ ™.
The subscripp means the projection vectors aH@l " denotes the identity matrix of sizea  n. The Unstructured
Model (UM) [18] is a simpli ed version ofTransEwhere it does not consider differences in relations and only
models entities as embeddings. This model can be bene cial in KGs that contain only a single type of relationshjip
Structured EmbeddingSg) [19] model de nes two matriceb; andMr., to project head and tail entities for each _,
relation. SE can discern between subject and object roles of an entity since it employs different projections for jhe
embeddings of the head and tail entitERMLP[20] is a model based on multi-layer perceptron and uses a single,
hidden layer. In the score function, the varialle2 R* 39 represents the weight matrix of the hidden layer, the 36
variablew 2 RK represents the weights of the output layer, griglthe activation function. In Table 1, the variable 37

k corresponds to the number of neurons in the hidden layer. 38
39
3.2. Problem Statement 40
41

We tackle theproblem of discovering relationships over a KGiven a KG and an abstract target prediction, we 4,
aim to enhance the predictive capacity of the link prediction taskT L&G° = ( O; G°) be an ideal knowledge graph 43
that contains all the existing relations between entitieg,iwhereG® = hv; E% Li is the data graphl _KG is the 44
actual knowledge graph which only contains a portion of the edges represeiited@f, i.e.,E  E%itrepresents s
those relations that are known and is not necessarily complete( LELtE) = E° E be the set of relations 46
existing in the ideal knowledge gragh KG°that are not represented T KG. Let T_KGcomp = ( O; Geomp) be @ 47
completeknowledge graph wher@mp = hV; Ecomp Li is a data graph, which includes a relation for each possible 4s
combination of entities iv, i.e.,E  E° Ecomp LetGY be a projection o&° by an abstract target prediction 49

Given arelatiore2 ( Ecomp E) and an abstract target predictiorthe problem of discovering relations consists 5o
of determining whethee 2 EC, i.e., if a relatiore corresponds to an existing relation in the ideal gréfjh. We are 51



© 0O N O U~ W N P

a g b B b D DA B D DB D DWW WWWWWWWWNDNDNDNDNDDNDNDNDNDNRERPRPRRERPRRPRRPRPRP B
P O © 00 N O 0O h W NP O O 0 N O O B~ WNP O O 0N OO OO WNERP O O ONOO O MWNDNPRP O

A. Rivas et al. / A Neuro-Symbolic System over Knowledge Graphs for Link Prediction 7

Fig. 3. Approach. The input is a Knowledge Grapfi (KG), an abstract target predictionand a deductive system for and returns a KGE
model. Capturing symbolic knowledge stage, the Deductive Sy§i8in, (EDB; IDB) and DSj ,(EDB; IDB) deduces relationships in the
neighborhoodd ¢ (Egas (v)) of the ego networkEgas (V). Then, in discovering knowledge stade, KG and the resulting neighborhoods
Ng(Egas(v)) are embedded by a KGE algorithm to solve the link prediction tag in

interested in nding the maximal set of relationships or edggshat belong to the idedd] , i.e., nd a setE, that
corresponds to a solution of the following optimization problem:

argmaxjE,\ EY:
Ea Ecomp

3.3. Proposed Solution

Our proposed solution resorts to symbolic reasoning implemented by a deductive database to enhance thepre-
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20
21
22
23
24
25
26

dictive capacity of the link prediction task solved by knowledge graph embedding (KGE) models. The approash

assumes that a link prediction problem is de ned in terms of an abstract target predictioh ;r; i over a
knowledge grapfi _KG = ( O;G).

A Symbolic System Deductive system®Sj ,(EDB;IDB) and DSj ,(EDB; IDB) correspond to the deductive
databases for the abstract target predictiofhus, for each entity, in 1, (resp.v; in ), DSj ,(EDB;IDB) (resp.
DSj ,(EDB; 1DB)) de nes relations between entities in the neighborhoNdg{Egaz(v:)) (resp.Ng(Egas(w))).

29
30
31
32
33

induced by the ego networlEgas(vn). The computational method executed to empower a neighborhood4
Ng(Egas(v)) is built on the results of deductive databases to compute the minimal model of the deductise

database[8]. This minimal model is de ned in terms of the xed-point assignm%@t‘gl)x, that deduces relation-
ships between entitieg andv; in the neighborhoodslc(Egaz(vn)) for each entity, in 1 (resp.v; in ). The
minimal model forDSj ,(EDB; IDB) (resp.DSj ,(EDB; IDB)) can be computed in polynomial time in the overall

size of the neighborhood$s(Egas(v)) for all the entities in , (resp. +).

36
37
38
39

A Subsymbolic System A model to learn Knowledge Graph Embeddings solves the abstract target prediction40

and completes th€ _KG = ( O; G) with links of the typeh n;r; +i.

The Integration of Symbolic and Subsymbolic SystemsThe neighborhoodslg(Egas(v;)) andNg(Egas(w))
are extended with explicit relationships among entities in the ego networks of entiigediiv,) (resp.Egas(vh)).
As a result, the symbolic system implementeddsyj ,(EDB; IDB) andDSj ,(EDB; IDB) alleviate the data spar-

a1
42
43
44

sity issues inGj that may negatively affect the process of learning the KGE for the abstract target prediction 45

3.4. The Symbolic and Subsymbolic System Architecture

Figure 3 depicts the architecture that implements the proposed approach. The architecture receives a Knowlgdge

GraphT _KG = ( O; G), an abstract target prediction= h y;r; i, andDeductive Databases for Abstract Target

46
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49

51



	Introduction
	Motivating Example
	Our Proposed Symbolic and Subsymbolic System
	Preliminaries
	Problem Statement
	Proposed Solution
	The Symbolic and Subsymbolic System Architecture

	A Use Case: Prediction of Polypharmacy Treatment Effectiveness
	A Knowledge Graph for Lung Cancer
	The Abstract Target Prediction Task
	Deductive Databases for Abstract Target Predictions about Treatment Effectiveness
	Link Prediction based on Knowledge Graph Embedding Models

	Experimental Study
	Experiment Setup
	Benchmarks
	Knowledge Graph Embeding Models
	Implementations

	Metrics to Characterize the Benchmarks
	Impact of Capturing Symbolic Knowledge
	Evaluating the performance of our integrated Symbolic-Subsymbolic System
	Discussion

	Related Work
	Neuro-Symbolic Artificial Intelligence
	Knowledge Graph Embedding in Biomedical field
	Polypharmacy side effect prediction and Drug-Drug Interactions prediction

	Conclusions and Future Work
	Acknowledgements
	References

