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Abstract. Neuro-Symbolic focuses on integrating symbolic and sub-symbolic systems. The aim is to provide a neural-symbolic
implementation of logic, a logical characterization of a neural system, or a hybrid learning system that contributes features of
symbolic and sub-symbolic systems. They differ fundamentally in how they represent data and information. Neuro-symbolic
systems have recently received significant attention in the scientific communities. However, despite efforts in neural-symbolic
integration, symbol processing currently has limited scope and applicability. This work leverages the symbolic system, indepen-
dent of the application domain, and improves the predictive capability of Knowledge Graph Embeddings (KGE). We tackle the
problem of Neuro-Symbolic AI integration, enabling expressive reasoning and robust learning to discover relationships over a
knowledge graph. We present a novel approach to integrating Neuro-Symbolic AI systems. Deductive databases implement the
symbolic system for an abstract target prediction over a knowledge graph. The symbolic system enhances the predictive capacity
of the subsymbolic systems implemented by KGE models. Our approach builds the ego networks of the head and tail of the
abstract target prediction, and the symbolic system deduces new relationships enhancing the ego networks. Thus, the subsym-
bolic systems increase the predictive capacity of the abstract target prediction. As a proof of concept, we have implemented our
neuro-symbolic system on top of a KG for lung cancer to predict treatment effectiveness. Our empirical results put the deduction
power of deductive databases into perspective; they suggest that enhancing the neighborhoods of the entities on the head or tail
of a target prediction can improve the predictive capacity of existing KGE models.

Keywords: Neuro-Symbolic Artificial Intelligence, Deductive Systems, Knowledge Graph Embeddings, Drug-Drug Interactions

1. Introduction

Neural-symbolic computing is an active research area that attempts to combine the division of symbolic and sub-
symbolic models. The symbolic models refer to representations of reasoning and explainability, while sub-symbolic
models are Artificial Intelligence systems. Complex problem-solving using Artificial Intelligence (AI) requires a
significantly enriched language. Symbolic and sub-symbolic systems differ fundamentally in how they represent
data and information. Symbolic systems typically use structured representation languages from formal logic, and
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sub-symbolic systems usually use representations based on vector space. Thus, neuro-symbolic integration aims to
bridge the gap between symbolic and sub-symbolic systems.
Integrating neural-symbolic into real-world applications is a challenging task. Even in controlled environments, e.g.,
training simulators, neural-symbolic integration may not be completed successfully [1]. For instance, Fernlund et
al. [2] describe systems that use machine learning to learn relations from expert observations. While these systems
are successful in learning, they lack the expressive power of symbolic systems. Another example of neural-symbolic
systems in bioinformatics is the Connectionist Inductive Learning and Logic Programming (CILP) [3]. Further-
more, Karpathy et al. [4] combine convolutional neural networks with bidirectional recurrent neural networks over
sentences to recognize and label image regions. Despite advances in neural-symbolic IA integration, symbol pro-
cessing currently has limited scope and applicability. Our work integrates a domain-agnostic symbolic system with
a Knowledge Graph Embeddings (KGE) model to reduce the KG sparsity towards improving the model’s predictive
capability. Thus, we broaden the scope and applicability in several domains of neural-symbolic integration.
Problem: We tackle the problem of Neuro-symbolic AI integration, enabling expressive reasoning and robust learn-
ing to discover relationships over knowledge graphs.
Proposed Solution: We present a novel approach based on the integration of Neuro-Symbolic AI systems. The
symbolic system is implemented by deductive databases, enhancing the predictive capacity of subsymbolic systems
implemented as KGE models. The deductive databases are defined for an abstract target prediction over a Knowl-
edge Graph (KG). Our proposed solution builds the ego networks of the entities that correspond the head and tail of
the abstract target prediction to deduce new relationships and enhance the ego networks. The KG is completed with
relations implicitly defined in the deductive systems. As a result, the subsymbolic system works over a larger set of
positives relations and is able to more precisely predict new links.
Results: We assess the performance of the proposed neuro-symbolic system on top of a KG of lung cancer treat-
ments; the predictive task is to predict treatment effectiveness. The experiments are executed following different
configurations and baselines. Results of a 5-fold cross-validation process demonstrate that our integrated system,
improves the prediction accuracy of eleven state-of-the-art KGE models. Thus, the outcomes of this experimental
study put the power of deductive databases into perspective, showing thus, how they can empower the predictive
capacity of KGE models.
Contributions: This paper relies on our previous work [5] where we propose a deductive system over knowledge
graphs to formalize the process of pharmacokinetic DDIs. Built on these results, we present a hybrid approach able
to combine symbolic reasoning expressed by deductive systems with the subsymbolic expressiveness of KG embed-
dings, to enhance prediction accuracy. As a proof of concept, we assess the power of our proposal on the problem
of predicting treatment effectiveness. In a nutshell, our contributions are:

1. An approach able to empower KGEs with symbolic deductive systems.
2. A domain-agnostic approach able to capture the knowledge represented in a knowledge graph and deduce

relationships and their properties.
3. The assessment of the proposed system to the problem of predicting the effectiveness of lung-cancer treatments

composed of multiple drugs (i.e., polypharmacy treatments).
4. An extensive evaluation of symbolic-subsymbolic system in state-of-art KGE models.

The rest of the paper is structured as follows: Section 2 illustrates a motivating example. Section 3 presents prelim-
inaries and details of our proposed approach. Section 4 illustrates how the proposed hybrid method can be applied
in the context of predicting the effectiveness of polypharmacy lung cancer treatments. Results of the empirical eval-
uation of our method are reported in Section 5. Section 6 analyses the state of the art. Finally, we close with the
conclusion and future work in Section 7.

2. Motivating Example

We motivate our work in the healthcare context, specifically, for predicting polypharmacy treatment response.
Polypharmacy is the concurrent use of multiple drugs in treatments, and it is a standard procedure to treat severe
diseases, e.g., lung cancer. Polypharmacy is a topic of concern due to the increasing number of unknown drug-drug
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(a)Oncological Treatment (b) Predicting Response of Oncological Treatment

Fig. 1.Motivating Example. Figure 1a shows two polypharmacy oncological treatments,T1 andT2, represented in RDF. The drugsDB00193,
DB00642, andDB00958are part ofT1, and the drug-drug interactions are represented by the propertyInteractsWith. The therapeutic response of
T1is annotated aslow_effectby the propertybelong_to, while the therapeutic response ofT2is unknown. Figure 1b depicts the ideal RDF graph,
where a symbolic system generates a new DDI betweenDB00193andDB00958. Ideally, a sub-symbolic system detects that both treatments are
similar and predicts the effectiveness ofT2as low effective.

interactions (DDIs) that may affect the response of a medical treatment. There are two types of DDIs, pharmaco-
dynamics, i.e.,the effect of a drug in the body, and pharmacokinetics, i.e.,the course of a drug in the body. Phar-
macokinetics DDIs alter a drug's absorption, distribution, metabolism, or excretion. For example, an increase in ab-
sorption will increase the object drug bioavailability, and vice versa. If a DDI affects the object drug distribution, the
drug transport by plasma proteins is altered. Moreover, a drug's therapeutic ef�cacy and toxicity are affected when
a pharmacokinetics DDI alters the object drug metabolism. Lastly, if the excretion of an object drug is reduced,
the drug's elimination half-life will be increased. Notice that the pharmacokinetic interactions can be encoded in a
symbolic system.

Figure 1a shows two polypharmacy oncological treatments encoded in RDF. We extract the known DDIs between
the drugs of these treatments from DrugBank1. However, polypharmacy therapies produce unforeseen DDIs due
to drug interactions in the treatment. Since DDIs affect the effectiveness of a treatment, there is a great interest in
uncovering these DDIs. Figure 1b depicts an ideal RDF graph, where all the true relations are explicitly represented.
Dotted red arrows represent DDI between the drugsDB00193 andDB00958 that are generated as the result of
DDIs among drugs in the treatment. Rules that specify how these DDIs are generated can be represents in a Datalog
program were the extensional database corresponds to facts representing explicit relationships. On the other hand,
the implicit DDIs can be deduced via the intensional rules of the deductive system. The DDI betweenDB00193 and
DB00958 increases the description of treatmentsT1 andT2, enabling both parts of the KG to share more relations
the information required to consider both treatments similar. Then, a subsymbolic system, e.g., implemented using
a KGE model, can explore this enhanced make a more accurate prediction of the treatment response by employing
the deduced DDIs. For example, the geometric modelTransH placesT1 andT2 nearby in the embedding space

1https://go.drugbank.com
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after deducing DDIs and predicts the therapeutic response ofT2. As a result, this neuro-symbolic system enhances
treatment information by identifying drug combinations whose interactions may affect treatment effectiveness. We
propose an approach that resorts to symbolic reasoning implemented by a Datalog database and stage-of-the-art
KGE models; it deduces DDIs within a treatment. Then, the KGE model embeds all the knowledge in the graph and
predicts treatment responses. Although we depict the method in the context of treatment effectiveness, this approach
is domain-agnostic and could be applied to any other link prediction task.

3. Our Proposed Symbolic and Subsymbolic System

3.1. Preliminaries

Knowledge Graphs: A knowledge graph (KG) is a data structure that represents factual knowledge with entities
and their relationships using a data graph [6]. KGs are used in countless domains because of their ability to model
data in a machine-readable form. LetT _KG = ( O;G) be a KG, whereO is the set of classes and properties of a
uni�ed ontologyO = ( Classes; Properties). G = hV; E; Li is the data graph where,L � Properties; Classes� V;
and for eache 2 V ^ e 2 Classes; if (e; type;C) 2 E thene is of typeC.
Ego Networks in Knowledge Graphs: An ego networkof an ego entityv is de�ned asEgoG(v) = f vi j(v; r; vi) 2
E _ (vi ; r; v) 2 Eg. Figure 2(A) shows the ego network for the ego entityT2 asEgoG(T2) = f D2; D3; D4; D5g.
Neighborhoods induced by Ego Networks: The neighborhood of an ego networkEgoG(v) is represented by
NG(EgoG(v)) = f (x; r; y)jx 2 EgoG(v) ^ y 2 EgoG(v) ^ (x; r; y) 2 Eg. Figure 2(B) shows the neighborhood of the
ego networksEgoG(T1) andEgoG(T2).
Abstract Target Prediction: An abstract target prediction over aT _KG is de�ned in terms of a triple� = h� h; r; � ti :

– � h; � t 2 Classes;
– r 2 Properties; and
– 9v1 2 � h; v2 2 � tj(v1; v2) 2 V

Figure 2(A) shows a running example for the abstract target prediction� = hTreatment, belong_to, Responsei where
� h = class Treatment and� t = class Response.
Projections in a Knowledge Graph based on an Abstract Target Prediction. Let Gj� be a projection ofT _KG
by an abstract target prediction� de�ned by Gj� = f (vh; r; vt)jvh 2 � h ^ vt 2 � t ^ (vh; r; vt) 2 Eg. Figure 2(B)
depicts an example ofGj� by the abstract target prediction� = hTreatment, belong_to, Responsei ; it is the triple
hT1, belong_to, low_effecti .
Deductive Databases: A deductive database is a system that can derive deductions, e.g., conclude new facts, from
inference rules and facts stored in the database [7]. Deductive systems maintain deductive qualities in the rules that
are stated in the system. The language commonly used to specify facts, rules and queries in deductive databases is
Datalog. A Datalog program is a set of rules represented as Horn clauses [8]. Horn clauses are represented in the
following shape:L0 ( L1; :::;Ln, where eachLi is a literal of the formpi(t1; :::;tki). Pi is a predicate symbol andt j

are terms. A term is either a constant or a variable. The left-hand side of a Datalog clause is a head, and the right-
hand side is its body. Clauses with an empty body represent facts. A Datalog programP must satisfy the following
safety conditions; each fact ofP is ground, and each variable which occurs in the head of a rule ofP must also
occur in the body of the same rule. A rule is safe if all its variables are limited, where any variable that appears as an
argument in a predicate of the body is limited. Datalog considers two sets of clauses: a set of ground facts, called the
Extensional Database (EDB), and a Datalog programP called the Intensional Database (IDB). An example of EDB
is the set of factsInteractsWith(DB00193; DB00642); InteractsWith(DB00642; DB00958)expressed in Figure 1a,
G1. The predicateInteractsWithrepresents interactions between two drugs. LetP be a Datalog program containing
the following clauses:

r1 : inferred_interaction(A; X) ( InteractsWith(A; X):

r2 : inferred_interaction(A; X) ( InteractsWith(A; B); inferred_interaction(B; X):
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Table 1

Scoring function and complexity of embedding models. Adapted from [9]

Embedding model Scoring function Complexity

HolE (h ? t) � r O(jEjd + jRj d)

RESCAL hTWr t =
P d

i=1
P d

i=1 w( r)
i j hi t j O(jEjd + jRj d2 )

RotatE �jj h � r � rjj O (jEjd + jRj d)

QuatE h � r � t O(jEjd + jRj d)

TransE kh + r � tk O(jEjd + jRj d)

TransH kh? + r � t? k O(jEjd + 2 jRj d)

TransD kh? + r � t? k O(2jEjd + 2 jRj d)

TransR khr + r � tr k O(jEjd + jRj d2 )

UM kh � tk O(jEjd)

SE kMr;1h � Mr;2 tk O(jEjd + 2 jRj d2 )

ERMLP wTg(W[h; r; t]) O(jEjd + jRj d + k(3d + 2) + 1

Ruler2 states that exist aninferred_interactionbetween drugA andX, if there is another drugB which interacts
with A with the predicateInteractsWith, and there is aninferred_interactionfrom B to X. The evaluation results of
r2 is f inferred_interaction(DB00193; DB00958)g, which is observed in Figure 1b, G2.
Deductive Databases for Abstract Target Predictions: A deductive database for an abstract target prediction is
de�ned by DSj � h(EDB; IDB) and DSj � t (EDB; IDB), whereDSj � h(:; :) represents the Deductive System for the
class� h in the abstract target predictionh� h; r; � ti andDSj � t (:; :) for the class� t. EDB is a subset ofNG(EgoG(v)) ,
i.e., EDB � N G(EgoG(v)) and the IDB contains the IDB-predicates that allow to deduce new relationships and
enhance the ego network, i.e., increasingNG(EgoG(v)) .
Knowledge Graph Embeddings for Abstract Target Predictions: KG embeddings is a machine learning task
that learn latent vector representations of entitiesv 2 V and relationse 2 E in a KG, preserving their semantic
meaning. In cases where KGs are incomplete, new facts have to be identi�ed to add to the KGs. This task is
known as Knowledge Graph Completion and can be done by inferring new facts from those already in the KG. This
approach called Link Prediction exploits the KG to learn high-dimensional representations named Knowledge Graph
Embeddings (KGE) and is used to infer new facts. The state of the art of KGE methods may be negatively impacted
by the data sparsity issue, i.e., true triples that can be used as positive samples to guide KGE training represent only
a minor portion. The proposed symbolic system implemented by a Deductive database for abstract target prediction
� alleviates the data sparsity issue by enhancing links in theNG(EgoG(v)) , which are managed as positive triples.
The positive triples are used as positive samples to guide the KGE model, improving the performance of the scoring
function, see Figure 2(C).
Knowledge Graph Embedding Models: We implemented our symbolic-subsymbolic system in eleven embedding
models from different families [9]. Holographic embeddings (HolE) [10] computes circular correlation, denotes by
? in Table 1, between the embeddings of head and tail entities.RESCAL[11] is an algorithm of relational learning
based on a tensor factorization where models entities as vectors and relations as matrices. InRESCAL, the relation
matricesWr contain weightswi; j between thei-th factor of h and j-th factor of t. RotatE [12] represents each
relation as a rotation from the head entity to the tail entity in the complex latent space. The rotationr is applied
to h by operating a Hadamard product (denoted by� in Table 1).QuatE[13] operates on the quaternion space and
learns hypercomplex valued embeddings (quaternion embeddings) to represent entities and relations.TransE[14]
proposes a geometric interpretation of the latent space and interprets relation vectors as translations in vector space,
h + r � t. TransEcan not naturally model 1-n, n-1 and n-m relationships. Suppose a relationr with cardinality 1-n,
(h; r; t1); (h; r; t2) then the model �ts the embeddings in order to ensureh + r � t1 andh + r � t2, i.e. t1 � t2.
TransH[15] is an extension ofTransEthat aims to overcome the limitations ofTransE. Furthermore, inTransHeach
relation is represented by a normal vector of this hyperplane, where the variablesh? andt? denote a projection to
the hyperplanewr of the labeled relationr, andr is the vector of a relation-speci�c translation in the hyperplanewr .
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Fig. 2.Running example. Figure 2 illustrates the proposed steps to enhance the predictive capacity by KGE models.Step A: given a KG and
an abstract target prediction� = hTreatment, belong_to, Responsei the ego networkEgoG(v) is de�ned.Step B: illustrates the neighborhood of
the ego networkEgoG(T1) andEgoG(T2) and a deductive system based on the head and tail of� deduces new relationships to enhances the
neighborhoodsN G(EgoG(v)) . Step C: depicts a KGE model in which predictive capability is enhanced by symbolic reasoning. The relationships
in N G(EgoG(v)) improving the link prediction task inGj� .

TransR[16] represents entities and relations in distinct vector spaces and learns embeddings by translation between
projected entities.hr = h � Mr whereMr corresponds to a projection matrixMr 2 Rdxk that projects entities from
the entity space to the relation space; furtherr 2 Rk. TransD[17] employs separate projection vectors for each
entity and relation. In score function ofTransDthe variablesh? andt? are de�ned as,h? = Mrhh andt? = Mrt t,
whereMrh, Mrt 2 Rm� n are two mapping matrices de�ned as follows:Mrh = rphp + Im� n andMrt = rptp + Im� n.
The subscriptp means the projection vectors andIm� n denotes the identity matrix of sizem� n. The Unstructured
Model (UM) [18] is a simpli�ed version ofTransEwhere it does not consider differences in relations and only
models entities as embeddings. This model can be bene�cial in KGs that contain only a single type of relationship.
Structured Embedding (SE) [19] model de�nes two matricesMr;1 andMr;2 to project head and tail entities for each
relation. SE can discern between subject and object roles of an entity since it employs different projections for the
embeddings of the head and tail entities.ERMLP[20] is a model based on multi-layer perceptron and uses a single
hidden layer. In the score function, the variableW 2 Rk� 3d represents the weight matrix of the hidden layer, the
variablew 2 Rk represents the weights of the output layer, andg is the activation function. In Table 1, the variable
k corresponds to the number of neurons in the hidden layer.

3.2. Problem Statement

We tackle theproblem of discovering relationships over a KG. Given a KG and an abstract target prediction, we
aim to enhance the predictive capacity of the link prediction task. LetT _KG0 = ( O;G0) be an ideal knowledge graph
that contains all the existing relations between entities inV, whereG0 = hV; E0; Li is the data graph.T _KG is the
actual knowledge graph which only contains a portion of the edges represented inT _KG0, i.e.,E � E0; it represents
those relations that are known and is not necessarily complete. Let�( E0; E) = E0 � E be the set of relations
existing in the ideal knowledge graphT _KG0 that are not represented inT _KG. Let T _KGcomp = ( O;Gcomp) be a
completeknowledge graph whereGcomp = hV; Ecomp; Li is a data graph, which includes a relation for each possible
combination of entities inV, i.e.,E � E0 � Ecomp. Let G0j � be a projection ofG0 by an abstract target prediction� .

Given a relatione 2 �( Ecomp; E) and an abstract target prediction� , the problem of discovering relations consists
of determining whethere 2 E0, i.e., if a relationecorresponds to an existing relation in the ideal graphG0j � . We are
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Fig. 3.Approach. The input is a Knowledge Graph (T _KG), an abstract target prediction� , and a deductive system for� , and returns a KGE
model. Capturing symbolic knowledge stage, the Deductive SystemDSj � h(EDB; IDB) and DSj � t (EDB; IDB) deduces relationships in the
neighborhoodsN G(EgoG(v)) of the ego networkEgoG(v). Then, in discovering knowledge stage,T _KG and the resulting neighborhoods
N G(EgoG(v)) are embedded by a KGE algorithm to solve the link prediction task inGj � .

interested in �nding the maximal set of relationships or edgesEa that belong to the idealG0j � , i.e., �nd a setEa that
corresponds to a solution of the following optimization problem:

argmax
Ea� Ecomp

jEa \ E0j:

3.3. Proposed Solution

Our proposed solution resorts to symbolic reasoning implemented by a deductive database to enhance the pre-
dictive capacity of the link prediction task solved by knowledge graph embedding (KGE) models. The approach
assumes that a link prediction problem is de�ned in terms of an abstract target prediction� = h� h; r; � ti over a
knowledge graphT _KG = ( O;G).
A Symbolic System: Deductive systemsDSj � h(EDB; IDB) and DSj � t (EDB; IDB) correspond to the deductive
databases for the abstract target prediction� . Thus, for each entityvh in � h (resp.vt in � t), DSj � h(EDB; IDB) (resp.
DSj � t (EDB; IDB)) de�nes relations between entities in the neighborhoodsNG(EgoG(vt)) (resp.NG(EgoG(vt)) ),
induced by the ego networkEgoG(vh). The computational method executed to empower a neighborhood
NG(EgoG(v)) is built on the results of deductive databases to compute the minimal model of the deductive
database[8]. This minimal model is de�ned in terms of the �xed-point assignment� N G ( :)

MIN FIX , that deduces relation-
ships between entitiesvi andv j in the neighborhoodsNG(EgoG(vh)) for each entityvh in � h (resp.vt in � t). The
minimal model forDSj � h(EDB; IDB) (resp.DSj � t (EDB; IDB)) can be computed in polynomial time in the overall
size of the neighborhoodsNG(EgoG(v)) for all the entities in� h (resp.� t).
A Subsymbolic System: A model to learn Knowledge Graph Embeddings solves the abstract target prediction�
and completes theT _KG = ( O;G) with links of the typeh� h; r; � ti .
The Integration of Symbolic and Subsymbolic Systems: The neighborhoodsNG(EgoG(vt)) andNG(EgoG(vt))
are extended with explicit relationships among entities in the ego networks of entities inEgoG(vh) (resp.EgoG(vh)).
As a result, the symbolic system implemented byDSj � h(EDB; IDB) andDSj � t (EDB; IDB) alleviate the data spar-
sity issues inGj � that may negatively affect the process of learning the KGE for the abstract target prediction� .

3.4. The Symbolic and Subsymbolic System Architecture

Figure 3 depicts the architecture that implements the proposed approach. The architecture receives a Knowledge
GraphT _KG = ( O;G), an abstract target prediction� = h� h; r; � ti , andDeductive Databases for Abstract Target
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